
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 311080009

Rule Based Inference and Action
Selection Based on Monitoring Data

in IoT

Arash Fasihi

Course of Study: InfoTech

Examiner: Prof. Dr. Albrecht Schmidt

Supervisor: Dipl.-Inf. Andreas Kopecki

Commenced: December 1, 2015

Completed: June 1, 2016

CR-Classification: H.5.2

Acknowledgements

It is with immense gratitude that I acknowledge the support and help of Prof. Dr.
Albrecht Schmidt.

I would like to gratefully acknowledge the guidance, help and motivation of my supervi-
sor, Andreas Kopecki.

I would like to thank the HCI department specially Anja Mebus for being so kind and
helpful to me, all the time.

Abstract

The current trend in IoT is to find the ultimate solution to integrate objects to the body
of Internet to communicate. Once IoT applications are able to incorporate "Things"
effortlessly, handling the transferred data is the major challenge. For IoT platforms,
when they are mature enough to plug in things with minimal effort, the future research
will be around software frameworks. it is fair that IoT in its early years of existence pay
much attention to the engagement of things. However, it is predictable that in the future
the trend in IoT researches will fall in software area. A typical IoT platform already
includes a software framework to handle and manage data. An IoT software framework
is a "Rule-Engine" capable of making decisions based on received data. "Expert Systems"
has already been on research to address this problem. However, the emergence of IoT
will open new doors to this field. Making rule engines for IoT applications differs in that
they will process data that is inherently different.

In this thesis, an IoT software framework with good level of extensibility is offered
which allows developers to easily make IoT solutions on top of that. To analyze data
streams, there is an interface to host Machine Learning algorithms, together with other
interfaces common for an IoT application. To plug in new extensions, the developer is
free to develop their own extensions from scratch or to use some other IoT platforms to
integrate new modules.

4

Contents

1 Introduction 11
1.1 Motivation for IoT Frameworks . 11
1.2 Scope of Work . 13

2 IoT Applications Basics 15
2.1 Concepts . 15
2.2 Descriptive Model for IoT . 16
2.3 From Machine-to-Machine (M2M) to IoT 17
2.4 Requirements for IoT Applications . 18
2.5 Architecture . 20
2.6 Data Management in IoT . 21
2.7 IoT and Cloud . 25

2.7.1 KAA Cloud-Based IoT Platform 26

3 Fundamentals of IoT Platforms and Frameworks 29
3.1 IoT Platform’s Making Blocks . 29
3.2 Processing and Action Management . 31

3.2.1 Rule-Based Systems Basics . 33
3.2.2 Rule Engines Case Study in IoT 35
3.2.3 Rule Engines in IoT . 36

3.2.3.1 Machine Learning Approaches 36
3.2.3.2 Flow Diagrams . 38
3.2.3.3 Complex Event Processing (CEP) 41

4 Design 45
4.1 Architecture . 45
4.2 Functionality . 46

5 Implementation 55
5.1 User Interface . 55

5.1.1 Engine Setup . 55
5.1.2 Engine Update . 58

5.2 Training Data Interface . 59

5

5.3 Machine Learning Algorithms Interface 61
5.4 Data Stream Endpoint Interface . 65
5.5 Action Selection Interface . 66
5.6 Framework Core . 66

5.6.1 Why Managed Extensibility Framework (MEF) 68
5.6.2 Implementation of Core Using MEF 69

6 Summary and Future Work 79

Bibliography 83

6

List of Figures

2.1 A Descriptive Model of IoT . 17
2.2 A Generic M2M System Solution . 18
2.3 Smart Phones as a Mediator for IoT Applications, taken from [MF10] . . 19
2.4 IoT Three-layer Architecture . 20
2.5 IoT Detailed Architecture . 21
2.6 IoT Data Life-cycle, taken from [AHA13] 23

3.1 IoT Platform Triggering and Performing Actions, taken from [iot15] . . . 32
3.2 Intelligent System Behavior . 34
3.3 Rule-Based Systems Architecture . 35
3.4 Rule Engine for Data Transmission, taken from [KRBA14] 36
3.5 Decision Tree . 38
3.6 Data Flow Diagram, taken from [Sou12] 40
3.7 Node-RED Functionality . 41
3.8 CEP Engine Example . 42

4.1 System Overall Architecture . 46
4.2 System Core . 47
4.3 Machine Learning Algorithms Interface 48
4.4 Learning Algorithms Training Interface 48
4.5 Data Stream Endpoint Interface . 49
4.6 Action Interface . 50
4.7 Photon Development Kit . 51
4.8 Philips Hue Iris . 52
4.9 IoT Use-Case . 53
4.10 IFTTT Email Notification . 53

5.1 Engine Setup . 56
5.2 Engine Running . 57
5.3 User Interface Interaction . 58
5.4 Engine Update . 60
5.5 DropDownList . 71

6.1 Improved Learning Algorithms Training Interface 80

7

List of Listings

2.1 A KAA SDK in C++ . 27

3.1 Node-RED Message . 41
3.2 Query Representing a sample CEP Engine 43

5.1 TrainingDataTable Structure . 59
5.2 ITrainingDataRead . 61
5.3 Abstract Class TrainingDataRead . 62
5.4 Machine Learning Algorithms Interface 63
5.5 Data Stream Endpoint Interface . 64
5.6 Event Handler . 65
5.7 Adaptor Mechanism . 66
5.8 AdaptInputs Method . 67
5.9 Action Selection . 68
5.10 Core Implementation . 70
5.11 Core Constructor . 71
5.12 Page Load . 72
5.13 An Example of Data Stream Endpoint Extension 73
5.14 Start-Button Method . 74
5.15 Event Handler Subscription . 75
5.16 Stop-Button Method . 75
5.17 Driver Class . 76
5.18 DriverRunning Method Mechanism . 77
5.19 DriverGetAllMetaDatas Method Mechanism 78

9

1 Introduction

Currently, the main communication pattern on the Internet is human-human. With the
rise of smart objects, intelligent things in physical world are becoming smaller, at the
same time smarter. In near future, most objects will have a unique way of identification
so that they can be connected to the Internet. So, the Internet will become Internet of
Things (IoT). The communication patterns will not be restricted to only human-human.
Consequently, human-thing and even thing-thing (also called M2M) are new patterns
in connected world [TW10]. The main promise of IoT is to enable a variety of things
to be pervasively present around us which through unique addressing schemes, are
able to interact with each other and cooperate with their neighbors to reach common
goals [Giu10]. Along the same line, in the sophisticated world of IoT the mechanisms
managing and utilizing the resulting significant volume of data from the connected
objects has yet to match the maturity of the technology itself [AA12].

IoT already includes several domain of applications. These applications can be cate-
gorized based on the different network availabilities, scale, coverage and type of user
involvement [GKN+11]. IoT applications can be classified into six kind of domains,
they are smart homes and smart buildings, automation, mobile communication, smart
business, health-care, and utilities [AMN15].

1.1 Motivation for IoT Frameworks

Developing IoT applications has been always a matter of challenge due to complexity
of areas involved, ranging from Networks and Communication to Data Management
and Security [VF13]. To pave the road for IoT application developers,a variety of IoT
frameworks and platforms with varying capabilities have come to scene.

The introduction of Web 2.0 in 2004 changed the approach for Web application develop-
ment, dramatically1. Recent efforts for integrating the IoT into the Web 2.0 obtained

1http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html

11

http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html

1 Introduction

some considerable results, such as Pachube [Haq04] and SensorMap [NLM+06] , help-
ing the users with providing them with a Web platform capable of visualizing networked
things in a similar way as Google Maps does for Points of Interest. It seems that a com-
plete integration of smart things into the Web 2.0 will only be accomplished when users
are able to develop, deploy and exploit their own IoT applications as they already do for
Website and on-line contents. The key enablers for the success of such an integration
are 1) the adoption of IP capable open standards for thing communications , and 2) a
user friendly application design framework for smart things. For example, WebIoT is a
novel Web application framework for the Internet of Things, characterized by a flexible
design and a user friendly interface,that makes it possible to build a very wide spectrum
of IoT applications [CDBZ12].

IoT frameworks can help support the communication among things and allow for more
sophisticated computation areas like distributed computing and the development of
distributed applications. Currently, IoT frameworks seem to focus on real-time data
logging solutions like Pachube, offering some basis to work with many things and
make them interact. Future developments may result in specific software development
environments to develop the software to work with the hardware used in the Internet of
Things [KGB].

In terms of the technology and engineering aspects of IoT, currently, there may not be a
clear separation between the hardware and software platforms, but it is obvious that
the majority of vendors and providers focus on the hardware side2. Few vendors in the
industry currently offer IoT software platforms, for example, out of the top 100 IoT
startups ranked by Mattermark (based on the total funding they received), only about
13 startups provide IoT software platforms3.

Another important issue is the role of Cloud in IoT. A software framework can be either
hosted by an IoT Cloud platform to manage data or work out of the context of Cloud.
The both methods have pros and cons.

In IoT world, most IoT platforms host developer’s applications to run on Cloud. In fact
they are Cloud-based platforms. It is beneficial to rely on Cloud platforms to make an
IoT application work. A Cloud platform is a foundation for running applications and
storing data. The biggest issue is that it runs in data centers owned by an external
service provider, such as Microsoft, Amazon, Google, IBM, Rack Space etc., and it is
accessed via the Internet. These are the advantages of using the Cloud platform: Faster
deployment of new business capabilities, lower risk business innovation, global scale

2https://dzone.com/articles/iot-software-platform-comparison
3http://www.forbes.com/sites/louiscolumbus/2015/10/25/the-top-100-internet-of-things-startups-

of-2015/

12

https://dzone.com/articles/iot-software-platform-comparison
http://www.forbes.com/sites/louiscolumbus/2015/10/25/the-top-100-internet-of-things-startups-of-2015/
http://www.forbes.com/sites/louiscolumbus/2015/10/25/the-top-100-internet-of-things-startups-of-2015/

1.2 Scope of Work

and global reach, and more intelligent IT spending [KGB]. Among featured IoT Cloud
platforms we have AWS IoT4, IBM Bluemix5, and Xively6.

However, despite the fact that many believe Cloud is the ultimate computation solution,
these are the risks of using the IoT Cloud platform: outsourcing to an external provider,
storing data outside your organization (This is clearly a risk but how much risk is
appropriate or acceptable is a business decision.), vendor lock-in (so far there is no
easy way to port an application developed for one Cloud provider to another Cloud
provider.) [KGB].

1.2 Scope of Work

In this thesis, we will offer an IoT software framework for IoT application developers
to enable them develop their own IoT applications on top of the offered framework.
The framework, despite the fact that enables the developer to run their IoT application
on their own preferred servers, provides them with the possibility to get the data from
Cloud, if necessary. On the other hand, the offered software framework can be a part of
IoT Cloud platform for data analysis and management, as well. For this framework we
suppose that healthy data streams flow in, without any need for data fusion, filtering and
aggregation. In fact, to be able to develop IoT applications using the offered framework
one can either have the application run on their own server or have a Cloud platform
host the application.

Regardless of the fact that our offered software framework will be hosted by an IoT
Cloud platform or not, the goal of this thesis is to come up with a software framework
with a plug-in model in order to ease the integration of software modules without
any need for reconfiguration of the software architecture. The key aspect for such a
framework will be high level of software extensibility, with well-defined interfaces as
much as possible. The interfaces will be developed in such a way that integrating new
extension of one interface does not affect other extensions. That means for such a
software developed on top of this framework, the logic to handle the data stream coming
from Hypertext Transfer Protocol (HTTP) channel will be the same for handling the data
stream coming from Message Queue Telemetry Transport (MQTT) channel and so on.
On the other hand, to analyze the received data, there will be an interface to incorporate
Supervised Machine Learning algorithms. This is the responsibility of IoT application
developer to plug in suitable algorithm, according to the use-case.

4https://aws.amazon.com/iot/
5http://www.ibm.com/cloud-computing/bluemix/internet-of-things/
6https://www.logmeininc.com/

13

https://aws.amazon.com/iot/
http://www.ibm.com/cloud-computing/bluemix/internet-of-things/
https://www.logmeininc.com/

1 Introduction

Structure

The remaining of the document includes three chapters with this structure:

Chapter 2 – IoT Applications Basics: In this chapter, we will have a look at the basics
required to develop IoT applications. IoT ecosystem will be briefly discussed in
this chapter.

Chapter 3 – Fundamentals of IoT Platforms and Frameworks: In this chapter, we
will discuss the building blocks for IoT platforms. Then the role of a software
frameworks as the rule engine for IoT platforms will be discussed. Finally, we will
probe some current approaches to make a rule engine in IoT platforms.

Chapter 4 – Design: In this chapter the architecture and the functionality of our frame-
work will be introduced.

Chapter 5 – Implementation: In this chapter, an implementation for the design dis-
cussed in previous chapter will be introduced.

Chapter 6 – Summary and Future Work In this chapter, we will conclude our discus-
sion and then describe possible future improvements for our work.

14

2 IoT Applications Basics

IoT is a communication paradigm that visualizes a near future, in which the objects of
everyday life will be equipped with micro-controllers, transceivers for digital commu-
nication. Moreover, suitable protocol stacks that will make them able to communicate
with one another and with the users are necessary. Therefore, IoT aims at making the
Internet even more and more pervasive [ZBC+14].

2.1 Concepts

Compared to the traditional Internet, IoT has three outstanding characteristics which
we will discuss them briefly in this section. The first obvious characteristic is the overall
perception in IoT, that means IoT collects data about objects through sensing devices
like Radio-Frequency IDentification (RFID) sensors, two-dimensional code method
etc., wherever and whenever needed. The second characteristic for IoT is reliable
transmission. The core technology of IoT is nothing but Internet. The Internet of Things
relies on the Internet infrastructure to send data about objects to processing centers.
The need for accuracy, safety, and real-time transmission is unavoidable. The third
characteristic is intelligent processing. The two previous characteristics constitute a
network of sensors for IoT applications. However, IoT offers intelligent processing of
data about “Things”, as well [XJH13]. IoT has come to extend the Internet into real
world by taking in the everyday, everywhere objects. In new usage of Internet, objects
are no longer separated from the virtual world but can be controlled from everywhere,
anytime. In IoT, objects are equipped with special capabilities to act as access points to
the Internet service providers [AMN15].

In the new application of Internet, Internet of Things, so many services with the use of
sensors, actuators, smart embedded devices, etc. through unique addressing paradigm,
are able to communicate and interact among one another to reach a common goal. The
final goal is to make life easy for human. Suppose a situation in which your wallet or
watch gives security alarm to you without even your interference [STJ14].

Semantically, when speaking about the Internet of Things, in fact here the word “Internet”
means an application of Internet and the word “Things” refers to the information

15

2 IoT Applications Basics

of Things. The Internet provides an infrastructure to interconnect computers and
terminals through interconnected networks. However, what to be transferred through
this paradigm is not the “Thing” itself but the information of things is involved. So,
we can interpret the “Internet of Things” like “the Internet relating to information
of things”. The term IoT is composed of two basic elements. They are “Internet
application” and “Thing’s information”. On the other hand, there are already other
Internet applications capable of transferring thing’s information. Therefore, there must
be something special about IoT which makes it different from other applications like
File Transfer Protocol (FTP). We speak here, about those features briefly: It is possible
that in other Internet applications thing’s information are uploaded and transferred,
however in the especial case of Internet of Things uploaded information is only thing’s
information. A thing’s information is a description about the thing entity which has
two distinguishing characteristics: (1) small and light to occupy less memory and even
weight. (2) simple and concise in order to be read easily. So, there is a need for electronic
tags. An electronic tag is a sort of electronic media to store thing’s information with
ability to be attached to the thing’s body. For example, two kinds of electronic tags are
RFID electronic tags and bar-codes. However, for Internet of Things application RFID
tags have some advantages like accepting remote reading, supporting rewriting and so
on [HL10a].

2.2 Descriptive Model for IoT

IoT can be considered as a new application of Internet not an extension to Internet.
The huge difference is that the uploaded data in IoT mostly happens without user
inference. To compare it with some other Internet application take FTP or Simple Mail
Transfer Protocol (SMTP) as examples in which the data is uploaded by user intention,
by contrast, the uploaded information in the Internet of Things is not to be input by
somebody but to be read by some machine, namely some readers obtain the thing’s
information directly from the thing’s entity, as it is illustrated in the Figure 2.1. It can
visually explain the Internet of things working process. A thing’s information according
with its thing’s entity is embedded into an RFID electronic tag; an RFID reader reads the
thing’s information from the RFID electronic tag by non-contact form, thus the thing’s
information is uploaded into Internet; the users over the world can real-timely share the
thing’s information [HL10b].

16

2.3 From Machine-to-Machine (M2M) to IoT

Figure 2.1: A Descriptive Model of IoT

2.3 From Machine-to-Machine (M2M) to IoT

Machine-to-Machine (M2M) communication and the Internet of Things are two terms
that are used in many cases interchangeably. However, IoT comes after M2M communica-
tion and in fact, it adds more features to it. M2M can be seen as the solution that allows
communication among some devices and a specific application. The communication
can be achieved through a wired or wireless network. This architecture allows end
users to capture data about events and assets in the environment, such as temperature
and pressure. M2M can be applied in a variety of areas like remote monitoring. The
Figure 2.2 shows a typical architecture of a M2M solution [HTM+14].

In this architecture, a M2M device is something attached to the object in the environment
which is of interest to our business and is equipped with sensing and actuating abilities.
Here, we see a conceptual realization of the M2M devices. They can range from small
sensors to high-level complex sensing machines. The purpose of the network is to
provide a facility for the M2M devices and server-side application to talk among one
another. Depending on the type of solution we are working on, the network could be
any topology of networks like Wide Area Networks (WANs) and Local Area Networks
(LANs). The purpose of service enablement is to provide a generic functionality which
can be shared by different applications. It can be just an interface allowing different
applications, easily attach to the network in order to communicate with M2M devices.
This way development of new applications can be easier. The application is nothing
but the implementation of the goal of the whole solution. That means, the application
talking to devices through the network, serves the higher level enterprise business
process in which it can integrate [HTM+14].

IoT applications initially can be looked at, as the same as M2M communications com-
patible with the above mentioned ecosystem. In contrast to M2M communications,
IoT insists on the connection of sensors and applications through the Internet, and the

17

2 IoT Applications Basics

Figure 2.2: A Generic M2M System Solution

extensive use of Internet technologies. In fact, IoT tries to enable things to interact via
Internet in the same way that humans communicate via Web. That does not necessarily
mean that things can not interact via Web. That is what the concept of the Web of Things
(WoT) is for. Other than sensors, IoT takes advantage of using other resources of data
like Geographic Information Systems (GIS), as well. Even information extracted from
social media can be used [HTM+14].

In fact, M2M, is a communication paradigm trying to establish communication to
happen between two machines without human interference. IoT is also based on M2M
communication paradigm, however it tries to take in almost everything with a data
communicating device attached to the body of them, communicating devices like RFID
tags and bar-codes, through the Internet infrastructure [AKAH14].

2.4 Requirements for IoT Applications

The basic role of IoT is to take every possible object of real life into the Internet. That
means, IoT tends to remove the gap between physical world and virtual world. In IoT,
we look at the physical items as the physical access points. The idea of having such
technology stems from the fact that some other technologies are becoming suitable
enough to think about such an innovative technology. For example, think about technolo-
gies like Microelectronics, Communications, and Information Technology. The sizes are
diminishing, the prices are falling, and the energy consumption is declining. Utilizing
these opportunities, objects in physical world can become “smarter” [MF10].

Smart objects can sense their surrounding environment, and through built-in networks
they can communicate among each other, and via Internet services they can serve
people. As a result, IoT can not be the product of a single capability. In general, several
capabilities are involved which we will discuss them here as the basics of IoT [MF10].

Communication: This is the fundamental infrastructure for Internet and as a result for
the Internet of Things. In IoT, objects need to connect to each other to make use of data

18

2.4 Requirements for IoT Applications

Figure 2.3: Smart Phones as a Mediator for IoT Applications, taken from [MF10]

and services. Wireless technologies evolve independently and enhance IoT applications,
consequently.

Identification: Since objects are not passive elements in IoT, they need to be identified
uniquely. If we consider Web of Things (WoT), to identify objects in physical world
IPv6 seems to be suitable. RFID and bar-codes are other examples. RFID reader can
identify an RFID tag which is attached to the body of a “Thing”, and even smart phones
can identify bar-codes easily. In more advanced IoT applications, smart phones act
like mediator to reach the information of objects as long as they are connected to the
network. This concept is shown in Figure 2.3.

Sensing: Smart objects collect information about their surrounding environment with
sensors, process it to react upon, accordingly.

Actuation: Objects can be equipped with actuators to affect their environment. For
example, utilizing the sensed electrical signals, they can turn on a light or close a door.

Localization: In most IoT applications, there is a need to locate the physical object. In
fact, the objects should know their position in the surrounding environment to collect
data and react smartly. Therefore, technologies like GPS are involved.

Embedded Information Processing: Smart objects are equipped with processor units
and memory. This enable them to carry out interpretation on sensor data. This processing
power can be duplicated in application back-end, as well.

19

2 IoT Applications Basics

Figure 2.4: IoT Three-layer Architecture

User Interfaces: Objects in IoT are supposed to interact with users. This can happen
through a smart phone or directly. Therefore, innovative interactive paradigms are
the matter of significance here. Clearly, most IoT applications are highly interactive
systems.

2.5 Architecture

Currently, there is a widely accepted three-layer architecture for the Internet of Things.
Despite ambiguous definitions of the Internet of Things, the accepted architecture is
very clear and understandable as shown in Figure 2.4. In the following, we describe
briefly the role of layers in this architecture [MLL+10].

Perception Layer: The responsibility of this layer is to identify objects and collect
information about them. The perception layer includes 2-D bar-code labels and readers,
RFID tags and reader-writers, camera, GPS, sensors, terminals, and sensor networks.

Network Layer: This layer transmits and process the information acquired from percep-
tion layer.

Application Layer: The application layer is a combination of loT’s social division and
industry demand, to realize the extensive intellectualization. The application layer is
the deep convergence of loT and industry technology, combined with industry needs to
realize the intellectualized industry.

The suggested three-layer architecture seems to be very simple and concise and is widely
accepted by researchers on IoT. However, there are some other architectures discussed
by some researchers which show the IoT in more detailed manner. For example, the
article [MLL+10] offers an architecture like Figure 2.5. In this architecture the roles of
the layers are as following.

20

2.6 Data Management in IoT

Figure 2.5: IoT Detailed Architecture

Perception: The task for this layer is to sense the object’s properties like temperature,
location and so on, through different sensor technologies like RFID, 2-D bar-codes and
convert these information into digital format to be able to travel through network.

Transport: This layer which is also called network layer is responsible for transmitting
the data gathered from perception layer to the processing center.

Processing: This layer is in charge of storing, analyzing, and processing the object’s
information received from the transport layer. Because of the large number of objects
and huge amount of data reaching to this layer, different technologies are involved in
this layer such as Database technologies, Intelligent Processing, Cloud Computing, and
Ubiquitous Computing. In some references, this layer is introduced as the middle-ware
layer, as well [AKAH14].

Application: By using the already analyzed data from processing layer, this layer
provides a variety of applications to ease life for people. Applications like intelligent
transportation, logistics management, safety and so on.

Business: This layer looks like the manager of the Internet of Things which manages
the IoT applications and control their release and charging.

2.6 Data Management in IoT

The Internet of Things can be considered as a technology in which interconnected
smart objects continuously generate and transmit data through the already existing
infrastructure called Internet. When speaking about IoT, there is a tendency among
researchers to take much care about developing efficient hardware and communication

21

2 IoT Applications Basics

tools to reach the ultimate goal of IoT. However, the mechanisms and solutions to
handle massive data produced by a variety machines and stations are still to mature.
The problem emerges when enterprises are to develop applications to handle the data.
The traditional database systems do not seem to be mature enough to be suitable for
IoT applications. Traditional data management systems are good at storing, retrieval,
and updating data in files and records. In the context of the Internet of Things, data
management system should carry out more actions on data before sending them to back-
end. They need to summarize data on-line, for off-line analysis. Building and running
Big Data analytic applications typically needed for IoT is not easy task to do. Prior to
the emergence of IoT, developing data analytics was also a difficult task. However, this
can be far more difficult for IoT applications because of some reasons. First of all, the
devices to deliver data are completely independent. Moreover, there is not standard way
to aggregate the data coming from different sources [AHA13].

When speaking about data in the Internet of Things, “Things” are identifiable objects
that talk among one another through exchanging data and affect the surrounding
environment by reacting to events and by triggering actions. Here, one can feel the
need for having a platform to make the mentioned scenario possible. At the core of
this platform there is a huge amount of data produced in real-time manner or stored
in fixed storages. This data is converted to useful information through the appropriate
applications [VFG+11].

Data management is a big topic to speak about. In this context, we will keep the focus on
its role in the Internet of Things. In IoT, data management is a layer between perception
layer where objects sense the environment and application layer where the perceived
data is analyzed for further applications. The IoT data has a very special characteristic
that makes relational database systems somehow a very weak solution. In the simplest
case, data from different resources flow to the system indicating that some event is
happening or is about to happen. Therefore, before delivering the raw data to decision
selection part, there is a need to infer the corresponding event. Moreover, there is always
some meta-data about the data generated by “Things”; object identity, location and so on.
IoT data will reside in fixed database and be transmit through the network from dynamic
and smart objects to concentration storage points until it reaches some centralized data
source. Therefore, communication, storage and processing are important factors in data
management for IoT [AHA13].

The life-cycle of data in the Internet of Things is illustrated in Figure 2.6. As it is shown,
data is collected from data generator and after going through filtering and aggregation,
is delivered to back-end to be preprocessed, stored and archived. However, there is
a possibility to deliver the aggregated data directly to the user service or application.
Finally, the service or the application uses the preprocessed data by querying from
back-end. Along the same line, there is a possibility that the device in IoT environment

22

2.6 Data Management in IoT

Figure 2.6: IoT Data Life-cycle, taken from [AHA13]

locally process and store the data in real-time manner without the need for sending it to
back-end for further process [AHA13]. This is possible with smart devices geared with
strong processing capabilities. In the following each phase is described in more detail.

Query: This part is intended for retrieving real-time data for monitoring purposes or to
catch a certain view of the data within the system. The latter is used for more in-depth
analysis goals.

Production: Data production involves all objects and sensors within IoT context that
can produce data both in asynchronous or synchronous fashion.

Collection: Data produced in devices has certain time interval. The produced data in
devices must be collected and transferred to back-end for further process. The involved
technologies are wireless technologies like Zigbee, Wi-Fi and so on.

Aggregation/Fusion: The data produced in real-time could have very large volume to
store or transfer. Aggregation and fusion are applied on data on real-time to summarize
and compress data.

Delivery: Once data is collected, filtered, and aggregated and even processed at the
edge, it needs to be sent for more in-depth process or final use.

23

2 IoT Applications Basics

Preprocessing: Data in IoT comes from different resources including different formats.
The data needs to be preprocessed in order to remove redundancy, fill in the missing
data, and aggregate data. In data science, this phase is also called Data Cleaning.

Storage/Update—Archiving: This phase is responsible for storage, organization and
serving data for processing purposes. Archiving is used for long-term usages. Storage
for IoT can come in centralized and decentralized flavors. If we consider Cloud systems,
decentralized choices are the best. Traditionally, relational databases are the first choice
because of their popularity and high capability in storing data in relational tables.
However, NoSQL storage systems are becoming more and more popular because of their
ability to keep big data regardless of type consistency and the need for tables.

Processing/Analysis: For some applications, task-specific preprocessing may be needed
in order to have more meaningful operations take place. This phase is responsible for
gaining more insight out of the stored data and predict future.

As it is obvious from the Figure 2.6, the data flow in the Internet of Things environment
may go through three different paths. The first one is the path for autonomous systems
where the data flows directly from device to application after some processing happening
within the network. The second one is the path starting from data collection and after
fusion and aggregation the data is delivered to application. Finally, the path that after
aggregation, off-line back-end carry out preprocessing, storage and in-depth analysis of
data.

Due to the fact that sensors are becoming more and more affordable, IoT data is now
becoming more feasible. Therefore, organizations that used to make insight from
transactional data, now make insight from IoT data. Not only data is growing in volume,
it is also diversifying. That means, the already existing analytical applications lack the
ability to cope with IoT data. Decision makers have the data but weak at making fast
decisions efficiently. IoT organizations need data management solutions that facilitate
fast decisions, no matter how many end points are involved. Under this circumstance, it
looks rational to move data management from central data repository toward the edge
of network. The trend is to enable the sensors and data producing devices to manage
data locally, instead of sending the raw data to central storage and processing unit. Data
is managed as soon as produced. This way the streaming data can be aggregated at the
edge. Even IoT organizations add intelligence to the edge in order to streamline data
processing. More mature organizations try to filter and classify IoT data at the edge
which ensure to end up with healthy and organized databases [PBR15].

24

2.7 IoT and Cloud

2.7 IoT and Cloud

While devices through IoT ecosystem are connected to each other, they can provide
more smart processes and services which can improve the way we live. Under this
circumstance, the major challenge is the huge amount of data delivered by these
interconnected objects. The inherent problem with IoT is how to make value of the
enormous amount of data delivered by so many objects in environment. This will
challenge the traditional approach of data management and help to take advantage
of methods in Big Data. Cloud Computing is a model for on-demand access to shared
pool of resources that can be categorized as infrastructure (IaaS), platform(PaaS), and
software (SaaS). Cloud can help to implement IoT applications. Cloud based platforms
help in connecting to the things around us (IaaS) at any time, at any place using
customized portals and in-built applications (SaaS). Therefore, Cloud acts like a front
end to access to the Internet of Things [RSS+12].

We are moving towards Web3 (the Ubiquitous Computing Web). Therefore, the number
of already connected devices are growing dramatically and in near future there will
be a lot of data, as well. Storing and processing this huge data locally will not be the
ultimate solution anymore. So, there will be a need to for huge storages as well as
strong computational units. We may safely come to the conclusion that a combination
of Cloud Computing and IoT could solve a lot of problems. This new concept is referred
as Cloud of Things (CoT) here. However, it is not that easy to bring everything in IoT
environment and at the same time, allowing them to have access to resources available
in Cloud. Security and privacy are two big issues to be involved. The data security is
a very important issue in both IoT and Cloud sides. Suppose that, we are working on
smart homes. In this case, the owner of the home may not feel comfortable to send
the private data onto the Cloud without being aware of the physical address of the
storage where the data is stored and perhaps processed. In the following we discuss
some possible issues regarding IoT together with Cloud Computing [AKAH14].

Protocol Support: For everything connected to the Internet, there will be different
protocols. Some protocols are supported by the gateways some are not. Mapping of
protocols in gateways could be a solution.

Resource allocation: Depending on the type of sensor being used, the allocation of
resources on Cloud must be addressed.

Identity Management: In order to have almost everything as a part of Internet, we
need proper way of identifying them. IPv6 seems to have enough space to handle it.

Service Discovery: The challenge is finding and assigning proper services to IoT nodes.
The nodes that can participate in IoT at any time and can leave it at any time, as well.

25

2 IoT Applications Basics

The nodes that could be mobile ones. For this purpose a uniform way of service discovery
may be needed.

Location of Data Storage: The location of data, at first glance, may seem to be
unimportant issue. However, for some kind of data the physical location also matters.
Multimedia data is type of those data. They should be stored in the closest possible
distance from user.

In the next section, we will describe KAA open-source Cloud-based IoT platform.

2.7.1 KAA Cloud-Based IoT Platform

KAA is a middle-ware platform for building complete end-to-end IoT solutions. The
KAA platform provides an open toolkit for the IoT product development. It enables data
management for connected objects and back-end infrastructure by providing the server
and endpoint SDK components. The SDKs are embedded into the connected object and
implement real-time data exchange with the server. KAA SDKs are capable of being
integrated with almost any type of connected device or microchip.

The KAA server provides nearly all the back-end functionality needed to operate IoT
solutions. It handles all the communication across connected objects, including data
consistency and security as well as device interoperability. Moreover, the KAA server has
well-established interfaces for integration with data management and analytics systems,
as well as with product-specific services. It acts as a foundation for any back-end system
that the developers are free to expand and customize to meet the specific requirements
of their product. In order to develop an IoT application working on top of KAA platform,
there is a considerable amount of freedom to choose the target programing language,
data model, and device type. Developers can integrate their own modules, analytics
systems, and visualization tools.

For data processing, KAA works based on the log schema which developers design for
their applications. On the other hand, KAA server provides developers with APIs for
their custom-tailored SDKs. IoT application developers can use these APIs to instruct
KAA to deliver the log records to back-end or warehousing systems. A KAA endpoint is
tasked to cash the log records (temporary storage of data record) and send them to the
server as soon as upload event happens. On the server side, KAA supports a framework
of pluggable log appenders that developers use to load the data into database, to send
the data to stream processing, or to make it available to customized data processing
modules through REST. Therefore, with KAA developers can use their own preferred
data analytics.

26

2.7 IoT and Cloud

Listing 2.1 A KAA SDK in C++
#include <memory>

#include "kaa/kaa.hpp"

#include "kaa/IKaaClient.hpp"

#include "kaa/profile/DefaultProfileContainer.hpp"

using namespace kaa;

int main()

{

kaa::init();

IKaaClient & kaaClient = Kaa::getKaaClient();

kaa_profile::Car profile;

profile.brand = kaa_profile::Brand::Audi;

profile.model = "A8";

profile.color = "silver";

profile.vin = "JTHGL1";

kaaClient.setProfileContainer(

std::make_shared<DefaultProfileContainer>(profile));

Kaa::start();

Kaa::stop();

}

For hardware connectivity, with KAA it is possible to integrate almost any kind of device
ranging from those equipped with fully-functional operating system to micro-controllers
with limited amount of memory. To integrate a device to the body of KAA, one should
use KAA’s portable SDKs. They are currently available in Java, C++, and C.

KAA endpoint SDKs are designed to be embedded into client application, easily. They
are able to handle client-server communication paradigm, authentication, encryption,
and so on. The Listing 2.1 shows a simple SDK written in C++1.

1http://www.kaaproject.org/

27

http://www.kaaproject.org/

3 Fundamentals of IoT Platforms and
Frameworks

Currently, IoT platforms play a very significant role in connecting physical and virtual
worlds together. In the most primitive form, IoT platforms enable objects in the physical
world to connect to each other. In the more precise form, IoT platforms are composed
of several blocks: connectivity and normalization, device management, database, pro-
cessing and action management, analytics, visualization, additional tools, and external
interfaces [iot15].

3.1 IoT Platform’s Making Blocks

Connectivity and Normalization: Almost every IoT platform in the most bottom layer
includes a connectivity layer. It has the responsibility for bringing different protocols
and different data formats into one software interface. This is vital to enable the devices
to interact with platform and to enable the platform to receive the data from devices.
The connectivity layer makes it possible to have all the data about devices in one place
with one format for further analysis. At first glance, the implementation of this layer
could seem to be easy, however, consider the situation in which one pressure sensor
sends analogue data to the platform for one specific use-case, while some other device
like smart phone sends digital data for another use-case. Libraries need to be set up for
individual devices. On the other hand, advanced devices usually provide an Application
Programming Interface (API) that allows for a standardized communication interface to
the platform.

Device Management: The Device Management module of an IoT platform makes sure
that the connected objects are working properly and its software and applications are
updated and running properly.

Database: For an IoT platform, one suitable approach to have a database could be
a Cloud-based database solution that is distributed across different sensor nodes, for
some reasons that are related to the nature of IoT data. For example, one reason is the
velocity of data production which results in the fact that many IoT use-cases require the

29

3 Fundamentals of IoT Platforms and Frameworks

analysis of streaming data to make instant decisions. Another reason is obviously the
high volume of data in IoT use-cases. Moreover, different devices and different sensor
types produce very different forms of data which in some cases are very ambiguous and
inaccurate.

Typically, the database for IoT platforms should be scalable for big data and should be
able to store both structured (SQL) and unstructured data (NoSQL).

Processing and Action Management: The data which is captured in connectivity and
normalization block and passed to the relevant database is utilized in this module using
a rule-based event-action-trigger. This module allows performance of “smart” actions
based on specific sensor data. This module is basically nothing but a rule engine that
triggers actions based on sensor data using often Condition-Action rules.

Analytics: When dealing with data in IoT applications, other than processing and
action management, further analysis is sometimes required. Algorithms for advanced
calculations and Machine Learning are used to get the most out of the IoT data-stream.
These algorithms can be used in off-line manner to get further insight out of data.

Visualization: The combination of human eye and brain is still far superior to most
analytic and rule-based engines. That is why data visualization is so important: it
enables humans to see patterns and observe trends.

Additional Tools: Aadvanced IoT platforms often offer additional tools for IoT devel-
opers. For example, tools for testing IoT use-cases, or even management-focused tools
support the daily operations of the IoT solution. Another tool could be data reporting
which extracts data in Comma Separated Values (CSV) files or JavaScript Object Notation
(JSON) format.

External Interfaces: In general, IoT applications are not stand-alone applications. In
IoT-enabled organizations it is very important that the Internet of Things integrates with
existing Enterprise Resource Planning (ERP) systems, management tools, manufacturing
execution systems and the rest of the wider IT-ecosystem. Built-in APIs, Software
Development Kits (SDK), and gateways are possible approaches to the integration of 3rd-
party systems and applications. Well-defined external interfaces can help the integration
task speed up, dramatically [iot15].

The discussed blocks for an IoT platforms in this selection can be used to put a variety
of IoT use-cases in action. For example, suppose that we want to give an IoT-based
solution to control water leakage in a washing machine, using the blocks proposed in
the above-mentioned IoT platform architecture. The washing machine is geared with
sensors to communicate the particular abnormal situation, water leakage. Based on
abnormalities in the real-time data stream of these sensors, the machine is stopped
before causing damage. Schematically, the Figure 3.1 shows how the IoT platform can

30

3.2 Processing and Action Management

be used to control washing machine in this situation. Both the user and a customer
service technician get alerted so they can decide how to address this problem.

In this scenario, the sensor attached to the washing machine transmits lower value
than usual which is perceived in connectivity and normalization block of platform (1),
then the rule engine indicates three necessary actions: shut down the washing machine,
notify the user, and notify the customer service (2). Consequently, the washing machine
is shout down remotely (3) and the user gets notified through smart phone (4), customer
service gets notified through the Customer Relationship Management (CRM) system
(5). The processing and action module plays a crucial role for these use-case. This is
where real-time data that surpasses or falls below certain thresholds trigger specific
actions [iot15].

3.2 Processing and Action Management

In the last section, we had a brief introduction to IoT platforms and its making blocks.
As a recap, one of the most important modules in IoT platforms is processing and action
management module that hosts a rule engine. In this chapter, we will probe different
mechanism to implement such a rule engine with especial look at the state-of-art in
IoT.

The Internet of Things provides us with a lot of raw sensor data. However, this kind of
data is not mature enough to be used by different applications to serve human. We need
mechanisms to gain actionable and contextualized information out of that. Big Data and
Data Visualization give us the possibility to understand data deeply by off-line analysis
and batch-processing. This is done through the analytics module of an IoT platform
as discussed in previous section. However, the essence of IoT is the data concept that
is real-time. Real-time stream of data can be analyzed manually for decision making
which is not efficient, hence there is a need for automated approaches. Here, the role of
Artificial Intelligence (AI) in the Internet of Things comes up1.

In the Internet of Things, Machine Learning algorithms help entities to get billions of
data points and convert them to more meaningful information which can be utilized
for future needs. Suppose an IoT environment in which a patent is equipped to a sort
of wearable patient monitoring system that is responsible to notify the doctor about
possible problems about the patient. Is it possible by analyzing the stream of data
manually by a team? Is it possible to write code and create rules to identify abnormal
situation? To be able to realize potential problems the data must be analyzed to see

1http://www.waylay.io/blog-iot-meets-artificial-intelligence.html

31

http://www.waylay.io/blog-iot-meets-artificial-intelligence.html

3 Fundamentals of IoT Platforms and Frameworks

Figure 3.1: IoT Platform Triggering and Performing Actions, taken from [iot15]

32

3.2 Processing and Action Management

what is normal and what is not. Similarities, correlations and abnormalities need to
be quickly identified based on the real-time streams of data. The system is required to
analyze the data and make inference based on previously observed data to react to the
current situation and to keep the recently learned information for future use2.

The power of the Internet of Things comes from the fact that we can make more
accurate decision in real-time which enables use-cases like notification, automation, and
predictive maintenance. To achieve this goal, Artificial Intelligence offers the concept of
rule-based systems or rule engines. An advanced rule engine in IoT environment can
ingest the real-time data, reason on that data and call automated actions based on the
reasoning3. The business rules can flow into the knowledge base of the system through
interaction with user. However, Machine Learning offers a better attempt to train the
system to infer new rules based on the training dataset or past experiences.

3.2.1 Rule-Based Systems Basics

Rule-based systems are in fact practical implementation of intelligent behavior. Of
course, they derive from logic. To implement any rule-based engine there is a need to
have a logic understood and used. Any rule-based system is based on its own accepted
logic. In fact, one of the most important aspect of any Artificial Intelligence activity is
how to represent knowledge and one of the major techniques of representing knowledge
is logic. In order to express anything we need to get the help from a language. The
simplest form of such languages for rule-based systems is “Propositional Logic”. That
means we can represent any simple fact through propositional logic. For example, if
we say "Temperature is high", we show it with literal like P. If we say "It is sunny", we
show it by a literal like Q. Then (P–>Q) which indicates "If the temperature is high, it is
sunny" is a new statement, and this is the meaning of propositional logic. The need for
this language for intelligent systems is clear. Suppose somebody tells you something in a
language. Unless you don’t understand that language, you can’t act accordingly.

First we should understand the role of the knowledge in any intelligent system and
how this knowledge can help the behavior of any intelligent system. As it is shown
in Figure 3.2. In the context of an intelligent system, the system tries to sense the
environment and as soon as accepts input from there, tries to make some decisions
and act based on those decisions. The knowledge tells the decision maker what to do.
Suppose that the sensed fact by system is temperature. If the temperature goes high and
if the proper action is taken, that means the system has the proper knowledge. Therefore

2http://www.wired.com/insights/2014/11/iot-wont-work-without-artificial-intelligence
3http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html

33

http://www.wired.com/insights/2014/11/iot-wont-work-without-artificial-intelligence
http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html

3 Fundamentals of IoT Platforms and Frameworks

Figure 3.2: Intelligent System Behavior

we can see from here that knowledge has important role in demonstrating intelligent
behavior.

By the way, it is difficult to have a broad spectrum of knowledge about every possible
thing in the environment. We can only expect a machine to demonstrate an intelligent
behavior when that machine is left to work in particular environment in particular
domain. So the knowledge concept is narrowed down to the domain knowledge. If we
think of knowledge we have to first think of the language and then some mechanisms to
make sense from the knowledge. The latter is called “Inference Mechanism”.

For a rule-based engine, statements represent assertion knowledge. Such assertions
are divided into two categories: rules and facts. Rules are assertions in the from of
implications, whereas, facts are assertions that represent domain specific knowledge. For
example, the statement "Temperature is high" is a fact. The implication "If temperature
is high turn on the light" is a rule. To sum up, that means we can have a Knowledge
Base(KB) for our system consisting of facts and rules that are accepted to be true.
Rule-based systems are based on rules that say what to DO, given various conditions:

IF < This is the case > THEN < Do this>

A special interpreter controls when rules are invoked. That interpreter is also called
inference machine or inference engine. The inference machine which is a computer
program, given a new fact or new event sensed, looks at the Knowledge Base (KB) and
infer new facts. A rule or set of rules are triggered when their associated conditions
are satisfied. To put everything together, a rule-based system consists of a collection of
IF-THEN rules, and a collection of facts, and some interpreter controlling the application
of the rules, given the facts. This is illustrated in Figure 3.3 [RNI95].

34

3.2 Processing and Action Management

Figure 3.3: Rule-Based Systems Architecture

3.2.2 Rule Engines Case Study in IoT

In remote health-care monitoring, the collected data from wearable sensors on patent’s
body must be transferred to a central station for further process. However, two problems
are the high load of network and the high ratio of power consumption by transmitter.
The solution to these problems can be a rule-based engine to carry out an event-based
transmission rather than continuous transmission of data without any preprocessing.
The position of rule engine for this problem is shown in Figure 3.4. In this architecture
an Electrocardiography (ECG) data acquisition mode is used to collect data and for
transmission of data, IEEE 802.15.4 PHY and MAC standards are used. The rule engine
basically, consists of two cascading sections. They are decision making (inference
algorithm) and transmitter control (action selection). If we consider a static rule engine
case, the task of the decision making section is to analyze the features extracted from the
collected data and to decide if the data is normal or abnormal. Then a decision is made
and sent to the transmitter by the transmitter control. The mechanism of rule engine
could be as simple as IF-THEN rules. Moreover, the architecture illustrated in Figure 3.4
shows an example of data processing, close to the edge of network and thereby reducing
the load of network and enhancing the performance.

For ECG data collected, the rule engine considers a hard threshold and makes the
decision based on that. In fact, based on that threshold the data is classified as normal
or abnormal. If the data is classified as the abnormal data, the rule engine switch on the
transmitter and sends the sample data to gateway. In fact, the system separates normal
data from abnormal data and only sends the abnormal one which is of interest for health
caring intension. For example, suppose that the features P, Q, R, S, and T are extracted
from ECG data collector and are fed to the rule engine. In the rule engine, decision
maker calculates the PR, QRS, QT intervals and then compares them with hard threshold

35

3 Fundamentals of IoT Platforms and Frameworks

Figure 3.4: Rule Engine for Data Transmission, taken from [KRBA14]

and makes a decision. That is, if any of the intervals exceeds the threshold, is classified
as abnormal and consequently sent to the corresponding gateway [KRBA14].

3.2.3 Rule Engines in IoT

When data stream arrives in any IoT platform, the processing and action management
block of the platform is supposed to analyze the stream and take action, accordingly.
As already discussed this is where a software framework can be used, like the one we
will introduce in the next chapter. The chief functionality of such a framework is to
implement a rule-based engine. Currently, in IoT world, there is not an ultimate way of
coming up with a comprehensive rule engine. In fact, it depends on the IoT use-case we
are working on.

3.2.3.1 Machine Learning Approaches

A learner in its simplest form is a computer program which is said to learn a task given a
set of experiences with respect to some criteria or performance metric. A learner is in
an environment, trying to learn facts. It has a link to some Knowledge Base (KB) from
which it can take and in which it stores the acquired knowledge. The knowledge can be
internal data structures and the experience can be percept dataset. In general we have
three types of learning methodologies [RNI95]:

Supervised Learning: These are the type of learning algorithms in which, the system is
given a set of labeled (classified) training examples. These labeled examples include
both input and output. Therefore, the system extracts knowledge based on a labeled
training dataset.

36

3.2 Processing and Action Management

Unsupervised Learning: For this type of learning algorithms, there are no labels given,
we only have the examples which are not classified. There are situations which the
system wants to learn from them.

Reinforcement Learning: In this type of learning algorithms, a sequence of examples
is given to system. The system at some points gets rewards or punishments.

All the mentioned Machine Learning algorithms, finally, extract knowledge from the
training dataset they are given, and store the learned knowledge within different kinds
of data structures. For example, decision trees, neural networks, condition-action rules,
rule sets, finite state automata, lisp code, or C code.

concept learning is used to learn the description of a class of objects. We use this
description to predict the class of a new object. In classification problems, we have goal
concept that we are trying to learn. That is called the target concept. Our guesses of
target concept are called hypothesizes. Instances or examples help to learn the goal
concept. They are described through a vector of attributes or features. X = <x1, x2,..,
xn>. The concept learning problem is narrowed down to find the description of a
function (f) that maps feature vectors (X) to a discrete set of k classes.

f: X –> <0, 1, 2, .., k-1>

Often, we have two states of classes like positive or negative. Besides, like any other
supervised learning problem, we have often a set of training examples as a pair like
(X,f(X)) which help to learn the description of the function. Also, other than training set
we have a test set to evaluate our solution. The format that we establish our hypothesis
space, depends on the learning approach we take. It can be only a set of rules, or a
decision tree or even a neural network. The hypothesis space is defined in terms of
attributes (features) in training set. For example, we can assume hypothesizes like
this: x1, x1 AND x2, (x1) OR (x2 AND (NOT x3)), and so on. In all different learning
approaches, the final step is to select the best possible hypothesis [RNI95].

decision trees are one of the basic approaches to implement a classifier. The technology
for building knowledge-based systems by inductive inference from examples has been
demonstrated successfully in several practical applications. Results from some studies
show ways in which the implementation of a decision tree can be modified to deal with
information that is noisy and/or incomplete [Qui86].

decision tree is a classifier for concept learning task. In a decision tree a leaf node is
the value of the target attribute(class). A decision node or an internal node specifies
some test to be carried out usually on a single attribute value with one branch for each
outcome of the test. For example, if we are to classify the climate of a room as good or
bad, based on three input attributes like temperature, humidity, and pressure we will
end up with a decision tree like the tree shown in Figure 3.5. That is, the input set looks

37

3 Fundamentals of IoT Platforms and Frameworks

Figure 3.5: Decision Tree

like X = <T, P, H> where T stands for temperature, P stands for pressure, and P stands
for pressure and X is the target attribute (class). With the given tree, and receiving an
input like X = <25, high, low>, our input stream is classified as “Good” [PCZ09].

For decision trees the depth of the tree grows linearly with the number of variables, but
the number of branches grows exponentially with the number of states. Decision trees
are useful when the number of states per variable is limited (e.g. binary YES/NO) but
can become quite overwhelming when the number of states increases. Therefore, for
IoT use-case in which we are sure that the number of states is limited, a decision tree
can be a good choice4.

Decision trees are placed among Machine Learning algorithms with weak performance
for use-cases with large number of decision states, as already discussed. To overcome
this problem by known Machine Learning techniques, neural networks and Bayesian
networks are used by some famous IoT vendors. However, some other use methods like
flow diagrams and Complex Event Processing (CEP) which we will be speaking about,
in next sections.

3.2.3.2 Flow Diagrams

Flow diagrams or pipes are the other alternative in IoT to develop rule engines to handle
massive data. They follow the paradigm used in data flow systems, wisely. In a very
simple scenario we can consider it as the agents that can be connected together by the

4http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html

38

http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html

3.2 Processing and Action Management

system users, enabling a flow of events among agents. While the system is configured
and connected, the events begin to flow and consequently the system take actions on
behalf of the user. In the world of IoT while many systems are implemented simply with
condition-action, some organizations rely on data-flow systems, despite the fact that it
is not a new method. For example, WoTKit processor and Node-RED are based on this
method which we will go through them in details later [BL14].

Data-Flow Programming (DFP) is type of programming methodologies which tries to
implement applications as directed graphs. Within the graph that is similar to a data-flow
diagram, the nodes represents either sources, sinks, or processing blocks. The blocks
are responsible for the information flow inside the system. The nodes are linked by
edges which show the flow of information and its direction. The biggest achievement
of this method for processing data lies in its ability to implicit implementation of
concurrency. Each node is independent from other nodes and they can process data as
soon as it is received without the possibility to create deadlocks as there is no shared
space of data among processing blocks. In other programming methods in order to
achieve concurrency we may think of semaphores and similar methods which are error
prone [Sou12].

As time passes the need for processing large set of data emerges. Therefore, to handle
such a big amount of data we might consider multi-processor systems working with
multi-thread programming techniques. However, few programmers are comfortable
with multi-thread programming due to its complexity and high probability to develop
applications with hidden bugs. data-flow programming can pave the road to accomplish
parallelism, with less effort. In a data-flow network, nodes are connected through edges.
Values are propagated as soon as they are processed to the cascading nodes which result
in triggering the new set of computation on them [Sou12]. A simple example comes in
Figure 3.6 to show the flow diagram for the statements:

Z = (A * B) + C

W = Z + 4

With all simplicity and efficiency that data-flow diagrams bring to IoT applications, there
are some problems to be mentioned. Parsing of the message payload which somehow
becomes part of the “template”, and more importantly, it constrains the logic designer to
think in linear way, from left to right, following the “message flow”. Interesting problem
arises when two inputs come at different times. How long do you wait for the next one to
arrive before deciding to move on in decisions? How long the data point/measurement
is valid? These are the problems that should be addressed5.

5http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html

39

http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html

3 Fundamentals of IoT Platforms and Frameworks

Figure 3.6: Data Flow Diagram, taken from [Sou12]

Data-flow diagrams are used in some IoT tools to for data analysis purpose. For example,
WoTkit is Web-centric IoT toolkit. An event-based data processing system comes with
WoTKit. Sensor data is processed as soon as it arrives from gateways. The idea is to
enable user to make an insight of coming sensor data and in some cases a, high level
sensor information from low level sensor data in easy way. The interface is a visual
programming environment for Java-script based visual languages like Yahoo pipes. The
programming paradigm is Data Flow in which the processing pipes are made by user to
make meaningful information out of sensor data. A management page provides a list of
pipes that the user currently has running. Using this page, users can start, stop and edit
the pipes. Administrators can manage all pipes for all users on the system. To develop
a new pipe, or edit an existing pipe, the visual programming interface allows users to
drag and drop modules to the main pane and then connect them with wires [BL12].

Along the same line, Node-RED is a visual tool for making IoT applications developed
by IBM Emerging Technology. Node-RED uses the concept of Data-flow processing to
wire up input, output and processing blocks in IoT environment to process massive data
and based on that control the things. In Node-RED the processing blocks can be Web
services, that is, in each block the computation is left to a Web service that is invoked
in proper time. The result is finally an action,for example, sending an email on rainy
weather forecast. It is shown in Figure 3.76.

FRED is the front-end of the Node-RED enabling multiple users to manage instances
of Node-RED in the Cloud environment. In fact, the managing and controlling Node-
RED instances is left to be done in Cloud. User can make IoT application visually by
connecting together nodes to make the “Flows”. Each node receives input message and
produce output message which in turn, can be input for some other node. The flowing
messages are Java-script Object Notation Objects (JSON). They must contain at least
one payload parameter. A sample message is illustrated in Listing 3.1.

6http://developers.sensetecnic.com/article/introduction-to-node-red/

40

http://developers.sensetecnic.com/article/introduction-to-node-red/

3.2 Processing and Action Management

Figure 3.7: Node-RED Functionality

Listing 3.1 Node-RED Message
Msg =

{

Payload: massage payload,

Topic: error,

Location: somewhere in space and time

}

Nodes in a flow inherit from a base class called “Node”. On instantiation, the nodes
subscribe to external services and begin listening for coming data on a port, or they may
wait for HTTP requests7.

3.2.3.3 Complex Event Processing (CEP)

Complex Event Processing is a method of tracking and analyzing streams of data about
things that happen, and deriving a conclusion from them. The first person raises this
conception is Professor David Luckham from Stanford University [YCL11].

Data analytics like SAP Sybase, HP Vertica, and Action ParAccel MPP have already been
in use to utilize big data. However, all of them focus on processing data in off-line
manner, and simply they are batch-oriented analytics. When it comes to the Internet of
Things, we try to keep our focus on analytics on the live data stream. That means, in
IoT we are not interested on storing data after it has been processed, although in some
use-cases it is necessary for auditing and establishing a Knowledge Base, based on the
observed events. Among common technologies for stream analytics are Event Stream
Processing (ESP) and Complex Event Processing (CEP). For example, Twitter Storm and
Apache S4 use ESP method and EsperTech Esper uses CEP method [HTM+14].

7http://developers.sensetecnic.com/article/introduction-to-node-red/

41

http://developers.sensetecnic.com/article/introduction-to-node-red/

3 Fundamentals of IoT Platforms and Frameworks

Figure 3.8: CEP Engine Example

CEP allows easy matching of time-series data patterns coming from different data sources
and it frees developers from the task of handling context locking. However, in some
cases it has shown the problem that Decision Trees and Pipelines have shown. That is,
modeling is also an issue here to be considered8.

With the evolution of IoT and advent of Web Services, applications need to make more
intelligent decisions using real-time data. Such applications require CEP engines to detect
patterns of activity from a variety of data sources and infer events continuously [OBE07].
As an accepted definition: CEP is event processing that combines data from multiple
sources to infer events or patterns that suggest more complicated circumstances. The
goal of complex event processing is to identify meaningful events (such as opportunities
or threats) and respond to them as quickly as possible9.

CEP engines are, in fact, event-driven information systems that employ techniques such
as detecting complex patterns, building correlations, and relationships among many
events. From a high abstractive view a typical CEP engine receives a set of input streams
from like database files. Many CEP engines use a SQL-like programing language such as
Continuous Computation Language (CCL) with an extension for event processing. In
the following we show the idea of CEP with a simple example. Suppose that our engine
wishes to listen to an input stream called “WindIn” and find the inputs that the wind
changes by more than 5 miles per hour in two seconds, then the matching events are put
in an output data stream called “WindPatternOut”. The example is shown in Figure 3.8
and the corresponding query comes in Listing 3.2 [OBE07].

CEP engines tend to look at the data to be processed as events. Any phenomenon in
physical world can be modeled as an event to be fed into CEP engine. Events have
sometimes complicated relationships, even, a single event may consists of several other
events. CEP technology can be used to find out these sophisticated relationships and
decide on action over them in real-time. In fact, most CEP engines functionally work
like reverse databases. In ordinary database systems, the practice is to store data and

8http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html
9https://en.wikipedia.org/wiki/Complex_event_processing

42

http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html
https://en.wikipedia.org/wiki/Complex_event_processing

3.2 Processing and Action Management

Listing 3.2 Query Representing a sample CEP Engine
INSERT INTO WindPatternOut (Location, Speed1, Speed2)

SELECT W1.Location, W1.WindSpeed, W2.WindSpeed

FROM WindIn W1, WindIn W2

MATCHING [2 SECONDS: W1 && W2]

ON W1.Location = W2.Location

WHERE (W1.WindSpeed - W2.WindSpeed) >= 5;

make queries against the stored data. Whereas, in CEP engines we store the queries
with correlated constrains and then run the data through [JC14].

In IoT the practice of data processing, somehow occurs hierarchical. In this hierarchy,
basic events mean atomic events that take place at different times in different places.
Complex events are composed of these basic events. In the hierarchical processing model
every level only processes their own logic, other complex events logics are kept apart, so
it improves efficiency of events processing [Wei12].

Despite all advantages that CEP offers, it is not the ultimate solution for data analysis
in IoT. Part of the data in IoT environment is the static description of information. To
process this kind of data, there are some distributed computing systems already in use.
Hadoop is one the most popular ones. However, the CEP technology if not comparable
with off-line batch processors, it has some obvious advantages over already existing
data stream processors. In general, data stream processors come in two flavors: Data
Stream Processing (DSP) models and Complex Event Processing (CEP) models. DSPs
have simple functionality. They integrate data from different input sources to one
output stream. The output stream can be stored in database with DBMS and retrieved
when needed. On the other hand, CEP method tries to watch the events to filter or
calculate the corresponding output. The complex event processing model having better
processing power in handling time relationship among different events plays better in
IoT environment [CFS+14].

43

4 Design

Previously, in chapter 2 and chapter 3, we talked about IoT basics and the very important
role that an IoT software frameworks can play within IoT platforms to achieve the highly
automated way of life with minimum risk of human mistakes when it comes to decision
making.

To address a problem in real life, we may need to use an IoT solution. In such a solution,
having equipments like sensors, actuators, and data processing algorithms in hand, we
need an IoT platform to bring them work together. Any IoT platform should give the
facility to somehow process the data stream and trigger action, accordingly. To do so,
different IoT platforms include a rule-based engine which could be a software-based
framework. As discussed in section 3.2.3, there are a variety of approaches to implement
a rule-based engine for IoT applications. In the following, we are going to offer a simple
architecture for a typical IoT software framework considering vital requirements to
allow different IoT solutions to sit on and then in the next chapter, we will show how
the implementation is possible. Developing an IoT framework from scratch, capable of
incorporating any possible IoT solution needs huge amount of work and time, however
the offered framework here despite the fact that is still to mature, can represent the
essentials, introducing new features that will be discussed, technically.

4.1 Architecture

The Figure 4.1 shows the overall architecture of the system. On the heart of the system
sits the Core of the framework, the part that is attached by four interfaces and equipped
by a User Interface. In the following we will describe different parts of the framework in
great detail.

Before moving into the implementation of the different parts of the system, we have
to mention here that the system follows a client-server architecture where the user or
possibly the administrator of the application sits on the client side who communicates
with the engine on the server side. The communication between the User Interface and
the engine relies on the Web protocols and is achieved on top of HTTP. On the other

45

4 Design

Figure 4.1: System Overall Architecture

hand, the data stream can flow into the application using any kind of protocols whether
HTTP or for example MQTT.

4.2 Functionality

In the last section, we talked about the architecture of the system which we want to
develop, in this section we elaborate the functionality of different parts of the system.
To begin with, we discuss first the Core of the system. The Figure 4.2 shows the Core
of the framework. This part of the system is responsible for connecting different parts
together to enable an IoT solution work properly. The parts attached to the Core should
be addressed properly. On the boundary of the Core there are four interfaces. These
interfaces allow four different components come together, wired up properly and make a
typical IoT solution take place. As you can see in the Figure 4.2 there are four interfaces
which are shown by small circles. The first one is the interface which allows different
Machine Learning algorithms attach to the Core engine for data stream analysis. The

46

4.2 Functionality

Figure 4.2: System Core

second interface is the one for acquiring training dataset to train the learning algorithm
before the system starts working.

The third interface is responsible to allow the framework receive input data stream at
run-time. The incoming data stream could possibly come from any resources like from
devices directly attached to the server, local sensor networks or even somewhere in
Cloud. The idea is when the Core engine is running it listens to the data stream source
and when a new stream of data arrives, processes it by the already selected and trained
Machine Learning algorithm. Finally, having analyzed the input stream the result is
ready for decision making which in turn, happens in the last interface to trigger an
action. In the simplest possible approach, when we discuss about the Core of our IoT
framework, we refer to a rule engine as discussed in chapter 3.

In section 3.2, we discussed that a rule engine in the simplest approach in IoT platforms
is implemented with condition-action rules with especial capability of inferring new
rules from the already existing rules. The initial rules are defined by application business
rules or simply through end-user interactions. This way, the incoming real-time sensor
input can be processed and utilized for decision making on near real-time fashion. On
the other hand, the events or even the simple sensor stream inputs are stored in the
platform repositories for further off-line processing where Machine Learning algorithms
and Data Mining techniques are widely involved. However, the offered framework in
this chapter base the rule engine directly on Machine Learning algorithms. The part of
Core responsible to accept different algorithms is shown in the Figure 4.3.

Using Machine Learning algorithms in the core of IoT frameworks, makes smarter
rule engine which can react on unseen events and sensor streams efficiently with high

47

4 Design

Figure 4.3: Machine Learning Algorithms Interface

Figure 4.4: Learning Algorithms Training Interface

performance. In this regard, the major challenge is training the algorithms which in turn
opens new areas depending on the IoT use-case. In the offered framework as you can see
in the Figure 4.4 two possible approaches are thought. The first one is simply uploading
the training dataset as a text file directly by the user or the administrator of the system
before starting the engine. The text file which follows special format is filled by user
knowledge of the environment. The same thing can happen also from a local database
on the server side. That means we can ask the user through User Interface to enter
the training dataset and then store it in the database. Currently, in the implemented
version of this architecture as will be discussed later the algorithms are trained by text
file uploaded by user. However, the interface to get the algorithms is developed in a way
that allows any possible training data source be used.

So far, we have been speaking about the learners and the possible ways to train them.
While these steps passed behind, the Core is supposed to listen to the endpoint dedicated

48

4.2 Functionality

Figure 4.5: Data Stream Endpoint Interface

for receiving input data streams. You can see this part of system in the Figure 4.5. Keep
in mind that when the engine is running, the mentioned steps will be followed in a
pre-designed order. That is, when the Core starts listening to data endpoint, it has been
already equipped with a trained Machine Learning model to react on input data.

In this architecture, the interface to receive the input data streams is designed to follow
a life-cycle paradigm. That means, having extracted the Machine Learning algorithm
model and trained it, the listener to input stream starts receiving data streams until
the user through the User Interface decides to stop listening. In the intervening time
between start and stop listening, the arrival of an input data stream is treated like an
event happens in the data stream interface which is supposed to be handled at the Core
of the framework. Handling data at the Core means feeding the data stream to the
extracted learner model. In fact, when the Core of the framework is about to handle the
fired event in the interface, it has already been equipped with a Machine Learning model
preferred by the user through the User Interface. When implementing this architecture,
the important issue to keep in mind is addressing the event and its handling mechanism.
Therefore, this interface must include an event type subscribed to a call-back function
(delegate type) as the handler of the event. This call-back function type only describes
the signature of the handler function, the real implementation is left to the Core of the
framework.

Moreover, keeping the interface as flexible as possible to be consistent with different
sensor input resources can enhance the flexibility of the framework, dramatically. In
Figure 4.5 to envision this idea, two different resources are shown. One is a local sensor
network, the other one is somewhere in Cloud that collects and delivers data to the
framework.

In the implemented version of this architecture, as we will be discussing, the format
of sensor inputs will be all finally converted to simple strings through the interface

49

4 Design

Figure 4.6: Action Interface

instances. That means how to convert the incoming input to single separated strings is
all left to the writer of the interface instance.

At this point, the input stream flows into the Core of framework through the described
interface and there, analyzed to select an action to be taken. The result is delivered to
the last interface in this architecture i.e. Action Selection interface, as you can see it in
the Figure 4.6.

This is the part of architecture which utilize the analyzed data. It can be used simply
to turn on/off a light or a switch on/off a device. If the number of decision states is
not binary (true or false) it can be used to change for example the brightness of the
light. It all depends on how we define our IoT use-case and how we train our algorithm.
However, from a different perspective we can use the result to invoke a Web service or
even change the state of an already connected Web service. In fact, this is the part that
the raw data is analyzed and could be used in any direction which the owner of the
system prefers.

Finally, the whole system is designed to be interactive with user. Interaction with two
categories of end users are necessary for this system.

The first category of users is those who only set up the system to run. For example they
can decide about the type of Machine Learning algorithm, training dataset resource,
data input stream source, and finally the actuator. These users can decide about the
type and number of sensors, as well. The second category of users can be considered as
the administrators of system. They are responsible for extending and upgrading system.
For example, the administrator may wish to add a new input resource extension, or
new actuator to trigger action. That means the administrator can add and update any

50

4.2 Functionality

Figure 4.7: Photon Development Kit

of four already mentioned interfaces. We refer to these new instances as extensions of
interfaces throughout the text. When it comes to extensibility issue, the key point is to
make the integration of new extensions as effortless as possible for the extender. This
can be achieved through Component Based Software Development (CBSD) methods,
as we will be speaking about when describing the implementation. Obviously, a User
Interface is required as the one in the shown in the Figure 4.1. As we will be discussing
in the implemented version of the architecture, the User Interface is a Web based one.

Up to this point, we have depicted how the system works. Before going to the implemen-
tation of the framework, let’s exemplify our idea by a simple use-case which helped us to
test the functionality of the system. Suppose that we are interested in accomplishing an
IoT solution in which three sensors are connected to the system, and continuously deliver
data about the temperature, humidity, and pressure of the environment in asynchronous
manner. Our hardware development kit to collect sensory data— the Photon (Wi-Fi) is
shown in the Figure 4.7. When an abnormal situation occurs depending on the context
of the use-case, a light must be turned off or turned on as notification. We used Philips
Hue Iris for notification actuator part, as shown in Figure 4.8.

To make this situation be solved using our framework, after setting up interfaces to
accept the data and have the system recognize the actuator the only thing remaining is to
select a proper Machine Learning algorithm or installing new one. As already discussed
in section 3.2.3.1, for this use-case because of the fact that the final state for decision
making is narrowed down to only two states (true or false) a decision tree suffices
perfectly, regardless of the number of connected sensors. Basically, for all use-cases with
limited decision states, decision trees work fine because after training the decision tree,
we will have a tree with acceptable depth. For this use-case the decision tree model
which we used is Iterative Dichotomiser 3 (ID3). The Figure 4.9 shows how this IoT
solution can be achieved with the offered framework. The collected sensor data is not

51

4 Design

Figure 4.8: Philips Hue Iris

directly delivered to the framework. Preferably, the data first travels to the Cloud-based
IoT platform—KAA, and then redirected from Cloud to framework. This way, there is no
need to have the sensors geographically close to the server where the framework engine
works on. The KAA platform is explained in section 2.7.1.

Moreover, along the same line, with this simple use-case we tested our framework to
trigger an action on IFTTT Web-based service, instead of turning on/off a light. IFTTT
is a free Web-based service that allows users to create chains of simple conditional
statements, called "recipes", which are triggered based on changes to other Web services
such as Gmail, Facebook, Instagram, and Pinterest1. In our recipe the IF part is the result
of data analysis in the Core of framework and THEN part is just sending a notification
Email. In IFTTT, Maker Channel allows you to connect IFTTT to your personal projects.
With Maker, you can connect a Recipe to any device or service that can make or receive
a Web request2. In our use-case the result is an Email like the one shown in the
Figure 4.10.

1https://en.wikipedia.org/wiki/IFTTT
2https://ifttt.com/maker

52

https://en.wikipedia.org/wiki/IFTTT
https://ifttt.com/maker

4.2 Functionality

Figure 4.9: IoT Use-Case

Figure 4.10: IFTTT Email Notification

53

5 Implementation

In this chapter we show how the offered architecture in the previous chapter can be
implemented. In previous chapter we started explaining from the Core of the system and
finished it on the User Interface. Here, we start from the User Interface to have better
view on the overall functionality of the software. The programing language used is
C-Sharp on Microsoft.NET version 4.6. The User interface is developed using HTML5.

5.1 User Interface

The fronted of the software is implemented by HTML5. To keep the flow of our work
focused on IoT functionality, in this section we skip HTML coding. As already discussed,
the User Interface is composed of two major parts. The first part which is marked as
Engine Setup is to start and stop the engine. The second part which is marked as Engine
Update is for extending the framework and uploading training dataset.

5.1.1 Engine Setup

Engine Setup tab in the User Interface is responsible for setting up the engine. It is
illustrated in Figure 5.1 .

The User Interface is developed in such a way that the user can select the desired sensors
among all connected sensors. Selecting special sensors automatically narrow down the
four interface extensions to be compatible with this setting. For example, if the user
selects all the sensors, the Machine Learning algorithm will deliver a classier model for
all the sensors, the input stream interface also will receive and delivers all the sensor
inputs, and finally the Training Data interface will extract the required information for all
the sensors from the text file. The last interface—Action Selection, does not depend on
the number of sensors. The Figure 5.2 shows the behavior of the User Interface when the
user starts the engine. Apart from the sensor selection part, the User Interface includes
four drop-down lists representing options for the four plugged interface extensions
attached to the Core of the framework.

55

5 Implementation

Figure 5.1: Engine Setup

As shown in the Figure 5.2, after selecting the proper fields, the Core of the system starts
working. While the engine is running, all selection fields in the User Interface freeze
until the user again stops the engine. According to the functionality of the system, the
user can stop the engine at run-time and change the options and then again start the
engine. For example, it is possible for user to stop the running engine which receives
data input stream from resource A and again run the engine with option to get the data
input stream from resource B. However, forgetting to select one or more fields will result
in a notification from User Interface as shown in the Figure 5.3 .

56

5.1 User Interface

Figure 5.2: Engine Running

57

5 Implementation

Figure 5.3: User Interface Interaction

5.1.2 Engine Update

The second tab in the User Interface is Engine Update. Updating the framework means
adding new instances of the four interfaces available at the Core of the framework. We
also refer to new instances as extensions throughout the text. In fact, this is the place
where we want to integrate new modules to our software configuration. For example,
if we want to add a new learning algorithm, it is enough to study the related interface
and write the new extension i.e. the new algorithm and as it is shown in the Figure 5.4
only upload the DLL file to the server. The same story is true for three other interfaces.

58

5.2 Training Data Interface

Listing 5.1 TrainingDataTable Structure
public class TrainingData

{

public DataTable TrainingDataTable { set; get; }

public TrainingData() { }

public TrainingData(int sourceNumber, string target, params string[] sourceList)

{

TrainingDataTable = new DataTable();

for (int i = 0; i < sourceNumber; i++)

{

DataColumn column = TrainingDataTable.Columns.Add(sourceList[i],

typeof(string));

}

DataColumn Decisioncolumn = TrainingDataTable.Columns.Add(target,

typeof(string));

}

}

The four interfaces work independent of one another. The reason we choose to extend
our software by adding already complied DLL files, will be discussed when we explain
the structure of the Core. However, the important issue to be careful about is the fact
that uploading a DLL file directly to the server from client side compromises the security
of the system. To avoid this problem, when the system is in real use, we can leave this
part only to the administrators of the system who can enter the Engine Update part by
submitting corresponding credentials. The training dataset files can be checked out by
the administrators before sitting on the server, as well.

In following, we will be describing the implementation of Core, and attached inter-
faces.

5.2 Training Data Interface

Clearly, this is the interface to get the training dataset to train our learning algorithm.
Basically, such an interface can be skipped if the developer of the system wishes to get
the training dataset from one single resource. However, there may be use-cases that
tend to get the training dataset from new resources. In fact, the mentioned interface
makes a variety of IoT solutions possible. Moreover, the interface is written in such
a way that takes issues like the number of sensors into consideration. Therefore, the
interface includes a data structure to incorporate the training dataset. For that purpose,
a data type called TrainingDataTable as shown in Listing 5.1 is introduced.

59

5 Implementation

Figure 5.4: Engine Update
60

5.3 Machine Learning Algorithms Interface

Listing 5.2 ITrainingDataRead
public interface ITrainingDataRead

{

TrainingData TrainingDataSet { set; get; }

void MakeTrainingData(int sourceNumber, string target, params string[] sourceList);

void FillTrainingData();

}

Practically, this data type is finally nothing but ADO.NET "datatable" type in .NET
framework. However, the structure of the datatable i.e. the number of columns and
the title of them is ruled by the number of sensors and their names which are in turn
selected by user on the User Interface. Then, a base type called ITrainingDataRead is
introduced as shown in the Listing 5.2 .

This C-Sharp interface type includes a TrainingData type which we already spoke
about. As you can see, there is also a method called MakeTrainingData that accepts
the properties of sensors. Finally, the last method called FillTrainingData that gives the
possibility to receive training dataset from different resources.

The rest of this interface includes two more objects as shown in the Listing 5.3, an
abstract base class and another interface type which is responsible for getting and
setting meta-data for associated type. The reason we need this meta-data will be spoken
later when we describe the Core mechanism. The abstract base class inheriting the
FillTrainingData method from the interface ITrainingDataRead marks it as abstract to
leave it to the writer of the instance of this interface. In fact, this is the part that makes
difference between different extensions of this interface. The writer of new extension of
Training Data interface fills the datatable from whatever resource possible, and attaches
it to the Core of framework.

5.3 Machine Learning Algorithms Interface

Using the interface explained in the previous section the framework receives the training
dataset and puts it in the language specific data structure explained. Now, using this
interface, different Machine Learning algorithms can be attached to the Core to be
trained by training dataset and react to unseen future stream incomings. It is important
to mention that this framework is designed to accept only Supervised Machine Learning
algorithms. That means, algorithms that are trained by training dataset which includes
the input set together with the result for each input [KZP07]. The concept of learning

61

5 Implementation

Listing 5.3 Abstract Class TrainingDataRead
public abstract class TrainingDataRead : ITrainingDataRead

{

public int SourceNumber {set; get;}

public string Target {set; get;}

public string[] SourceList {set; get;}

public TrainingData TrainingDataSet { get; set; }

public void MakeTrainingData(int sourceNumber, string target, params string[]

sourceList)

{

SourceNumber = sourceNumber;

Target = target;

SourceList = sourceList;

TrainingDataSet = new TrainingData(sourceNumber, target, sourceList);

}

public abstract void FillTrainingData();

}

public interface ITrainingDataRead_Meta

{

string Name { get; }

}

algorithms is described in section 3.2.3.1. In fact, the Knowledge Base (KB) of rule
engine is the concrete knowledge of the user about the environment. The interface
to attach algorithms can be used by next developers to write their own algorithms or
use ready libraries written by other developers. We used Accord.Net library in which
different classification algorithms are included 1. The interface is shown in Listing 5.4.

In the highest level of abstraction, the interface is composed of three basic methods.
The method Train which receives the training dataset from the interface explained
in the previous section, then returns a generic type, "object". The object type is the
generalization of a learning model, like a random decision tree or a neural network.
Whatever it is, is passed to the next method called Classify. The Classify method
responsibility is straightforward. Having the model collected from the Train method and
a stream of sensor input as its input parameters, it delivers a string as result. In fact, this
string is a description for the result of the data analysis. For example, it could be only
true or false.

1http://accord-framework.net/

62

http://accord-framework.net/

5.3 Machine Learning Algorithms Interface

Listing 5.4 Machine Learning Algorithms Interface
public interface IExtractModel

{

object Train(DataTable mTrainingData);

string Classify(object mModel, params string[] mInputStream);

void StreamProperties(int sourceNumber, string target, params string[] sourceList);

}

public abstract class Classifier : IExtractModel

{

protected int _sourceNumber;

protected string _target;

protected string[] _sourceList ;

public void StreamProperties(int sourceNumber, string target, params string[]

sourceList)

{
_sourceNumber = sourceNumber;
_target = target;
_sourceList = sourceList;

}

public abstract object Train(DataTable mTrainingData);

public abstract string Classify(object mModel, params string[] mInputStream);

}

public interface IExtractModel_Meta

{

string Name { get; }

}

The link between Train and Classify methods, is left to the Core of the framework.
Basically, the link between Train and Classify is needed because the model obtained in
Train will be used in Classify. To achieve this purpose, the Core itself passes the model
obtained from Train to Classify, automatically. As you can see in Listing 5.4 the output
parameter for Train method is the model which is input parameter for Classify method.
The writer of the extension for this interface has to care only about the functionality of
the two methods.

Finally, the StreamProperties method which receives the characteristics of input stream
from User Interface. In reality, this method can be ignored when writing a new instance
because this properties can be acquired by the passed datatable to Train method. How-
ever, having them explicitly in hand, ease the writing of sophisticated Machine Learning
algorithms. In fact, it is good to mention that in all of our interfaces except the Action
Selection interface we have a method to receive the properties of stream input. They

63

5 Implementation

Listing 5.5 Data Stream Endpoint Interface
public interface ISensorDataReader

{

void Start();

void Stop();

};

public abstract class SensorDataReader : ISensorDataReader

{

protected InputAdaptor _inputAdaptor ;

public delegate void DataRecievedHandler(params string[] data);

public event DataRecievedHandler DataRecieved;

public virtual void OnDataRecieved(params string[] data)

{

if (DataRecieved != null)

DataRecieved(data);

}

public abstract void Stop();

public abstract void Start();

public void GetInputAdapter(InputAdaptor inputAdaptor)

{
_inputAdaptor = inputAdaptor;

}

}

public interface ISensorDataReader_Meta

{

string Name { get; }

}

all receive this properties from the Core of the system and as already mentioned the
Core of the framework collects them through the interaction with User Interface. If you
remember the start point in User Interface before any action is to select the sensors. As
a result, at this point the Core realizes the input stream properties and communicates
them to the corresponding interfaces.

This interface like other interfaces has its own special meta-data facility which the
related usage will be explained in great detail later when we speak about the Core.

64

5.4 Data Stream Endpoint Interface

Listing 5.6 Event Handler
public void DataRecievedEventHandler(params string[] data)

{

string result = _classifier.Classify(_model, data);
_action.TakeAction(result);

}

5.4 Data Stream Endpoint Interface

The two previous interfaces enable the framework to get the training dataset and extract
learning model like a typical classifier to analyze the sensor input stream or any other
event happening. While we have these tools in hand, the framework needs an interface
to receive the input stream of data and deliver it to the learning model. We call this
interface Data Stream Endpoint. the code for this interface comes in Listing 5.5 .

In the highest level of abstraction, there is a C-Sharp interface type, called ISensor-
Datareader. Within the context of this interface type, we look at our Data Stream
Endpoint interface as a container for a life-cycle. The method which is called Start,
clearly starts this life-cycle and the method Stop puts an end to it. The Start and Stop
methods here exactly correspond to the functionality of Start button and Stop button in
the User Interface which we already saw. Then, we have an abstract base class, called
SensorDataReader inheriting the Start and Stop methods from aforementioned interface
type. The idea is, in the time between starting to listen to a channel of data stream and
stopping it, an arrival of a data stream fires an event which must be handled in the Core
of the system. In fact, the data arrival event occurring in the Data Stream Endpoint
interface triggers its corresponding event-handler in the Core of the system. For that
purpose, in this class there is an event type called DataRecieved based on the call-back
function called DataRecievedHandler. Therefore, to react on the data arrival event in the
Data Stream Endpoint extension, it is enough to call “OnDataRecieved (data)” and this
event will be handled in the framework Core with a handler like in the Listing 5.6.

The class also includes a type called InputAdaptor. At endpoint, before passing the input
stream to the “OnDataRecieved (data)” the data must be converted to an array of strings
defined in the training dataset. That means the framework finally handles the data
format in which for each sensor we have normalized string values like “low”, “mild”,
and “high”. The training dataset must be in this format, as well. Therefore, if the sensor
values from some resource were all double types we would have such a code in the
Endpoint as shown in the Listing 5.7.

In Listing 5.8, you see the AdaptInputs method of the type InputAdaptor.

65

5 Implementation

Listing 5.7 Adaptor Mechanism
string[] data = _inputAdaptor.AdaptInputs(tempDoubleList.ToArray());

OnDataRecieved(data);

Finally, this interface also includes its own facility for handling its associated meta-
data.

5.5 Action Selection Interface

So far, using the previous three interfaces, we have come to the point that we get data
stream from some resource, analyze it using a Machine Learning model and get a result.
Now, we are in the position that based on this result, an action must be taken. Defining
the Action Selection mechanism all depends on the IoT solution we are working on.
It could be turning off or turning on a switch, notifying the user of the system, or
even controlling some other devices and sensors. In the implemented version of the
architecture under discussion we kept the interface for Action Selection as simple as
possible to give the possibility to the user of framework to decide about Action Selection
part, completely from scratch. The Listing 5.9 shows the simple code for this interface.

It is worth mentioning at this point that in Artificial Intelligence and Expert Systems,
the term Action Selection Mechanisms (ASM) refers to the techniques used to select
an action among other possible actions. Literally, it answers to the question: "What to
do next?" [BB06]. However, in our framework the term is used somehow differently.
In Action Selection interface, actually the action is already selected by an Artificial
Intelligence (AI) Action Selection Mechanism like a Bayesian network or a decision tree.
Here, we want to utilize that selected action (true or false), for example, to turn on/off
a light or send an Email.

5.6 Framework Core

Up to this point, we have discussed enough about the components attached to the
Core of the system but we never went deep into the Core implementation. To bring up
those components again, they are nothing but the four interfaces together with a User
Interface. Basically, the system is supposed to function in such a way that the user can
select the preferred extensions of the four interfaces through User Interface and even
switch among them at run-time. The configuration of the software should be in such
a way that the integration of new extensions of the interfaces takes minimum effort.

66

5.6 Framework Core

Listing 5.8 AdaptInputs Method
public string[] AdaptInputs(params double[] inData)

{

List<string> outData = new List<string>();

int i = 0;

foreach(double d in inData)

{

if(_sourceList[i] == "temperature")

{

if (d < 30.0)

outData.Add("low");

else if (d >= 30.0 && d < 40.0)

outData.Add("mild");

else

outData.Add("high");

}

else if (_sourceList[i] == "pressure")

{

if (d < 700.0)

outData.Add("low");

else if (d >= 700.0 && d < 1000.0)

outData.Add("mild");

else

outData.Add("high");

}

else if (_sourceList[i] == "humidity")

{

if (d < 20.0)

outData.Add("low");

else if (d >= 20.0 && d < 40.0)

outData.Add("mild");

else

outData.Add("high");

}

i++;

}

return (outData.ToArray());

}

67

5 Implementation

Listing 5.9 Action Selection
public interface IActionSelection

{

void TakeAction(string result);

}

public abstract class Actionselection: IActionSelection

{

public abstract void TakeAction(string result);

}

public interface IActionSelection_Meta

{

string Name { get; }

}

That means to add or remove modules without any recompilation. To achieve this goal,
Component Based Software Engineering (CBSE) meets our requirements [HC01]. This
method in .NET Framework 4 and higher versions is introduced as Managed Extensibility
Framework (MEF).

5.6.1 Why Managed Extensibility Framework (MEF)

The Managed Extensibility Framework is a composition layer for .NET that improves
the flexibility, maintainability and testability of large applications. MEF can be used
for third-party plugin extensibility, or it can bring the benefits of a loosely-coupled
plugin-like architecture to regular applications. It is a library for creating lightweight,
extensible applications. It allows application developers to discover and use extensions
with no configuration required. It also lets extension developers easily encapsulate code
and avoid fragile hard dependencies. MEF not only allows extensions to be reused within
applications, but across applications as well. Using MEF is as easy as, export it, import it
and compose it2. MEF presents a simple solution for the run-time extensibility problem.
Until now, any application that wanted to support a plugin model needed to create its
own infrastructure from scratch. Those plugins would often be application-specific and
could not be reused across multiple implementations. MEF provides a standard way for
the host application to expose itself and consume external extensions. Extensions, by
their nature, can be reused amongst different applications. However, an extension could
still be implemented in such a way that is application-specific. Extensions themselves can
depend on one another and MEF will make sure they are wired together in the correct
order (another thing you won’t have to worry about). MEF offers a set of discovery

2https://msdn.microsoft.com/en-us/library/dd460648(v=vs.110).aspx

68

https://msdn.microsoft.com/en-us/library/dd460648(v=vs.110).aspx

5.6 Framework Core

approaches for your application to locate and load available extensions. MEF allows
tagging extensions with additional meta-data which facilitates rich querying and filtering.
One of the key design goals of our IoT framework is, it should be extensible and this is
the reason we decided to use MEF. With MEF we can use different algorithms (as and
when it becomes available) for sensor data analytics: e.g. drop an analytics assembly
into a folder and it instantly becomes available to the application.

5.6.2 Implementation of Core Using MEF

The Core is implemented on the code behind for the HTML page Engine Setup in
User Interface. The application in its root directory has four folders to accommodate
corresponding DLL files. That is, initially we compile the four interfaces together with
their linked libraries and put them in the four aforementioned folders in the root directory
of the application. Now, the user of the system should write extensions of these interfaces
then compile them, make DLL files and upload them to the server. The extensions will
automatically go in the related folders to sit beside their interface DLL files. The
extensions must have proper meta-data in the format of a meaningful string which
will go to the corresponding drop-down lists in the page Engine Setup, automatically
without any need for a configuration file. Now, the user can select preferred extensions
at run-time and start the engine. The extensions will be automatically wired up together
to make an IoT solution work. The role that MEF plays here is clear. It should discover
all extensions and present them to user on the User Interface and when the user picks
his/her own preferred extensions, it hast to wire up them together. This is all possible
with code like the one showed in Listing 5.10 .This is the code behind for the HTML
page Engine Setup discussed previously.

The first field for this class is a “CompositionContainer” type object. This is the start point
on bringing in the MEF. Instead of this explicit registration of available components,
MEF provides a way to discover them implicitly, via composition. A MEF component,
called a part, declaratively specifies both its dependencies (known as imports) and what
capabilities (known as exports) it makes available. When a part is created, the MEF
composition engine satisfies its imports with what is available from other parts. The core
of the MEF composition model is the composition container, which contains all the parts
available and performs composition. (That is, the matching up of imports to exports.)

In the next field, we have an object of a type called Driver. Driver is a type which we will
be speaking about, later in detail. Shortly, it has been developed for two purposes. First,
to extract extensions that user selects, second extract all meta-data related to extensions
and present them to user. We could have even several extensions of driver as you can
see in the Listing 5.10 it is marked with import attribute. Since in this project we need

69

5 Implementation

Listing 5.10 Core Implementation
public partial class _Default : Page

{

private CompositionContainer _container;

[Import(typeof(Driver))]

public Driver driver;

private object _model;

private IExtractModel _classifier = null;

private SensorDataReader _reader = null;

private IActionSelection _action = null;

public _Default();

protected void Page_Load(object sender, EventArgs e);

public void DataRecievedEventHandler(params string[] data);

protected void Startbtn_Click(object sender, EventArgs e);

protected void Stopbtn_Click(object sender, EventArgs e);

}

only this driver we put it exactly beside -Default class in the same executing assembly.
The other fields are of our interfaces types which will get their objects in the method
Startbtn-Click, that means when Start button is clicked. The field that has "object" type,
is the model extracted by Train method of classifier and will be used in Classify method
of the classifier.

The Listing 5.11 shows the constructor of this class.

The composition container makes use of a catalog. A catalog is an object that makes
available parts discovered from some source. MEF provides catalogs to discover parts
from a provided type, an assembly, or a directory. Here, the paths for the DLL files in the
root directory of application are added. Also, the path for current executing assembly is
added to import Driver object. Therefore, in the constructor of page i.e. the -Default
method we import a driver and from driver all other imports i.e. interface extensions
happens.

The next method is Page-Load method and you see the code in the Listing 5.12 . When
the page loads the driver as discussed is already imported. In Page-Load function, we
call the DriverGetAllMetaData method of driver to discover all meta-data and assign
them to drop-down lists.

To show that how the meta-data for extensions is discovered with this method let’s
take Input Stream drop-down list as example. As you see in the Figure 5.5 it has two
items. The two items are, in fact the meta-data string in each extension of Data Stream

70

5.6 Framework Core

Listing 5.11 Core Constructor
public _Default()

{

var catalog = new AggregateCatalog();

catalog.Catalogs.Add(new AssemblyCatalog(typeof(_Default).Assembly));

catalog.Catalogs.Add(new DirectoryCatalog(Server.MapPath("~/AlgorithimsDLL")));

catalog.Catalogs.Add(new DirectoryCatalog(Server.MapPath("~/EndpointDLL")));

catalog.Catalogs.Add(new DirectoryCatalog(Server.MapPath("~/ActionDLL")));

catalog.Catalogs.Add(new DirectoryCatalog(Server.MapPath("~/TrainingDataDLL")));

_container = new CompositionContainer(catalog);

try

{

this._container.ComposeParts(this);

}

catch (CompositionException compositionException)

{

Console.WriteLine(compositionException.ToString());

}

}

Figure 5.5: DropDownList

Endpoint interface. That meta-data exists in export attribute of each extension. For
example the KAA Platform extension starts with code listing like in the listing 5.13. The
Listing does not show the whole code for KAALogServer extension of SensorDatareader.
However, the string "KAA Platform" in export attribute of this extension is discovered by
MEF and presented in drop-down list as you can see in Figure 5.5.

The next method DataRecievedEventHandler corresponds to the delegate introduced
in the Data Stream Endpoint interface. The idea is the user in client side, extracts the
reader, model, classifier, and action in Startbtn-Click, and delivers them to the server
which will be busy with this event-handler until again the user on client side, with
Stopbtn-Click click, commands the server to stop. This event-handler is invoked when
a stream of data arrives. You can see it in the Listing 5.6. In this method for the first
time we see the usage of -model, -classifier, -action fields of the class under discussion.

71

5 Implementation

Listing 5.12 Page Load
protected void Page_Load(object sender, EventArgs e)

{

List<string> modelsList = new List<string>();

List<string> endpointsList = new List<string>();

List<string> readersList = new List<string>();

List<string> actionsList = new List<string>();

driver.DriverGetAllMetaDatas(out modelsList,out endpointsList,out

readersList,out actionsList);

if (!IsPostBack)

{

Stopbtn.Enabled = false;

foreach (string st in modelsList)

{

LearningAlgorithmddl.Items.Add(new ListItem(st));

}

foreach (string st in readersList)

{

TrainingDataSourceddl.Items.Add(new ListItem(st)); }

foreach(string st in endpointsList)

{

InputStreamSourceddl.Items.Add(new ListItem(st));

}

foreach(string st in actionsList)

{

Actuatorddl.Items.Add(new ListItem(st));

}

}

}

In the next method Startbtn-Click, we will see that they are user’s preferred interface
extensions.

The Listing 5.14 shows the code for Startbtn-Click method. What happens here is
straightforward. In this function, reader, model, endpoint and act are four strings which
will get their values from drop-down lists in User Interface. Then we will pass them
together with another parameter called inputs to DriverRunning method of Driver to
select user’s preferred extensions of interfaces. Keep in mind that inputs is a list of
strings getting values from user’s preferred sensors in the related check-box list in the
User Interface page Engine Setup. The latter determines the number and type of sensors
for all interfaces.

72

5.6 Framework Core

Listing 5.13 An Example of Data Stream Endpoint Extension
[Export(typeof(SensorDataReader))]

[ExportMetadata("Name", "KAA Platform")]

public class KAALogServer : SensorDataReader

{

public HttpListener listener;

public override void Start()

{

listener = new HttpListener();

listener.Prefixes.Add("http://+:10000/");

listener.Start();

listener.BeginGetContext(new AsyncCallback(ListenerCallback), listener);

}

public override void Stop()

{

listener.Stop();

}

By invoking DriverRunning method of Driver the four fields, -model, -classifier, -reader
and -action get their objects. By calling -reader.Start () the engine starts running. Also,
pay attention that as you can see in the code listing here in the framework Core, we
subscribe the event-handler to the event in the Data Stream Endpoint interface through
this line shown in the Listing 5.15 .

Finally, the last method in this class is Stopbtn-Click which is invoked when the Stop
button in User Interface is clicked. The code for this part is shown in Listing 5.16. When
the user-preferred Data Stream Endpoint extension on method Startbtn-Click is assigned
to the field called -reader, we keep it in an application level (not session level) variable.
We do this, to be able to use -reader once again in Stopbtn-Click method. The reason
to do so is, the User Interface and the engine Core talk to each other on top of HTTP
protocol and HTTP is basically a stateless protocol and when client and server talk to
each other, until next communication they forget about one another. Eventually, as you
see in the listing the Stop method of -reader is called to finish listening. But, before
using the application level variable, an explicit type-cast is necessary as shown in the
Listing 5.16 .

So far, we have been speaking about the -Default class and its methods, which is
responsible for setting up the engine. One of the fields inside this class is of type Driver.
The object of type Driver within this class must be imported by MEF. The Driver object
is responsible for two objectives. First, it imports all interface extensions from the DLL
repositories and based on user selections, picks the preferred ones. Second, when the
Engine Setup page is about to load on the client machine, it discovers all the meta-data
available in interface extensions and present them to the user in drop-down lists of the

73

5 Implementation

Listing 5.14 Start-Button Method
protected void Startbtn_Click(object sender, EventArgs e)

{

string reader = string.Empty;

string model = string.Empty;

string endpoint = string.Empty;

string act = string.Empty;

List<string> inputs;

if(TrainingDataSourceddl.Text == "Select.." || LearningAlgorithmddl.Text ==

"Select.." || InputStreamSourceddl.Text == "Select.." || Actuatorddl.Text ==

"Select.." || SensorsCheckbl.SelectedIndex == -1)

{

Label1.Text = "Status: Engine not running!! (Please select all fields..)";

return;

}

else

{

Label1.Text = string.Empty;

}

reader = TrainingDataSourceddl.Text;

model = LearningAlgorithmddl.Text;

endpoint = InputStreamSourceddl.Text;

act = Actuatorddl.Text;

inputs = new List<string>();

foreach (ListItem li in SensorsCheckbl.Items)

{

if(li.Selected == true)

{

inputs.Add(li.Text);

}

}

InputAdaptor inputAdaptor = new InputAdaptor();

inputAdaptor.StreamProperties(inputs.Count, inputs.ToArray()); // input adaptor

is set here

Startbtn.Enabled = false;

Stopbtn.Enabled = true;

LearningAlgorithmddl.Enabled = false;

TrainingDataSourceddl.Enabled = false;

InputStreamSourceddl.Enabled = false;

Actuatorddl.Enabled = false;

SensorsCheckbl.Enabled = false;

_model = driver.DriverRunning(out _classifier, out _reader, out _action ,reader,

model,endpoint,act,inputs);
_reader.GetInputAdapter(inputAdaptor); //input adaptor is passed to endpoint here

Application["reader"] = _reader;
_reader.DataRecieved += DataRecievedEventHandler;
_reader.Start();

Label1.Text = "Status: Engine is running successfully..";

}

74

5.6 Framework Core

Listing 5.15 Event Handler Subscription
_reader.DataRecieved += DataRecievedEventHandler;

Listing 5.16 Stop-Button Method
protected void Stopbtn_Click(object sender, EventArgs e)

{

Startbtn.Enabled = true;

Stopbtn.Enabled = false;

LearningAlgorithmddl.Enabled = true;

TrainingDataSourceddl.Enabled = true;

InputStreamSourceddl.Enabled = true;

Actuatorddl.Enabled = true;

SensorsCheckbl.Enabled = true;

if (Application["reader"] != null)

{

SensorDataReader reader =(SensorDataReader) Application["reader"];

reader.Stop();

reader = null;

Application["reader"] = null;

}

Label1.Text = "Status: User stopped the engine..";

}

page. Once again, keep in mind that the two classes -Default and Driver reside under
the same name-space and together make the code behind for the HTML code of page
Engine Setup in the front-end of the application. The Listing 5.17 shows the code for
Driver class.

The class includes four C-Sharp IEnumerable type variables. They are readers, models,
actions and endpoints. The idea is simple, these variables finally import all interface
extensions from DLL files. Then the method DriverRunning as already discussed selects
and delivers the ones that user prefers on the User Interface. The method DriverRunning
has four string variables in its input arguments which come from drop-down lists in the
page Engine Setup, and based on them within four foreach loops, picks the selected
extensions. Moreover, it has some output types that finally serve as user preferred
extensions. The Listing 5.18 shows the corresponding foreach loops in the DriverRunning
method.

The method DriverGetAllMetaDatas extracts all the meta-data in interface extensions
and delivers them to the User Interface to be shown in the corresponding drop-down
lists in the page Engine Setup. This is done by looping through the four IEnumerable

75

5 Implementation

Listing 5.17 Driver Class
[Export(typeof(Driver))]

public class Driver

{

[ImportMany]

IEnumerable<Lazy<ITrainingDataRead, ITrainingDataRead_Meta>> readers = null;

[ImportMany]

IEnumerable<Lazy<IExtractModel, IExtractModel_Meta>> models = null;

[ImportMany]

IEnumerable<Lazy<IActionSelection, IActionSelection_Meta>> actions = null;

[ImportMany]

IEnumerable<Lazy<SensorDataReader, ISensorDataReader_Meta>> endPoints = null;

public object DriverRunning(out IExtractModel classifier, out SensorDataReader

sdReader, out IActionSelection action, string Reader, string Model, string

Endpoint, string act, List<string> inputs);

public void DriverGetAllMetaDatas(out List<string> ModelsList, out List<string>

EndpointsList, out List<string> ReadersList, out List<string> ActionsList);

}

variables called models, endpoints, readers and actions. The Listing 5.19 shows how it
is done this method.

76

5.6 Framework Core

Listing 5.18 DriverRunning Method Mechanism
foreach (Lazy<ITrainingDataRead, ITrainingDataRead_Meta> i in readers)

{

if (i.Metadata.Name.Equals(reader))

{

i.Value.MakeTrainingData(number, "decision", inputNames);

i.Value.FillTrainingData();

dt = i.Value.TrainingDataSet.TrainingDataTable;

}

}

foreach (Lazy<IExtractModel, IExtractModel_Meta> i in models)

{

if (i.Metadata.Name.Equals(model))

{

i.Value.StreamProperties(number, "decision", inputNames);

MDL = i.Value;

ob = i.Value.Train(dt);

}

}

foreach (Lazy<IActionSelection, IActionSelection_Meta> i in actions)

{

if (i.Metadata.Name.Equals(actuator))

ACT = i.Value;

}

foreach (Lazy<SensorDataReader, ISensorDataReader_Meta> i in endPoints)

{

if (i.Metadata.Name.Equals(endpoint))

SDR = i.Value;

}

77

5 Implementation

Listing 5.19 DriverGetAllMetaDatas Method Mechanism
List<string> modelsList = new List<string>();

List<string> endpointsList = new List<string>();

List<string> readersList = new List<string>();

List<string> actionsList = new List<string>();

foreach (Lazy<IExtractModel, IExtractModel_Meta> i in models)

{

modelsList.Add(i.Metadata.Name);

}

foreach (Lazy<SensorDataReader, ISensorDataReader_Meta> i in endPoints)

{

endpointsList.Add(i.Metadata.Name);

}

foreach (Lazy<ITrainingDataRead, ITrainingDataRead_Meta> i in readers)

{

readersList.Add(i.Metadata.Name);

}

foreach (Lazy<IActionSelection, IActionSelection_Meta> i in actions)

{

actionsList.Add(i.Metadata.Name);

}

78

6 Summary and Future Work

In this thesis, we discussed the position of rule-based engines in IoT applications.
Essentially, any Iot platform needs a mechanism to process and utilized the incoming
data streams from sensor networks. In the first chapter, we discussed that IoT is still in
its early years of progress which is why the main trend in IoT researches is around device
connectivity and hardware management. In this regard, many crutial topics are involved.
For example, how physical objects can be integrated into the Internet body easily, how
they can remain connected persistently, how they can transmit data safely and securely,
and so on. IoT platforms, apart from device connectivity and device management, need
a software module to process and react on the received data from connected devices
in real-time fashion. To give enough flexibility to this software module a software
framework is the solution. In the heart of IoT platforms, a software framework makes
developing a variety of IoT applications possible. The framework itself is usually host
for a rule-based system mechanism to process and react on data.

In chapter 2, we discussed the essential background to understand IoT applications. In
chapter 3, we narrowed down our discussion to IoT platforms and their building blocks.
Among the blocks, the processing and action management block is discussed in more
detail which is the place to host a software framework as rule-based engine. furthermore
in this chapter, we discussed the current rule engines in IoT. In chapter 4, we discussed
the architecture and functionality of our offered framework and finally, in chapter 5 we
described the related implementation.

Future Work

In future, to add more features and capabilities to our offered framework, several issues
are involved. In this section, we briefly bring up those challenges, offering possible
approaches to cope with.

The first challenge for such a framework is of course the problem of training dataset. In
the implemented version of architecture we get the user to upload the training dataset
through a text file following a special format. User can enter the wrong format which
could in turn result in unexpected exception. This part is still open to work on. The user

79

6 Summary and Future Work

Figure 6.1: Improved Learning Algorithms Training Interface

can either enter wrong format or even if the format is correct, inconsistent data. To cope
with this situation, one can think of controlling user through proper exception handler
until they enter proper training dataset. However, a better approach could be parsing
the training dataset and correcting it within the context of software.

Moreover, we can also improve the mechanism of Training Data interface. In fact, having
the previously described interface allows to get the training dataset either from text
file or database which work independent from one another. It is good to mention that
an improvement could be to make a link between file and database. That is, when the
file is uploaded to the server, the system first adds the content of the file to database
then trains the Learning algorithm. this way, the database is the only endpoint to get
training dataset. This approach allows to have a Knowledge Base (KB) for Learners
which is filled by the user knowledge of environment(e.g. text file) and real environment
observations, as well. Basically, training a Learner best happens by monitoring real
environment events, which for this project is open field to work on. Schematically, you
can see it in the Figure 6.1.

The second issue is the security of system. In this implementation we excluded any kind
of security issues. As it is obvious, security of data flow, like confidentiality and integrity
of data coming and going out of the application are very important which can be solved
with Cryptographic and other security mechanisms.

The third improvement is all about Visualization. It is very beneficial to enable users to
see the happenings in the skin of the application. For example, the incoming sensor data
can be visualized effectively. Even, it is possible to give statistical outcomes to the user,
based on their specific requirements.

The last but not the least improvement to our framework could be enabling the Action
Selection interface to be a Web service requester. That is, when the result for data analysis
is ready, it can be utilized to invoke a proper Web service based on the requirements of
the user. How to request and bind to a Web service is a matter of challenge in Action

80

Selection interface. In Figure 4.1 showing the overall architecture of the system, this
improvement is predicted. Finding a Web service can be achieved using UDDI (Universal
Description, Discovery, and Integration) standard [ACKM04]. However, in section 4.2,
when describing our test use-case we almost achieved a similar goal by subscribing to
some particular Service on IFTTT i.e. Email service.

81

Bibliography

[AA12] N. A. Ali, M. Abu-Elkheir. “Data management for the internet of things:
Green directions.” In: Globecom Workshops (GC Wkshps), 2012 IEEE. IEEE.
2012, pp. 386–390 (cit. on p. 11).

[ACKM04] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web services. Springer, 2004
(cit. on p. 81).

[AHA13] M. Abu-Elkheir, M. Hayajneh, N. A. Ali. “Data management for the inter-
net of things: Design primitives and solution.” In: Sensors 13.11 (2013),
pp. 15582–15612 (cit. on pp. 22, 23).

[AKAH14] M. Aazam, I. Khan, A. A. Alsaffar, E.-N. Huh. “Cloud of Things: Integrating
Internet of Things and cloud computing and the issues involved.” In:
Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban
Conference on. IEEE. 2014, pp. 414–419 (cit. on pp. 18, 21, 25).

[AMN15] M. H. Asghar, N. Mohammadzadeh, A. Negi. “Principle application and
vision in Internet of Things (IoT).” In: Computing, Communication & Au-
tomation (ICCCA), 2015 International Conference on. IEEE. 2015, pp. 427–
431 (cit. on pp. 11, 15).

[BB06] C. Brom, J. Bryson. “Action selection for intelligent systems.” In: European
Network for the Advancement of Artificial Cognitive Systems (2006) (cit. on
p. 66).

[BL12] M. Blackstock, R. Lea. “IoT mashups with the WoTKit.” In: Internet of Things
(IOT), 2012 3rd International Conference on the. IEEE. 2012, pp. 159–166
(cit. on p. 40).

[BL14] M. Blackstock, R. Lea. “Toward a Distributed Data Flow Platform for the
Web of Things.” In: Web of Things (WoT), 2014 5th International Workshop
on the. 2014 (cit. on p. 39).

[CDBZ12] A. P. Castellani, M. Dissegna, N. Bui, M. Zorzi. “WebIoT: A web applica-
tion framework for the internet of things.” In: Wireless Communications
and Networking Conference Workshops (WCNCW), 2012 IEEE. IEEE. 2012,
pp. 202–207 (cit. on p. 12).

83

Bibliography

[CFS+14] C. Y. Chen, J. H. Fu, T.-L. Sung, P.-F. Wang, E. Jou, M.-W. Feng. “Complex
event processing for the internet of things and its applications.” In: Automa-
tion Science and Engineering (CASE), 2014 IEEE International Conference
on. IEEE. 2014, pp. 1144–1149 (cit. on p. 43).

[Giu10] D. Giusto. A. lera, G. Morabito, l. Atzori (Eds.) The Internet of Things. 2010
(cit. on p. 11).

[GKN+11] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo. “A
survey on facilities for experimental internet of things research.” In: IEEE
Communications Magazine 49.11 (2011), pp. 58–67 (cit. on p. 11).

[Haq04] U. Haque. “Pachube project.” In: Pachube project (2004) (cit. on p. 12).

[HC01] G. T. Heineman, W. T. Councill. “Component-based software engineering.”
In: Putting the pieces together, addison-westley (2001), p. 5 (cit. on p. 68).

[HL10a] Y. Huang, G. Li. “A semantic analysis for internet of things.” In: Intelligent
Computation Technology and Automation (ICICTA), 2010 International
Conference on. Vol. 1. IEEE. 2010, pp. 336–339 (cit. on p. 16).

[HL10b] Y. Huang, G. Li. “Descriptive models for Internet of Things.” In: Intelligent
Control and Information Processing (ICICIP), 2010 International Conference
on. IEEE. 2010, pp. 483–486 (cit. on p. 16).

[HTM+14] J. Holler, V. Tsiatsis, C. Mulligan, S. Avesand, S. Karnouskos, D. Boyle.
From Machine-to-machine to the Internet of Things: Introduction to a New
Age of Intelligence. Academic Press, 2014 (cit. on pp. 17, 18, 41).

[iot15] iot-analytics.com. IOT PLATFORMS, The central backbone for the Internet of
Things(White Paper). Tech. rep. Jan. 2015 (cit. on pp. 29–32).

[JC14] C. Jun, C. Chi. “Design of complex event-processing IDS in internet of
things.” In: Measuring Technology and Mechatronics Automation (ICMTMA),
2014 Sixth International Conference on. IEEE. 2014, pp. 226–229 (cit. on
p. 43).

[KGB] K. Krishnakumar, J. Gubbi, R. Buyya. “A Framework for IoT Sensor Data
Analytics and Visualisation in Cloud Computing Environments.” In: ()
(cit. on pp. 12, 13).

[KRBA14] M. Kiran, P. Rajalakshmi, K. Bharadwaj, A. Acharyya. “Adaptive rule en-
gine based IoT enabled remote health care data acquisition and smart
transmission system.” In: Internet of Things (WF-IoT), 2014 IEEE World
Forum on. IEEE. 2014, pp. 253–258 (cit. on p. 36).

[KZP07] S. B. Kotsiantis, I. Zaharakis, P. Pintelas. Supervised machine learning: A
review of classification techniques. 2007 (cit. on p. 61).

84

Bibliography

[MF10] F. Mattern, C. Floerkemeier. “From the Internet of Computers to the
Internet of Things.” In: From active data management to event-based systems
and more. Springer, 2010, pp. 242–259 (cit. on pp. 18, 19).

[MLL+10] W. Miao, T. LU, F. LING, et al. “Research on the Architecture of Internet of
Things [C].” In: Proceedings of the 3rd International Conference on Advanced
Computer Theory and Engineering: August. 2010, pp. 20–22 (cit. on p. 20).

[NLM+06] S. Nath, J. Liu, J. Miller, F. Zhao, A. Santanche. “Sensormap: a web site
for sensors world-wide.” In: Proceedings of the 4th international conference
on Embedded networked sensor systems. ACM. 2006, pp. 373–374 (cit. on
p. 12).

[OBE07] S. OBEROI. “Introduction to complex event processing & data streams.”
In: SOA World Magazine, S (2007), pp. 20–24 (cit. on p. 42).

[PBR15] T. Padiya, M. Bhise, P. Rajkotiya. “Data Management for Internet of
Things.” In: Region 10 Symposium (TENSYMP), 2015 IEEE. IEEE. 2015,
pp. 62–65 (cit. on p. 24).

[PCZ09] W. Peng, J. Chen, H. Zhou. “An Implementation of ID3—Decision Tree
Learning Algorithm.” In: From web. arch. usyd. edu. au/wpeng/Decision-
Tree2. pdf Retrieved date: May 13 (2009) (cit. on p. 38).

[Qui86] J. R. Quinlan. “Induction of decision trees.” In: Machine learning 1.1 (1986),
pp. 81–106 (cit. on p. 37).

[RNI95] S. Russell, P. Norvig, A. Intelligence. “A modern approach.” In: Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995), p. 27 (cit. on pp. 34,
36, 37).

[RSS+12] B. Rao, P. Saluia, N. Sharma, A. Mittal, S. Sharma. “Cloud computing for
Internet of Things & sensing based applications.” In: Sensing Technology
(ICST), 2012 Sixth International Conference on. IEEE. 2012, pp. 374–380
(cit. on p. 25).

[Sou12] T. B. Sousa. “Dataflow programming concept, languages and applications.”
In: Doctoral Symposium on Informatics Engineering. Vol. 7. 2012, p. 13
(cit. on pp. 39, 40).

[STJ14] D. Singh, G. Tripathi, A. J. Jara. “A survey of internet-of-things: future
vision, architecture, challenges and services.” In: Internet of Things (WF-
IoT), 2014 IEEE World Forum on. IEEE. 2014, pp. 287–292 (cit. on p. 15).

[TW10] L. Tan, N. Wang. “Future internet: The internet of things.” In: Advanced
Computer Theory and Engineering (ICACTE), 2010 3rd International Confer-
ence on. Vol. 5. IEEE. 2010, pp. V5–376 (cit. on p. 11).

85

[VF13] O. Vermesan, P. Friess. Internet of things: converging technologies for smart
environments and integrated ecosystems. River Publishers, 2013 (cit. on
p. 11).

[VFG+11] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi,
I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, et al. “Internet of
things strategic research roadmap.” In: Internet of Things-Global Technolog-
ical and Societal Trends (2011), pp. 9–52 (cit. on p. 22).

[Wei12] C. M. Wei. “Complex Event Processing Mechanism in Internet of Things and
its Application in Logistics.” In: Applied Mechanics and Materials. Vol. 235.
Trans Tech Publ. 2012, pp. 309–313 (cit. on p. 43).

[XJH13] X. Xingmei, Z. Jing, W. He. “Research on the basic characteristics, the
key technologies, the network architecture and security problems of the
Internet of things.” In: Computer Science and Network Technology (ICCSNT),
2013 3rd International Conference on. IEEE. 2013, pp. 825–828 (cit. on
p. 15).

[YCL11] W. Yao, C.-H. Chu, Z. Li. “Leveraging complex event processing for smart
hospitals using RFID.” In: Journal of Network and Computer Applications
34.3 (2011), pp. 799–810 (cit. on p. 41).

[ZBC+14] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi. “Internet of things
for smart cities.” In: Internet of Things Journal, IEEE 1.1 (2014), pp. 22–32
(cit. on p. 15).

All links were last followed on May 24, 2016.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation for IoT Frameworks
	1.2 Scope of Work

	2 IoT Applications Basics
	2.1 Concepts
	2.2 Descriptive Model for IoT
	2.3 From Machine-to-Machine (M2M) to IoT
	2.4 Requirements for IoT Applications
	2.5 Architecture
	2.6 Data Management in IoT
	2.7 IoT and Cloud
	2.7.1 KAA Cloud-Based IoT Platform

	3 Fundamentals of IoT Platforms and Frameworks
	3.1 IoT Platform's Making Blocks
	3.2 Processing and Action Management
	3.2.1 Rule-Based Systems Basics
	3.2.2 Rule Engines Case Study in IoT
	3.2.3 Rule Engines in IoT
	3.2.3.1 Machine Learning Approaches
	3.2.3.2 Flow Diagrams
	3.2.3.3 Complex Event Processing (CEP)

	4 Design
	4.1 Architecture
	4.2 Functionality

	5 Implementation
	5.1 User Interface
	5.1.1 Engine Setup
	5.1.2 Engine Update

	5.2 Training Data Interface
	5.3 Machine Learning Algorithms Interface
	5.4 Data Stream Endpoint Interface
	5.5 Action Selection Interface
	5.6 Framework Core
	5.6.1 Why Managed Extensibility Framework (MEF)
	5.6.2 Implementation of Core Using MEF

	6 Summary and Future Work
	Bibliography

