Institute of Formal Methods in Computer Science

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Master’s Thesis no. 36

Exploring Maps using Leap Motion

Martin Scholz

Course of Study: Softwaretechnik
Examiner: Prof. Dr. Stefan Funke
Supervisor: Dipl.-Inf. Filip Krumpe
Commenced: May 5, 2015
Completed: November 4, 2015

CR-Classification: H.5.2

Abstract

In this Master’s thesis, a system is proposed which allows users to calculate routes
between two locations on a map. The system can be controlled by using only hand
and finger gestures. The 3D sensor Leap Motion is used to detect the gestures. To find
the locations, two approaches were taken. The first one enables the user to search for
a location directly on the map. Five input methods were introduced to move the map
and zoom in and out of the map. These are called manual input methods. The other
approach was to search for the locations by entering addresses using text input methods.
The system employs five different input methods for this approach. To compare the two
approaches and their corresponding input methods, three user studies were conducted.
The results show that out of the five different text input methods, an onscreen keyboard
was best suited. The fastest manual input method was a method which is derived from
a joystick control and uses finger gestures for zooming. For scenarios where two close
locations are used, a combination of the text input and the manual input should be
chosen in order to minimize the input time. Possible use cases of the system are ticket
vending machines at train stations or indoor navigation systems. Gesture input has
an advantage over touchscreens, which are usually used for these systems, in that it
is more hygienic since it works touchless. In addition, gesture input can also be used
wearing gloves.

Kurzfassung

In dieser Masterarbeit wurde ein System vorgestellt, mit dem Routen berechnet wer-
den konnen und das vollstdndig mit Hand- und Fingergesten bedient werden kann.
Fiir die Gestenerkennung wird der 3D-Sensor Leap Motion benutzt. Um den Start
und das Ziel der Route einzugeben, wurden zwei unterschiedliche Vorgehensweisen
entwickelt. Der Benutzer kann einen Routenpunkt manuell auf einer Karte wahlen,
indem er die Karte bewegt und zoomt. Alternativ konnen Routenpunkte auch tiber
Adressen gesucht werden. Fiir die beiden Vorgehensweisen wurden jeweils fiinf
unterschiedliche Eingabemethoden entwickelt und in Benutzerstudien miteinander
verglichen. Die Ergebnisse dieser Studien zeigen, dass eine Eingabemethode, die einer
Tastatur nachempfunden ist, am besten fiir die textuelle Eingabe geeignet ist. Unter
den manuellen Eingabemethoden war eine Methode am besten, die dhnlich wie ein
Joystick funktioniert und Fingergesten zum Zoomen verwendet. Liegen Start und Ziel
der Route jedoch nah beieinander, bietet es sich an, den zweiten Routenpunkt manuell
auf der Karte auszuwahlen, nachdem der erste Routenpunkt iiber die Adresse gefunden
wurde, um die Eingabezeit zu minimieren. Mogliche Einsatzgebiete fiir dieses Sys-
tem sind Ticketautomaten an Bahnhofen oder Indoor-Navigationssysteme in grof3en
Gebauden, wie zum Beispiel Einkaufszentren. Vorteile gegeniiber Touchscreens, die
tiblicherweise fiir diese Systeme eingesetzt werden, sind einerseits die Moglichkeit das
System berithrungslos und damit absolut hygienisch zu bedienen, andererseits kann es
auch mit Handschuhen bedient werden.

Contents

1 Introduction

2 Description of the System

2.1 Overview

2.2 Manual Input Methods
2.3 TextInputMethods,
2.4 Hardware and Software Requirements

3 Hardware and implementation

3.1 The Leap Motion
3.2 Implementation .

4 First User Study
4.1 Description . . .
4.2 Procedure

..............................

4.3 AnalysisoftheStudy

4.4 Threats to Validity

5 Second User Study
5.1 Description . . .
5.2 Procedure

.............................

5.3 AnalysisoftheStudy

5.4 Threats to Validity

6 Third User Study
6.1 Description . . .
6.2 Procedure

.............................

6.3 AnalysisoftheStudy

6.4 Threats to Validity

7 Summary

11

15
15
15
24
34

37
37
37

45
45
46
47
49

53
53
53
54
59

61
61
62
63
65

69

8 Future Work

Bibliography

71

73

List of Figures

2.1 MapMotion e e e e e e e e e e 16
2.2 Spreadfingers. 17
2.3 Clearroute points. v v v v i e e e e e e e e e 18
2.4 Position-Control L 19
2.5 Distance-Zoom ittt e e e e e e e e e e e 20
2.6 Movethecursor. i 20
2.7 Setaroute POINt v v v it e e e e e 21
2.8 Zoom in using finger gestures 21
2.9 Zoom out using finger gestures 22
2.10 Angle-Control e 23
2.11 Zoom in using pinch gestures 25
2.12 Zoom out using pinch gestures 26
2. 13 Textinputdrawer L e 27
2.14 The primitive input method 28
2.15 The binary input method 29
2.16 The T4inputmethod 32
2.17 The T6inputmethod 33
2.18 The keyboard input method 34
3.1 TheLeapMotion 38
3.2 Architecture 39
3.3 Schemaofthedatabase 40
3.4 InteractionBox 42
4.1 First study - average input time percity. 49
4.2 First study - average time per button press 50
4.3 First study - minimal needed button presses 50
4.4 First study - average input time per method 51
4.5 First study - average inputtime 51
4.6 First study - preferred input methods 52
5.1 Second study - average input time percity 56

10

5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5

Second study - preferred input method 57

Second study - average inputtime 58
Second study - average input time percity 59
Third study - average time per button press 65
Third study - minimal needed button presses 66
Third study - average input time per method 67
Third study - preferred input method. 67
Third study - average input time 68

1 Introduction

Gesture control gained lots of attention since it found its way into gaming with the
Microsoft Kinect in 2010 [kinb]. In the year 2012, a SDK allowed it to use the Kinect
sensor also on the PC [kina]. This created new and more serious use cases for gesture
input. Earlier, we introduced MapKin [Sch13], a system for controlling a map with
hand gestures using the Kinect sensor. The introduction of Leap Motion, a sensor for
recognizing hand gestures (see section 3.1) made it possible to work with much more
precise gestures. This allows it to use the gesture input parallel to mouse and keyboard
while sitting at a desk. In the year 2013, HP introduced the Notebook ENVY17 Leap
Motion SE [leab] which has a built-in Leap Motion to use gestures without an external
device. Gesture recognition is also used in cars. The new BMW 7 series introduced the
usage of hand gestures for different actions like answering or declining an incoming
phone call or changing the audio volume [ges]. But gesture control can also be used
in the office. The program Airlnput [lead] enables the user to use the Leap Motion as a
replacement for the mouse [lead]. Another program called PRSNTA [leag] allows the
user to change the slides of a presentation using gestures with the Leap Motion. This
shows that the gesture input can be equal to the traditional input methods. Chan et al.
[CHM15] showed that the Leap Motion can also be used for authentication purposes.
With Leap-Map [leac] a program was introduced to navigate in maps by only using
gestures. Also Here Maps worked on integrating the Leap Motion to navigate through
3D models of cities [leaf]. The both above mentioned systems use the gestures only
for changing the view of the map. Whereas the system proposed in this thesis, called
MapMotion, is also able to set route points or searching for addresses to calculate a
route by only using gestures.

One possible use case of MapMotion is to search for an address on a ticket vending
machine at a train station. Here, two different scenarios are conceivable. The first one
searches for the station by name (e.g. Main station Stuttgart) or directly by selecting
the desired station on the plan. The second scenario is to search for addresses instead
of stations. This can be useful if the users do not know the station but only the address
they want to go to. The users can search for the desired location again either by typing
in the address of the location or select the location directly on the map. Finally, a ticket
for the desired route is sold to the user.

11

1 Introduction

A second use case is indoor navigation in large buildings like shopping malls or office
buildings. The users can either search for the name of the shop or of a person using the
text input methods or selecting the shop or office manually on a plan of the building.
Then, instructions are shown, how to walk to the desired destination.

To show the advantages of MapMotion, the alternatives of gesture input have to
be considered. Ticket vending machines and indoor navigation systems usually use
touchscreen input. Touchscreens have two disadvantages. First, they are used by lots
of people every day with their fingers. This can be considered unhygienic. Since the
gesture control proposed in this thesis works without touching any surface, it does
not have this disadvantage. Another problem with capacitive touchscreens, which are
usually used for the aforementioned systems, is that they do not recognize touches if
the user wears gloves. In contrast to these touchscreens, the Leap Motion is able to
recognizes the hand if the user wears gloves. This can be an advantage especially for
the ticket vending machines which are installed outside. The users do not need to take
off their gloves for purchasing a ticket.

In this Master’s thesis, different input methods were compared in terms of speed
and usability. As already mention on the Here Maps homepage [leaf], there are no
established input gestures for controlling a map using gestures. For touchscreens
on smartphones, the pinch gesture for zooming and the swipe gesture for scrolling
are very common. Users have learned these gestures and expect systems to use this
gestures. If users however encounter systems using hand gesture recognition for the
first time, they usually do not know how to interact. This could be seen in the user
studies of this thesis. Some of the participants wanted to interact with the Leap Motion
before being told how the gestures work. They tried different gestures until they
had an idea, how to control the map. But none of them knew how to move the map
on the first try. Since there are no established gestures, completely different input
methods were implemented and tested in order to analyze, which methods work best
and which of them are the most intuitive ones. The methods can be categorized by text
input methods, for which the searched location is found by address and manual input
methods which allows it to search for the location manually on the map. Data of three
user studies are used for the comparison. The first user study which was conducted
independently of this Master’s thesis compared four different text input methods. This
study did not use the Leap Motion but the Microsoft Kinect for gesture input. The
second user study compared five manual input methods. Last, the best methods from
these both studies plus a third input method were compared for different scenarios in
the last user study.

12

Chapter 2 - Description of the System: This chapter gives an overview of the Sys-
tem. The different functions are described an explanation of the different input
methods is given.

Chapter 3 - Hardware and implementation The technical background information
for the hardware as well as for the software is given in this chapter.

Chapter 4 - First User Study In this chapter, the first user study comparing the five
manual input methods is described and analyzed.

Chapter 5 - Second User Study The fifth chapter contains the description and analy-
sis of the second user study comparing the four text based input methods.

Chapter 6 — Third User Study In this chapter, the third user study comparing the
best methods of the previous user studies plus the text based keyboard input
method is described and analyzed.

Chapter 7 — Summary This chapter sums up the results of the three user studies.

Chapter 8 — Future Work The last chapter shows some remaining weaknesses of
MapMotion and proposes ideas on how to improve the system. Additionally
possible topics for further research are suggested.

13

2 Description of the System

2.1 Overview

In this chapter, an overview over the program MapMotion is given. The functions are
described in detail and an explanation on how to use the system is given. The main
function of MapMotion is to calculate a route between two addresses. The starting
point and the destination can be set via two completely different approaches.

e By selecting the address directly on the map (called manual input)

e or by specifying the address by entering a city name and a street name (called
text input).

For both approaches, different input methods were implemented, which solely rely
on hand and finger gestures. Neither a mouse nor a keyboard is needed. The user
can always choose between using a manual input method or a text input method. The
manual input methods work directly on the map whereas the text input methods use
buttons which are shown in a drawer. The drawer is shown on demand on the right
side next to the map (see figure 2.13). In the menu at the top of the program, the
user can select which input methods to use for the manual input as well as for the text
input. Figure 2.1 shows MapMotion.

2.2 Manual Input Methods

In this section, the manual input methods are described. Five different methods were
implemented, which are all capable of performing six distinctive operations on the map.
First, they can move the map in all directions. Second, each method can zoom in and
out of the map. When the highest or lowest zoom level is reached, MapMotion shows a
notification that the minimal or maximal zoom level has been reached. Independently
of the used input method, the map always zooms in and out with the center of the
map being centered. The third operation is to set route points on the map. This

15

2 Description of the System

&
Settings Change Control Change Locator Source Info

Y7 4

Schiwerin
< Bremaiven Harmborg
zzzzzzzz
ey X

‘‘‘‘‘‘‘‘‘

g

s

Figure 2.1: MapMotion showing two route points and a route.

can be done by a gesture that is identical over all five manual input methods: The
hand forms a fist but the index finger is extended. If this gesture is detected, a cursor
is shown on the map which represents the fingertip. It follows the finger which is
moved in the X-Z plane (see figure 2.6). If the cursor is over the desired location on
the map, the user can perform a tap gesture with the index finger similar to clicking
the button of a mouse (see figure 2.7). This gesture sets a route point. Since many
participants of the user studies extended their thumb as well while performing the tap
gesture, the implementation was changed so that the gesture is also detected if the
thumb is extended, too. To set another route point, the procedure has to be repeated.
If a second route point is set, the route between the two route points is calculated
and displayed on the map as a red path (see figure 2.1). If the gesture is performed
again, the first route point remains, but the second one is set to the new location. The
fourth operation is to clear all route points. This gesture is also identical across all five
input methods: The hand forms a fist but the index finger and the middle finger are
extended. Now, the hand is moved from the very left of the view of the Leap Motion to
the very right. This gesture is called right swipe (see figure 2.3). A left swipe (which is
the same gesture as the right swipe but from the right to the left) opens the drawer
on the right side of the screen. This is the fifth operation. Text based input methods
are shown in this drawer. The last operation is to enter or leave the view of the Leap
Motion without performing any unwanted actions. The gesture for this operation is

16

2.2 Manual Input Methods

again identical across all five manual input methods. The flat hand has to be held over
the Leap Motion and all fingers have to be spread as far as possible (see figure 2.2).
Now the hand can be drawn out of the view of the Leap Motion without performing
any action. The same gesture works for entering the view of the Leap Motion.

All operations can be performed with only one hand. Since it does not matter, which
hand is used, the system is also suited for left-handed users.

Figure 2.2: The hand is flat and opened and all fingers are spread as far as possible.

17

2 Description of the System

m—

\

Figure 2.3: Only the index finger and the middle finger are extended. The hand moves
from the left to the right.

2.2.1 The Five Manual Methods

The five manual control methods can be divided in three different groups. There are
two methods for map movement:

e Position-Control
e and Angle-Control
and two methods for performing zooms:
e Distance-Zoom
e and Finger-Zoom

Each control method is combined with each zoom methods. This results in four
different input methods. In addition, there is the Touchscreen method which works
completely different.

2.2.2 Position-Control with Distance-Zoom

The first input method resembles the usage of a joystick and is called Position-Control
with Distance-Zoom. For the neutral position, the hand rests opened above the Leap
Motion. To drag the map, the hand has to be moved in the X-Z-plane. The map then
moves accordingly. If the hand stays off the center of the Leap Motion, the map moves

18

2.2 Manual Input Methods

constantly. The speed of the movement can be controlled by the distance of the hand
to the center of the Leap Motion. The further the hand is away from the center, the
faster the map moves.

- 173 -

1
\

Figure 2.4: The hand moves in the X-Z plane. The map moves accordingly.

This is similar to moving an invisible joystick with the palm of the hand. To make it
easier to keep the map steady, the neutral zone is enlarged. Since the system cannot
give haptic feedback on the current position, like a physical joystick would do by
snapping back to the neutral position, a gauge is shown on the left side of the screen
(the second round gauge from the top on the left in figure 2.1). This gauge shows the
position of the palm relative to the neutral position as pink bubble. The enlargement
of the neutral position results in a magnetic-like behavior of the bubble of the gauge.
The zoom level is controlled by the Y-position of the hand. The height of the hand is
shown by another gauge (see the lower square gauge in figure 2.1). If the height of
the hand is increased beyond a certain level, the maps zooms out. If it is held below a
certain level, the map zooms in. The threshold, which indicates when the zooming is
performed is visible on the gauge as green area. If the hand is held below or above the
according level, the map zooms in the according direction at a rate of one zoom level
per second.

This input method was chosen because it maps the view of the map directly to the
hand movement in three-dimensional space. If the users move their hand in any
direction, they get to see the part of the map in this direction. This works for the X-

19

2 Description of the System

t
C’%
\

Figure 2.5: The Y-position of the hand controls the zooming of the map. If the hand is
raised, the map zooms out, if it is lowered, the map zooms in.

and Z-plane as well as for zooming. If the users want to see more details of a location,
they move their hand down towards the Leap Motion. This approach was considered
very intuitive.

Y

Figure 2.6: The hand forms a fist but the index finger is extended. A cursor on the
screen follows the fingertip which can be moved in the X-Z plane.

20

2.2 Manual Input Methods

Figure 2.7: The hand forms a fist but the index finger is extended. To set a route point,
the user clicks an imaginary mouse button.

2.2.3 Position-Control with Finger-Zoom

The gestures for moving the map are identical to the method Position-Control with
Distance-Zoom. However the zoom level is controlled by finger gestures instead of the
height of the hand. To zoom in, the index finger has to be bent down while the other
fingers have to stay extended. To zoom out, the index finger has to be bent up. Since
this can be hard for some people, it is also possible to bend down the middle finger
instead of bending up the index finger. The Y-position of the hand does not influence
the gestures. Therefore, the bar gauge which was used for the Distance-Zoom is not
shown when using this method.

Figure 2.8: To zoom in, the index finger has to be bent down.

The Finger-Zoom was chosen instead of the Distance-Zoom because early tests with
users showed that the Distance-Zoom was difficult to learn. Since the Leap Motion

21

2 Description of the System

R —

Figure 2.9: To zoom out, the index finger has to be bent up.

is capable of recognizing finger gestures and these were not used yet by this input
method, the zooming was mapped to finger gestures.

2.2.4 Angle-Control with Distance-Zoom

The zooming in this method is done exactly as in Position-Control with Distance-Zoom
by lowering or raising the hand. The gauge, which indicates the height of the hand,
is visible. However the gesture for moving the map is different. The flat hand rests
over the center of the Leap Motion. Instead of moving the hand in any direction as in
Position-Control with Distance-Zoom, the users tilt their hand in the direction the map
should move. The angle relative to the neutral position sets the speed of the moving.
The more the hand is tilted, the faster the map moves. The extent of tilting can be
seen in the bubble gauge.

Since users usually support their hand with the elbow on the table, the neutral position
varies from user to user. In order to make the input method as comfortable as possible,
the neutral position has to be calibrated for each user. This is done automatically when
Angle-Control with Distance-Zoom is selected and the hand of the user enters the view
of the Leap Motion for the first time. Then, a notification is shown telling the user
to hold the hand in a comfortable position. MapMotion then collects the information
about the tilting and calibrates the neutral position accordingly. See chapter 3 for
further details. If the hand is relatively low during the calibration process, this leads to
sensitive zooming. Therefore, the hand should be positioned as high as possible while
still feeling comfortable.

This method was implemented as an alternative to the methods with Position-Control.
In contrast to these methods, Angle-Control needs less space for the hand and can be
performed with smaller movement which could be more comfortable for the users.
The gestures used in this method are very similar to the control method used by Here
Maps [leaf]. But since MapMotion shows the map in a top view, the movement of the

22

2.2 Manual Input Methods

Figure 2.10: To drag the map, the hand has to be tilted.

hand results in a different movement of the map than for the control method of Here
Maps which shows the map in an inclined view.

2.2.5 Angle-Control with Finger-Zoom

This method combines the map movement gestures from Angle-Control with Distance-
Zoom with the zoom gestures from Position-Control with Finger-Zoom. The gauge
indicating the height of the hand is not visible when using this method. The bubble
gauge again shows the extent of tilting. This method also uses the calibration process
described in section 2.2.4. However the calibration for the average height is not used
for this method. Since the finger gestures are used for zooming, the height of the hand
is irrelevant.

2.2.6 Touchscreen-Control

This method differs from the previously described ones. It is inspired by the way
a device with a touchscreen is controlled. The gestures of controlling maps on a
touchscreen are well known. Therefore this method is assumed to be the most intuitive
one. To understand this method, one has to imagine an imaginary touchscreen at
about 10cm above the Leap Motion. The gesture for dragging the map is the same
as for setting route points. The hand has to form a fist while extending index finger
(see figure 2.6). Again, a cursor is shown which follows the fingertip. If the finger is

23

2 Description of the System

above the imaginary touchscreen, the cursor moves over the map without moving the
map. If the finger is lowered below the imaginary touchscreen, the map follows the
finger. This is analogue to a finger on a real touchscreen. If the finger is above the
touchscreen, nothing happens, but as soon as the finger touches the touchscreen, the
map follows the finger. To visualize the fingers’ height in relation to the imaginary
plane, the cursor is color coded. If the finger is below the plane, the cursor is blue.
The higher the finger is held, the more the cursor fades to red. So the color changes
from blue (finger is low) to red (finger is high). After the second user study, a visual
effect was added to indicate when the finger is below the plane (see chapter 5.3.1).
The zoom gestures are similar to the usual pinch-gestures on a touchscreen. To zoom
in, the thumb and the index finger have to touch each other and the hand is above
the imaginary touchscreen. Then, the hand is lowered below the imaginary plane and
the thumb and index finger are spread. To simplify the use case of zooming in several
levels, the fingers can stay spread. Then, the map zooms in at the rate of one zoom
level per second. The gesture for zooming out is similar. The index finger and thumb
have to be spread and the hand has to be above the imaginary touchscreen. Then,
the hand is lowered below the imaginary plane and the fingers have to be brought
together. As described in the zoom-in gesture, the fingers can stay in this position for
continuous zooming. Since the gesture for setting route points and moving the map
are identical, the height of the fingers is used to distinguish these gestures. If the finger
is above the imaginary plane, route points can be set by performing the tap gesture
(see figure 2.7), if the finger is below the imaginary plane, the map can be moved.

The Touchscreen-Control was implemented as an alternative for the Position-Control-
and Angle-Control method. Since this method uses the well-known gestures and
movements also used for touchscreen applications, it is considered to be easy to learn
for users.

2.3 Text Input Methods

Instead of manually selecting route points on the map by pointing to the locations
on the map, MapMotion also supports setting route points by entering an address. In
this case, the city name has to be entered first, followed by the street name. All the
input methods used in this approach have in common that they use buttons which
are triggered by a tap gesture. Similar to the gesture for setting route points used for
the manual input methods (see section 2.2), the index finger serves a representation
of the cursor. The tap gesture triggers the button below the cursor (see section 2.2
and figure 2.7). The T6 input method uses six buttons, all other input methods use

24

2.3 Text Input Methods

Figure 2.11: To zoom out, the thumb and the index finger have to be lowered below
the imaginary plane and then spread.

four buttons. To enter the menu for these text input methods, a left-swipe gesture can
be used while MapMotion shows the map. This gesture will open the drawer on the
left side (see figure 2.13). The drawer consists of the buttons for the selected input
method and two additional text labels. The first label is shown above the buttons and
displays instructions (either to enter the city name or to enter the street name for the
according city). The second label is located below the buttons and shows information
about the current input. This information depends on the selected input method and
is described in detail in the according section.

For all input methods, the user can perform a left-swipe gesture for undoing the
last input. For detailed information see the section of the according input method.
However all input methods have in common that the view switches back to city-input
if this gesture is performed on an empty street-string. The previously entered city is
maintained. While the drawer is shown, the user can perform a right-swipe gesture
to hide the drawer. It is possible to combine the manual input methods with the text
input methods. The user can first zoom in to the general area of the address and then
use the text input method. Since the text input methods only consider cities which are
visible on the map when the drawer is opened, this can lead to less button presses and
therefore to a faster input time.

In the following chapters, the different text input methods are described.

25

2 Description of the System

Figure 2.12: To zoom out, the thumb and the index finger have to be lowered below
the imaginary plane and then brought together.

2.3.1 Primitive Input

For this input method, the characters of the city or street have to be typed one by one.
All possible characters at the current position of the input are split equally distributed
into four subsets. These subsets are then mapped to the four buttons. If the user now
triggers one button, there are two different cases. For the first case, we assume that
only one character is mapped to this button. Then this character is added to the input
string and the procedure starts again for the next character. In the second case, there
is more than one character mapped to this button. Then, the characters mapped to
this button are again split equally into four subsets which are then mapped to the four
buttons. If there are less than four characters mapped to one button and this button is
triggered, the rear buttons are left empty and cannot be triggered.

If there is only one possible character during the input, this character is skipped and
automatically added to the input string.

Example: Stuttgart and Stutengarten are possible options. The current input string is
Stu. The only possible character in this situation is t. So the t is automatically added
to Stu and the user now has the choice to enter either t or e.

If the current overall-string is a complete city name or street name but there are still
other possibilities, the fourth button is not used for characters, but labeled with this
city name or street name instead. If the user triggers this button, the according route
point is set on the map if it is a street. If the name of a city was mapped to this button,

26

2.3 Text Input Methods

7
Settings Change Control Change Locator Source Info.

Edinburgh

MMMMM

LLLLL

‘‘‘‘‘‘‘‘‘‘‘‘‘

mmmmmm

“““““““

nnnnnnnnnnnnnnnnnnn

Zagreb
dosta i MU (ioriade o/ ereird THEStE 5

Gspeda S e

Figure 2.13: This menu allows the user to enter locations by name.

the input for the street name for this city starts. Example: The current overall-string is
Rohr. This is a valid city name. However there is also a city called Rohrbach. In this
case, Rohr is shown on the last button and the other three buttons are used to type
other characters.

The back gesture leads back to the previous view, which does not necessarily entail
that a character is deleted from the input-string. The characters entered so far are
shown on the information label below the buttons.

This method was implemented because it gives full feedback while using only four
buttons. The users can always see what they have typed. This makes it easy to
recognize mistakes in the input (in contrast to T4 (see section 2.3.3) and T6 (see
section 2.3.4)) and correct them. Since the primitive method only uses four buttons,
the input does not have to be precise (in contrast to the keyboard method (see section
2.3.5)). For example, the whole upper right part of the view of the Leap Motion is
mapped to one button. This helps preventing mistakes during the input by typing the
neighboring button by mistake. A downside of this method is that it usually needs
more than one button press per character.

27

2 Description of the System

Figure 2.14: The primitive input method. The characters are typed one after the other.

2.3.2 Binary Input

This input method is based on a quaternary tree. The leaves of this tree are results
(cities or streets). In the beginning, all results are sorted by name and split into four
groups. These groups are then mapped to the four buttons. To visualize the content of
on group, the according buttons are labeled in a special way. The first and last result
of the group is always shown in big letters. Between these two locations, hints are
shown. These are locations shown in a smaller font and should serve to let the user
know which locations are listed between the first and the last location. To simplify
the process of recognizing which group contains the searched location, the locations
are not shown in their entirety on the buttons. Only the characters 0 — (n+1) of
the name of the location are shown where n is the amount of characters which are
already determined. If applying this rule leads to the case that the label for the last
location of a button b, equals the first location of a button b, ;, the amount of shown
characters is increased until these two labels differ. To make this difference clear, the
additionally added characters are shown in red instead of black. Additionally, the
characters which are already determined are displayed in grey, so the user can focus

28

2.3 Text Input Methods

on the next characters. This can be seen in figure 2.15. The information label below
the buttons shows the characters which are already determined.

If the user triggers a button, the results mapped to this button are again equally split
into four subsets and mapped to one button. This is repeated until only one result is
mapped to a button. If it is a street, the according result is shown on the map. If it is a
city, the input for the street name for this city starts.

If the users performs the back gesture, they get back to the previous view: The parent
node in the tree. This does not necessarily entail that a character is deleted from the
determined characters.

The binary input was implemented because it usually needs less button presses com-
pared to the primitive method (see section 2.3.1) while providing full feedback to
the user and needing a low input precision as it only uses four buttons (see section
2.3.1).

Leine Leninger
Leinf Leinr

Leing Leinz

Leinh Leipe
L einingen Leiph

Leipn Leisenw
Leipo Leisi
Leipp Leisn

Leipz LeiBn
| eisena | eist

Figure 2.15: The binary input method. The locations are searched for in a quaternary
tree.

29

2 Description of the System

2.3.3 T4 Input

The T4 input method is similar to the T9-Input method that used to be common for
old mobile phones [t9p]. However there are some differences. The first difference is
that there are four instead of nine buttons. Second, the way of choosing the desired
word when having finished typing is implemented differently. T9 has a dedicated key
to cycle through possible matches, sorted by decreasing frequency of use. For the T6
method, the users have to perform the finishing gesture when they has finished typing
all characters instead. The finishing gesture consists of holding the flat hand with
spread fingers above the Leap Motion for two seconds (see figure 2.2). When the users
have performed this gesture, the results are presented on the buttons and the user can
choose the result by triggering the according button. The labels of the buttons stay
constant during the input process and are labeled as follows:

e Button 1: ABCDEF
e Button 2: GHIJKL
e Button 3: MNOPQRS
e Button 4: TUVWXYZ

Example: If the user wants to type in Stuttgart, the sequence would be 3-4-4-4-4-2-1-
3-4.

While typing, two cases can occur. The first case is that the amount of possible results
is less or equal than the number of buttons (for T4 four buttons). In this case the
remaining results are mapped to a button each. Now the user can trigger the according
button to select the city or the street. This can even occur when the user has not
finished typing all characters.

The second case applies when the user has finished typing all letters of the location
but there are still several possible results which have names longer than the current
search string. In this case, the view does not change as in the previous case. The user
has to confirm that the input is finished. This can be done by performing the finishing
gesture. Now, only results which have names with the same length as the current
search string are considered. This strategy is chosen instead of reserving one button
for completed locations like for the primitive method (see 2.3.1) because the labeling
of the buttons does not remain constant for the primitive input. Therefore the users
will not be confused if one button is labeled as a location. For T4 and T6 on the other
hand, the buttons are always labeled the same. It is part of the concept of the method
to know which character is mapped to which button. It might be confusing for the
user if the mapping of the characters would change in certain situations. Therefore,

30

2.3 Text Input Methods

an alternative gesture is used to tell MapMotion that the input is finished. If the user
has performed the finishing gesture, there are two subcases. The first case is that the
remaining results are less or equal to the amount of buttons. Then the results are
mapped to one button each. But if there are more remaining results, the results are
split into sets as in the binary input method (see section 2.3.2). Each set is mapped
to one button. Since this is considered a rare case, no special formatting is used for
labeling the sets on the buttons. All results of the set are shown on the according
button.

The information label shows the number of input characters and then up to three
locations (separated by commas) of the list of current possible locations - depending
on the size of the list. These should facilitate the recognition of mistakes. A full list
of all currently possible locations is not feasible since there can be too many possible
locations, especially in the beginning.

One advantage of the T4 input method is that users usually know the concept of T9
(all of the participants of the first and the third study knew T9) and can adapt their
knowledge to the T4 or T6 input method. Additionally, this method only requires one
button press per character plus the additional selection of the city. Like in the previous
methods, only four buttons are used which makes it possible to trigger the right button
even with low precision (see 2.3.1). The disadvantage of this method is that the user
does not get enough feedback to easily recognize mistakes during the input.

2.3.4 T6 Input
This input method is identical to T4, but uses six buttons and therefore less letters per
button.
e Button 1: ABCD
Button 2: EFGH

Button 3: IJKL

Button 4: MNOP

Button 5: QRSTU
Button 6: VWXYZ

31

2 Description of the System

ABCDEF GHIJKL

MNOPQRS TUVWXYZ

Figure 2.16: The T4 input method. This method enables the user to search for a
location using a method similar to T9 on old cellphones.

The advantage of more buttons is that there are less characters mapped to one button,
which leads to more distinctive overall-strings and therefore increases the chances of
fewer necessary button presses than for T4 (see section 2.3.3). In theory this should
lead to a shorter input time. For a comparison between the T4 input method and T6
input method see section 4.3. A possible disadvantage of T6 is that the buttons are
smaller which could lead to more mistakes during the input since the precision of the
input has to be higher than for the input methods using only four buttons, like the
primitive, binary and T4 input method.

2.3.5 Keyboard Input

This input method uses the concept of an onscreen keyboard. The user is shown
a keyboard in the QWERTZ layout. The keys are buttons and can be triggered by
performing the tap gesture. The street names and city names have to be input letter
by letter. To simplify the process for the user, characters which are not possible at the

32

2.3 Text Input Methods

Figure 2.17: The T6 input method. This method enables the user to search for a
location using a method similar to T9 on old cellphones.

current position of the input because there are no cities or streets with this substring,
are disabled. L, is the letter at position n. L, is enabled if 3 location name with letter
L on position n. This makes it impossible to type invalid locations. The concept of
skipping characters which are unambiguous (see section 2.3.1) is also used for this
input method. The currently entered substring is shown on the information label below
the keyboard. To delete a character, the user can either use the back gesture or use
the backspace button on the onscreen keyboard. When the user has finished typing,
the input has to be confirmed by triggering the enter key (button with checkmark
icon - see figure 2.18). This button is only enabled if the current substring is a valid
location.

The keyboard has 29 buttons (all letters of the alphabet plus a space key, an enter key
and the backspace key). Therefore, the buttons are very small and the input has to
be very precise. This disadvantage is compensated by the many advantages of the
method. First, the users get full feedback on the input and can easily see if they made

33

2 Description of the System

Figure 2.18: The keyboard input method. This method enables the user to search for
a location using an onscreen keyboard.

mistakes. Additionally, only one button press per character is needed and the users
usually know the concept of an onscreen keyboard well.

2.4 Hardware and Software Requirements

The software of the Leap Motion has some requirements for the hardware as well as
for the operating system [leah]. The CPU has to be an Intel®Core" i3 or equivalent
and at least 2GB of RAM are required. The Leap Motion software works with Windows,
Mac®OS or Linux but MapMotion was only tested using Windows 8.1 and Windows
10. In order to run MapMotion, an internet connection is required to download the
map data and to calculate the routes. Java JRE in version 7 is needed and at least 1GB
of space on the hard disk is required. This is mainly because of the size of the database
(see chapter 3). If more countries than Germany have to be stored in the database, the
required space is accordingly larger.

34

2.4 Hardware and Software Requirements

2.4.1 Suitability for the proposed use cases

The hardware requirements match a low end computer. Therefore, the required
computer can be cheap and MapMotion is well suited to be used in ticket vending
machines or indoor navigation systems as proposed in chapter 1. The Leap Motion is
very small (13cm x 8cm x 1.3cm - see figure 3.1), so it was possible to build it into a
notebook [leab]. Therefore it is also possible to build it into the systems mentioned
above next to or below the screen.

35

3 Hardware and implementation

3.1 The Leap Motion

MapMotion uses the Leap Motion [leae] for gesture recognition. This is a device which
contains two infrared cameras and three infrared LEDs. The cameras take up to 200
frames/s and can recognize objects in a view angle of 150°. The LEDs illuminate the
hands above the Leap Motion and the both cameras capture an image of them. Hands
are detected up to a height of about 60cm and also 60cm in each direction. The input
space has the form of an upside down pyramid. The green area in figure 3.4 shows the
whole interaction space. The red area shows the part of the input space that should be
used for the input. While the hand remains in this red area, called InteractionBox, it
is guaranteed that the hand is in the view of the Leap Motion (see [leaa]). If the hand
leaves the InteractionBox, the Leap Motion might not recognize the hand reliably.
The captured image data is then transferred via USB to the PC where it is analyzed
by the Leap Motion Software. The software detects the position of the objects in the
view. Since two cameras are used, it is also possible to detect the height of the object.
The software then creates a 3D hand model out of the data, which can be accessed via
an SDK. MapMotion uses this SDK to recognize the different gestures. Since daylight
and some light bulbs also emit infrared light, the light conditions can influence the
precision of the recognition to a certain amount. But usually the Leap Motion detects
the hand very accurately.

3.2 Implementation

This chapter explains the implementation of MapMotion. MapMotion is derived from
MapKin [Sch13]. As MapKit, MapMotion is implemented in Java. The architecture
was changed, the text input as well and the four manual input methods were added.
Additionally some components were improved. There are several dependencies in
order for the system to work. First, it needs the Leap Motion library [leai] in order to
use the Leap Motion. To display the map, JXMapKit is used [swi]. This is a java library

37

3 Hardware and implementation

Figure 3.1: The Leap Motion.

which shows rendered tiles of OpenStreetMap data [ope]. The tiles are pre-rendered
and downloaded as images from a server. Tiles are available in 15 zoom levels.
OpenStreetMap provides free map data which are usually up to date since the data
can be updated by users [upd]. To provide the route calculation, ToureNPlaner [tou]
is used. This is a project of the University of Stuttgart which also uses OpenStreetMap
for the calculation of routes. This ensures that the displayed map and the calculated
route matches. ToureNPlaner allows further constraints for the calculation as well as
multiple route points. Since these features are not relevant for MapMotion, they are
not used. A simplified view of the architecture can be seen in figure 3.2. The different
components are explained in the following sections.

3.2.1 Database

The information of cities and streets are stored in a SQLite [sql] database. Figure
3.3 shows the schema of the database. The table Street contains information of the
streets. Each street has an id to identify the street, a name and a location consisting
of latitude and longitude. Likewise, each city has an id to identify the city and a
name. The attributes minLat, maxLat, minLon and maxLon specify the boundary of
the city. They are calculated by the streets of this city. The maximal latitude of a street
belonging to a certain city determines the value for the maxLat of the city. The other
values are calculated analogously. These boundaries are used to know whether a city is
currently visible on the map and therefore needs to be considered as possible location.
The values for lat and lon are located midway between the values of minLat and

38

3.2 Implementation

Leap Motion SDK DBHandler

| A

Frame

FrameHandler . A
Queries LocationItem

handleFrame

ExtendedFra me—I—Exten dedFrame

[il

MapMover LocatorView l€—LocatorResult— Locator
handleFrame handleFrame Commands—® startRequest
| specifyRequest
Commands MapPanel back
Commands "";T”I """""""""""""""
inish
setRoutePoint P
clearRoutePoints
setZoomLevel
drag

| !

GeoPoints Route Result

ToureNPlaner

Figure 3.2: Simplified architecture of MapMotion.

maxLat or minLon and maxLon respectively. This location is not guaranteed to be within
the city but the city is usually visible on the map when zooming in to this location.
The attribute area is currently not used. It is intended to be used to distinguish two
cities that have the same name. The area could contain the name of the cities county,
for example (see chapter 8). The third table CityStreetRelation is used to store the
relations between streets and city. Each entry contains an id idCity of a city and an id
idStreet of a street. This means that this street with id idStreet is located in the city
with id idCity. One city usually contains multiple streets and one street can be part
of several cities. The communication with the database is implemented in the class
DBHandler. The representation of the locations in the code are the classes City and
Street which are both derived from the super class LocationItem.

39

3 Hardware and implementation

The data for the names and locations of cities and streets are extracted from Open-
StreetMap data. An external program parses the data and references streets to cities
and writes the result to a file. This file can be parsed by MapMotion and then be
imported to the database. Streets are represented by n GeoPoints. A GeoPoint contains
the latitude and longitude. Since MapMotion does not support house numbers, the
|n/2|th GeoPoint is used as location of a street.

id — cityID gggggg[;;;;;;;# id
streetID

minLat lat

maxLat lon
minLon name
maxLon

lat

lon

name

area

Figure 3.3: Schema of the database.

3.2.2 The Leap Motion SDK

Leap Motion provides a Software Development Kit (SDK) for Java amongst other
languages. This SDK is used to implement MapMotion. The SDK provides a high level
interpretation of the raw data and provides this by a Frame. A Frame contains the data
at one point of time. Depending on the capabilities of the used computer, the SDK can
handle over 100 Frames per second. The interpretation of the data results in a model
of one or more hands. A visualization of this model can be seen in figure 2.6, for
example. The information is built up hierarchically. The root is a list of Hands. A Hand
consists of Fingers which can be accessed by type (thumb, index, middle, ring, little).
This makes it possible to recognize the gestures for right-handed users as well as for
left-handed users without differentiation in the code. A Finger has two important
attributes. First, it can be determined if the finger is extended or not. Second, each
finger has a position. The position is a three dimensional point referring to the fingertip

40

3.2 Implementation

and is measured in millimeters from the center of the Leap Motion. Therefore the
X-position and Z-position can also be negative. In addition to this position, the SDK
also provides a stabilized position of each finger. This position has a little delay but
jitters significantly less. MapMotion only makes use of the stabilized position because
a steady cursor is needed to aim for buttons or locations on the map. The delay is
almost not noticeable and none of the participants of the user studies commented
on a possible delay. Apart from the fingers, a hand also has the attribute Palm. Like
the fingers, the palm also has a normal and a stabilized position. In addition to the
position, the palm contains tilt values for all three axes. These values are used for the
Angle-Control. Again, MapMotion only makes use of the stabilized position. A frame
also contains an InteractionBox. This is a box which is guaranteed to be inside the
view of the Leap Motion (see figure 3.4). The size of the box depends on some settings
and is therefore provided in each Frame. This InteractionBox is used to normalize
the positions of the finger to a range between 0 and 1. This makes it easier to map
the location of the fingers to the screen. Besides the model of the hand, a frame also
contains some predefined gestures. MapMotion uses the TapGesture for the triggering
of buttons and for setting route points on the map. The recognition of this gesture can
be configured in terms of the distance and the speed of the tap. After conducting the
second study, the recognition had to be configured to a more sensitive setting, since it
was not reliable enough. The second gesture used is the pinch gesture. This gesture
provides a value between 0 and 1, which represents the distance between the thumb
and another finger of the same hand. This is used for the zooming gestures of the
Touchscreen-Control. Other possible gestures like the CircleGesture (drawing circles
with one finger) or the ScreenTapGesture (moving one finger fast forward in the
Z-axis) are not used in MapMotion. Although the SDK provides a SwipeGesture, this
was not used since the recognition of the gesture was not reliable enough. Therefore
an own recognition of a swiping gesture was implemented (see section 3.2.3).

3.2.3 The Framehandler

In order to avoid redundancies in the code, the data of the hand model is analyzed
in one single class, the FrameHandler. This class receives all Frames provided by the
SDK. The FrameHandler analyzes the data and detects the different gestures used by
MapMotion. The PointingGesture (see figure 2.6), which is used for triggering buttons
or setting route points on the map is detected, if the index finger is extended or the
thumb and the index finger is extended. All other fingers must not be extended. The
recognition of the SwipingGesture (see figure 2.3), which is used to delete characters
for the text input methods, for opening and closing the drawer or for removing all
set route points is split into two parts. The first part detects the gesture if only the

41

3 Hardware and implementation

Figure 3.4: The red area is the InteractionBox inside the view of the Leap Motion
[leaa].

index finger and the middle finger are extended. If the gesture is detected but was not
detected in the previous Frame, the current position of the palm is stored. If the gesture
is also detected in the following Frames, the distance between the current position of
the palm and the stored position of the palm is calculated. If the distance exceeds a
given threshold, a complete Swipe is detected. The sign of the distance defines the
direction of the swipe. The third gesture to detect is the flat open hand with spread
fingers (see figure 2.2). It is used to leave or enter the view of the Leap Motion without
performing any actions and is recognized if all five fingers are extended and the angles
between all adjacent fingers are above a given threshold. If one or more angles are
below the threshold, the flat hand is recognized (see figure 2.4). This is used for
moving the map in the Position-Control and Angle-Control methods. Additionally, the
FrameHandler normalizes the position of the palm and all fingertips. The results of
the gesture recognition and the normalized positions are then stored in an object of
the class ExtendedFrame. This class is derived from the Frame class and can store these
additional information.

42

3.2 Implementation

3.2.4 LocatorViews and Locators

If the drawer is opened, the ExtendedFrame is passed on to the currently set
LocatorView which is the implementation of the user interface of the according
text input method. This can either be the ButtonView or the Keyboardview. The
KeyboardView is used for the keyboard input method, the ButtonView for all other in-
put methods. Each of these views contains a function which accepts an ExtendedFrame.
The views also contain a Locator. This class contains the logic of the text input method.
For the ButtonView the Locator is either the BinaryLocator, the Primitivelocator
or the TnLocator which combines the logic of the T4 and T6 input methods. The
KeyboardView uses only the KeyboardLocator. To simplify the process of implement-
ing new input methods, an abstract class was introduced. All Locators must extend this
class and implement several methods and functions. The first function startRequest is
called when the drawer is opened and receives boundaries of the currently visible part
of the map. In this function, the Locator queries the database for all possible cities
according to the given boundaries of the map. Another function specifyRequest is
called when the user triggers a button in the according GUI. Additionally the abstract
class contains a function back which is called if the user performs the back gesture,
and the function finished which is called if the user performs the finishing gesture.
The Locator communicates its results to the according LocatorView by objects of the
class LocatorResult. This contains information on the labeling of the buttons, strings
which are shown above or below the buttons as information, a variable which indicates
if the user is allowed to perform the finishing gesture in the current state and an object
of the class LocationIten if the search is finished and a specific location was found.

3.2.5 The MapMovers

If the drawer is not opened, the ExtendedFrame is passed to the currently set MapMover.
A MapMover is an abstract class. The classes which implement the logic of the manual
input methods must extend this class. This makes it easy to add new manual input
methods in the future. The classes AngleMoverFingerZoom, AngleMoverDistanceZoom,
PositionMoverFingerZoom, PositionMoverDistanceZoom and TouchscreenMover ex-
tend the super class MapMover. The most important functions they have to imple-
ment are a constructor which provides an instance of the MapPanel and a function
handleFrame which receives the ExtendedFrame. The data of the frame is analyzed and
the according actions are performed on the map. The calibration of the neutral position
for Angle-Control input methods is also done in this class. When the calibrations has
not yet been done and a hand is recognized in a Frame, the calibration process starts.

43

3 Hardware and implementation

The pitch and roll values of the palm are stored for each Frame until 100 values were
collected. For the Angle-Control with Distance-Zoom the height of the palm is stored
as well. The average out of these values defines the neutral position. The average
height of the palm is set as the middle of the height for zooming. The minimal Y-value
of the InteractionBox is the lowest height for zooming. To detect the gestures for
zooming using the Finger-Zoom method, the absolute distance of the Y-value between
the fingertip of the index finger and the middle finger is calculated. If the distance is
above or below a given threshold, the map is zoomed.

3.2.6 The MapPanel

The MapPanel contains an object of the class JXMapKit which shows the actual map.
Additionally, the MapPanel contains functions to move the map, zoom in and out of
the map and set and reset route points. If two route points are set, the MapPanel calls
a function of the class RouteCalculator to calculate the route between the two route
points. The RouteCalculator sends a request containing the locations of the two route
points to ToureNPlaner via the internet. The result of the calculation is received and
forwarded to the MapPanel. After receiving the result, information about the route such
as travel time and distance is shown above the map. In addition, the result contains
the actual calculated route as a list of GeoPoints. A line of the GeoPoints is drawn as
an overlay on the map. The result can be seen in figure 2.1.

44

4 First User Study

4.1 Description

In this chapter, the first user study is described. This study was conducted indepen-
dently of this Master’s thesis. The text input methods Primitive, T4, T6, Binary were
compared in terms of speed. Instead of the Leap Motion, the Microsoft Kinect was
used for input gestures [kinb]. The Kinect is also a 3D sensor but it can track the
whole body instead of only the hand. Therefore, the gestures were not performed
with a hand or fingers but with gestures using both arms. First, the Kinect was sold as
accessory for the game console Xbox 360. However later, Microsoft released a SDK to
use it on Windows [kina]. Although the input methods used for the Leap Motion and
for the Kinect are different, the results of this study can be used to draw conclusions
as to which text input method works best with the Leap Motion. The study was also
performed by the author of this Master’s thesis and was very similar to the second
and third user study of this Master’s thesis. The gestures used in this user study are
similar to the gestures for the Leap Motion. The views the participants saw while
performing the study were identical to the views of MapMotion, since MapMotion is
a further development of the system used for this user study. To open the drawer on
the right side, the user had to perform a left swipe with both arms. This was done by
extending both arms on the right side of the body and then moving them to the left
side of the body. For the Leap Motion, the analogue gesture is to perform a left swipe
while the index finger and middle finger are extended. The system using the Kinect
did not use a cursor to select the buttons like MapMotion does. Instead, the selected
button was highlighted. To highlight a button, the user had to extend one arm. The
Y-position of the arm controlled the row of buttons which was highlighted, whereby
the left arm could be used to highlight buttons on the left column and the right arm
to highlight buttons on the right column. To trigger a button, the button had to be
highlighted for one second. The user could draw the hand back towards the body to
avoid highlighting any button. The finishing gesture (see section 2.3.3) used for the
T4 and T6 method, could be performed by moving the extended right arm from the
left side of the body to the right side of the body. The equivalent for the Leap Motion
is to hold the flat hand with spread fingers above the Leap Motion for two seconds. To

45

4 First User Study

execute the back action, the extended right arm had to be moved from the right of the
body to the left of the body. The equivalent for the Leap Motion is to perform a left
swipe with extended index finger and middle finger.

Since the gestures and the controls are related, it is expected that the best method of
this study also performs well if it is used with the Leap Motion instead of the Kinect.

4.2 Procedure

First, the participants were told about possible risks of the study (which are none),
about the use of the data and that the study could be stopped at any time. The
participants had to sign a form to confirm that they understood. Then, a short
introduction to all gestures was given and the participants had time to try all of them
out. This helped the participants get used to the unknown control method of using
gestures. Next, they performed searches for three cities (Ohlenstedt, Schmitten and
Watzling) with each of the four methods. The different methods were explained
beforehand and the participants had time to practice each method for about three
minutes. Then, the time was taken for each search. After completing all four input
methods, the participants were asked to comment on each of the input methods. They
also had to name their favorite input method for searching for a known city and an
unknown city. The participants could choose between:

e each of the four input methods

e zooming in to the general area of the destination, then using one of the four
input methods

e searching the location manually on the map

For the unknown city, only the four text input methods could be chosen since searching
for an unknown city on the map is pointless. The participants received seven Euro for
taking part in the study. The study was conducting using a PC with an Intel®Core"" 2
Duo and 4GB of RAM running Windows 7. A large TV with a resolution of 1920x1080
pixels was used as screen since the participants had to have a distance of about one
meter to the Kinect.

46

4.3 Analysis of the Study

4.3 Analysis of the Study

27 participants took part in the study - 3 female, 24 male. All of them were students at
the University of Stuttgart. Since one participant was not able to enter Schmitten using
the T4 and Primitive method, only 26 measurements exist for these input methods for
Schmitten. The average input time per city can be seen in figure 4.1. It shows that the
binary input method was the slowest for each of the three cities. The comments on this
input method indicated clearly that the users had difficulties with the method. They
described the method as challenging, difficult and confusing. The lack of feedback and
the need to mentally recite the alphabet were also criticized. Most users said that the
cognitive load of this method was the highest compared to the other three methods.
This can be seen in figure 4.2. This diagram shows the average time the user needed
to trigger one button. The time it takes to press one button can be divided in three
parts as described by the Model Human Processor by S. K. Card et al. [CN86]. The
time is the sum of the time it takes to perceive the new labels on the buttons, the time
it takes to decide which button to trigger next, the time it takes to move the arm to
the right position and a second of resting on the according button to trigger it (see
section 4.1). The average time for one button press was calculated by dividing the
average input time for each city and method by the minimal amount of button presses
needed to input the according city name. Then, the average time for the three cities
was calculated. An exception was made for the T4 and T6 method. Both methods
needed the user to perform the finishing gesture for the city Schmitten. The time it
takes to perceive the labels and the time it takes to decide which button to press next
is considered to coincide with the according times for the tap gesture. The time for
performing the gesture of lowering one arm, rising the other one and waiting for
one second to trigger the button takes nearly the same amount of time as raising
the second arm and moving both from one side to the other to perform the finishing
gesture. Therefore, for T4 and T6 an additional button press was added to the minimal
needed button presses for searching for the city Schmitten. The resulting minimal
amount of button presses needed can be seen in figure 4.3. Since two components
(movement and resting) of a button press are identical for each method, a long input
time per button press can either be a result of a long decision time which indicates a
high cognitive load, or a higher error rate. If the users make errors during the input,
they have to correct them and trigger the correct button. This results in a longer input
time and more button presses. Since the minimal amount of button presses is used
for the calculation, making mistakes results in more button presses and therefore in a
longer time per button press.

The results suggest that the binary input has either a higher error rate than the three
methods or a higher cognitive load. Since both are disadvantages, it is safe to say

47

4 First User Study

that the binary input is the worst method out of these four. Figure 4.3 shows that
T6 needs less button presses than T4 for all of the three cities. Since T4 has more
letters mapped to one button than T6, more results can be excluded from the list of
possible locations per button press. Depending on the searched location it is therefore
possible that T6 needs less button presses to enter a location than T4. Figure 4.2 also
shows that the input time per button for primitive, T4 and T6 are nearly the same.
Despite this fact, the average input time of the primitive method is higher than for
T4 and T6 for all three cities (see figure 4.1). This is because the primitive method
needs more than one button press per character, since there is usually more than one
character mapped to one button, whereas for T4 and T6 only one button press per
letter is needed. Depending on the city, the finishing gesture is needed for T4 and T6
additionally.

According to the participants, the primitive method is easy to understand. They liked
the feedback and the low cognitive load. However they criticized it for being slow
since they needed to trigger more buttons than for the other methods. They also
disliked that the labeling of the button changed every time they triggered a button.
The comments on T4 were nearly the same as for T6. The users liked both methods
for being simple and fast. The only difference was that the users found aiming for the
buttons harder with T6 since the buttons were smaller. The participants remarked that
the feedback was not good for both T4 and T6 and therefore it was difficult to detect
and correct mistakes during the input. This can be seen in figure 4.6. If the users know
the city, they prefer to search for it manually. However when the users do not know
where the city is located and therefore cannot search for it manually, they prefer the
T4 or T6 input method. Some of the participants could not decide if they prefer T4 or
T6. Their votes were counted as votes for T6.

Figure 4.5 shows the average input time for all three cities. This shows that binary is
the slowest method and T6 is the fastest for the cities used in this study.

So we can conclude that T4 and T6 are better than the primitive method since the
primitive method is slower overall than T4 and T6 while the error rate and the average
input time per button are similar for these three methods. Additionally, T6 was the
most preferred input method of the participants (see figure 4.6a). Because of these
reasons, T6 was considered the best input method out of the four text based input
methods and was therefore used in the third user study.

48

4.4 Threats to Validity

70,00

-
S
=)
N
60,00
50,00
g
§ 40,00 W Binary
qé M Primitive
é 30,00 " T4
& mT6
20,00
10,00
0,00

Ohlenstedt Schmitten Watzling

Figure 4.1: Average input time for all three cities.

4.4 Threats to Validity

The most obvious threat to validity is that the study uses a different input system.
However since the flaws and advantages of the input methods can be applied to the
input methods of the Leap Motion, the data can be used. Another problem is the
selection of the participants. Since this study was conducted at the university, only
students took part in the study. All participants were younger than 30 years. It cannot
be assumed, that the results would have been the same if also older participants would
have taken part. Additionally, it would have been better to test the methods with more
than three cities to get more reliable results.

49

4 First User Study

2,83 2,85 2,88

Time in seconds
vm
o
S
l

2,00 -
1,00 -
0,00 -
Binary Primitive T4
Figure 4.2: Average time per button press.
16

M Binary

M Primitive
nT4

mT6

Button presses

Ohlenstedt Schmitten Watzling

Figure 4.3: Minimal amount of button presses needed.

50

4.4 Threats to Validity

70,00

60,00

40,00

30,00

Time in seconds

20,00

10,00

0,00

60,00

50,00

N
(=)
S
o

B

(=)
(@)

>

Time in seconds
w
(@]

[\®]
(=}
(=}
(=)

B

10,00

0,00

60,04

39

m Ohlenstedt

B Schmitten

m Watzling

Binary Primitive T4 T6

Figure 4.4: Average input time for all four methods.

54,76

35,78

25,51
21,76

Binary Primitive T4 T6

Figure 4.5: Average input time.

51

4 First User Study

H Binary

M Primitive
uT4

mT6

® Manual

® Manual + T4

w Manual + T6

m Manual + Primitive

(a) Unknown City (b) Known city

Figure 4.6: Preferred input methods for an unknown and a known city. The votes of
participants who could not decide between T4 and T6 were counted as
votes for T6.

52

5 Second User Study

5.1 Description

In this chapter, the second user study is described. The goal of this study is to evaluate
which one of the five different manual input methods is the fastest, most intuitive and
most comfortable input method for setting route points on the map. To collect the
needed information, a user study was conducted where the participants had to set
route points in different cities. To do this, they had to move the map, use the zoom
function and set route points. Two city pairs were used for this study. The first city pair
is Munich and Berlin. In both cases, a location in the city center should be selected.
This pair was chosen because these cities are usually well known and have enough
distance to make it necessary to zoom out to find Berlin after having zoomed in to
Munich. The second pair uses locations that are in the proximity of each other: The
campus Vaihingen of the University of Stuttgart and the city center of Stuttgart. This is
a more common scenario for one of the possible usages of the system at ticket vending
machines (see chapter 1).

5.2 Procedure

First, the participants were told about risks, usage of the data and what the purpose
of the study was as in the first user study (see chapter 4). Next, the locations to
search for were shown on the map to make sure the participants knew where the
cities are located on the map. Next, a random permutation of the numbers one to
five was created which was used as the order of the different input methods. The first
input method was explained in detail to the participants. Now, the participants could
practice the input method for a few minutes. Practicing with the locations used in this
study was not allowed. A summary of the input method was shown on a second screen,
so the participants could have a quick look at it to remind them of the gestures if they
forgot them. After the practice, the map was set back to the zoom level that shows
Germany at a whole. Now, the participant had to set a location point first in the city

53

5 Second User Study

center of Munich, then in the city center of Berlin. The time was taken beginning with
the first movement of the participant, which does include the time, it takes to place
the hand over the Leap Motion. When the first route point was set in the city center of
Munich, the first timestamp was taken. The participant then seamlessly moved on to
navigate to the city center of Berlin. The second timestamp was taken when the route
point in Berlin was set. Then, the zoom level of the map was reset to the overview
of Germany and the procedure was repeated for the second location pair - Campus
Vaihingen of the University of Stuttgart to the city center of Stuttgart. The next input
methods were tested in the same way as explained above. When the last input method
was finished, the participants were asked which input method they preferred in terms
of usability. Also they were asked to comment on each input method. In the end, the
participants received seven Euro.

The study was conducted using a notebook with Windows 10 and an Intel®Core " i7,
16GB of RAM and a 14 inch screen with a resolution of 1920x1080 pixels.

5.3 Analysis of the Study

The study was conducted with 15 participants. Eight of them were female, seven male.
The age of the participants was between 23 and 27 and all of them were students. For
each participant, approximately 40 minutes were needed. For some participants, some
methods did not work as expected. Especially the pinch gestures for zooming using the
Touchscreen method did not work for all participants. Also the Distance-Zoom was too
hard for some participants to complete the input. Therefore some data is missing. The
recognition of these gestures was improved after conducting the study. MapMotion
could not be altered during the study since this would have also altered the results.
The following list shows, which data is missing.

1 participant was not able to use the Finger-Zoom

1 participant was not able to use the Touchscreen-Control and the Angle-Control
with Distance-Zoom

1 participant was not able to use the Angle-Control with Distance-Zoom.

3 participants were not able to enter Berlin using Angle-Control with Distance-
Zoom

2 participants were not able to enter Berlin using Position-Control with Distance-
Zoom

1 participant was not able to enter Berlin using Touchscreen-Control

54

5.3 Analysis of the Study

2 participants were not able to enter Campus Vaihingen using Angle-Control with
Distance-Zoom

1 participant was not able to enter Campus Vaihingen using Touchscreen-Control

2 participants were not able to enter Stuttgart using Angle-Control with Distance-
Zoom

1 participant was not able to enter Stuttgart using Position-Control with Distance-
Zoom

When asked about their preferred input method afterwards, none of the 15 participants
preferred one of the input methods using Distance-Zoom (see figure 5.2). This was also
confirmed by the participants’ comments after the study. Most of them said they found
the Distance-Zoom difficult since they were unable to hold their hand at a constant
height while moving the map. The gauge which showed the position of the hand at
the left of the screen (see figure 2.1) could not counteract this problem since the users
said that they had to focus on the map while navigating and the gauge was out of their
view. This led to undesired zooming and eventually to a longer input time.

An interesting finding is that the input time for Munich is faster than for Campus
Vaihingen - independent of the input method. Both Munich and Campus Vaihingen
are the starting points of the two routes and had to be searched for from the same
starting view. The amount of zooms and the distance the map has to be moved are
approximately the same. Therefore the input time was expected to be similar. A
possible explanation is that Munich is a bigger city and therefore already visible in
the overview of Germany. Vaihingen on the other hand, is a suburb of Stuttgart. The
participants had to zoom in first to search for Vaihingen, which could lead to the higher
input time. The difference could also be caused by a learning effect since the order of
the locations was not randomized in this study and the Campus Vaihingen was always
input before Munich. This explanation would indicate that the time for practicing the
method before performing the actual study was too short.

Another finding is that the average input time for Stuttgart is considerably shorter than
for Berlin although these two locations are each the end points of the route (see figure
5.1). This result was expected since Stuttgart is very close to Campus Vaihingen (about
6.5 km in a beeline) whereas Berlin is about 500 km from Munich in a beeline. This
makes it necessary to zoom out and move the map after having zoomed in to Munich
in order to find Berlin. Whereas there is no need to zoom at all to find Stuttgart after
having zoomed in to Campus Vaihingen.

Although the average input time for the Distance-Zoom is not the longest (see figure
5.1), the Distance-Zoom was not considered to be the best approach for zooming since

55

5 Second User Study

the participants did not like it. The Touchscreen method was not considered the best
input method either since it is the slowest method for Berlin and the second slowest
method for Campus Vaihingen and Munich (see figure 5.1). Only three participants
preferred it over the other methods (see figure 5.2). Judging by their comments, this is
probably because they found the pinch gesture for zooming difficult. Many participants
had to try out which gesture zooms in and which one zooms out. It was found not to
be intuitive enough, although the gestures are identical to these used on touchscreens
of smartphones.

Position-Control with Finger-Zoom was considered the best method for several reasons.
First, out of the remaining two methods, Angle-Control with Finger-Zoom is slower
than Position-Control with Finger-Zoom for all cities. In addition, this method has
the disadvantage of needing calibration before working comfortable. Furthermore,
Position-Control with Finger-Zoom is fastest on average for all cities (see figure 5.3) and
most often considered the preferred input method overall. Therefore, Position-Control
with Finger-Zoom was chosen to be used for the third user study.

80

71,69

U1
o

B Angle Distance

® Angle Finger

m Position Distance

Time in seconds
N
o)

30
B Position Finger
20 m Touchscreen
10
0
Berlin Campus Munich Stuttgart
Vaihingen

Figure 5.1: Average input time for the different manual input methods by city.

56

5.3 Analysis of the Study

0%

® Angle-Control Distance-Zoom

® Angle-Control Finger-Zoom

i Position-Control Distance-Zoom
B Position-Control Finger-Zoom

m Touchscreen-Control

0%

Figure 5.2: Preferred input method for the manual input methods.

5.3.1 Comments and Improvements

In this section, the comments of the participants are summarized and it is explained
how MapMotion was improved based on the given comments. Some users stated
that it was tiresome to hold the arm in an unnatural position. This is an issue which
cannot be improved. However for the possible use case as explained in chapter 1,
the user uses the system only for a very short time in contrast to a duration of about
40 minutes during this study. A majority of the users said that zooming using the
Distance-Zoom was more difficult than zooming using the Finger-Zoom. This is one
reason for choosing Position-Input with Finger-Zoom as best manual input method. It
was stated that the color coding for the indication of the height of the finger did not
help to know when the finger was above or below the imaginary plane. Therefore, a
visual effect was added to MapMotion which shows a circle with increasing radius if
the finger is moved from above the imaginary plane below the plane. One participant
said the she/he expected the Position-Control to work inverted. She/he moved the
hand often to the right instead of to the left. But since the other 14 participants did not
have this problem, nothing was changed. Some users complained that it was difficult
to make use of the height indicator while using Distance-Zoom since the gauge was

57

5 Second User Study

60
50 47,59 50,09
39.91 41,93
° 40
S
1} 29,05
2 30 %
= 20
10
0 T T T T
cf/ 25 C Q} Q/Q
& S S &
5 < 5 < $
N e <Q S &
%@ Y’Q’éo -*'OOQ " &0
v & <°

Figure 5.3: Average input time for the manual input methods.

on the left side of the screen but they had to focus on the center of the map. This
is another reason for not considering a method with Distance-Zoom the best method
of this study. During this study, there was no grey cross in the center of the map as
shown in figure 2.1. It was difficult for the users to keep the overview while zooming
because they did not know exactly where the center of the map was. Therefore their
estimated center shifted after performing a zoom gesture and they had to take a little
time to regain orientation. As a consequence, the grey cross was added to the map,
as can be seen in figure 2.1. Most users had difficulties to set route points using the
tap gesture. They often needed several tries before they succeeded. This problem
was fixed after the second user study by increasing the sensitivity of the recognition.
Especially users with small hands had problems performing the pinch gestures for
the Touchscreen method. This was fixed by reducing the needed distance between
thumb and index finger to recognize the fingers as spread. Eventually, sounds were
added for all swipes and taps. This improvement serves as a feedback that a gesture
was recognized. According to the participants of the third study, these sounds were
helpful.

58

5.4 Threats to Validity

(0]
o

N
(=)

(o
(@)

[
o

Time in seconds
w A
S o

*]
[«

[
o

Figure 5.4: Average input time for the different manual input methods by method.

5.4 Threats to Validity

There are some possible influences which could have altered the results of the study.
As in the first study, only students took part in the study and again, all of them were
younger than 30 years. This leads to the same threat as in the first study: It cannot
be assumed that the results would have been the same if also older users would have
participated. Another possible influence is that the study was conducted at different
locations. Therefore, the light conditions were not the same for all participants, which
could have influenced the precision of the recognition of the Leap Motion. Additionally,
the speed of the internet was not the same at the different locations. This led to
a different loading time for the tiles and therefore to a different waiting time after
zooming in or out. This problem could only be solved by caching the map tiles locally.

59

6 Third User Study

6.1 Description

In this chapter, the procedure of the third user study is described. This user study
was conducted to compare the text input methods to the manual input methods. The
best method (Position-Control with Finger-Zoom) of the first user study is used for the
manual input method and the best method (T6) from the second study is used for the
text input method. As a third input method, the Keyboard method is used in this user
study. This text input method was not part of the first user study since the Kinect was
not considered to be precise enough. However since the precision of the Leap Motion
allows the use of an onscreen keyboard, this input method was added to the third user
study.

Different scenarios where chosen to find out which input method is suited for which
situation. The first scenario is to calculate a route between two close locations, which
is typical for the use case of buying a subway ticket at a ticket vending machine. For
this scenario, the starting point was Pfaffenwaldring in Vaihingen which is one of the
main roads on the campus of University of Stuttgart in Vaihingen. The destination
was Konigstraf3e in Stuttgart which is located near the main station of Stuttgart. To
calculate the route between these locations, it is not necessary to zoom out once the
first location was set when using the manual input method. Both locations can be
seen on the screen simultaneously in the second highest zoom level. Therefore it was
assumed that this scenario could be performed quickly using the manual input method.
For the text input methods, the distance between the locations is irrelevant.

The second scenario is a route between Sonnenstral3e in Munich and Friedrichstral3e
in Berlin. These cities are approximately 500 km apart in a beeline. The streets are
located in the center of the cities respectively. It is assumed that the streets can be
easily found once the participants have zoomed in to the center of the cities. This also
favors the manual input method but since zooming out is required, it is assumed that
this scenario takes more time than the first one for the manual input method. Another
reason for choosing these cities is that participants have to use the finishing gesture
for each, Munich and Berlin when using the T6 text input method.

61

6 Third User Study

For the third scenario, two small and relatively unknown cities were chosen. The
starting point is Marktstrale in Beutelsbach and the destination is Schiitzenstraf3e in
Visselhovede. Since these locations are small and relatively unknown, it is assumed
that they are hard to find on the map using the manual input method. Consequently;,
in this case the text input methods should lead to better results. Without knowing the
cities, it is nearly impossible for the participants to find them on a map of Germany.
Therefore the participants were given some hints as to where the cities are. This reflects
to use case of knowing only the approximate location while buying a train ticket, e.g.
because the user has never been to that location before. Section 6.2 describes how the
approximate location was described to the participants.

6.2 Procedure

As in the previous studies, the participants where told about the risks and the procedure
of the study. The task of the participants was to calculate three different routes with
three different input methods each. The order of the input methods as well as the
order of the routes were chosen randomly to take the learning process into account.
For each input method, the first step was to explain the method to the user. After
the explanation, the participant could practice the method for about three minutes.
Practicing with locations which were part of the study was not allowed. Next, a random
scenario was chosen and the participants had to calculate the route for this scenario.
At the start of each scenario, the map was reset to show the whole of Germany on the
screen. The time was taken each time the participants set a route point. For the two
text input methods, the gesture for opening the drawer was included in the taken time.
This procedure was repeated for all three input methods.

For the manual input method, the participants were shown the locations on the
map before the time was actually taken to make sure each participant had the same
knowledge about the locations. Since the third scenario is about searching for unknown
locations on the map, Beutelsbach and Visselhévede were not shown to the participants.
Instead they were given hints to find these locations. The locations were explained as
follows:

e Pfaffenwaldring, Vaihingen: Zoom in to Stuttgart. Vaihingen is in the south-west
of Stuttgart and Pfaffenwaldring is in the very north of Vaihingen.

e Konigstrafse, Stuttgart: Zoom in to Stuttgart. The main station can be easily
seen in the center of Stuttgart. The street which leads to the main station is
Konigstralle.

62

6.3 Analysis of the Study

e Sonnenstrafse, Munich: Zoom in to Munich. The historic center is labeled in
the city center of Munich. There is a ring around that historic center and
Sonnenstral3e is the left part of that ring.

e FriedrichstrafSe, Berlin: Zoom in to Berlin. The park Tiergarten can be easily
found in the city center. Friedrichstraf3e is the third of the bigger streets to the
right of Tiergarten.

e Markstrafse, Beutelsbach: Beutelsbach is near Weinstadt which is east of Stuttgart.
Stuttgart is shown on the map.

e Schiitzenstrafse, Visselhovede: VisselhGvede is in the north of Hannover near
Truppeniibungsplitze Bergen. Visselhovede is in the north-west of the Trup-
peniibungspldtze. Hannover is shown on the map.

The study was conducted using the same notebook as described in section 5.2.

6.3 Analysis of the Study

The study was performed with 15 participants. Among the participants, there were
8 women and 7 men between 22 and 27 years. All of them were students. However
MapMotion had problems recognizing the finishing gesture for the T6 input method or
the participants were not able to correct mistakes during the input because they missed
further feedback. Therefore only 13 participants were able to complete Stuttgart,
KonigstrafSe using T6. Figure 6.3 shows the average input time for all of the locations.
The first noticeable finding is that the manual input was clearly slower for the third
scenario with unknown cities (route from Beutelsbach, Marktstral3e to Visselhovede,
Schiitzenstralde). This is presumably because the participants had to search for both
cities on the map. This, the assumption that the text input methods would perform
better for this scenario than the manual input was confirmed. The manual input
method is the slowest for all locations except for Stuttgart, KonigstraRe. This can be
explained by the fact that Konigstral3e is the destination of the route and it is very
close (about 6.5 km in a beeline) from the starting point of the route. Therefore, the
participants did not need to zoom and could set the second route point quickly after
setting the first one. For the starting point of the route, Vaihingen, Pfaffenwaldring,
however, the manual input method was 15 seconds slower than the keyboard input
method on average. The conclusion for this scenario is that a text input method
should be used to find the first route point and a manual input method should be used
afterwards to find a nearby location. For this use case, MapMotion would have to be
modified (see chapter 8).

63

6 Third User Study

The second scenario (route from Munich, Sonnenstrafse to Berlin, Friedrichstrafse) is
interesting as well. For the starting point at Sonnenstrafse, the three input methods
needed nearly the same time. For the end point however, the manual input is about
17 seconds slower on average than the keyboard input method. The fact that the
user first needs to zoom out of Munich if using the manual input method is a possible
explanation. For the text input methods however, the input of the destination can start
immediately after having searched for the starting point.

To compare the two text input methods, the average time to trigger one button has to
be compared as in the first user study (see chapter 4). This can be done by dividing the
average input time per location by the minimal button presses needed for this location.
For the keyboard method, this can be done easily. However for the T6 method, the
finishing gestures have to be handled differently for the calculation. First, the waiting
time of two seconds is subtracted from the average time for the locations that need the
finishing gesture. Additionally, the time it takes to change to the flat hand gesture and
back to the pointing gesture, as well as the time it takes to perceive and decide have
to be considered (see Human Processor Model of S. K. Card et al [CN86]). Since no
related data was collected during the study, an assumption had to be made. The time
for the decision and perception is considered identically for performing the finishing
gesture as well as for triggering a button. The time for the movement of the hand to
another button can be compared to changing the hand from the pointing gesture to
the flat hand. Therefore it can be assumed that the time needed to trigger one button
is about the same as the time needed to perform the finishing gesture without the
waiting time. Consequently an additional button press was added to the cities that
need the finishing gesture. The minimal number of needed button presses can be seen
in figure 6.2. The results of this comparison is shown in figure 6.1. It shows that on
average, T6 is faster than the keyboard method. This is possibly caused by the fact that
the users’ gestures need to be more precise for the smaller buttons used in the keyboard
method. Therefore, the aiming takes more time than with T6. However despite the
faster input time per button, the keyboard method needs less button presses for four
of the used locations than T6. Additionally, the keyboard does not need the finishing
gesture. Therefore, the keyboard method is faster than T6 in the overall average of the
input methods (see figure 6.5). Additionally, the keyboard method is also preferred
by users for unknown cities as well as for known cities (see figure 6.4). According to
the comments, this is because the users missed feedback for the T6 method as already
mentioned in the analysis of the first user study (see section 4.3). Still, the keyboard
method has flaws of usability, too. Even though it was explained to the participants
that characters are added to the input if they are non-ambiguous, the users were taken
by surprise and made mistakes during the input, especially for Miinchen (Munich).
After typing the ¢, the h was automatically added but most participants did enter the h

64

6.4 Threats to Validity

anyway, which resulted in Miinchh. Most of the participants that made this mistake
only noticed the mistake because the e was disabled after the second h (see chapter
8 on how this problem could be solved). Another huge advantage of the keyboard
method is that it is well known by the users since onscreen keyboards are broadly
used, for example on smartphones and tablets. For the T6 method however, the users
needed an explanation. Most of the participants thought that the input method works
like multi-tap. Multi-tap was used before the T9 input method [t9p] on mobile devices.
Several characters are mapped to one button and the user needs to press the button
several times to enter one character. For example, the button 7 on phones contains
the characters PQRS. To enter R, the button has to be pressed three times. Since the
keyboard input method is on average faster than T6, is preferred by the users and does
not need an explanation, it is considered superior to the T6 input method. It is also
considered to be superior to the manual input with the exception for near locations.

4,00

3,50 3,28

3,01

\S)J
o
(=)

1

N
(@)
(=}

!

Time in seconds
=N
Tl (@)
(@) (@)
] |

\!—I
o
(=}

!

0,50 -

0,00 -

Keyboard T6

Figure 6.1: Average time per button press.

6.4 Threats to Validity

There are some influences that could have altered the results of this study. There is
another threat in addition to the threats of the second user study (see section 5.4).
Some of the participants of the third study had already participated in the second

65

6 Third User Study

30

m Keyboard
mT6

Button presses

Figure 6.2: Minimal button presses needed.

user study. Therefore those participants might have had more practice than the others.
However since the user studies were several weeks apart, the input methods were
different and all participants had time to practice the methods for some minutes, this
is considered not to be severe. Also it was possible that some participants knew the
location of Beutelsbach or Visselhdvede in advance. In this case, they would have had
an advantage for searching for them on the map. However when asked, none of the
participants knew these cities.

66

6.4 Threats to Validity

160,00
140,00
120,00
“ M FriedrichstraBe
'g 100,00 m Kénigstrale
(9]
E 80,00 m Marktstrale
é m Pfaffenwaldring
[60,00 m SchiitzenstraRRe
40,00 m SonnenstralRe
20,00
0,00

Keyboard Manual T6

Figure 6.3: Average input time by method.

mT6
m Keyboard

m Manual

(a) Unknown location. (b) Known location.

Figure 6.4: Preferred input methods for an unknown and a known location.

67

6 Third User Study

80,00

74,33

70,00

60,00

50,24

(o)
(=]
(=]
(=]

b

44,92

Time in seconds
N
N
(@]
S
l

Keyboard Manual T6

Figure 6.5: Average input time per method for all locations.

68

7 Summary

This chapter sums up the results of this thesis.

MapMotion, the system that was introduced in this thesis, is intended to calculate
routes on a map. It is controlled by solely using hand and finger gestures which are
detected by the 3D sensor Leap Motion. The advantage of gesture input is that they
work touchless in contrast to touchscreens, which is more hygienic. To calculate a route,
users can either set route points directly on the map or search for addresses using text
input. For each of the both possibilities, different input methods were implemented
and compared by conducting three user studies. The first study compared the different
text input methods. This user study was conducted with the Kinect instead of the
Leap Motion. The results show that the input method T6 which is similar to T9 [t9p]
used on cell phones was superior to the others. In the second study, the manual input
methods were compared to each other. The results of the study showed clearly that
the height of the hand should not be used as input parameter since it is difficult for
users to keep it in a constant height. A input method which uses similar movements
as actuating a joystick and which uses finger gestures for zooming was the best input
method of this study. In the last study, two text input methods were compared to one
manual input method in different scenarios to identify which method works best for
each scenario. The two best methods of the previous study as well as a new text input
method, an onscreen keyboard, were used during this study. The results show that
using the onscreen keyboard, which is controlled with hand and finger gestures, is the
fastest of the text input methods. It should be preferred of the other methods. Only
for scenarios where the second route point is close to the first one, it is faster to select
the second route point manually on the map after having found the first one using
text input. MapMotion can be used to buy train tickets at ticket vending machines
for selecting the desired starting point and the destination either on the map or by
searching for the station name. If MapMotion is changed to not display a map showing
streets, but the floor plan of a building, it can also be used as an indoor navigation
systems at malls or office buildings.

69

8 Future Work

This chapter proposes possibilities to improve the system further and provides sugges-
tions for future research.

The way identically named cities are handled could be improved. Currently, the user
has no way of distinguishing two identically named cities. Therefore, cities of the same
name are currently enumerated. While performing the three user studies, only one city
with the searched name was stored in the database. This prevented confounding the
participants unnecessarily. To solve this problem, information should be added that
enables the user to distinguish and correctly identify cities. This could be for example
the county. A column in the database layout is already reserved for this purpose (see
section 3.2.1). Additionally, house numbers could be introduced to the streets. This
would improve the usability for the user and MapMotion could serve as a fully-fledged
navigation system.

The map itself could also be improved. Currently, only fixed zoom levels are possi-
ble. While loading, grey placeholder tiles are displayed. This can lead to a loss of
the overview after zooming. Therefore, a map renderer which supports continuous
zooming could vastly improve the user experience. To make sure that the displayed
route and the underlying map match, this renderer should also use OpenStreetMap
data for rendering.

Taking into account the results of the third user study (see section 6.3), some changes
have to be made to the text input methods. Currently, the map does not zoom in to the
set location when a text input method is used. This is because the text input methods
only consider locations which are currently visible on the map. If the map would zoom
in to the first location, the users would have to zoom out if they wanted to search for a
second location further away. Considering the two use cases, the users should be able
to choose between zooming in to a found location or not when they trigger the last
button on the text input methods. This could be done by using one or two fingers to
trigger the final button. To visualize this, a button could change its color if it is the
final button for a city.

Further user studies could compare the keyboard input with a T9 input method. Since
the third user study showed that the precision of the Leap Motion is sufficiently precise

71

8 Future Work

to trigger the buttons on the onscreen keyboard reliably, the number of buttons of the
T6 method could be increased. This could prevent the need for the finishing gesture in
more cases and eventually lead to a shorter input time while still needing less precision
than the keyboard input method.

The advantage of autocompletion for the keyboard input method could be analyzed.
Doubé and Beh conducted a study to compare the advantage of autocompletions for
websites between older and younger users [DB12]. A result of this study was that older
users with less experience looked on the keyboard until they finished typing. Therefore,
they ignored all proposals of the autocompletion. We have to consider that this behavior
also applies to gesture control. Since the users are not used to this form of input, they
focus on the onscreen keyboard, ignoring that the input was autocompleted. A study
could be conducted to compare the speed of the input using the autocompletion to the
same input method without using the autocompletion. Additionally, a visualization
of the autocompletion could be introduced by adding an animation directly on the
keyboard. This could help the user to recognize the autocompletion and eventually
reduce the amount of mistakes made during the input.

In the comments of the third user study, the users stated that they liked the feedback
of the keyboard method. The keyboard gives full feedback about the input in contrast
to T6. The disadvantage is however, that the keys are smaller and the precision of the
input needs to be higher. To counteract this problem, the keyboard could be improved.
In the current implementation, keys which cannot be pressed at a certain position
of the input are disabled to make invalid inputs impossible. If only a few keys are
enabled, the size of these keys could be increased to also use some space of disabled
keys. It can be assumed that the increased buttons will not confuse the users because
the keys are still located at their normal position but since the size is increased, we
assume that the aiming is easier. Another user study could be conducted to confirm
this assumption.

72

Bibliography

[CHM15] A. Chan, T. Halevi, N. Memon. Leap Motion Controller for Authentication

[CN86]

[DB12]

[ges]

[kina]

[kinb]

[leaa]

[leab]

via Hand Geometry and Gestures. In T. Tryfonas, I. Askoxylakis, editors,
Human Aspects of Information Security, Privacy, and Trust, volume 9190
of Lecture Notes in Computer Science, pp. 13-22. Springer International
Publishing, 2015. doi:10.1007/978-3-319-20376-8 2. URL http://dx.doi.
0rg/10.1007/978-3-319-20376-8_2.

T. P. Card, S.K; Moran, A. Newell. The Model Human Processor: An
Engineering Model of Human Performance. 1986.

W. Doubé, J. Beh. Typing over Autocomplete: Cognitive Load in Website
Use by Older Adults. In Proceedings of the 24th Australian Computer-Human
Interaction Conference, OzCHI ’12, pp. 97-106. ACM, New York, NY, USA,
2012. doi:10.1145/2414536.2414553. URL http://doi.acm.org/10.1145/
2414536.2414553.

Gesture input BMW. URL http://www.bmw.com/com/en/newvehicles/
7series/sedan/2015/showroom/innovative_functionality.html.

Kinect for Windows. URL http://blogs.msdn.com/b/kinectforwindows/
archive/2012/01/09/kinect- for-windows-commercial-program-
announced.aspx.

Kinect release. URL https://news.microsoft.com/2010/06/13/kinect-
for-xbox-360-is-official-name-of-microsofts-controller-free-
game-device/.

Coordinate system of the Leap Motion. @ URL https://developer.
leapmotion.com/documentation/csharp/devguide/Leap_Coordinate_
Mapping.html.

HP ENVY17 Leap Motion SE. URL https://www.leapmotion.com/news/
world-s-first-computer-embedded-with-1leap-motion-technology-to-
hit-shelves-this-fall.

73

http://dx.doi.org/10.1007/978-3-319-20376-8_2
http://dx.doi.org/10.1007/978-3-319-20376-8_2
http://doi.acm.org/10.1145/2414536.2414553
http://doi.acm.org/10.1145/2414536.2414553
http://www.bmw.com/com/en/newvehicles/7series/sedan/2015/showroom/innovative_functionality.html
http://www.bmw.com/com/en/newvehicles/7series/sedan/2015/showroom/innovative_functionality.html
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/kinect-for-windows-commercial-program-announced.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/kinect-for-windows-commercial-program-announced.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/kinect-for-windows-commercial-program-announced.aspx
https://news.microsoft.com/2010/06/13/kinect-for-xbox-360-is-official-name-of-microsofts-controller-free-game-device/
https://news.microsoft.com/2010/06/13/kinect-for-xbox-360-is-official-name-of-microsofts-controller-free-game-device/
https://news.microsoft.com/2010/06/13/kinect-for-xbox-360-is-official-name-of-microsofts-controller-free-game-device/
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Coordinate_Mapping.html
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Coordinate_Mapping.html
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Coordinate_Mapping.html
https://www.leapmotion.com/news/world-s-first-computer-embedded-with-leap-motion-technology-to-hit-shelves-this-fall
https://www.leapmotion.com/news/world-s-first-computer-embedded-with-leap-motion-technology-to-hit-shelves-this-fall
https://www.leapmotion.com/news/world-s-first-computer-embedded-with-leap-motion-technology-to-hit-shelves-this-fall

[leac]

[lead]

[leae]

[leaf]

[leag]

[leah]
[leai]
[ope]
[Sch13]

[sql]

[swi]

[t9p]

[tou]

[upd]

Leap Map. URL http://jaxzin.github.io/leap-map/.

Leap Motion Airlnput. URL https://apps.leapmotion.com/apps/
airinput-trial/windows.

Leap Motion Hardware. URL http://blog.leapmotion.com/hardware-to-
software-how-does-the-leap-motion-controller-work/.

Leap Motion Here Maps. URL https://web.archive.org/web/
20131220160004/http://developer.nokia.com/Blogs/Code/2013/05/
16/here-leap-motion/.

Leap Motion PRSNTA. URL https://apps.leapmotion.com/apps/prsnta-
-2/0sx.

Leap Motion Requirements. URL https://www.leapmotion.com/setup.
Leap Motion SDK Download. URL https://developer.leapmotion.com/.
OpenStreetMap. URL https://www.openstreetmap.org.

M. Scholz. Gestensteuerung von Routenplanern mittels Kinect, 2013.

SQLite Repository. URL https://bitbucket.org/xerial/sqlite-jdbc/
downloads.

SwingX Download. URL https://java.net/downloads/swingx/releases/
1.6.2/.

T9 Patent. URL http://worldwide.espacenet.com/publicationDetails/
biblio?locale=en_EP&CC=EP&NR=1256871.

ToureNPlaner. URL http://tourenplaner.informatik.uni-stuttgart.
de/.

Update OpenStreetMap. URL http://wiki.openstreetmap.org/wiki/
Getting_Involved.

All links were last followed on October 27, 2015.

http://jaxzin.github.io/leap-map/
https://apps.leapmotion.com/apps/airinput-trial/windows
https://apps.leapmotion.com/apps/airinput-trial/windows
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
https://web.archive.org/web/20131220160004/http://developer.nokia.com/Blogs/Code/2013/05/16/here-leap-motion/
https://web.archive.org/web/20131220160004/http://developer.nokia.com/Blogs/Code/2013/05/16/here-leap-motion/
https://web.archive.org/web/20131220160004/http://developer.nokia.com/Blogs/Code/2013/05/16/here-leap-motion/
https://apps.leapmotion.com/apps/prsnta--2/osx
https://apps.leapmotion.com/apps/prsnta--2/osx
https://www.leapmotion.com/setup
https://developer.leapmotion.com/
https://www.openstreetmap.org
https://bitbucket.org/xerial/sqlite-jdbc/downloads
https://bitbucket.org/xerial/sqlite-jdbc/downloads
https://java.net/downloads/swingx/releases/1.6.2/
https://java.net/downloads/swingx/releases/1.6.2/
http://worldwide.espacenet.com/publicationDetails/biblio?locale=en_EP&CC=EP&NR=1256871
http://worldwide.espacenet.com/publicationDetails/biblio?locale=en_EP&CC=EP&NR=1256871
http://tourenplaner.informatik.uni-stuttgart.de/
http://tourenplaner.informatik.uni-stuttgart.de/
http://wiki.openstreetmap.org/wiki/Getting_Involved
http://wiki.openstreetmap.org/wiki/Getting_Involved

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Description of the System
	2.1 Overview
	2.2 Manual Input Methods
	2.3 Text Input Methods
	2.4 Hardware and Software Requirements

	3 Hardware and implementation
	3.1 The Leap Motion
	3.2 Implementation

	4 First User Study
	4.1 Description
	4.2 Procedure
	4.3 Analysis of the Study
	4.4 Threats to Validity

	5 Second User Study
	5.1 Description
	5.2 Procedure
	5.3 Analysis of the Study
	5.4 Threats to Validity

	6 Third User Study
	6.1 Description
	6.2 Procedure
	6.3 Analysis of the Study
	6.4 Threats to Validity

	7 Summary
	8 Future Work
	Bibliography

