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Abstract

The aim of this thesis is to investigate the generative potential
of agent-based systems for integrating material and fabrication
characteristics into design processes. This generative agent-
based system reflects the significance of behavioral strategies
in computational design and construction. This work presents a
generative behavioral approach for integrating fabrication processes
with material specifications. The development of a computational
framework facilitates this integration via an agent-based system.
A series of experiments with related case studies emphasizes
behavioral strategies within the processes of formation and
materialization.

This research proposes the integration of material and
fabrication processes through an agent-based system. The utilization
of this system reflects a theoretical framework in developing
an integrative computational method. The implementation of
this theoretical framework in practical studies demonstrates the
applicability of this research. The practical developments highlight
the importance of behavioral strategies to establish integral design
computation.

Chapter 1 introduces the extended behavioral strategies to
integration design. Chapter 2 provides a study about integrative
design computation to abstract the main drivers of design
integration through agent-based modeling. Chapter 3 presents
agent-based systems in architectural design, specifically, in
regards to material, fabricational, and environmental principles.
Chapter 4 explores experiments and case studies to adjust the
development of a generative agent-based system for integrating
material and fabrication characteristics in design processes. Chapter
5 explains procedures for setting-up a generative agent-based
design computation. Chapter 6 discusses the significance of
behavioral strategies to develop different behavioral layers within
a generative agent-based architectural design. Chapter 7 concludes
the integral behavioral strategies by proposing trends to minimize
the gap between formation and materialization through coalescing
computational and physical agent-based systems.





Zusammenfassung

Ziel dieser Arbeit ist es, die generativen Potentiale von
Agenten-basierten Systemen zur Integration von Material- und
Fertigungseigenschaften im Entwurfsprozess zu untersuchen.
Diese generative, Agenten-basierten Systeme spiegeln die
Bedeutung von Regel- und Verhaltens-basierten Strategien für
das digitale Entwerfen, Planen und Konstruieren wider. Die
vorliegende Forschungsarbeit stellt einen generativen Ansatz zur
Integration der Charakteristika von Material und Fertigung dar.
Dies erfolgt über die Entwicklung einer digitalen Methode, die die
Integration in ein Agent-basiertes System ermöglicht, was an einer
Reihe von Experimenten und Fallstudien und der dazugehörigen
Verhaltensstrategien für die Formgenerierung und Materialisierung
erprobt wurde. Das operative Potential des theoretischen Rahmens
wird in diesen praktischen Studien demonstriert und belegt die
Anwendbarkeit der Forschung. Die theoretischen und praktischen
Entwicklungen zeigen die Bedeutung von Verhaltensstrategien für
das architektonische Entwerfen und einen ganzheitlichen digitalen
Gestaltungs- und Bildungsprozess.
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1 Introduction

1.1 Preamble. Extended Behavioral Strategies
to Integration Design

Research on generative agent-based architectural design
computation has focused on the behavioral strategies of integrating
materials and fabrication characteristics to realize design processes.
This study concentrates on a computational method for considering
material and fabrication capacities and constraints within the process
of integral formation and materialization1. The result of this fusion
can further integrative design by manifesting constructible forms.
The manifestation of form can be described through two different
approaches, one constructional and the other theoretical. The
constructional approach considers the process of materialization
during the stage of formation, while in the other approach, forms
are theoretical intensions that impose a formal structure on the
materialization process. These two approaches determine at which
point fabrication tools are considered during the process of design.
The first approach deals with fabrication constraints during the
process of formation, and the latter requires another process to
overcome the deficiency of theorized forms and fabrication systems.

The behavioral negotiation between material organizations
and fabrication processes requires a computational framework to
provide an explorative model to study the emergence of forms. This
research considers agent-based systems as a promising method to
develop a computational design framework. This computational
framework investigates adaptive procedures to adjust for arising
complexities of behavioral integration within form manifestation.
This research tries only to extend agent-based systems to the
field of behavioral strategies. These strategies are then applied

1 The materialization processes are considered as a general term in which it can be
involved within the physical and virtual form manifestation.
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for computational design and construction. This work presents
behavioral integration via agent-based systems to provide ample
support for integrating fabrication environments with material
organizations. Behavioral integration describes the emergent
features exhibited from micro interactions within agent-based
systems. These micro interactions establish inclusive architectural
design processes at macro-levels. In order to gain insight into the
potential of this method of integration, the research is based on
virtual experiments with supporting case studies and examples.
The experiments also investigate the difficulty and complexity of
behavioral integration. In a scientific manner, these experiments
suggest that agent-based systems as adaptive processes are
appropriate for adjusting the complexity of behavioral integration
within design systems.

1.2 General Context of Design Integration

In recent years, integrated computational tools have been
investigated to facilitate building constructions. It is necessary
to study the significance of fabrication and construction procedures
from the early stage of design processes to the final stage of
construction systems. The integration within computational
applications establishes comprehensive modeling systems to
decrease the fragmentation of design and fabrication processes
into cohesive approaches. A building database model, which
designates a knowledge-based system, comprises of a notational
means of organizing design applications. The notational applications
represent top-down hierarchies of interconnected objects and
instances from different class libraries of building database models.
Utilizing hierarchical structures within parametric modeling systems
furthers architectural design applications by developing seamless
integrations between design and fabrication processes. Although,
parametric modeling facilitates the integration of design processes,
it is restricted to the early stage of design notations.

In the context of notational design, knowledge-based systems
are associated with ultimate forms that include geometrical
definitions, components, and elements. The subdivision of forms
into small parts limits structuring the design database, where the final
geometry cannot substantially be revised and only negligible changes
can be tolerated. Thus, integrated design and fabrication, which
is a knowledge-based approach, constrains designers to consider
fabrication processes at the early stages of design. Otherwise
re-designing becomes an obligatory procedure. In contrast, the
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integrative computational design and materialization strategy might
benefit from developing new methodologies that closely resemble
those of natural morphogenesis. Natural morphogenesis is adapted
from morphologic studies, wherein biologists study morphology
from theoretical and constructional perspectives. In this sense, the
growth and development of form relies on intrinsic and extrinsic
influences that are indicated via studies on morphology, specifically
the concept of morphodynamics.

Implementing morphologic studies into computational
frameworks allow engineers and architects to use computational
morphogenesis, which is the process of computing the formation
and realization of a design. The development of computational
morphogenesis is compatible with system behaviors resulting
from internal interactions between different layers of information.
This method fosters computational frameworks to establish layers
of information to model morphogenesis. The complexity of this
framework cannot be simplified to a top-down system due to the
emergent behaviors that arise out of interactions among low-level
elements. Therefore, computational morphogenesis investigates
the linkage between two levels of micro and macro interactions
to provide the self-organization within intrinsic constituents for
exploring emergent properties. This level of organization facilitates
the mechanisms to overcome and to present the adaptabilities of
behavioral complexities. Hence, computational morphogenesis as
an inclusive method of design computation is intimately related to
the adaptation or learning procedures. Accordingly, computational
morphogenesis as a complex adaptive system can be investigated
under behavior-based approaches through which this process
includes basic characteristic features of material and fabrication
systems along with their associated behavioral rules.

As a general term, classifying fabrication environments
into three categories of fabrication, assembly, and construction
systems relies on material organizations and the way that material
properties are considered in the fabrication environment. The
material dependencies within the fabrication environments allow
for further investigation on analytical and heuristic methods to
coalesce fabrication machineries into the computational design.
Concurrently, developing an inclusive computational framework
facilitates mediations between material systems and fabrication
tools in which their negotiations should include all their properties
and capacities. Accordingly, the computational tools that facilitate
behavioral negotiation between different parties are intermediary
systems utilized with programmable building blocks or agents.
In this context, agents as distributed computation units can
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establish relationships among separated drivers through behavioral
mediations. Architects with agent-based modeling and simulation
tools can generate constructional forms where the form generations
are simultaneous with the process of materialization. Synchronicity
of this process allows constructional forms to benefit from the
constraints and capacities of both fabrication tools and material
systems by considering the ultimate possibilities of fabrication tools.
Utilizing agent-based systems with different methods and techniques
enables simulation and modeling the materialization process with
form generation. This method of materializing forms is far beyond
realizing an individual designed form through a customized method.

1.3 Behavioral Agencies

Generative agent-based architectural design computation is a
behavioral system that relies on establishing rules and procedures
to exhibit behaviors within design systems. Behavioral agencies of
this generative tool arise from computation units that are informed
with abstracted data. The computational units as autonomous or
semi-autonomous agents can act upon simple embedded rules. The
rules of agents’ behaviors are derived from properties and capacities
of material and fabrication drivers. Accordingly, rule-based agent
systems can merge these separated drivers together, wherein their
behaviors are based on their embedded rules and their contextual
environment.

Consequently, the behaviors of agents emerge from
interactions with other agents and their related environment.
The complexity of these behaviors necessitates the investigation of
inhibiting and coordinating mechanisms. These mechanisms may
provide effective control over agents’ behaviors to exhibit emergent
complexities that are adapted to design requisitions. The complex
adaptive system that results from behavioral negotiations among
agents and their environment are parameterized to explore system
lever points. The lever points indicate the fulcrum position that the
behavior of system changes from one state to another. Abstracting
materials and fabrication features into this framework requires
a transition function to virtually materialize the target design.
Gaining insight on the rules and parameters required to develop a
formal computation framework. The coalescence of materializing
processes into the design computation is the primary focus of this
dissertation. This investigation also follows the self-organizing
properties of agents’ behaviors to exhibit the emergence of the
fusion of materialization and formation.
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Concisely, generative agent-based systems postulate that
the development of a modeling system requires research on
the morphological definition of agents and its relationship to
environmental and fabricational factors. From this perspective,
the different agent morphologies correspond to the level of
participation in fabricational morphogenesis. Accordingly, agents
are part of morphogenetic processes or factors of developing
the processes. Thus, the generative system is developed to cover
the common properties of both types of agents. In addition, the
fabricational movements that are recognizable as material agencies
and fabrication agencies are interpreted into several rules and
behaviors, denoted with vector-based systems to prepare controlling
platforms. Therefore, the generative tool relies on several classes
of agents, environments, and behavioral rules, which are under the
control of system behaviors. These classes are parameterized to deal
with differences between various types of agents, their rules, and
behaviors.

1.4 Overall Objectives

1.4.1 Development of a behavior-based approach
through a generative agent-based design computation

Of interest is the development of a generative agent-based system,
where the system is associated with generating methods, such as
Constrained Generating Procedures (CGP’s), to generate limited
alternative solutions for coalescing fabrication and material
constraints into design processes. Developing this generative agent-
based system requires significant study of material characteristics,
fabrication constraints, and environment effectiveness within
computational design and construction models. Furthermore, the
generating methods will emphasize behavioral insights within these
computational tools. The focus on behavior-based methodologies
may enable designers to define relationships between design
processes and fabrication techniques specifically considering
computer-aided design and computer-aided fabrication.

Accordingly, this research investigates the potential of
behavior-based approaches to expand the design space, which
previously was unavailable for designers restricted to top-down
processes. Due to the disregarded limitations of material and
fabrication at the early stage of design, a design space is limited
to the adjustment between given forms and construction processes.
Therefore, the development of a behavioral model could reduce
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the prominence of post-rationalization in design. Informing design
computation models about constraints will enhance the generative
behavioral model to effectively interrelate the design and fabrication
processes. Thus, recognizing the effectiveness of constrained
generating models requires modeling a behavioral system, which
allows to integrate behavioral approaches within design processes.
Accordingly, utilizing agent-based systems promise to not only
consider all constraints within the design process, but also adapt
generative systems to arising complexities.

The significance of agent-based systems is of interest to model
and simulate complex behaviors that arise from merging material
and fabrication strategies into non-standard design procedures.
The consistency within this behavioral system requires research
on the different levels of communication and interactions, through
which synchronicity of amalgamating several factors allows system
maintenance within its critical adaptive states. Therefore, this
research furthers agents’ behaviors with internal and external
mechanisms to signify the intrinsic relation between material
properties and fabrication tools as fabricational morphogenetic
factors, while this relation is under influence of external factors,
such as environmental effectiveness. It also conveys essential
knowledge to each agent for behaving within information spaces,
such as a hyper-dimensional morphospace. This access to the
information space leads agent with adaptive behaviors toward
constructional regions, conducted via developing a hypothetical
morphospace.

1.4.2 Development of an inclusive design computation
through the investigation of design agencies

Agent-based modeling techniques necessitate an investigation
of appropriate methods for modeling and simulation that are
significantly associated with generative approaches. In the sense of
a high-level of integration, the study of a generative agent-based
system provides the development of a new integral computational
platform to coalesce formation and materialization. Integral
computation requires the inclusion of behavioral parameters that are
interpreted from material properties and fabrication characteristics
to provide constructive interactions. Abstracting and transferring
behavioral parameters to agents’ structures and mechanisms
require an investigation on the influential factors obtained from a
comparison between morphological studies and integrative design
architecture.
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In detail, the inclusive drivers will be established through
investigating morphologic studies to understand the relation
between theoretical morphology and constructional morphology.
After that, comparing these drivers with architectural design
aspects, specifically integrative architectural design, will project the
importance of biological factors to the architectural and engineering
principles. Hence, the inclusive drivers will try to overarch
between morphologic studies and architectural design by adopting
biological factors into design systems. This adaptation requires the
prioritization of each factor within design procedures. In the sense of
construction movements, the inclusive design computation involves
developing mechanisms to implement materials and fabrication tools
within the design processes. Accordingly, developing an abstract
model to effectively merge these mechanisms will rely on correlation
between fabrication tools and applied materials. This process will
postulate the development of a theoretical morphospace, which will
consider the geometrical, functional, and developmental principles
of association between material systems and fabrication tools.

Abstracting material properties will allow for the
consideration of geometrical characteristics and behaviors. This
abstraction will help in the investigation of the effectiveness
and versatility of geometrical definitions for the fabrication
tools. In addition, investigating fabrication tools will further the
development of the theoretical morphospace, where geometric
constructability of the materials is influential in developing the
theoretical morphospace. In both of these investigations, material
and fabrication systems should consider the time-consuming
computation to the level of abstraction and the abstracted properties,
such as avoiding excessive abstraction of inessential material
behaviors.

This research presents a behavioral method for integrating
fabricational constraints into the design process. This method will
establish the integral relation between formation and materialization,
which will be achieved through behavior-based approaches, such as
agents or building blocks, instead of knowledge-based approaches,
such as the conventional integrated design methods. Agent-based
systems will be developed with the constraints and capacities of the
material and fabrication systems. These constraints and capacities
will reflect the theoretical morphospace upon the realization of
design processes. In other words, this method informs a genitive
process, which is obtained through developing a system of agents,
in return, the generating mechanisms are constrained by the
morphospace fabrication tools.
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1.5 Dissertation Structure

In Chapter 2, Sections 2.1–2.3 provide comprehensive studies on the
backgrounds and ramifications of integrative design computation
to synthesize inclusive drivers for design integrations. Section 2.4
introduces the computational method of agent-based modeling to
represent modeling and simulation techniques within the informal
and formal systems. Chapter 3 reviews the related works in
architectural design to categorize the use of agent-based systems
within architectural design processes. Chapter 4 describes four
experiments and their related case studies to explain the development
of generative agent-based systems for integrating material and
fabrication aspects into design processes. The development of a
generative agent-based system for integrative design computation
requires a solid framework to adopt the behavioral integration with
design processes. Therefore, Chapter 5 introduces a discussion
about methods and procedures to develop generative agent-based
design computation. These methods and procedures were then
applied within the case studies and experiments. In addition, the
development of the generative agent-based design computation
that coalesce inclusive drivers of architectural design requires to
investigate on behavioral strategies. Through behavioral strategies,
Chapter 6 discusses and analyzes the development of different layers
of behaviors, which were experienced when developing generative
behavioral systems.

According to §2.4 of the University Stuttgart Dissertation
regulations, the findings of this dissertation have been pre-published
selectively. These papers have been indicated in the references
chapter with relevance to the main text.
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Fig. 2.1.1: The Gielingh’s classification of
the building lifecycle; redrawn by author
based on: Eastman (1999, p. 6).

2 Towards a Behavioral Paradigm
for Architectural Design
Integration

2.1 Inclusive Design Computation

2.1.1 Approaching the concept of integration
in architectural design

Preamble to integration in architectural design

In the building industry, the theoretical foundation of architecture
relies on a dichotomy between Brunelleschi’s and Alberti’s legacies;
the former values the architect as a master builder, while the latter
values the architect as a notational designer (Carpo 2011, p. 16).
Mass production in the industrialization of architectural design
uses “notational systems” to standardize traditional architecture,
with an emphasis on distinguishing between design processes and
design construction. In particular, the concept of notational systems
differentiates architectural design from other sectors, such as
engineering and construction. In the context of the building industry,
standardizations are followed by segregating different sectors
of design, fabrication, and construction to increase productivity
and reduce production times and costs. According to Eastman
(1999), one approach of this standardization is Gielingh’s phases
(Figure 2.1.1) through which the building lifecycle is classified
into the “feasibility study,” “design,” “construction planning,”
“construction,” “operation,” and “demolition planning” (Eastman
1999, p. 5).

Growing distances between newly-established architectural
sectors and other sectors, such as material studies, engineering,
and construction, excludes architects from the process of
materializing their design. It limits architects to develop only
design documentation with limited knowledge of building materials
and construction techniques. In contrast, Kieran and Timberlake
(2004) noted that other disciplines, such as the “automotive,
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reinstate architects as a “twenty-first century
maestro,” rather than a “master builder”;
redrawn by author based on: Kieran and
Timberlake (2004, pp. 12-22).
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Fig. 2.1.3: Relating building elements to
object-oriented programming; redrawn by
author based on: Björk (1989, p. 73).

shipbuilding, and aircraft” industries blurred the lines between
design and making. Designers and makers advanced into different
sectors, but for solving a problem, their intelligence coalesced into
one system (Kieran and Timberlake 2004, p. 13). In the context
of the building industry, the lack of accessibility of materializing
knowledge in the design process has promoted the development
of building modeling applications. Figure 2.1.2 illustrates the
schematic idea of developing a model to facilitate collaboration
and communication. Communicating between the sectors of design
and construction requires the development of a standard method
for exchanging design data. The use of computers promises the
establishment of a standard platform for designers and manufacturers
to collaborate actively throughout the entire process of building.

The documents used in production and drafting can
particularly benefit from CAD1/CAM2 applications, including
different standard classes to provide data transition between
designers and manufacturers. Transferring design information
along with data-management systems prepares the technology for
developing a building database. The background of developing a
building database goes back to 60’s, when scientists tried to provide
simple ways of communication between human and machine, such
as the Sutherland’s Sketchpad (Sutherland 1964). The development
of geometric building blocks coincided with the advancement of
computer science wherein programming languages extended from
procedure-based programming to object-oriented programming. In
this sense, Björk (1989) argues that structuring a building database is
related to developing a knowledge-based system and object-oriented
modeling techniques (Figure 2.1.3). Elements for the entire building
are abstracted into spatial systems, materials, and parts; these
abstracted elements are then organized as objects under specific
standardized classes (Björk 1989, p. 73).

In the context of architecture, engineering, and construction
(AEC), the development of a building modeling system has been
associated with several applications to facilitate the modeling
database for exchanging information within the building industry.
In the context of integrating design and construction, several
applications have been developed, for example, CIC (Computer-
Integrated Construction), CMB (Computer Models of Building),
VDC (Virtual Design and Construction), and VBE (Virtual Building
Environment) (Penttilä 2009, p. 464). However, the most coherent
building modeling system is Building Information Modeling

1 Computer-Aided Design.
2 Computer-Aided Manufacturing.
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Fig. 2.1.4: Top-down relation between
ultimate forms and constituents’ elements.

(BIM), which is established through a comprehensive integrated
knowledge-based system. Corresponding to the development of
a building modeling system, data-exchange systems have also
been advanced to provide a single approach to standardize a
knowledge-based system. Approaches like STEP (Standard for the
Exchange of Product Model Data), IAI (International Alliance for
Interoperability), IFC (Industry Foundation Classes), and RUCAPS1

obtain data-exchange platforms to manage access and edit integrated
information in BIM software (Holzer 2007).

Building modeling systems consist of hierarchical knowledge-
based systems that rely on preliminary developed design. The
developed design establishes an ultimate form at the top level
of the hierarchy, from which the building modeling systems are
organized in accordance with that ultimate form. The ultimate form,
as a design intention, determines interdependence of geometrical
characteristics with their parts, components, and elements (Figure
2.1.4). Accordingly, building modeling systems are robust in
response to minor design modifications, but they are fragile against
extensive design alterations, which are mostly caused by neglecting
construction levels. Late consideration of material and construction
processes might impose major changes on the pre-developed design.
This consideration demands early collaboration among construction
sectors.

Therefore, considering material and fabrication as individual
drivers, which are active in the early stages of design, necessitate an
investigation on methods of integration. In contrast to the top-down
integration system, developing a framework that constitutes the
basis for these active drivers requires to structure a bottom-up
approach, which generates a form out of their amalgamation.
The amalgamation among these segregated stages requires a
comprehensive insight into design processes, where the realization
and generation of form is coalesced together. The synthesis
of material, constructional, and environmental factors together
produces efficient, constructible, and adaptive forms that are
effective solutions for an inclusive design process. The development
of this process requires an investigation on existing methods of
integration within architectural practices.

Integration in architectural design practice

Linear processes of integration between different sectors of the
building industry require “access and incorporation of appropriate

1 Really Universal Computer Aided Production System.
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data, interpretation of results and possibly iterative use and
exchange with other members of the building team” (Eastman
1999, p. 6). Building information modeling establishes a basic
framework for the exchange of data among architects, engineers,
fabricators, and constructors. This notational framework facilitates
collaboration among different sectors. Therefore, the structure of
building information modeling has a great role in communication
between different sectors in the building industry. The National
BIM Standard (NBIMS) defines building information modeling as
“a digital representation of physical and functional characteristics
of a facility” (NIBS 2007, p. 21). Similar to the manufacturing
industry, BIM represents the building as a virtual computer model,
instead of simple two-dimensional drawings (Eastman 2009,
p. 16). By virtually modeling the buildings rather than representing
them through rigid geometries in CAD systems, it extends
information modeling to “object-based parametric modelling,” in
which geometrical organization is associated with non-geometrical
qualities (Mitchell 2009, p. 13).

The top-down hierarchical framework links the early stage of
design with the last stage of construction by connecting different
parties to enhance virtual design developments. Accordingly,
involving various sectors in building modeling systems reduces the
gap between designers and fabricators. Preliminary design that is
located at the top level of the hierarchy is accessible to engineers,
fabricators, and constructors. According to the hierarchical model
of organizing sectors, each sector will gradually be informed
about the design information to evaluate stability, constructability,
production costs, and time. Therefore, all sectors are directly
involved in the process of design and they gradually develop the
design documentation for the construction phase.

Even though it uses knowledge-based systems, BIM is
deficient in transferring mathematical design parameters, such
as material properties and environmental characteristics, where
behavioral characteristics cannot be fully reduced and formalized
to mathematical modeling parameters (Willis and Woodward 2010,
pp. 188-189). Although BIM facilitates communications among
different sectors, its deficiencies in materializing non-standard
design requires a strategy to consider material characteristics
and fabrication features. To overcome these deficiencies, BIM-
based workflow also classifies building components into three
categories: “made-to-stock” (MTS) components, “made-to-
order” (MTO) components, and “engineered-to-order” (ETO)
components (Eastman et al. 2011, pp. 305-308). The components
in the first two categories are mass produced for general use,
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while the components in third category are customized for specific
purposes (Eastman et al. 2011, pp. 305-308).

In addition to these methods, materializing non-standard
designs require mediators to rationalize the given designs and
prepare the fabrication documents. For example, Gehry technology
has developed a digital process for rationalizing non-standard
designs (Shelden 2002). This process was used in the preparation of
accurate construction and fabrication documents for the Guggenheim
Museum Bilbao (1991-1997) (Lindsey 2001; Shelden 2002). The
Guggenheim Museum is an early example how digitizing the design
process with CAD/CAM applications can improve communication
between designers and builders.

Embracing digital form representation, without considering
fabrication processes, requires post-rationalization. Post-
rationalization acts as a bridge between digital design and physical
construction, which proves the benefits of digital fabrication tools
within architecture. At first glance, the process of digitizing design
and construction seems to be fully integrated through the process of
rationalization. However, digital design and fabrication are limited
by the processes of rationalization and materialization. The requisite
for the intermediary processes of rationalization and materialization
stems from the widening gaps between design and construction.

The development of information modeling ensures that
architects have access to all aspects of construction, while at the same
time fabricators are incorporated early in the preliminary design
phase (Kolarevic 2008, p. 655). However, active collaborations
between architects and fabricators require a novel method that
develops their collaborations without any hierarchical organization,
while supporting dynamic collaborations and integrations between
the design and fabrication phases. Kolarevic (2008) categorizes the
integration of design processes into “integrated design,” which is a
well-organized system to connect different sectors of the building
industry, and “integrative design,” which is an open system that is
receptive to implement idea, processes, and techniques for further
developments (Kolarevic 2008, p. 656). According to Kolarevic
(2008), integrated design is a linear process with top-down strategies
in a closed system that is limited to the initial design setup. In
contrast, integrative design, which is an open system, might resist
any kind of linearization to ensure integration.
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Fig. 2.1.5: The schematic diagram of the
design computation process; redrawn by
author based on: Mitchell (1990, p. 180).

Integrative design computation: Development and setup

The development of a computational framework to establish
generation, simulation, and modeling of design could advance
the integration of design and fabrication into one general system.
Mitchell (1990) proposed a computational framework based on
trial and error mechanisms to solve design problems (Figure
2.1.5). This framework coupled a generative mechanism with a
test and a control mechanism to assess whether the generated
alternatives were worth further consideration (Mitchell 1990,
p. 179). In addition, identifying the best solution requires a
strategy based on performance criteria, materialization sequences,
and assembly aspects of developed productions to enhance
the generated design (Klinger 2008, p. 28). In the context of
“morphogenetic design,” Hensel and Menges (2008) suggest that
a computational framework is gradually informed by different
aspects of materialization, such as the attributes and limitations
of materials, fabrications, and assembly procedures (Hensel and
Menges 2008, pp. 56-57). A computational “morphogenetic design”
that is manifested in the integration of formation and materialization
suggests an integrative design computation method (Menges
2013, p. 28). This method may produce benefits by implementing
different computational design and engineering techniques.
Therefore, integrative design computation combines segregated
applications, such as CAD1 (geometric logics), CAM2 (constraints
and procedures of manufacturing), CFD3 (analyzing performative
criteria), and FEA4 (analyzing structural properties) within a
computational framework (Menges 2008, p. 198). In addition,
the development of integrative design computation relies on an
open framework where material organizations are intertwined with
fabrication environments. Moreover, evaluation mechanisms within
this framework assess the structural and performative properties of
a generated design. The formation process in this framework relies
on the recognition of critical elements, which actively participate in
the process of form generation. Developing an effective integrative
application redefines the manifestation of form within the design
context.

1 Computer-Aided Design.
2 Computer-Aided Manufacturing.
3 Computational Fluid Dynamics.
4 Finite Element Analysis.



Inclusive Design Computation 17

2.1.2 Dissociation between the process of formation and
materialization

Preamble to the manifest of form

“The manifest form–that which appears–is the result of a
computational interaction between internal rules and external
(morphogenetic) pressures that, themselves, originate in other
adjacent forms (ecology).” (Kwinter 2008, p. 147)

In his seminal book, Notes on the Synthesis of
Form, Alexander (1964) conveys that design is a “process of
inventing physical things which display new physical order,
organization, form, in response to function” (Alexander 1964, p. 1).
Accordingly, the design process is analogous to the invention of
physical forms by which materialization and realization necessitates
innovative methods for responding to functions. In this context, the
design process is related to the form-function dichotomy, where
the form is a general description of a physical object, influenced
by various functions. According to Hensel (2010, pp. 42-43), the
dichotomy between form and function has historical roots within
architectural design, as Sullivan (1896) states “form ever follows
function” (Sullivan 1896, p. 408). Function can be interpreted in
two different ways: the external function is imposed on the form,
while the internal function arises out of the form. Considering
form as a passive result of employing functions within the design
process claims that the constituent elements of the form act as
obedient structures without any internal influences on the process of
formation. Therefore, the form is acquiescent to the commanding
functions that can be imposed from external elements.

Defining functions and embedding them into the design
process has its own difficulties. The form will follow the
consequences of embedding appropriate or inappropriate functions
within the process. Recognizing the importance of each function
will lead the design process to manifest desired forms. In this
sense, the desired form requires the development of a method that
explores design problems to find substantial solutions. The design
processes fall within different layers that might be considered
within various contexts. The evolvement of forms is subsequent
to properly describing and encoding related layers into design
problems. The design problem correlates forms to the process
of recognizing “contexts,” where “the form is the solution to the
problem; the context defines the problem” (Alexander 1964, p. 15).
Discerning the design problem within a specific context encourages
appropriate methods for solving identified problems. Therefore, a
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Form

Boundary

Context

Fig. 2.1.6: A schematic diagram to define
relation between form and context with
defined boundary.

critical evaluation of the design process informs a clearer context,
where there is a distinction between influential and insignificant
layers. Identifying influential layers determines a well-established
context that clearly identifies the problem, which will in turn lead to
an appropriate solution.

D’Arcy Thompson (1942) argues that form is a “diagram
of forces” that are exerted on physical objects (Thompson 1942,
p. 16). Accordingly, the design factors embedded within the context
can be described through a diagram of forces, where each one of
the contextual factors is mapped to the specific force. Vibrations
of these forces modulate the physical objects to explore possible
solutions for design problems. However, an inaccurate encoding
of design information will generate unwanted results that are
directly related to the inexplicit definition of design context and the
physical objects. The diagram of forces, which are imposed upon
the physical objects, effectively shape the process of formation
and after accomplishing this process, this diagram maintains
form’s conformations (Thompson 1942, p. 16). The organization
of contexts utilizes a diagram of forces to retain the distinction
between internal and external boundaries of objects. Accordingly,
boundaries are described as “active zones” that facilitate interactions
between different levels of energy (Addington and Schodek 2005,
pp. 7-8). Failures in the retention of boundaries lead forms to lose
their consistency and robustness, until they gradually dissipate into
the context.

Bilateral relationships between internal and external objects
recognize the association between its form and the intrinsic
organization of its characteristics. These internal organizations
and external contexts explore the design problem to improve
the “fitness” level (Alexander 1964, p. 18). Identifying the
internal characteristics and external factors of an object is one
of the main issues of design processes. The internal organization
consists of constituent elements that have diverse properties and
capacities. This organization is surrounded by design contexts,
which manifests form out of physical objects (Figure 2.1.6). One
of the integral elements of this design process is the material’s
properties and behaviors. Considering material during the process
of form generation will separate the philosophy of design into
two material systems, one passive and one active. According to
DeLanda (2001), forms, in the passive system, are imposed by
“concepts” on isolated homogeneous materials. In the active system,
forms evolve out of applying heterogeneous materials as dynamic
elements (DeLanda 2001, p. 132). The consideration of both the
homogeneous and heterogeneous properties of materials is essential



Inclusive Design Computation 19

in both philosophical points of view. Especially in the latter where
the materials are expected to evolve in response to the external
contexts with coordination from internal fitness criteria. Identifying
materials as active drivers within the process of formation initializes
the hidden capacities of materials to emerge as forms from their
morphogenetic movements.

Morphogenetic movements rely on internal fitness criteria
to coordinate the interaction between internal forces and external
influences. Considering a material agency in design processes
requires an understanding of material characteristics and methods
of applying them to generate and realize form. Form realizations
entail novel approaches to reflect a knowledge of manufacturing as
a fabrication agency during the development of form. Reflecting
a fabrication agency involves a design process with two levels of
rigid and flexible systems from which these systems emphasize the
dichotomy between hard and soft systems.

In the context of soft systems, Deleuze and Guattari (1987)
speculate that the hybrid relation between “nomad space” and
“sedentary space” to contextualize the significance of “matter-
movement” in the “machinic phylum,” where the phylum is “always
connected to nomad space, whereas it conjugates with sedentary
space” (Deleuze and Guattari 1987, p. 415). Accordingly, generating
form out of “matter-movements” relies on the cognitive knowledge
of fabricators to comply with the rogue state of matters. These
cognitive approaches are a set of practical knowledge that is
gained from artisans, when they are applying tools and materials to
fabricate artifacts, such as a blacksmith (DeLanda 1997; DeLanda
2001, p. 133). Formalizing the cognitive knowledge of artisans
within the design process allows the development of a machinic
structure to deal with different aspects of design. Accordingly, the
design process is accompanied by assembling several agencies
through which machinic approaches facilitate their amalgamation.

In accordance with developing a machinic system, the
cognitive knowledge of fabricators could be considered as an
internal set of rules for hybridizing agencies between active material
systems and soft fabrication procedures. The internal rules require
a framework for computing nonlinear integrations of material and
construction behaviors by which this platform should be extended
to integrate different agencies of design processes. The institution
of this framework is based on embedding cognitive approaches
within form materializations. Accordingly, form generations are
accompanied with the cognitive system that has knowledge of
materials and their fabrication procedures to evolve forms within
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specific time intervals. Kwinter (2008) elaborated this approach
as “algorithmic formalism,” which was originally conceived by
Goethe (Kwinter 2008, p. 147). Algorithmic procedures convert
internal rules that are qualified with cognitive systems to generative
computational methods. These generative procedures correlate
design principles with the intrinsic and extrinsic material properties
identified by cognitive knowledge about construction systems.

Extended design methodologies to materializing form derivations

The processes of morphogenesis, which are studied in the biological
sciences, introduce the simulation and modeling of morphogenesis
to architectural design. The processes of morphogenesis, in natural
and simulation environments, encourage architects to recognize
growth and the development of organic forms as alternative
approaches to derive forms. Natural formation, which considers the
interactions between constituent materials and their physical and
chemical properties, self-organizes their interdependencies into a
coherent system. In this context, the conventional top-down design
approach is replaced by a bottom-up approach where material
entities are coalesced into construction procedures. In architectural
design, the top-down approach is recognized as a “form-making”
approach that applies materials for representing forms, while in
the bottom-up approach materials significantly contribute to the
process of “form-finding” (Kolarevic 2003, p. 13; Leach 2009,
p. 34). Therefore, materials with intrinsic and extrinsic behavioral
characteristics organize active systems within the process of
form-finding by which these processes are contingent to a material
agency. The development of form is affiliated with fabrication tools
to entrench forms in material systems. The mutual correlations
between fabrication tools and material systems steer generation of
forms toward optimal equilibrium states.

In physical form-finding, material systems that are comprised
of mechanical and chemical properties are engineered to yield
optimal forms. Antoni Gaudi, Frei Otto, and Heinz Eisler studied
the self-organizing properties of material systems to integrate the
structures and properties of materials into architectural form (Hensel
2010, p. 46; Weinstock 2010, p. 144). Their investigations included
several studies that incorporated suspended chains, soap bubbles,
and ice structures to develop novel methods of integrating material
organization within design processes (Otto et al. 1995; Chilton
2000). Since these form-finding methods are derived from material
characteristics, the structural properties of materials arrange internal
organizations to optimize the derived forms. Furthermore, the
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process of form-finding allows designers to modulate the material
system through fabrication tools and to develop desired forms
out of the materials self-organization properties. The negotiation
between design intentions and material systems results in forms,
where physical or structural characteristics emerge out of material
self-organization.

Synthesizing forms within virtual environments requires an
understanding of formations as algorithmic procedures. Embedding
these algorithms within a computer system deals with series of
binary codes. According to Terzidis (2003), encapsulating forms
in binary systems is accomplished through “computerization”
and “computation.” Computerization employs computers to
digitize and encode defined forms into the digital realm, while the
computational approach deals with the process of form generation
(Terzidis 2003, p. 69). In general, the digital representation of
architectural forms inherits the conventional methods of architectural
drawing, accompanied with drafting and layering procedures. This
conventional method is embedded within computer-aided design
(CAD) applications. These applications are developed to assist
designers with design interfaces for digitizing their conceptual
forms and ideas.

In design computerization, the processes of formation are
drastically reduced by the syntax of geometrical characteristic that
are embedded within the digital interfaces of CAD applications
(Menges 2010, p. 331). In contrast, computational design provides
a basis for manifesting forms as a bottom-up process. In general,
computation employs algorithmic processes that are associated
with mathematical and geometrical logics. The associative and
algorithmic logics provide a bottom-up exploration of the different
aspects of formation. Accordingly, computational design thinking
relies on generative algorithms to develop forms from different
layers of rules and procedures, such as “shape grammar” with
specific rules to generate three-dimensional digital shapes (Stiny and
Gips 1971, p. 125). In this context, the process of morphogenesis is
a development of generative algorithms for simulating and modeling
the growth patterns of natural organisms, such as cellular automata
(Von Neumann 1958), L-systems (Lindenmayer 1968), Conway’s
game of life (Gardner 1970), and boids algorithm (Reynolds 1987).
These generative algorithms are entirely based on the logical
description of behavioral or geometrical representations without
being influenced by other factors, such as material properties,
constructional attributes, or environmental criteria.
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In the context of natural morphogenesis, the process of
formation emphasizes the chemical and physical properties of
material organizations. In nature, growing patterns are the result
of environmental factors that externally and internally affect
morphogenetic movements. Similar to natural morphogenesis, the
process of physical form-finding emphasizes appreciating material
systems from the perspective of a bottom-up design approach.
In contrast, Menges (2008) argues that digital morphogenesis
segregates the process of materialization from the process of
formation; thus, the generated forms impose on the material
systems. Rationalization attempts to reconcile the process of
materialization with process of formation (Menges 2008, p. 196).
Due to natural morphogenesis, computational procedures are
expected to benefit from a digital materialization method in
which materialization is encoded as an active driver within the
digital formation. Otherwise, distinguishing form generation from
materialization requires another phase to impose digitally derived
forms to the materialization processes. Accordingly, the process of
formation should consider materialization as an embedded process
that consists of both material and fabrication agencies within its own
morphogenetic developments.



2.2 Inclusive Paradigms of Morphologic Studies

2.2.1 Preamble to the theory of morphology
and morphogenesis

From 1786-1788 Goethe investigated “plant metamorphosis”
(Goethe 1989). In this investigation, Goethe determined that
separating a form into its essential parts will not necessarily entail
back to the original form, regardless of its organic or inorganic
features (Goethe 1989, pp. 22-23). Furthermore, Goethe declared
that morphology, as a theory, will “include the principles of
structured form and the formation and transformation of organic
bodies” (Goethe 1988, p. 57). Goethe interpreted the theory of
morphology as two German terms of “Gestalt” and “Bildung.” The
former designates a moment of formation as a static model, which
abstracts the “structured form,” and the latter describes the process
of formation as a permanent condition, an interminable process that
is continuously in progress (Goethe 1989, pp. 23-24). The form
is a moment of the process of formation, which is dynamically
changing. An observer can identify a single moment in this process
to choose a new form. When an observer differentiates appearance
aspects from structured aspects during the process of formation, new
forms arise out of those immediate conceptions.

In the context of embryology, Murray (1990) defined
morphogenesis as “the development of pattern and form in
living systems” (Murray 1990, p. 119). Alan Turing (1952) in
his pioneering paper, “The Chemical Basis of Morphogenesis,”
suggested a mathematical model to describe a growing embryo as
a reaction-diffusion system where chemical substances acting as
morphogens catalyze the genes (Turing 1952, p. 37). Turing (1952)
identifies morphogens as chemical substances that catalyze genes to
facilitate growth processes. The embryological pattern that emerges
from this process has a diversity forms depending on the chemical
and mechanical properties of the embryo (Turing 1952, pp. 37-
38). However, Turing’s mathematical model concentrates only on
morphogen gradients that consider the chemical properties of the
embryo. In an effort to include the intricacies of mechanical and
chemical relations in simulating morphogenesis, Turing proposed
a computer model with the mechanical properties of the embryo
(Turing 1952, pp. 71-72). Since then computational models have
been used to model complex morphogenesis.

Investigating embryological morphogenesis, as a natural
development, furthers the study of growth processes under
genetic modifications. The interrelation between different aspects
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of mathematical and geometrical insights of organic bodies
is associated with the mechanical and chemical properties
of constituent’s materials. Considering only one aspect of
morphogenesis, such as a mathematical simulation that only
considers organisms as geometric patterns, undermines the
contribution of other factors to the process of natural growth.
Therefore, using mathematical abstractions of growth processes
like cell differentiation only provide a theoretical method for
generating form. This method will not necessarily generate forms
that can be materialized. The theoretical form developed through
the mathematical analysis of organic bodies is mainly evaluated
by its geometrical properties. In the context of natural organisms,
processes of form generation and growth are studied through
morphology and morphogenesis. Morphologic studies provide
insight into the form developments of architectural designs to derive
constructible forms out of theoretical forms.

2.2.2 Identifying effective factors
in morphologic studies

Theoretical morphology

Fig. 2.2.1: The development of a “theoretical
morphology” in bilateral relation between
the simulation of morphogenesis and the
construction of a hypothetical morphospace
(McGhee 1999, pp. 1-2).

morphogenesis
simulation

hypothetical 
morphospace
construction

In theoretical biology, the development of forms are conceptually
studied through the morphologic paradigms of “theoretical
morphology,” “constructional morphology,” and “functional
morphology” (Russell 1982, p. xi). McGhee (1999) differentiated
“theoretical morphology” into two different areas of study (Figure
2.2.1): (a) the simulation and modeling of morphogenesis by
means of simple mathematical explorations; (b) developing a
“hypothetical morphospace” to evaluate and analyze the generated
form (McGhee 1999, pp. 1-2). McGhee (1999) applied the
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Fig. 2.2.2: The Geometrical differentiations
of Limacon (Weisstein n.d.) denoted to the
equation r = b+ a× cos(Θ) in which a and
b are parameterized to d.
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Fig. 2.2.3: The empirical morphospace
articulates the theoretical morphology in two
areas of existent and nonexistent forms;
adapted from McGhee (1999, p. 25).

“theoretical morphospace” to explore the mutability of form in
nature and to extract new forms by manipulating the geometric
parameters of the morphology. Moreover, he used this investigation
to develop “n-dimensional geometric hyperspaces” as “theoretical
morphospaces” (McGhee 1999, pp. 1-2).

“In studying the functional significance of the coiled shell, it is
important to be able to analyze the types that do not occur in nature
as well as those represented by actual species. Both digital and analog
computers are useful in constructing accurate pictures of the types that
do not occur.” (Raup and Michelson 1965, p. 1294)

According to Raup and Michelson (1965), the theoretical
morphology emphasizes generating and analyzing the “nonexistent
form,” instead of investigating the “existent form” (McGhee 1999,
pp. 4-5). Parametric modeling techniques simulate forms without
considering any other criteria for form generation (Figure 2.2.2).
In theoretical morphology, mathematical models investigate both
existent and non-existent forms in nature. Hence, the theoretical
form considers all the possible geometric forms that are producible
with mathematical formulas. Pivotal parameters that distinguish
existent forms in nature from non-existent forms are described
by a hyper-dimensional morphospace. Changing any of the
forms geometric parameters will alter the spatial distribution of
derived forms within the hypothetical morphospace. Accordingly,
a theoretical morphospace will examine the effectiveness of each
parameter within the n-dimensional system. The analysis of these
parameters will provide better insight into the behavior of form
within morphogenetic movements.

Furthermore, the “empirical morphospace,” which explores
the empirical qualities of existent forms in nature, supports
the hypothetical morphospace with evaluation criteria that are
used to compare simulated forms with existent forms (McGhee
1999, p. 22). Accordingly, the hypothetical morphospace is
marked with empirical regions to explain the behaviors of
evolution pathways (Eble 2000, pp. 520-521). According to
McGhee (1999, pp. 22-26), the borderlines between theoretical and
empirical morphospaces differentiate the existent from nonexistent
species (Figure 2.2.3). This differentiation is comparable with
constructible and non-constructible simulated forms. An effective
evaluation method, which is comparable with integrative design
computation methods, can link the generation of forms with
evaluation processes. However, the theoretical morphospace
concentrates morphogenetic simulations in material properties and
fabrication principles to determine the constructability of generated
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A Mathematical Model
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A Mathematical Model
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Measurement of Existent Form in Nature;
Plot Measurement Data in Morphospace

The Functional Analysis of both Existent
and Nonexistent Form in the Morphospace

Fig. 2.2.4: A schematic diagram of
developing the theoretical morphospace;
redrawn by author based on: McGhee (2006,
p. 61).

forms. In addition, developing constructible forms necessitates
that morphogenetic movements follow empirical morphology. This
process requires integrating mechanisms to monitor the movement
in form generation. Cyclic feedbacks that are generated from this
controlling mechanism lead integrative design methods to generate
forms that are defined within a range of constructible forms.

Morphospace concept.

“Morphological spaces (morphospaces) are spaces describing and
relating organismal phenotypes.” (Mitteroecker and Huttegger 2009,
p. 54)

According to Mitteroecker and Huttegger (2009, p. 55),
the morphospace, as a phenotypical definition of an organism,
is a mathematical space that explains the cause of fracture
between existent and non-existent forms. In accordance with this
consideration, morphospace is an analytical tool that separates actual
organismal structures occurring in nature, from their theoretically
possible structures (Hickman 1993, p. 170). The morphospace
determines areas of possible and impossible forms with multivariate
model of forms from which each variable corresponds to a
particular instance of forms. The theoretical morphospace is “n-
dimensional geometric hyperspaces produced by systematically
varying the parameter values of a geometric model of form”1

(McGhee 1999, p. 18). Accordingly, analyzing forms through
a theoretical morphospace requires three procedural steps: (a)
developing a theoretical morphospace from existent forms; (b)
scrutinizing form distribution in the morphospace in comparison
with existent forms; (c) examining the functional aspects of form
to discover the effects of adaptation on the development of form
(McGhee 1999, p. 15). Later, McGhee (2006) considers two further
steps to describe the development of a theoretical morphospace,
see Figure 2.2.4. McGhee’s (2006) flowchart illustrates existent
forms that are explicitly investigated as mathematical models
of morphology and morphogenesis. Parameterizing developed
models provide a framework to simulate theoretical forms (McGhee
2006, pp. 61-63). One approach to the theoretical morphospace
involves the development of a geometric model of morphology
that exists in nature. Parameterizing the mathematical model of
morphology facilitates the exploration of the mathematical structure
of morphology from the empirical definitions of organisms.

1 The theoretical morphospaces are originally defined by McGhee (1991), in his
article “Theoretical Morphology- the Concept and its Applications” (McGhee
1991, p. 87).
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Fig. 2.2.5: The development of a Hyper-
dimensional morphospace; redrawn
by author based on: McGhee (2006,
pp. 110-116).

In the context of the theoretical morphospace, analyzing
possible forms considers a hyper-dimensional mathematical space
(Figure 2.2.5) that is designated by two groups of evolutionary
constraints: (a) extrinsic constraints that emphasize the extrinsic
effects of geometric rules and physic laws; (b) intrinsic procedures
that rely on biological significance in the morphogenetic
development of an organism (McGhee 2006, p. 109, p. 116).
Interplay between intrinsic developments and extrinsic constraints
determine a region for exploring the potential of generating forms
in nature. McGhee (2006) indicates that extrinsic constraints consist
of a geometric boundary, which divide the hyper-dimensional space
into “Geometrically Possible Forms” (GPF) and “Geometrically
Impossible Forms” (GIF). The geometric possible forms include
the subset of functional constraints with two regions of “Functional
Possible Forms” (FPF) and “Nonfunctional Possible Forms” (NPF)
(McGhee 2006, pp. 110-112).

McGhee (2006) further argues that, intrinsic constraints
consider a phylogenetic boundary that determines “Phylogenetically
Possible Forms for species x” (PPFx) and “Phylogenetically
Impossible Forms for species x” (PIFx), in which the
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phylogenetically possible set specifies a developmental subset
region for species. The possible region of existent form in nature is
also determined by intersecting two subsets of “Developmentally
Possible Form for species x” (DPFx) and “Functionally Possible
Forms” (FPF) (McGhee 2006, pp. 112-114). Figure 2.2.6 shows
the relation between extrinsic constraints and intrinsic constraints.
The overlap area determines the possible set of developing existent
forms.

Fig. 2.2.6: Classification of theoretical
morphospace into extrinsic and intrinsic
constraints; redrawn by author based on:
McGhee (2006, p. 116).
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Extrinsic constraints are effective on the process of
morphogenetic development while intrinsic procedures introduce
the potential for an organism to evolve out of its genetically
determined features. Categorizing the constraints in this way
enables the correlation of the analytical aspects of a morphospace
to the heuristic methods of a morphospace. In addition, extrinsic
constraints modulate the process of form development from
phylogenetic determination. Moreover, extrinsic procedures feed
the phylogenetic developments to generate possible forms in nature.
Heuristic methods are determined as a “theoretical developmental
morphospace,” which is “a hypothetical spectrum of developmental
possibilities” (McGhee 2006, p. 168). Eble (2003) elaborates on the
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morphology developed by Seilacher
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and “fabricational” aspects (Seilacher
1973, p. 451); redrawn by author based on:
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Fig. 2.2.8: The schematic diagram of
morphodynamics or biomorphodynamics
illustrates the relation between the
triangle of constructional morphology
and the tetrahedron of morphodynamics,
which results in the face of “inclusive
organism” (Seilacher 1991a,b); redrawn
by author based on: Seilacher (1991a,
p. 252), Seilacher (1991b, p. 6),
and Seilacher and Gishlick (2014, p. 13).

concept of a “developmental morphospace” by emphasizing that it
is vital “to encapsulate implication of process” rather than saturating
morphospace with “a more pattern-oriented quality” (Eble 2003,
pp. 40-41).

Constructional morphology

Seilacher (1970) introduced the term “constructional morphology”
to address the different criteria that are involved in the process of
generating constructible forms. Figure 2.2.7 illustrates the triangle of
constructional morphology that was originally shown by Seilacher
(1970). In comparison to theoretical morphology, constructional
morphology involves the development of organic forms with a
focus on the constructional aspects that participate in the process of
formation toward the existent form in nature. From the perspective
of paleontology, a constructional morphology that consists of
morphogenetic (or fabricational) constraints is accompanied by
phylogenetic and functional factors (Seilacher 1991a, p. 251). These
factors directly restrict the evolvement of organisms to factors
beyond materials and fabrications where they actively participate in
the development of forms. Seilacher (1973) expands the concept of
constructional morphology from the description of an organism’s
form to the description of an organism’s built environment. He
applies this concept to human artifacts with “fabrication noise,”
which means utilizing different fabrication techniques to develop the
same “functional morphology,” such as making one type of artifact
during different generations (Seilacher 1973, p. 451).

Synthesizing forms through constructional morphology
is a heuristic method that includes “theoretical morphology,”
“functional morphology,” and the concept of “Bauplan”1 (McGhee
1999, pp. 8-9). According to Seilacher (1991a), utilizing the term
constructional morphology within zoology only focuses on the
internal aspects of functional morphology. Therefore, he introduced
the term “morphodynamics” or “biomorphodynamics” to avoid
any misunderstanding (Seilacher 1991a, p. 251). Investigating
functional morphology in terms of both constructional morphology
and theoretical morphology (morphospace) emphasizes the
adaptive significance of morphologies in performing their main
functions (McGhee 1999, p. 5). The dynamism of morphodynamics
arises from the interrelation between constructional factors and
“environment effectiveness,” which is a further extension of

1 see McGhee (1999, pp. 6-7).
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functional morphology representing the internal influence of
external factors, see Figure 2.2.8 (Seilacher 1991a, p. 252).

Seilacher (1991a,b) described the relation between
constructional morphology and morphodynamics in four main
factors: “phylogenetic,” “functional,” “fabricational morphogenetic,”
and “environmental” factors. Each one of these drivers denotes one
aspect of morphodynamics and its effect on morphogenetic
movements. In the context of morphodynamics, inclusive organisms
originate with phylogenetic factors that are described by the
Bauplans with a specific evolutionary history (Seilacher and
Gishlick 2014, p. 12). Within the evolutionary movement, Seilacher
and Gishlick (2014) noted that the functional factors are formulated
to reach desired goals, which are located at the top of the “adaptive
landscape.”1 However, these goals are often unachievable due to the
influence of other constraints (Seilacher and Gishlick 2014, p. 12).
The major constraint that inhibits the development of an organism
is fabricational factors, which are determined by material properties
and the process of growth developments (Seilacher and Gishlick
2014, p. 12). Ultimately, both the organism and the environment
determine an interactive system as an “inclusive organism,” which
explicitly employs the environmental parameters within the process
of formation (Seilacher and Gishlick 2014, p. 12). Therefore, the
three main factors of a “functional,” “fabricational,” and “effective
environment” evolve into an inclusive organism that is connected
to the “phylogenetic” or historical factors with a vertical time axis
(Seilacher 1991a, pp. 252-253).

2.2.3 Inclusive design computation

The transition from biological context to integrative design
necessitates the development of an inclusive design computation.
Inclusive design computation corresponds to the active aspects of
morphodynamics, where the inclusion of “effective environment,”
“morphogenetic fabrication,” and “biological function” participate in
the dynamic growth of species (Seilacher and Gishlick 2014, p. 13).
Including these aspects within a design computation methodology
advances the process of integrative design by employing functional,
fabricational, and environmental aspects within a computational
framework. Extending design computation with the concept of
morphodynamics provides insight to the self-organizing integral
drivers that derive and inform constructible forms. Morphodynamics
considers constructional morphology and effective environment

1 see McGhee (2006, p. 1).
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within an organism in which the inclusive organism embraces the
significance of theoretical morphology and functional morphology
in interaction with the environment. The environmental adaptation
of an inclusive organism with the functional (performative) aspects
of form is accompanied by fabricational morphogenesis to evaluate
the constructability of generated forms (Figure 2.2.9).
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Fig. 2.2.9: Inclusive design computation is
shown as the core of interactions among
fabricational morphogenesis (fabrication),
environment effects, and performative
criteria.

Performative agencies

In nature, organisms adapt to their ecological niche in order to
perform varied functions to ensure their survival. The development
of organisms describes a transition from genetic constitutions
to material structures in which the materialization processes
are influenced by external environment factors, such as gravity
(Seilacher and Gishlick 2014, p. 10). External pressures effectively
modulate the process of formation in which organisms adjust
their morphogenetic developments at both local and global levels.
Within the local modulation, the organism alters “the [material]
structure[s] from homogeneous to heterogeneous,” preparing
the organs to perform appropriate functions in response to its
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related conditions (Vincent 2006, p. 227). This shows that the
development of organisms follow adaptation at different scales
from microcellular levels to macrostructures. The modulation of
each level necessitates a multi-functional capability to adjust their
functionalities in correspondence to external influences. Therefore,
parts of organism are multi-functional while the whole organism
performs singular tasks (Vincent 2006, p. 227). Hensel (2009)
extends a “higher-level functionality” in biological structures to
the “performative capacities” of built environments in which the
transition from “multi-functionality” to “functional specificity”
requires an application of “multi-objective optimization” instead of
relying on “single-objective optimization” (Hensel 2009, pp. 2-3).
The main challenge is shifting the paradigms from top-down
analysis of the structural system of organisms to bottom-up
developments of multi-functional elements and sub-elements. The
functionality of an organism is determined at the early stage of
growth and developments. The organism then adapts simultaneously
to its own structural requirements and the external pressures
of its environment. One approach that addresses the bottom-up
development is “adaptive growth,” which is a self-optimization
process investigated through a “Computer-Aided Optimization”
(CAO) method, in which this method facilitates flexible adaptation
with environmental influences (Mattheck et al. 1991, pp. 15-16).
It can be simplified to the principle of increased materials at high
strain-stress zones (“overloaded zones”) or decreased materials
at low strain-stress zones (“underloaded zones”) (Mattheck 1998,
p. vii, 26, 31).

The logic of “adaptive biological growth” manifests geometric
similarities among various parts of an organism, for instance, in
the shape of bones or trees (Mattheck 1998, p. 26). Seilacher and
Gishlick (2014) indicate that adaptation, within a specific ecological
niche, can also be the overall shapes that organisms collectively
make when performing similar tasks. For example, “functional
convergence” can be exemplified by the general shape of a bird
as an individual organism; or, by a flock of birds as a collection
of organisms (Seilacher and Gishlick 2014, p. 2). “Functional
convergence” can be extended to the built environments that follow
specific functional manners. For example, envelopes, skins, or walls
that indicate a separation between two different states also specify
a functional convergence. Additionally, functional convergence
categorizes the structural properties of a building system to beams
and columns, which resembles the geometric categorizations of a
building structure. Unlike current integrative design computation in
the building industry, where performative criteria is examined by



Inclusive Paradigms of Morphologic Studies 33

FEM1 and separated from the early stage of design. This process of
functional adaptation considers the performative capacity of design
principles as integrative drivers within the process of formation
and materialization. Including performative criteria within design
processes necessitates an understanding of both levels of the internal
and external performance. At the internal level, the local quality
of material development is associated with the global behaviors of
structural systems.

Fabricational morphogenetic agencies

In the context of constructional morphology, fabricational
morphogenesis, which is described by Seilacher (1973) as
an essential driver, focuses on the effects of fabrication on
the development of morphology. Fabricational morphogenesis
includes two separated agencies: material and fabrication. Similar
to theoretical morphology, the relation between material and
fabrication are evident in the theoretical morphospace in which
a simulated morphogenesis is used to understand the cause of
variation between existent and non-existent forms. The theoretical
morphology of species, which are further described as theoretical
forms, are mathematical definitions of forms in which the regularities
within one species are explicable in terms of their genome’s
information. However, a regularity between two different species
that have different theoretical morphospaces, as in the case of horns
and shells, is explainable by “fabricational noise” in the growth
process (Seilacher and Gishlick 2014, p. 10). Extending the concept
of “fabricational noise” to architectural design follows the mutual
influences of material and fabrication agencies.

Material agency. Abstracting materials to simple physical and
chemical properties reduces the material significance from
active elements to passive constituents within design processes.
Reconsidering materials as active agencies requires the use of
material properties, capacities, and behaviors to perform specific
functions (Hensel 2010, p. 38; Hensel 2011, p. 8). In addition,
investigating material agencies are isolated from the material
organization at a system level in the material properties. The
capacity of material properties produce adaptive organizations in
their surrounding environments. Addington and Schodek (2005)
categorize material characteristics–“mechanical, thermal, electrical,
chemical and optical”–into intrinsic properties that emphasize
micro-level interrelations between the atomic and molecular

1 Finite Element Method.
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structures of chemical compounds. Or, extrinsic properties that
are determined by the macrostructure of materials by modulating
material compounds, such as energy fields of the environments
(Addington and Schodek 2005, pp. 38-39). Extrinsic properties
mediate the intrinsic characteristics of a material with external
stimuli. Triggering material behaviors by external stimuli, such as
field of energy, actuates intrinsic properties to exhibit their ultimate
capacities. Activating microstructures alters the interrelations
between atomic and molecular level of elements to self-organize
and self-regulate their level of energy. This alteration directly affects
extrinsic behaviors from which the material consistency might
initiate phase transition or change the material compositions to new
compounds.

In addition, extending external influences to fabrication
agencies promotes a varied approach to manufacturing. The
chosen method of manufacturing could include milling, cutting,
welding, winding, or any combination of additive and subtractive
manufacturing. The chosen approach to manufacturing can
directly affect the extrinsic and intrinsic material characteristics by
imposing or associating with material agencies. Correlating two
different agencies requires a common communication platform to
mediate between two different structures. Accordingly, geometric
constitutions of materials, which underlie the geometry of forms,
enable fabrication tools to negotiate directly with material agencies.
Instrumentalizing the geometrical definition of a material advances
the process of fabrication by recognizing impossible geometries
at the level of construction. Conventionally, the impossible
geometries necessitate rationalization to impose form on materials
by legitimizing non-standard geometry. However, including
materials within the process of design promotes active negotiations
between material and fabrication agencies to determine the
feasibility of construction. The bottom-up perspective differentiates
material agencies to consider all constructible configurations with
the benefits of extrinsic and intrinsic material properties.

Fabrication agency. In nature, fabricational movements rely on
the process of growth and development. They are also associated
with both internal and external influences, such as material agencies
and environmental factors. The adaptation of an organism to
its environment is concurrent with coalescing growth processes
into materialization and formation. In contrast to adaptation,
growth constraints as “fabricational noise” affects the process of
morphogenesis (McGhee 1999, pp. 6-7). “Fabricational noise”
indicates another level of adaptation through the “physical
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differentiation” of morphology, which might increase the
functionality of morphology, such as the “wavy lines” of “burrowing
ribs” (Seilacher 1973). Constraining growth by external factors,
such as “fabricational noise,” allows the process of construction
to participate actively in form generation. Fabrication agencies
follow understanding the constraints that arise out of the negotiation
between material agencies and fabrication tools. In the context
of digital fabrication, the constraints of fabrication tools can
be simulated by developing a fabrication setup with specific
material systems to compute the limitation of fabrication systems.
Considering material and fabrication agencies enables designers to
determine the “fabricational morphospace” (Seilacher and Gishlick
2014, p. 10) from which the developmental process embedded
within the system allow a generative tool to expand using fabrication
tools.

2.2.4 Effective environment

In nature, the process of transferring genome information to
physical entities promotes an understanding of the importance of
environment. According to von Uexküll (1926), the environment
affects the process of an organisms’ development. While some
environmental factors are effective on the genesis of an organism,
others have local influences (Von Uexküll 1926, p. 238). It seems
that the environmental effects are identifiable with the intrinsic and
extrinsic properties of organisms. In the context of morphodynamics,
the environmental effects are extrinsic factors that also consider
intrinsic drivers, at the same level of fabrication and functional
factors, to construct inclusive organisms (Seilacher 1991a, p. 252).
In addition to extrinsic effects, including environmental effects
as intrinsic properties enables organisms to adapt themselves
gradually to contextual environments. Growth under environmental
pressures requires an organism to shape material properties for
further “congruity” with the surrounding environment (Von Uexküll
1926, p. 315). Changing the environment of an organism reveals
its range of adaptation. This adaptation will also reveal the internal
links between the properties of an organism and environmental
factors. The uniqueness of environments for each organism
denotes “Umwelt Theory” in which each organism has a unique
interaction with the environment, due to the specific sensory
networks that transform environmental stimuli into characteristic
properties (Von Uexküll 2009, pp. 145-146). If “Umwelt” is a
bubble surrounding the objects, this environment coalesces the
separated external drivers with the intrinsic properties of objects.
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This means that the environment is directly embedded in the process
of formation. Figure 2.2.10 illustrates the relation among different
agencies in design computation.

Fig. 2.2.10: Inclusive design computation
represents the inclusion of different active
agencies in the form evolvements.
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2.3 Soft Design Computation

2.3.1 A system approach to generative design

The investigation of computational morphogenetic processes
promotes the advancement of integrative design through generative
“design techniques,” “production technologies,” and analytical
design strategies (Menges 2008). The inclusion of these drivers
within a computational framework expands linear integrated
design to nonlinear design processes. Effective parameters in
“performance-oriented architecture” reflect the interdependencies of
four active agencies that include “spatial and material organization”
in a complex interaction with the “subject (inhabitant)” and the
“environment” (Hensel 2010). Considering active agencies or
drivers in the process of design emphasizes the significance of
a system’s ability to mediate between individual drivers. The
exploration of biological aspects within existent forms indicate a
dynamic inclusion of “effective environment,” “biological function,”
and “fabricational morphogenetic” principles (Seilacher 1991a,b).
Consequently, an inclusive design paradigm suggests a significant
correlation between fabricational agencies, performative agencies,
and environment effectiveness. Accordingly, developing a system
that fuses these factors is essential to gain insights about the structure
of interconnection and interaction between them. Soft design
computation considers a design computation framework that adapts
to arising behaviors of this fusion. Considering a soft system theory
within design processes offers enough flexibility to intermediate
among different inclusive design agencies. Subsection 2.3.4 provides
further clarification to gain better insight into soft systems.

System approach

In the field of architectural design and practice, active drivers that are
involved in the development of form require systems to synthesize
active drivers from performative, fabricational, and environmental
agencies. The mediators facilitate dynamic interrelations among
embedded drivers. This mediation comprises of a systematic
structure to facilitate decision-making within the design processes.
In the context of designing inclusive forms, inclusive organisms
within the realm of morphodynamics, structuring systems effectively
enables interactions among embedded elements to synthesize
dynamic forms. However, developing inclusive organisms through
morphodynamic processes describes the system as an integrated
form. From this perspective, the inclusive form is irreducible
to the constituent elements. When the form is reducible to the
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constituent drivers, then the driven form will represent discernible
arrangements of internal components. The passive agency of
embedded components is distinct from the active agency of drivers,
which pursue various taxonomies from materials to fabrication
systems.

System definition

In order to structure inclusive mediator systems, it is necessary to
understand the process of organizing and assembling various drivers
within an integral system. The definition of systems posit that
“sets of elements [stand] in interrelation” (Von Bertalanffy 1968,
p. 37), this broad definition is required to establish the relationships
among their constituent parts of a system. From an architectural
design perspective, the integration and interrelation of components,
regardless of their properties and behaviors, necessitates the
investigation of open systems to provide a high-level of dynamic
relations, integrations, and interactions (Kolarevic 2009, p. 338;
Hensel 2010, p. 37). An inclusive system that is accompanied with
design principles encapsulates complex forms where the flow of
resources, such as energy and matter, organizes a high-level of
system complexity (Weinstock 2004, p. 17).

System theory

Mediating between inclusive design drivers requires “isomorphism,”
a generalization approach to find resemblances between structures,
behaviors, and properties of embedded parts (Van Gigch 1991,
p. 62). Generalization processes allow systems to diversify assembly
elements by first finding commonalities, and then differentiating
them over those common structures. Accordingly, system theory
describes a general approach to understand the underlying principles
of all systems, such that their elements are connected by feedback
loops (Anderson 1999, p. 219). Von Bertalanffy (1968) addresses
this need for generalizations in “general system theory,” which
facilitates “integration in the various sciences, natural and social”
(Von Bertalanffy 1968, pp. 36-37). General system theory is a
novel substitute for “the analytical-mechanistic approach,” which
considers a reductionist approach that emphasizes a system reducible
to its parts and elements (Van Gigch 1991, pp. 77-78).

System theory, which consists of several fields that use a
variety of methods, takes a holistic approach, in which the whole
is irreducible to the parts (Van Gigch 1991, pp. 77-78). In the
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sense of design principles, general system theory describes a form
as a whole that is synthesized from different elements within an
inclusive design computation. According to design computation, the
fluidity of design information between encapsulated building blocks
advances design systems to utilize a high-level of connectivity over
the binary definition of data. Associating generalization approaches
to the design system promotes the development of generative
algorithms to construct an inclusive form as a whole.

Generative systems | Holistic systems

In the paper, “Systems Generating Systems,” Alexander (1968)
describes a system as a whole that must exhibit holistic phenomena.
From Alexander’s perspective, holistic behaviors are directly related
to the elements within the system, their interactions, and the way
that they interact (Alexander 1968, p. 607). Developing generating
systems that produce holistic behaviors, requires an abstraction of
elements and their individual interactions. From this perspective,
interacting elements that are constituted at the generative level of
a system are effectively involved in the behaviors of the whole
system. However, constituent elements are completely unaware
of the exhibited behaviors. Therefore, the interactions between
embedded elements are essential to achieve holistic properties.
Synthesizing a holistic system is a combination of heterogeneous
and homogeneous factors, and not only the sequential arrangements
of them. In the context of inclusive design, the holistic properties of
synthesized forms emerge from interactions among constitutional
integrative elements that are abstracted into algorithmic blocks to
facilitate integration process within a complex system.

Constrained generating procedures (CGP’s)

Leading a generative system towards holistic behaviors requires
a structure that will simultaneously constrain its generative
features. Holland (2000) defines Constrained Generating Procedures
(CGPs) as dynamic models that underlie mechanisms to generate
possibilities and procedures to constrain them (Holland 2000,
p. 126). Providing interactions between individual mechanisms
advances generative systems to probe the solution space while
developing constraining mechanisms that dynamically evaluate
the generated behaviors. Simultaneous evaluation of generated
behaviors permits generative systems to regulate the flow of
generated dynamic behaviors.
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Fig. 2.3.1: Conducting CGPs through two
primitive mechanisms as f and g; redrawn
by author based on: Holland (2000, p. 135).
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Holland (2000) elaborates on the development of Constrained
Generating Procedures (CGPs) in four steps: (a) transferring rules
into mechanisms; (b) developing a network of linked mechanisms;
(c) determining a transition function to permit the transition
between the state of mechanisms over time; (d) defining assembly
procedures to develop “more complex mechanisms” out of “basic
mechanisms” (Holland 2000, pp. 126-129). Figure 2.3.1 highlights
the relationship between two primitive mechanisms as f and g,
which are differentiated by the number of their input parameters,
from which interconnecting primitive mechanisms together form
new CGPs (Holland 2000, p. 135). According to Holland (2000),
the state of each primitive mechanism at time t + 1 relies on
input parameters, in which state of mechanism f with the input
parameter I, is denoted as S, and state of mechanism g with the input
parameters {I1, I2, I3}, is denoted as S′. Therefore:

S(t +1) = f [I(t),S(t)]
S′(t +1) = g[I1(t), I2(t), I3(t),S′(t)]

(2.1)

(Holland 2000, pp. 132-135).

The network of assembly mechanisms articulates a global
state of CGPs, which generates complex behaviors under transition
functions. According to Holland (2000), extending the notion of
mechanisms to CGPs allows a network of CGPs to build a new
level of CGPs with high complexity. These bottom-up hierarchies
organize a complex system to exhibit emergent phenomena (Holland
2000, p. 129).

2.3.2 Modeling a complex adaptive system

Complex system

Simon (1962) describes a “complex system” as a system in which
a large number of parts interact in such a way that the generated
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“whole is more than the sum of the parts” (Simon 1962, pp. 467-
468). Accordingly, comparing a complex system to holistic concepts
suggests a consideration of complex systems as systems that exhibit
emergent phenomena. Anderson (1999) explains that a complex
system resists reductionist approaches. This resistance is due
to the interrelations of feedback loops established between the
subsystems (Anderson 1999, pp. 217-218). In general, the behavior
of the whole system, which represents emergent phenomena, is
discernable from the summation of individual behaviors. However,
Minsky (1988) contends that emergent phenomena are explicable
by considering the interactions between elements and the particular
significance of observers (Minsky 1988, p. 328). This means that
explaining emergent properties relies on two levels of interactions
and observations. Estimating the behaviors of complex system
corresponds to the observers’ knowledge and their perspectives
about the behaviors of system interactions.

In system theory, emergence is the irreducible phenomena
in which “the global properties defining higher order systems or
‘wholes’ (e.g. boundaries, organization, control, ...) can in general
not be reduced to the properties of the lower order subsystems or
‘parts’” (Heylighen 1989, p. 23). Emergence that is described as
a global behavior is an aggregation of local behaviors from which
the derived global behavior is irrelevant and disconnected from the
initiative local behaviors of elements (Miller and Page 2007, p. 44).
However, the whole system behavior is dependent on an appropriate
level of details and relevant mechanisms, which determine the rules
of interaction between elements to consider emergent phenomena
(Holland 2000, p. 44).

The interactions among elements are defined by a state of
linearity and nonlinearity, in which nonlinear interactions emphasize
failures to follow “superposition principles” (Kwinter 1993, pp. 211-
212). Accordingly, complex systems with nonlinear interactions
require mechanisms to control the level of order within the system.
The development of such mechanisms is directly proportional to
the relation of a system to its environment. For example, a living
organism, which has constant interactions with the environment, is
described as an open system that exchanges matter and energy with
its environment (Von Bertalanffy 1968, p. 31). A mechanism that
controls the effects of interaction with an environment comprises
of feedback (Figure 2.3.2), in which the system’s responses are
regulated and monitored (Von Bertalanffy 1968, p. 42; Van Gigch
1991, p. 74).
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Fig. 2.3.2: The simple mechanism of
Bertalanffy’s feedback loop; redrawn by
author based on: Von Bertalanffy (1968,
p. 42).
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The amplifications within positive cycles increase the level of
system activities towards instability, wherein stabilizing the system
requires negative feedback to modulate feedback loops (Miller and
Page 2007, p. 50). For instance, Figure 2.3.3 illustrates that positive
(birth) feedback loops reinforce initial inputs with modified outputs
of the system, and negative (death) feedback loops stabilize the
amplified system (Camazine et al. 2003, p. 17). Therefore, feedback
loops regulate the system’s behaviors through intensifying and
reducing the initial state of the system.

Fig. 2.3.3: A schematic diagram of
population growth with two negative and
positive feedback loops; redrawn by author
based on: Camazine et al. (2003, p. 17).
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The process of self-regulating within an open system, which
includes nonlinear interactions, is called “self-organization” or
“autogenesis” (Anderson 1999, p. 222). In the computational
realm, self-organization indicates a regulation of complex systems
through digital algorithms. The state of generative systems leads
system’s components toward a dynamic equilibrium with intrinsic
and extrinsic pressures. De Wolf and Holvoet (2005) indicate that
a complex and dynamic system may have self-organization without
emergence, emergence without self-organization, or it may have
either (Figure 2.3.10). A dynamic system that is self-organized may
exhibit emergent phenomena (De Wolf and Holvoet 2005, p. 13).
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Complexity theory

“The central task of a natural science is to make the wonderful
commonplace: to show that complexity, correctly viewed, is only a
mask for simplicity; to find pattern hidden in apparent chaos.” (Simon
1996, p. 1)

The development of a complex system that consists of
various layers requires a recognition of underlying layers and
their interrelations. The interplay among layers typically generates
complex behaviors in which excessive detailing with a high-level
of interrelation among layers yields unnecessary complexities.
These complexities then challenge generative systems to produce
alternative possibilities. Therefore, abstracting and simplifying
constituent layers avoids further difficulties for generating systems.
In addition, this modeling technique must achieve the purpose of
the model, where an inadequate level of details would make it
impossible to achieve the purpose of the modeler (Starfield et al.
1990, pp. 1-8).

In general, increasing the number of elements in a system
directly relates to the level of that system’s complexity. The
interactions among elements might increase exponentially as the
number of elements increase. Gershenson (2007) introduces a
mathematical equation to represent “Random Boolean Networks”
(Kauffman 1993) in which the complexity of a network can be
formalized with the following equations:

Csys ∼
{(

#Ē,#Ī,
#Ē

∑
j=0

Ce j,
#Ī

∑
k=0

Cik

)}
(2.2)

, where Csys is the complexity of network, #Ē is the number of
elements, #Ī is the number of interactions, Ce j is the complexity
of elements, and Cik is the complexity of interactions (Gershenson
2007, p. 13). Changing each one of these features modulates the
complexity of the system. For example, adding more elements to the
system causes more interactions between the systems. In addition,
the complexity of the system is amplified when the complexity of
each element and their interrelations is fed back to the system.

The abstraction of a layer and its interactions with other
layers may describe the complexity of the entire system. Cohen
and Stewart (1994) challenge the view of “cause and effect” in
complexity theory; specifically, by which “simple causes” generate
“complex effect” (e.g., chaos) and “simple effects” emerge from
“complex causes” (e.g., antichaos) (Cohen and Stewart 1994, p. 20).
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Therefore, other criteria may exist within complexity theory that
indicate non-linear behaviors of complex systems. However, the
central aspect focuses on elements and their interactions to gain
insight into how the organizing elements within a model explain
emergent behaviors.

Disorganized complexity | Organized complexity

Weaver (1948) developed a theory of organized and disorganized
complexities to study complex behaviors within a system. From
Weaver’s (1948) point of view, “disorganized complexities” consider
a large number of elements through probability theory and statistical
mechanisms. Weaver (1948) exemplifies his theory through a
large billiard table with millions of balls, which are in motion and
interaction. In addition, the behaviors of each individual ball are
random, or unknown, but the overall behaviors of the system are
predictable and analyzable through statistical techniques (Weaver
1948, pp. 3-4). The theory of disorganized complexity has roots in
the second law of thermodynamics, which was how the behavior of
a large number of gas molecules was described (Von Bertalanffy
1968, p. 33).

In contrast, Weaver (1948) indicated that “organized
complexity” is a system with a finite number of elements that
are organically interrelated. In organized complexity, statistical
techniques are insufficient to find the average behaviors of the whole
system because many factors are involved (Weaver 1948, p. 6).
In organized complexity, the feedback cycles among interrelated
elements reinforce each other instead of canceling each other out
(Miller and Page 2007, p. 53).

Complex adaptive system (modeling complex behavior)

Complex Adaptive System (CAS) is a framework with a large
number of building blocks that include both rules and agents
(Holland 1992, p. 197). The interconnected networks of individuals
advance a complex system to “adapt” or “learn” via their interactions
(Holland 2006, p. 1). The distinctive features of a Complex Adaptive
System (CAS) in comparison with other systems are its emergent
properties, which arise from the interactions of individuals at “the
lower-level of aggregation” (Anderson 1999, p. 219). Holland
(1992) introduced a framework that constructs a CAS in his
influential book, Adaptation in Natural and Artificial Systems. This
framework involves three mechanisms: (a) “parallelism,” which
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facilitates the activities of individuals associated with changing
states; (b) “competition,” which enables the system to arrange its
resources to avoid any inundation of the system with flows of
unrelated information; (c) “recombination,” which forms a basis
for generating conceivable new rules from experimented rules by
individuals (Holland 1992, p. 197). Holland (1992) argues that
describing a theory of complex adaptive systems entails formalizing
the aforementioned framework with an emphasis on processes
instead of an emphasis on results (Holland 1992, pp. 197-198).

L

S(t)

I(t)

O(t+1)

Fig. 2.3.4: A simple diagram of a lever
emphasized within Complex Adaptive
System (CAS); redrawn by author based
on: Holland (2000, p. 127).

Accordingly, the behaviors of individuals are important to
estimate the behavior of the entire system. The behavior of the
individual includes a set of “stimulus-response rules,” which is a
collection of “IF/THEN” mechanisms to facilitate the negotiation
between stimuli and responses, such as “IF stimulus s occurs THEN
give response r” (Holland 1995, p. 7). Within complex adaptive
systems, the aggregation of individuals’ behaviors is adaptive to
changing situations, where each individual process embeds a rule
to find the most fit response. The adaptation that arises from the
accumulation of appropriate behaviors is sensitive to any stimuli.
Holland (1995) describes the critical moments of system adaption
as “lever points,” “wherein small amounts of input produce large,
directed changes” (Holland 1995, pp. 39-40).

Figure 2.3.4 highlights the formalization of lever points
through the following equations:

O(t +1) = f (I(t),S(t)) =

{
I(t) ·S(t)
L−S(t)

(2.3)

, where O(t + 1) is the output of primitive mechanisms (transition
function) f , I(t) is input forces, and S(t) is the fulcrum point
(Holland 2000, p. 127). Extending the concept of a lever point from
complex adaptive systems to constrained generating procedures
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means that the “transition function” of the adaptability state of
a complex system becomes the fulcrum with the values of input
parameters at time t (Holland 2000, pp. 126-127). Therefore,
re-establishing adaptation in complex adaptive system relies on
recognizing the significance of lever points and determining the
exact amount of system inputs. Accordingly, large changes are
required to explore a new level of adaptation through drastic
changes within the recombination mechanism. Finding the lever
points enables the constitution of an effective Complex Adaptive
System (CAS) framework in which the hidden potential of CAS is
revealed.

2.3.3 Approaching to the computational modeling

“The world is its own best model.” (Brooks 1991)

Model definition

Complex systems, which exhibit holistic behaviors, are difficult
to comprehend. Complex behaviors, which arise from interactions
among parts, need a model to gain insight into processes that
exhibit emergent phenomena. In general, models are representation
methods to solve problems that cannot be modeled without an exact
definition of purpose (Starfield et al. 1990, pp. 1-8). Exploring the
problem to recognize appropriate purposes allows a model to find
solutions that focus on central problems. Therefore, a model should
be simple enough to represent its main purpose. The purpose of
self-organizing a system is adaptation with dynamic complexity
arising from emergent phenomena. Avoiding unnecessary details
allows models to maintain a reasonable level of complexity (Miller
and Page 2007, pp. 36-37). This method of modeling allows
further analyses and investigations; otherwise, another level of
simplification would be required to explain the growing complexity.

Modeling relation

The main purpose of modeling is to find a solution for a complex
problem that exists. The transition from a real world problem as an
informal system to the formal system is called “modeling relation,”
see Figure 2.3.5 (Casti 1994, pp. 274-275). Modeling relation
consists of “nature, or (real-world system),” “the natural system,”
and “the formal system” (Van Gigch 1991, p. 123). Casti (1994)
describes a modeling relation that includes a process of encoding
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a natural system to a formal logical system through mathematical
or symbolic logics. For example, Turing’s machine uses modeling
relations to formalize the informal notion of computation (Casti
1994, pp. 274-275). The modeling relation therefore consists
of abstraction processes that observe the complexity of the real
world and simplify informal systems into mathematical logics.
This simplification is also associated with rules and procedures to
formalize the generative aspects of interactions among abstracted
parts.

N F

encoding

decoding

Natural System Formal System

S
em

an
tic

s S
yntax

observables theorems

Fig. 2.3.5: A diagram of modeling relation,
where N is computation and F is the Turing
machine; redrawn by author based on: Casti
(1994, p. 274).

Homomorphism

Miller and Page (2007) describe a formal model of models with a
schematic diagram (Figure 2.3.6). In this diagram, the real world
consists of different states at both the given time t and time t + 1.
These times are mapped by a transition function, which can be
described through St+1 = F(St) (Miller and Page 2007, pp. 38-
39). According to Miller and Page (2007), due to the complexity of
F(S), modelers are required to reduce the size of states St and St+1
through an equivalence class of E(S). Modelers are also required to
pursue a simpler transition function between time t and time t + 1
as f (s′)(Miller and Page 2007, pp. 38-39). They further explain that
the equivalence class E(S) transforms the state St into S′t = E(St).
This equivalence class can transform the state St+1 into the state
S′t+1 = E(St+1) (Miller and Page 2007, pp. 39-40). Miller and Page
(2007) conclude that this equivalence class predicts the transition
function of F(S) as f (s′), in which it states that S′t+1 = f (s′t). The
real world coincides with the model if E(St+1)= f (s′t) or E(F(St))=
f (E(St)) as a “homomorphism” (Miller and Page 2007, pp. 39-40).
The comparison between predicted states in a formal system (model)
and informal states (real world) defines the level of accuracy of the
developed model.
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Fig. 2.3.6: A “formal model of models,”
where S is the state of the model,
F(S) is a transition function, f (s) is a
simpler transition function and E(S) is the
equivalence class (Miller and Page 2007,
p. 38-40); redrawn by author based on:
Miller and Page (2007, p. 38).
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Model of inclusive forms

Extending formal modeling to include forms promotes the
abstraction of different layers of integral materialization into a
computational model. The forms that consist of several layers
of constituent elements designate three states of performative
(functional adaptation), fabricational morphogenesis, and
environmental effectiveness. The dynamism of inclusive forms,
which is similar to the concept of morphodynamics, is accompanied
by the time sequence. The modeling relation can also describe the
transition of inclusive forms from time t to time t + 1. Equivalence
classes reduce various levels of forms to essential parameters. These
parameters describe the main objectives of each active driver. In
fabricational states, intrinsic and extrinsic material properties, which
comprise of chemical and physical characteristics, are reduced to
the geometrical interpretations of different material organizations.
Therefore, inclusive states are reduced to selective states in
accordance with the purpose of modeling. Inclusive modeling also
has a transition function that produces a new state at time t + 1
through the generative integration of selective states. The transition
function that amalgamates those states into new states requires a
proper evaluation to confirm that the generated states exist within
the acceptable range.
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Computation modeling

As a logical system, a formal model underlies the symbolic
significances of the real world. According to Casti (1994), Turing’s
machine, as the first computational model, is a formal system to
encode natural systems into logical systems (True or False). The
logical formalization within Turing’s machine is the conceptual
basis for structuring current computers (Casti 1994, p. 275).
The formalization of computational concepts suggests that the
development of a computational formal model is not the only way to
formalize the natural system. Therefore, a computer machine is not
necessary for developing a computational model, e.g., Schelling’s
model (1978) developed originally with coins and papers (Miller
and Page 2007, pp. 64-65). However, computer machineries are
useful for learning how to develop a simple organization that is
intrinsically complex (Kwinter 2003, p. 91). Accordingly, inclusive
forms differentiate interactions among inclusive drivers towards a
series of constructible forms from which the mediation between
these drivers correlate the real world to the simulated forms.
Developing a model with the logical structure of a computer
formalizes the model due to the modeling relation. The accuracy of
the model relies on its homomorphic properties.
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2.3.4 Comparison between formal and informal models

Hard system and soft system

Fig. 2.3.7: A system classification,
developed by Boulding (1968); redrawn by
author based on: Van Gigch (1991, p. 66).
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Van Gigch (1991, pp. 65-66) expanded Boulding’s classification
of systems (1968) by categorizing systems as either “soft” or
“hard” (Figure2.3.7). Van Gigch (1991) describes “hard systems”
as formalized reasoning processes that are traditionally applied in
the physical sciences. In contrast, Van Gigch (1991) describes “soft
systems” as informal reasoning processes where the behavioral
characteristics are of interest. Formal reasoning processes are
scientific that rely on analysis and deduction; however, informal
reasoning processes depend on synthesis and induction (Van Gigch
1991, p. 79).

Kwinter (1993) characterized the softness of a system by the
amount of flexibility needed to adapt to its changing environments.
The adaptability of a system is accomplished through feedback
loops and internal regulating mechanisms (Kwinter 1993, pp. 211,
218). According to Van Gigch (1991), modeling a soft system
without accurate predictabilities necessitates heuristic methods that
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Behavior

active
non-active
(passive)

non-purposeful
(random)

purposeful

feedback
(teleological)

non-feedback
(non-teleological)

non-predictive
(non-extrapolative)

first-, second-, etc. 
orders of prediction

predictive
(extrapolative)

Fig. 2.3.8: The classification of behavior;
redrawn by author based on: Rosenblueth
et al. (1943, p. 21).

consider algorithmic approaches from a hard system. This method
might only generate satisfactory solutions; it might not produce
optimum solutions (Van Gigch 1991, pp. 84-85). Soft systems are
applicable when the modeler wants to investigate nonlinearity or
behavioral characteristics. In particular, when a system interacts
with a dynamic system, in which its behaviors are continuously
changing, the system requires its behaviors to sustain the new states.
The concept of a soft system in architectural design was introduced
by Brodey (1967) when he proposed the theory of “soft architecture”
to conceptualize “intelligent environments.” He exemplified the idea
of soft architecture or soft environments by describing a “dynamic
transit system which maintains its purpose in relation to the town”
(Brodey 1967, p. 12).

In their pioneering paper, “Behavior, Purpose and Teleology,”
Rosenblueth, Wiener, and Bigelow (1943) emphasized behavior
classifications and “teleology” as an early concept of self-
organization (Figure 2.3.8). Controlling mechanisms achieve
the “purpose” of a system through a “feed-back” mechanism
(Rosenblueth et al. 1943, p. 23). Soft systems control their actions
through environmental inputs and change their courses to maintain
their state and then capture their embedded purpose. In contrast
to “hard architecture,” Negroponte (1975) developed the concept
of a “soft architecture machine” in which the machine provides a
“custom-made” design to personalize artifacts through “physical
responsiveness” (Negroponte 1975, p. 145). Accordingly, a soft
system can be considered a modeling technique that consists of
a set of stimuli and responses associated with feedback loops. A
complex system with adaptive behaviors is more flexible and robust
to environmental perturbations.

Knowledge-based system | Behavior-based system

The comparison of hard systems with soft systems helps designers
recognize the importance of behaviors in the development of
a computational design framework. When a knowledge-based
system is replaced with a behavior-based system, the computational
framework must inherit paradigms from artificial intelligence. In
addition, this paradigm shift is accompanied by two approaches,
one top-down and one bottom-up. The top-down approach tends
to dominate the overall system by complete knowledge, while the
bottom-up approach attempts to adapt itself with limited knowledge
(Maes 1993). Moreover, the top-down approach uses an algorithmic
mechanism to solve the problems, while the bottom-up approach
uses algorithms heuristically to exploit the solution space.
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The way that these two approaches exploit the solution
space advances the study of artificial intelligence by exposing the
structure of intelligence systems. Brooks (1990) in his pioneering
paper, “Elephants Don’t Play Chess,” differentiates symbolic
artificial intelligence (AI) from the nouvelle AI by proposing “the
physical grounding hypothesis.” According to Brooks (1990),
this hypothesis enables direct interactions between physical
agents with the environment. From his perspective, classical
AI structures intelligent systems using overall behaviors, while
modern AI uses the interplay of individual behaviors embedded
within subsystems (Brooks 1990, p. 3). Situating physical agents
within the environment promotes the development of different
layers of actions. Each layer responds to specific stimuli from
the environment. The distribution of knowledge among the layers
generates different behaviors. In combination, these behaviors
exhibit complex emergent properties. Developing a control system
that yields emergent behaviors requires that individual behaviors are
engaged in the overall decisions. In contrast to the traditional control
system, Brooks (1986) distributes the control system into different
layers. The controlling layers act as “subsumption architecture,”
where “the higher-level layers” subsume “the lower-level layers”
(Brooks 1986, p. 14). In addition, this layering of a control system
facilitates the addition of new control layers, at least while the
lower-level layers are still functioning (Brooks 1986, p. 16). Figure
2.3.9 illustrates the early structure of the subsumption architecture,
wherein the higher-level layers are structured upon the low-level
behaviors.

Fig. 2.3.9: A schematic diagram of a layered
control system; redrawn by author based on:
Brooks (1986, p. 17).
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Maes (1993) extended the concept of “subsumption
architecture” by emphasizing the role of knowledge and behaviors
in artificial intelligence. According to the nouvelle AI, emerging
intelligence relies on interactions between a system and its
environment. Exhibited intelligence contrasts the tendency of
creating a fully informed system that is a system with whole
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knowledge about the solution space. In addition, the informed
system demonstrates the behaviors that are already embedded within
the system. The information embedded in the system is limited to
the specific setup of the known environment. Maes (1993) argues
that a behavior-based system as a complete system will benefit
from the experience of other systems that are situated in certain
environments. This ability to share experience will also lead to less
modeling (Maes 1993, p. 5). Advancing a complete system with
distributed knowledge requires communication mechanisms for
exchanging data. It is important to exchange enough data to consider
the complete system an open system, which can adapt to unknown
situations. Accordingly, a complete system with subsumption
architecture will try to adapt to unexplored environments. According
to Maes (1993), adaptations that arise from dynamic interactions
among the components of a complete system, the system and
its environment, and the system and other systems can lead
behavior-based systems to exhibit “emergent complexity.” Emergent
complexity is “often more robust, flexible and fault-tolerant than
programmed, top-down organized complexity” (Maes 1993, pp. 5-
6). Accordingly, the behavior-based system is accompanied by
different characteristics, such as soft system, complex adaptive
system, bottom-up organized complexity, and most importantly
emergent phenomena.

2.3.5 Towards agent-based objects

Developing a system to generalize different types of elements
provides a framework to integrate the inclusive fabrication aspects of
derived forms. The interconnection among these elements generates
complex behaviors that require procedures to lead the generated
behaviors toward emergent phenomena. Considering CGPs that
use rules to constrain generative possibilities enables a system to
yield complex behaviors that are organized from the bottom-up.
Figure 2.3.10 illustrates the relation between self-organization and
emergence within a system. De Wolf and Holvoet (2005) speculate
that self-organization can be considered in both micro and macro
levels. According to De Wolf and Holvoet (2005), interactions
among micro-level entities compel systems to demonstrate emergent
behaviors. Self-organization at the macro-level increases the level
of order, which is unachievable through complicated interactions
among micro entities (De Wolf and Holvoet 2005, pp. 11-12).
Micromechanisms conducted within CGPs indicate the way that
interactions among elements lead micro-behaviors to become
macro-regularities. However, self-organization at the global level
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increases the adaptability of systems. Local levels of interactions are
incapable of creating such regularities.

Fig. 2.3.10: The schematic illustration,
developed by De Wolf and Holvoet (2005),
represents the self-organization of a system
(a), the emergence of a system (b), and
the combination of self-organization and the
emergence (c); redrawn by author based on:
De Wolf and Holvoet (2005, p. 10).

System System System

MACRO-LEVEL

MICRO-LEVEL

MACRO-LEVEL

MICRO-LEVEL

(a) (b) (c)

Extending CGP to adaptive systems allows generative systems
to consider some level of adaptations to generate complex adaptive
behaviors. This complex adaptive system implicitly considers
generative mechanisms with limited knowledge to explore the
problem domains. The bottom-up structure of these exploratory
systems exploits problem domains to find adequate solutions. The
interaction among agents and the problem domain uses feedback
loops to trigger behavioral mechanisms. These mechanisms use
embedded knowledge within the solution space to solve problems.
The behavior-based system with the feedback loops reflects a soft
system, which self-organizes the system with unknown problems
via behavioral mechanisms.

In contrast to knowledge-based system that tackles only one
predefined problem, the behavior-based system uses distributed
controlling layers to adapt to problems with multiple layers. In
the context of behavior-based adaptation (learning), Matarić and
Michaud (2008) consider both “primitive behaviors” and “abstract
behaviors” to accomplish tasks. In this context, “basis behaviors”
are essential to achieving goals, while “abstract behaviors” consider
the condition for activating behaviors (Matarić and Michaud 2008,
pp. 897, 899). Separating these behaviors into these two levels
allow the behavior-based systems to confront extrinsic domains.
A comparison between the subsumption behavioral layers and the
primitive behaviors suggests that primitive behaviors control the
activation of lower-level behaviors. However, the subsumption
behaviors suggests that adding more layers of behaviors at the
lower-levels will allow them to become more sophisticated. When
modeling a computational framework that considers generative,
exploratory, and adaptive behaviors, building blocks with rules
and regularities for interactions must be included. Since most
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modeling techniques use building blocks or agents as the basis of a
model, this level of abstraction emphasizes the difference between
“top-down modeling,” which uses “abstraction-based objects,” and
“bottom-up modeling,” which uses “agent-based objects” with
limited abstraction (Miller and Page 2007, pp. 65-67). Accordingly,
the bottom-up structure of “agent-based objects” promises to include
generative mechanisms with constraining approaches to explore
the problem domain, while intrinsic and extrinsic self-organization
processes organize the complex system to emergent complexities.



2.4 Agent-Based Design Computation

2.4.1 Introduction to agent-based modeling

It is difficult to model complex systems that consist of many active
elements; more specifically, the complex behaviors of these active
elements are difficult to formalize mathematically (Helbing 2012,
p. 27). In particular, when modelers try to formalize a system that
relies on its constituent elements to generate novel approaches.
Modeling an integrative design has its own level of complexity.
Especially, when the model acts as an exploratory system that
integrates inclusive drivers. Examples of these drivers could include
the ones that are captured from material and fabrication agencies.
Developing a model that prioritizes constituent elements over
the complexity of the entire system suggests a model based on
individual building blocks, as an agent-based modeling system
(ABM). Developing a model that relies on lower-level elements
aggregates the micro-level of behaviors to generate the macro-level
of orders (Schelling 1978, pp. 13-14; Epstein 2006, p. 7; Epstein
2008; Gilbert 2008, pp. 30-31). The orders describe the desired
behaviors that modelers explicitly intend to exhibit. Generating a
macro-level of orders requires an understanding of the significance
of micro-level agencies in desired behaviors.

Unlike “Equation-based Modeling”1 and “Differential
Equations,”2 agent-based modeling provides a computational
method for modeling individual heterogeneities that are situated
with an environment and that have the ability to decide upon their
embedded rules (Gilbert 2008, p. 1). Modeling with agents furthers
the study of different aspects of developing complex systems.
These aspects include the emergent properties of Constrained
Generating Procedures (CGPs) and the general regularities obtained
via Complex Adaptive Systems (CAS). The simple configuration of
a system that generates these properties requires an understanding
of simulation and modeling with agents. Agent-based modeling
consists of a collection of autonomous decision-making entities and
a set of rules that govern their interactions with other entities in the
model (Bonabeau 2002, p. 7280). According to Gilbert (2008, p. 2),
interactions among these entities are established by situating agents
within the environment. Understanding various types of agent-based
modeling requires insight into the behavioral rules, the environment,
and the communication of agents.

1 see Helbing (2012, p. 27).
2 see Bonabeau (2002, p. 7280).
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Agent

The term “agent” is used in a variety of scientific fields; however,
the term generally entails essential characteristics. For example,
in economics, the term agent is characterized by autonomy and
adaptability features. In this description, a Complex Adaptive
System (CAS) is similar to the agent-based system (ABS). Figure
2.4.1 illustrates an adaptive agent interacting with other agents,
in which the whole system demonstrates a Complex Adaptive
System (CAS) (Holland 1995, p. 6). Holland and Miller (1991)
describe a Complex Adaptive System (CAS) consists of a “network
of interacting agents,” which generate dynamic and aggregate
behaviors. In a complex adaptive system, the behavior of the system
is distinguishable from the behavior of individuals (Holland and
Miller 1991, p. 365).

Adaptive Agent

Fig. 2.4.1: A schematic representation of
an adaptive agent in a Complex Adaptive
System (CAS); adapted from Holland (1995,
p. 6).

The behaviors of the agents arise out of a set of rules
that define agents’ strategies in confronting “perpetually novel”
situations (Holland 1995, p. 35). Casti (1997a) states that intelligent
and adaptive behaviors rely on embedded rules within agents. The
early decision-making processes rely on primitive rules, and then
agents are able to modify the basic rules with acquired information
and generate new rules (Casti 1997a, p. 214). Dynamic modifications
of the primitive rules provide system adaptations with perpetual
novelty.

The frequent use of agent terminology necessitates a
clarification of ambiguous uses of the term. The classification
of agent terminology within different fields will clarify these
ambiguities. From biological taxonomies, Franklin and Graesser
(1997) classify autonomous agents (Figure 2.4.2) into three levels:
(a) the “kingdom” level, which categorizes autonomous agents into
“biological agents,” “robotic agents,” and “computational agents”;
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(b) the “phylum” level, which classifies computational agents as
either “software agents” or “artificial life agents”; (c) the “class”
level, which further classifies software agents into “task-specific
agents,” “entertainment agents,” and “viruses” (Franklin and
Graesser 1997, p. 30).

Fig. 2.4.2: Taxonomy of autonomous agents;
redrawn by author based on: Franklin and
Graesser (1997, p. 31).
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Exploring the taxonomies of agents leads to the Pfeifer
and Scheier’s (2001) categorization, where autonomous agents
are classified as “biological agents,” “robotic agents,” and
“computational agents” (Figure 2.4.3). The latter is specifically used
as “simulated agents,” “artificial life agents,” and “software agents”
(Pfeifer and Scheier 2001, p. 26). A comparison between these two
taxonomies separates the computational agents, used for simulating
and modeling systems, from the robot agents, used to different
approaches in industry.

Fig. 2.4.3: A classification of Autonomous
agents; redrawn by author based on: Pfeifer
and Scheier (2001, p. 26).
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Macal and North (2009) argue that the significance of agents
in agent-based modeling is distinguishable from the significance of
other agent classifications. For example, mobile agent systems are
defined as proxies to perform user demands with some autonomous
behaviors (Macal and North 2009, p. 88). An early example
of these autonomous mobile agents is “Braitenberg vehicles”
(Figure 2.4.4). Braitenberg (1984) developed a series of vehicles
with a simple structure of sensors and motors. Even though the
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structure was simple, he was able to generate complex behaviors
by differentiating “sensory-motor connections” (Braitenberg
1984). The idea implemented within Braitenberg vehicles had
great significance on developing locomotion behaviors within
computational agents.

a b c

Fig. 2.4.4: Braitenberg (1984) developed
mobile agents with two sensory systems and
two motors with different connections of
a, b, and c; redrawn by author based on:
Braitenberg (1984).

Wooldridge and Jennings (1995) generalized the term
agent in hardware and software-based computer systems. In these
systems, the agent has certain features, such as “autonomy,” “social
ability,” “reactivity,” and “pro-activeness” (Wooldridge and Jennings
1995, p. 116). Wooldridge and Jennings’s (1995) characterization
show that the computational agents without external intervention
(autonomy) interact with each other (social ability). And, based
on their initiated goals (pro-activeness), they respond to the
environment (reactivity) (Wooldridge and Jennings 1995, p. 116).
Autonomous agents, which are “behaving systems,” perceive
the environment and then modulate it according to their internal
mechanisms (rules) (Pfeifer and Scheier 2001, p. 25).

In computer science, computational agents, which are
“encapsulated in computer systems,” are active entities situated in
the environment, not passive objects that are significantly affected
by external factors (Jennings 2000, pp. 280, 283). According to
Russell and Norvig (2003), agents will observe the environment
through sensory mechanisms and allow actuators to manipulate
their environment (Figure 2.4.5). This development is essentially
an extension from software agents to robotic agents (Russell and
Norvig 2003, p. 32).
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Fig. 2.4.5: A schematic diagram
of interaction between agents and
environments; redrawn by author based on:
Russell and Norvig (2003, p. 33).
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In the context of animation and game development, Reynolds
(1999) proposes “autonomous characters” to virtually model the
autonomous characteristics of real robots. He specified a new type of
virtual autonomous agent that includes certain aspects of “situated,”
“reactive,” and “embodied” characteristics (Reynolds 1999, pp. 763-
764). Transferring the physical characteristics of real robots to virtual
environments signifies the development of a computational model
that abstracts the essential features of physical agent modeling. In
addition, the agents are self-contained or discrete entities that have
boundaries to separate their contents from other external entities
(Macal and North 2009, pp. 87-88). The discretization of entities
emphasizes the specific performance of agents that are accessible for
agents by a set of behaviors, such as motion and interaction (Gilbert
2008, pp. 21-22).

Environment

In agent-based modeling, some kind of environment is needed for
agent interaction. Without an environment to situate the agents, they
will be incapable of performing the tasks dictated by their individual
attributes. In the context of the computational agent, Gilbert (2008)
indicates that the virtual world determines the environment. In
this case, the environment is either a neutral element or an active
participant in the process of modeling and simulation (Gilbert 2008,
p. 6). The participation of an environment in the process of modeling
establishes the conception of the environment as a static type of
agent. In particular, Resnick (1994) proposes the discretization
of the environment into square cells as “patches.” These patch
systems are capable of storing a specific range of information,
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Fig. 2.4.6: Patch systems and distributed
agents (turtles).

either permanently or temporarily; for example, one could embed
chemical signals at each patch (Resnick 1994, pp. 33-34). Figure
2.4.6 shows the relation between agents and patch systems. Patch
systems provide packages of information for agents to improve their
behaviors by processing extracted information. Accordingly, agents
require sensory mechanisms to facilitate this process.

However, Holland (1995, 2000, 2010) denotes that a main
characteristic of the environment is “perpetual novelty” with
intrinsic diversity to avoid generating similar states (Holland 2010,
p. 23). When autonomous agents search environments to find
appropriate answers, the perpetual novelty of the environment
necessitates versatile mechanisms that have to be adaptable.
The versatility of agents emphasizes the behavioral character of
agents that dynamically adapt to unknown situations. Therefore,
considering the possible solution spaces within an environment
leads agents to explore problem domains with limited knowledge.
Agents must use an environment’s embedded knowledge to discover
solutions to the problem domains.
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behaviors. A schematic diagram of
overlapping various layers; developed based
on: Macal and North (2009, p. 94), Macal
and North (2010, p. 152), and Torrens
(2010, p. 430).

Extending the environment from a bilayer system to a multi-
layer system provides agents-based systems with a wide range
of knowledge. For example, using the concept of a fabricational
morphospace with an environment provides an additional layer
of information. Accordingly, by exploring an environment, agents
typically require different layers, such as morphospace layers, which
enables them to consider different criteria for solving problems.
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Figure 2.4.7 depicts an environment as an information space overlaid
by various layers, such as topological and Euclidean spaces and
morphospaces.

Interaction and communication

In agent-based modeling, the relation between agents and the
environment is established through the purpose of the model. A
model that consists of a vast number of agents requires an effective
structure to determine their interactions and communications.
The social ability of the agents permits a number of interactions
between them. These interactions can be separated into direct and
indirect communications. In direct communications, the software
agents directly interact with other agents and in turn they exchange
information through “communication language standards” to create
“interoperable software” (Genesereth and Ketchpel 1994, p. 48).

In agent-based modeling, direct communication is associated
with network topologies. Through these topologies, an agent will
discover which other agents it will have direct interactions with.
Figure 2.4.8 illustrates a different topological connectivity where the
agent finds adjacent agents via orthogonal and diagonal visioning
mechanisms. Direct communication includes different methods,
such as “Euclidean space,” “aspatial model,” “von Neumann
neighborhood,” “geological information system (GIS) topology,”
and “Network topologies” (Macal and North 2009, pp. 93-94). In
agent-based modeling, which has no direct communications with
other agents, agents interact indirectly.

Fig. 2.4.8: Two different mechanisms for
finding neighbors; redrawn by author based
on: Epstein and Axtell (1996, pp. 24, 39-40).

Agent without diagonal vision

Agent with diagonal vision
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a = turning aperture range
d = displacement factor

d

a

f

f = sensing range
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s

Fig. 2.4.9: A simple algorithm developed by
Alvarez and Martinez (2015) represents the
process of exploring the environment to find
food resources. Embedding signals within
the environment is abstracted from the
stigmergic communications; source: Alvarez
and Martinez (2015).

Indirect communications require a medium, determined as
an environment to facilitate interactions among agents. Indirect
communications are observable phenomena within the nest building
constructions. The communications through a “built structure”
or built environment as a medium are called “sematectonic
communications” (Wilson 1975, p. 186). Wilson (1975) proposed
the term “sematectonic communications” to substitute “stigmergic
communications.” Stigmergy, introduced by Grassé (1959), as an
indirect communication, which coordinates and regulates insect
actions (Theraulaz and Bonabeau 1999). According to Bonabeau,
Dorigo, and Theraulaz (1999), stigmergic communications are
established through an environment that has been altered by an
insect. Other insects then perceive the signals embedded in an altered
environment and react accordingly (Bonabeau et al. 1999, p. 207).
Stigmergic and sematectonic communications facilitate indirect
interactions among agents through these embedded signals, but also
by modulating environments as mediums. These communication
techniques indirectly coordinate the processes of construction
and foraging within the social insects (Figure 2.4.9). In addition,
this type of communication can develop as learning and memory
processes, which avoids the need to develop a memory system in a
computational agent.

2.4.2 ABMs: Definition and background

Axelrod (1997) contends that simulation models, in the context
of agent-based modeling, “is a third way of doing science.”
In it, simulation models are similar to conventional deductive
and inductive reasoning; the agent-based modeling offers
contributions to intuitive approaches (Axelrod 1997, p. 5).
From an epistemological perspective, Epstein (1999) argued
that the obligation to distinguish agent-based modeling from the
“inductive” and “deductive” approaches of science. By referring
to “syntactic theory,” which was inspired by Chomsky (1965), he
emphasizes “generative” approaches to grow “macrostructures” out
of “microspecifications” (Epstein and Axtell 1996, p. 177; Epstein
1999, pp. 43-44). Therefore, ABM, as a “generative model,”
can describe the intuition within the model that is not simply
formalized mathematically. Agent-based modeling also represents
“unsimplified” behaviors, which are difficult to include in traditional
models (Railsback and Grimm 2012, p. 10). ABMs can explain how
interactions among individuals can generate nonlinear behaviors
that are difficult to predict by scrutinizing individual behaviors
(Ball 2007, p. 648). Considering rule-based modeling furthers
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interrelations among individual agents by demonstrating emergent
properties, regardless of any macroscopic presumption (Helbing
2012, p. 29). The rule-based logics embedded within each individual
at the microscale facilitate the development of heuristic methods in
a computational model. However, the generated outcomes from this
model are limited to the computational model, which is initiated
with parameters that are abstracted from the real world. Despite
these limitations, the outcomes should still satisfy the purpose of the
model, while it tries to explain the macrostructures.

First wave

An example of a simple computational model that demonstrates
agent-based modeling stems from “the theory of self-reproducing
automata” (Von Neumann and Burks 1966). The self-reproducing
machine is a universal Turing machine developed by von Neumann
through a set of two-dimensional cellular system (Casti 1994, p. 221;
Frazer 1995, p. 54). Accordingly, the lattices that the theory is
structured on are interconnected networks of cells. The cells within
this distributed network are proposed to act automatically and in
parallel as cellular automata. Smith III (1976) considered parallel
and interconnected automata under the theory of “polyautomata.”
The focus of this theory was the way in which “microautomata” form
“macroautomata” (Smith III 1976, p. 405). In 1951, von Neumann
simplified his proposed machine in the way that Ulam suggested, in
which the simplified self-replicating automata CA requires 29 states
for each cell and 200,000 cell configurations for each state (Wolfram
2002, p. 876).

Casti (1994, p. 223) stated that the main concern with the
self-reproducing machine is simplifying the machine in a way that
maintains the effectiveness of its self-reproducing mechanisms.
Gardner (1970) called the two-dimensional cellular automata
developed by John Conway, the game of life. The game included
two colors for each cell and three rules of “survivals,” “deaths,” and
“births” (Gardner 1970). The color (state) of each cell is dependent
on the current state of the cell, the states of its adjacent cells and the
rules of game. Overall, cellular automata consist of cellular lattices,
states for each cell, and transition rules that are sensitive to the initial
conditions (Frazer 1995, pp. 51-54). In this computational method,
each of the cells can be described as an agent that will find their
adjacent neighbors through a specific network topology, such as the
Moore neighborhood (Macal and North 2009, pp. 89-90).
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Blinker GliderBlock

Beehive

Fig. 2.4.10: The schematic diagrams of
Conway’s game of life.

The states of each cell are limited to the binary code of 0 and
1. The following states of the cells will evolve out of the transition
rules. The main feature of cellular automata (CA), particularly
the game of life (GA), is the emergent behaviors that manifest
from the simple interactions among cells. Figure 2.4.10 illustrates
a few patterns that emerge from Conway’s game of life; these
include, “block,” “beehive,” “blinker,” and “glider” (Gardner 1970).
Though the cellular system is static, the states of the system are
dynamic. This is demonstrated by the glider pattern, which wanders
across the grid of cells (DeLanda 2010, p. 41). This dynamism
induces observers to perceive emergent patterns. Introducing
cellular automata (CA) as agent-based modeling (ABM) requires
a consideration of each cell as an agent with an isolated location.
The generated emergence of a system is limited to the interactions
among cells with simplified rules.
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Second wave

Fig. 2.4.11: A Segregation model; based on
the model developed by Wilensky (1999b).

In agent-based modeling, cellular lattices simulate and model the
behavioral aspects of different field of science. In particular, social
science has a history of applying cellular systems to investigate
social behaviors. An early example is the “checkerboard model”
(Sakoda Model), which is a computational simulation to investigate
“social interactions” (socio-interactions) between “two groups of
checkers” on a social field defined as a checkerboard (Sakoda 1971).
Along with the checkerboard model, Schelling (1971) developed a
dynamic “Segregation model” (Schelling model), see Figure 2.4.11.
In this model, the interactive dynamics embedded within the grid
system exhibit unexpected phenomena (Schelling 1971, p. 143).
Torrens (2010) concludes that both simulation models explore the
polarization of “socio-spatial” segregation. Both simulation models
also reach emergence behaviors at the “tipping-points” of the model
(Torrens 2010, p. 435).

Fig. 2.4.12: A Sugarscape model; based on
the model developed by Li and Wilensky
(2009).
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Epstein and Axtell (1996) developed an agent-based
computational model, called the “Sugarscape model” (Figure
2.4.12), to “grow” an artificial society “from the bottom-up.” In this
model, the emergence of societal patterns evolve from interactions
among human behaviors and resources embedded within the
environment (Epstein and Axtell 1996, p. 6). The Sugarscape model
is an agent-based model that combines agents and cellular automata
(Epstein and Axtell 1996, p. 19). Cellular-based models, which
define the environment, limit agent-based models to comply with
specific topological networks. Examples include von Neumann or
Moore neighborhoods. Figure 2.4.13 shows some sequences of
finding closest and adjacent agents via a Cartesian method and
Topological connectivity. Moore neighborhood algorithms are
implemented with different radii to define different levels of agent
participation.

Fig. 2.4.13: Top row: Euclidean space
used to find closest agents via a Cartesian
coordinate system; bottom row: Topological
space used to indicate adjacent agents
through diagonal and orthogonal methods of
Moore neighborhood.

The transition from cellular lattices to Euclidean space
follows the simulation of the collective behaviors of insects and
animals, such as a flock of birds or school of fishes. The pioneer
of this model is Reynolds (1987, 1999) who developed the boids
simulation to avoid individual predefinitions of animated characters,
i.e., birds, within graphic animations. Reynolds’ (1987) simulation
follows the abstraction of locomotive behaviors of birds using
motion equations. In the boids simulation, the displacement of each
individual follows Newton’s second law. The autonomous characters
have specific rule-based mechanisms to displace their locations
and also to aggregate their motion behaviors (Reynolds 1987).
Accordingly, Reynolds (1999) classifies the locomotion behaviors
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in a hierarchy of “action selection (strategy, goals and planning),”
“steering (determining paths),” and “locomotion (animation and
articulation).” In this hierarchy, aggregation behaviors, such as
“cohesion,” “separation,” and “alignment” (Figure 2.4.14), are more
than the predefined rules (Reynolds 1999, p. 788).

Cohesion Alignment Separation

Action selection

Steering

Locomotion

Control Signals

Fig. 2.4.14: Three behaviors of “cohesion,” “alignment,” and “separation” achieved through locomotive behaviors (Reynolds 1999); redrawn by author
based on: Reynolds (1999, pp. 783-785).

2.4.3 ABMs: Benefits and ramifications

Features

The characteristic features of ABMs that distinguish these modeling
techniques from others are derived from the institutional structure of
the modeling, which is inherited from the agents’ aggregation. The
interactions provided by the modeling techniques activate embedded
rules within the agents to respond to external stimuli. This process
characterizes ABMs as unique behavioral techniques. In addition,
“stimulus-response” rules, as internal mechanisms, involve major
adaptations to the environment. Bonabeau (2002) argues that the
emergent phenomena exhibited by the interactions among agents
are the main feature of ABMs. It is also important to note that
the emergent phenomena feature other ABMs’ characteristics
(Bonabeau 2002, p. 7280).

Exhibiting emergent phenomena from simple interactions
among agents requires an understanding that local rules cannot lead
systems toward emergence. For instance, DeLanda (2010) speculates
that emergent behaviors in the game of life are secondary outcomes
of cell interactions. Moreover, the collision of two emergent patterns,
such as two glider patterns, generates a new emergent patterns that
defines another level of emergent behaviors (DeLanda 2010, p. 41).
Accordingly, agent-based modeling (ABM) has different approaches
to regular modeling techniques, such as “differential equations,” in
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which ABM considers bilateral negotiations over the system and its
individuals (Railsback and Grimm 2012, p. 10).

Considering individuals’ behaviors in modeling allows agent-
based modeling to unfold behavioral systems from the perspective
of the agent (Bonabeau 2002, p. 7281). In this modeling system, the
aggregate behaviors of agents’ activities establish stable states that
are robust enough to withstand the input of some stimuli (Miller
and Page 2007, p. 46). These robust features allow ABM to retain
its performance even if some of the individuals fail (Bonabeau
et al. 1999, p. 7). Furthermore, ABM is adaptable to complex
situations and to changing levels of system descriptions (Bonabeau
2002, p. 7281). On the other hand, the adaptation of agents in
confrontation to complex situations fits within the generative
capacities of agent-based systems. The satisfactory states of the
agents rely on generating possibilities to find adaptive states. The
adaptive states are the result of the agents’ explorations, which are
motivated by a desire to obtain a level of regularity. Eventually, the
generative capabilities of agent-based systems lead Epstein (1999)
to specify five features of agent-based models: “heterogeneity,”
“autonomy,” “explicit space,” “local interactions,” and “bounded
rationality.” Through these features, it is possible to obtain “given
regularities” from heterogeneous distributed systems (Epstein 1999,
pp. 41-42).

2.4.4 ABMs: The basic

Types of agent-based models

Niazi and Hussain (2011) used the term “Agent-based computing”
to describe the scientific domain that is covered by the term
computational agents. Niazi and Hussain (2011) analyzed the
sub-domains of agent-based computing through a “scientometric
analysis.”1 In this analysis, agent-based computing is categorized
into three sub-domains: “1) Agent-based, Multi-agent based or
individual-based modeling, 2) Agent-oriented software engineering,
3) Agents and multi-agent systems in AI” (Niazi and Hussain 2011,
p. 482). On the other hand, Torrens (2010) suggested that agent-
based modeling (ABM) can be understood as “individual-based
modeling” and “multi-agent models.” Individual-based modeling
scrutinizes the behavior of an individual agent and multi-agent
models investigate the collective behaviors of discrete agents
(Torrens 2010, p. 431).

1 see Niazi and Hussain (2011, p. 496).
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Individual-based modeling is a technique that is applied in
ecology, e.g., animals’ population (Grimm et al. 1999, p. 276).
Individual-based modeling is a bottom-up approach that is
established through a set of “unique and discrete entities” (Grimm
1999, p. 130; Grimm and Railsback 2005, pp. 9-10). The multi-agent
model benefits from a diversity of tasks for agents (Torrens 2010,
p. 431). In multi-agent models, the decision-making processes
of individuals are more influenced by other agents. In complex
multi-agent systems, agents are structured simply to the extent that
they avoid any further complexity within the model (De Wolf and
Holvoet 2005, p. 11). In contrast to Complete Complex Agents
(CCA), behaviors of agents are dependent on other agents within the
multi-agent model, but not vice versa (Bryson 2003, p. 61).

The simplification of agents within multi-agent systems
requires a model of a complex system that will exhibit emergent
behaviors (De Wolf and Holvoet 2005, p. 11). Therefore, modeling
complex multi-agent systems with coherent behaviors necessitates a
combination of self-organization and emergent phenomena, in which
self-organizations increase the order within the system to exhibit
emergent properties (De Wolf and Holvoet 2005, p. 11). Regardless
of the type of agents, the interrelation between self-organization and
emergent phenomena requires to formulate algorithmic mechanisms
to exhibit emergent phenomena.

Building ABMs: Attributes and behaviors

Building an agent-based model requires an understanding of the
structure of agents and their interrelations to the environment.
Anderson (1999) described a model of agents with schemata that
use cognitive structures to indicate an agent’s behavior at time t,
in response to its perception of the environment (Anderson 1999,
p. 219). Accordingly, the states of agents emerge out of a set of
rules that are activated by a series of inputs. At each moment,
agents receive inputs from their environment. These inputs are
used to decide which rules will be used to generate new states for
the agents. Torrens (2010) formalized this sequence with a simple
ABM, in which the ABM consists of “agent-automata” with a
“state-rule-input architecture” as:

A∼
{

S,R, I
}
∼

{
S = S1,S2, ...,Sk

i,t

R :
{

St , It
}
→ St+1

(2.4)

, where A is an automaton, S is the state, I is the input, kit describes
attributes of S, and t is time (Torrens 2010, p. 432).
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A simple example for illustrating this equation is Conway’s
Automata (Figure 2.4.15). In this equation, each automaton as a cell-
automaton at time t has eight inputs as I =

{
I1, I2, · · · , I8

}
with

two states of S ∼
{

S1,S2} =
{

0,1
}

and two transition functions as
schemata R to consider agent’s agency (Holland 2000, p. 137).

( + 1) = [ ( ), ( ) ]

t+1

t

time

Fig. 2.4.15: An example of formalizing
ABM, such as Conway’ game of life through
CGP; redrawn by author based on: Holland
(2000, p. 137).

Towards an agent’s agency

An agent’s agency at time t can be considered by micropatterns
that emerge from low-level system modeling. From Minsky’s (1988)
point of view, the model, at the level of agency, should consider
macro-regularities. While, at the level of agent, the model should
only consider micro-behaviors with little regard for the configuration
of the whole model (Minsky 1988, p. 23). Agency indicates an
ultimate purpose for modeling. Agents are required to accomplish
this purpose with low-level behaviors. Approaching the level of
agency considers two methods of organization: top-down agency
(Minsky 1988, p. 23) and bottom-up agency (self-organization), see
Figure 2.4.16.

AGENT

AGENT AGENTAGENT AGENT

AGENTAGENT

AGENT AGENT

AGENT
AGENT

AGENT

AGENT

AGENTAGENT

AGENT

AGENCY AGENCY

Fig. 2.4.16: Comparing two different
agencies: Left diagram represents the
top-down organization of an agency;
redrawn by author based on: Minsky
(1988, p. 23). Right diagram illustrates the
bottom-up organization (self-organization)
processes among agents to erect agency.

Schelling (1978) considered “the behavior characteristics
of the individuals” at the micro-level of aggregation and emerge
as macro-phenomena at the higher-level of aggregation (Schelling
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1978, pp. 13-14). Epstein (2008) described a model of agents as a
generative explanation of macro-phenomena that are exhibited at
the macroscopic level (Epstein 2008, para. 1.10). Epstein (2006)
argues that “macroscopic phenomena”1 emerge out of three steps:
(a) situating a set of autonomous heterogeneous agents in the
environment; (b) preparing interactions among individuals and their
environments based on simple rules; (c) letting the system generate
regularities at the macroscopic level (Epstein 2006, p. 7). According
to Schelling (1978), the macro-specification that is generated is not a
simple aggregation of micropatterns. Extrapolating the macropattern
is comprised of network of interactions “between individuals and
their environment, that is, between individuals and other individuals
or between individuals and the collectivity” (Schelling 1978, p. 14).

Squazzoni (2012) considered a generative explanation model
using a comparison between the simulated pattern and the empirical
patterns. Squazzoni (2012) suggested that a set of individuals or
agents with possible states (micro-specifications) of Sa, Sb, Sc, · · ·
denotes the state of each agents at time t as Sa = S1

a, S2
a, S3

a, · · · , sk
a,t .

In the context of “generative explanation,” Squazzoni (2012)
explained that if a system has a macropattern of Kr, then there will
be a possible combination of micro-specification (states) of agents,
such as Ka =

{
S2

a, S1
c , S3

d, · · · , S5
n
}

, which generates a macropattern
Ka. Therefore, if the simulated pattern Ka is similar or at most
equal to the “empirical pattern” Kr then the model has “sufficient
generative conditions” to be considered a “generative explanation”
model (Squazzoni 2012, pp. 11-12). Through this model, it would
be possible to formalize a relation between the micro-level of agents
and the macro-level of the system.

2.4.5 ABMS: Designing and programming

In the context of agent-based modeling, a properly designed model
can generate different approaches to solve the modeled problems.
A proper model requires appropriate parameters and values from
different behavioral factors to establish a promising agent-based
system, which will lead designers towards solutions. Networks of
procedures, which link initiated agents at the beginning of simulation
to equilibrium states at the end of simulation, require insight into the
reasoning behind the obtained solutions. Dealing with behavioral
systems described by soft parameters outlines the relation between
agents’ behaviors and stimuli factors. Understanding the rules that

1 Epstein (2006, p. 7) considers “macroscopic explanandum” as “a regularity to be
explained.”
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trigger an agent’s reactions requires a development of agent-based
systems as “tractable” tools with sufficient details (Bonabeau
2002, p. 7285). According to Bonabeau (2002), the tractability of
agent-based modeling enables designers to monitor the behaviors
of the models and to comprehend the relation between abstraction
levels and exhibited behaviors. For instance, modeling geometrical
behaviors relies on the geometrical descriptions of agents.

Gilbert (2008) proposes modeling an agent-based system
in the sequence of specific “research questions,” “macro-level
regularities,” and “micro-level behaviors” (Gilbert 2008, pp. 30-
31). Associating the purpose of the model with the research
question necessitates the comprehensive understanding of the
phenomenon being studied. Specifying the research question
enables the identification of the regularities of the phenomena
that are observable by modelers. A decomposition of the macro-
level regularities into simplified elements and rules promotes the
development of organized complexities. When a model is developed
to address a specific research question, behaviors that are more
than macro-level regularities emerge. Two-dimensional cellular
automata, for instance, exhibit a variety of emergent patterns.
The glider is an example of the emergent noises of agent-based
modeling (ABM). Engineering the micro-level behaviors within
agents extends the macro-level regularities beyond the research
purposes, while answering the research question represented by the
potential areas of the model.

The relationship between the macro and micro levels relies on
effective factors or, more specifically, the properties of these factors,
to lead the model toward the desired regularities. Embedding
these factors into an agent-based model commences with the
determination of different types of agents. According to Macal
and North (2009), these types include decision-maker units and
their behaviors. In this context, behaviors could be considered
heuristic behaviors (anchoring and adjustment) or formal behaviors
(Belief-Desire-Intent (BDI)) (Macal and North 2009, p. 92). BDI
emphasizes the role of agent as a decision-making unit. This means
that the agents decide which response should be triggered by the
environment stimuli and the other agents. The decision-making
processes of agents underlies the behaviors of either condition-
action rules (Gilbert 2008), or Belief Desire Intentions (BDI) (Rao
and Georgeff 1991). Both of these methods determine the behavioral
rules by which agents interact with other agents and environments.
The agents’ interactions enable the model to obtain the desired
regularities in collective or individual manners.
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The last stage of developing agent-based models is the
calibration and validation phases (Epstein 2008; Gilbert 2008;
Torrens 2010; Railsback and Grimm 2012). These phases are
required for every relational model. Validating a relational model
follows an evaluation of simulated results with the generated states
found in the real world. A comparison between these two states
enables a consideration of the model’s validity. It is important
to note that once the model is deemed valid, it is extendable to
different variables and parameters. Validating an agent-based model
is difficult because of the lack of quantitative values that facilitate
a comparison between the computational model and the real-world
(Torrens 2010, p. 437). For example, Reynolds (1987) expresses
that a validation of the flocking algorithm “is difficult to objectively
measure,” even though the visual similarities between the flocking
algorithm and a flock of birds enables observers to recognize
the resemblance between the simulated model and the natural
model (Reynolds 1987). In the context of social science, validating
an agent-based model means that the micro-level behaviors and
interactions lead the model toward desired macro-level regularities
(Gilbert 2008, p. 31).

Fig. 2.4.17: A diagram of simulation
method; redrawn by author based on: Gilbert
and Troitzsch (2005, p. 17).
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Scrutinizing the developed agent-based model follows internal
(implicit) verification and external (explicit) validation. Gilbert and
Troitzsch (2005) note that to verify a model, a program must be
proven to work properly (debugging). And, if a model is to be
validated, its simulated behaviors must correlate with the desired
behaviors, see Figure 2.4.17 (Gilbert and Troitzsch 2005, p. 23).
Furthermore, Epstein (2008) argues that validating an explicit model,
in contrast to an implicit model requires a calibration of the model
and the feasibility of “sensitivity analysis.” With the former, the
model is tested against a set of existent data or empirical data and
with the latter, the values of variables and parameters are replaced
with a different set of parameter values to identify the robustness
and feasibility of the model (Epstein 2008). In addition, validating
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an agent-based model requires two levels of relating theory: (a) via
sensitivity analysis; (b) via a comparison with the simulated model
and empirical data, similar to the regression equation (Gilbert 2008,
pp. 44-46). When the output of the model is comparable to the
empirical data, the model can be extended to explain the significance
of micro-level variables in generating macro-level behaviors.





3 Current State:
Agent-Based Systems
in Architectural Design

3.1 General Areas of Applications

The development of agent-based modeling (ABM) provides
insight into the behavioral aspects of generative systems, where
conventional mathematical models are incapable of describing
complex behaviors. As mentioned, two waves of ABMs are applied
to model and simulate different aspects of behavioral systems,
including simulating human behaviors and modeling animals’
actions. Helbing (2012) asserts that the study of complex behaviors
provides a level of visual representation and a level of virtual
simulation, in which the former tries to mimic the behaviors of
humans, animals, or insects and the latter tries to simulate their
individual and collective behaviors. Considering the different levels
of detail in modeling differentiates ABMs into developing computer
games and scientific applications, in which the main differences
between these two approaches emphasizes realistic visualization
and accurate simulations (Helbing 2012, p. 28).

Computer game visualizations insist on apparent details
instead of generative interaction among individuals. However, the
development of scientific applications considers the generative
explanatory aspects of ABMs to explore and explain the emergent
properties of phenomena. From a scientific perspective, the
classification of agent-based modeling considers “physical models,”
“economic models,” and “sociological models,” in which each
model reflects the behavioral aspects of individual constituents
(Helbing 2012, p. 28).

In the context of behavioral systems, considering ABMs
involves a range from social behaviors of human and insects to
physical and ecological systems (Macal and North 2009, p. 91). In
social science, Gilbert (2008) classified the agent-based modeling
applications into “urban models,” “opinion dynamics,” “consumer
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behavior,” “industrial networks,” “supply chain management,”
“electricity markets,” and “participative and companion modeling”
(Gilbert 2008, pp. 6-14). In the realm of business and economy,
investigating emergent phenomena helps Bonabeau (2002) to
prioritize agent-based modeling over other modeling techniques,
such as “mathematical modeling techniques” or “statistical
analysis.” In accordance with emergent behaviors, he extended
agent-based modeling to four main categories: “flows,” “markets,”
“organizations,” and “diffusions” (Bonabeau 2002, pp. 7281-7283).
For example, “flow” is a general term to model and simulate human
behaviors in different situations, where the classification of “flows”
describes the “evacuations” at the panic moments or the “flow
managements” at the traffic jam (Bonabeau 2002, pp. 7281-7282).
In each one of these classifications, agent-based modeling considers
an agent as an individual, an organization, or even a biological
system. The implementation of this model provides to investigate
on individual behaviors and collective behaviors. Accordingly, the
use of ABMs fosters the development of a behavioral framework
to comprehend the effects of communications and behavioral
parameters. Therefore, this computational model provides insight
into the fragile and stable states of the system. It also recognizes the
effective parameters that affect the behavior of the model.

3.2 Categorization

3.2.1 Preamble of agent-based systems
in architectural design

In the realm of architectural design, agent-based systems have
been investigated to find the behavioral potentials of ABMs’
application in design processes. For example, ABM was considered
in developing a design tool based on “situated learning” in order
to embed the knowledge of experts in design processes (Gero and
Nath 1997). The development of agents within situated design tools
was extended by implementing a “constructive memory” systems
to enhance the design processes (Liew and Gero 2002a,b). The
development of agent-based design tools were studied further to
consider cognitive sciences and learning mechanisms. For example,
Moss et al. (2004) enhanced an existent application (A-Design)
with a learning mechanism to examine learning mechanisms within
agents to demonstrate that agents can learn from their previous
experiences and that they are capable of extending their experienced
knowledge to other situations (Moss et al. 2004). This process of
adapting agents with different design problems through abstracting
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and translating designer knowledge to agent-based systems was
extended to develop a “situated agent-based design assistant” (Gero
and Peng 2004). Accordingly, the development of architectural
applications tries to embed designers’ knowledge into agent-based
systems.

On the other hand, agent-based applications were used to
simulate and model human behaviors in architecture and urban
spaces. These modeling techniques were investigated to gain
better insight into human behaviors when confronting normal and
abnormal conditions, such as pedestrian behaviors (Fatah gen.
Schieck, A. et al. 2004; Kitazawa and Batty 2004; Karunakaran
2005; Chen and Chiu 2006; Chen 2009a,b; Shih et al. 2009;
Moussaı̈d et al. 2011) and evacuation behaviors (Chen and Lin 2003;
Sharma and Turner 2004; Sun et al. 2007). However, agents-based
systems are required to study the context of generative design
approaches to cover the process of formation and materialization.
The applications of agent-based systems are reviewed based on
the proposed design agencies, such as environment effectiveness,
fabricational morphogenesis, and performative criteria. Since these
agencies categorize agent-based design systems into three main
categories: environmental and spatial effectiveness, performative
and structural approaches, and fabrication approaches. Each of
these categories provides a better description about the significance
of agent-based systems in design processes. Categorizing existent
examples of agent-based applications fosters appropriate strategies
to develop a computational design tool. The computational tool
requires an amalgamation of three active agencies to simultaneously
materialize the process of formation. Eventually, generative agent-
based design computation will blur the existing gaps in design
processes with behavioral strategies.

3.2.2 Environment/Spatial effectiveness

Infrastructure layout planning and urban spatial structure

In the context of planning infrastructure, utilizing an agent-
based system enables designers to investigate the behavioral
influences of spatial structures on human behaviors and vice versa.
Investigating bilateral relationships between humans and their
relevant environments are essentially effective on the formation of
spatial organization. The significance of the environment is defined
by internal and external factors in the development of infrastructures
and urban spatial structures. Therefore, the effectiveness of the
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environment is considered through parameters within the formation
of spatial structures. Those effective parameters include the
structural correlation among humans, their built environments,
and the environments. Investigating this effectiveness enables an
understanding of the importance of behaviors on emerging forms
and spatial organizations.

Modulating the environment through agents’ activities
employs two methods. In the first method, agents directly change
the environment that might be a simple geometry, such as a
surface. In this method, agents locally modulate the environment
by changing the geometric definition of the surface. The agents
could accomplish this by relocating knots of NURBS surfaces or
vertices of mesh surfaces. In the second method, agents employ
some mechanisms to embed signals or instances on the environment
that indirectly facilitates agent systems to adjust their behaviors
to the environment. Therefore, agents’ behaviors rely on storing
data, such as built environments or signals of their activities, and
extracting embedded signals from the environment. In this sense,
agents modulate the environment to transfer their activities to other
agents and themselves via embedding signals. The extraction of
these signals from the environment enables an understanding of
the main areas of agents’ activities. Both of these methods of
constructing elements or embedding signals emphasize stigmergic
and sematectonic communication approaches. The environmental
modulations facilitate mediation between the agent’s preceding
actions and their upcoming behaviors. In that case, the stigmergic
method transfers local modifications to the agent itself and to the
other agents. Accordingly, extending this concept to the human
activities within urban planning helps designers to configure the
spatial circulations.

A series of experiments have been developed to investigate
these bilateral relationships between human behaviors and their
contextual environments. For example, Eleni et al. (2002) studied
the mediation between human behaviors and their contextual
environments to investigate mutual influences among them. Eleni
et al.’s (2002) research project considered the environment as a series
of cubic blocks, in which the behaviors of agents change the surface
configuration. In the next iterations, these surface modulations
affected the agents’ behaviors. From these local modifications, they
proposed a stigmergic approach out of indirect communications
among agents, where local modifications changed the global form
of the environment (Eleni et al. 2002).
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Fig. 3.2.1: The simulation of the diagram of
spaces; source: Ireland (2008).

Confronted with constructed environments that effectively
change human behaviors was translated into generative
computational models. Considering human behaviors as generative
factors provide topological diagrams for forming spatial structures.
In a series of experiments, Ireland (2008, 2009, 2010) investigated a
generative process to translate the “diagram of architectural space” to
the “diagram of spatial organization,” in particular, this model tried
to address the problems of circulation in architectural organizations
via Swarm Intelligence (SI). Extending the ant foraging algorithm
to architectural circulation fostered the development of generative
algorithms, in which the proposed model considered interactions
between humans and the constructed environments to determine
circulation paths, see Figure 3.2.1 (Ireland 2008). Accordingly,
Ireland’s (2008) generative model offered an approach to
generating particular configurations as the diagram of spaces.
These configurations emerged from the behavioral interactions
between architectural definition of spaces and path connectivity
developed by agents’ circulations (Ireland 2008, 2009, 2010).
The advancement of this translation helps designers to consider
the layout planning as the production of agents’ negotiation with
the constructed environment. This interaction fosters generative
models to use architectural properties as generating procedures to
produce alternatives. In this sense, Hao and Jia (2010) developed a
computation tool for exploring the layout planning based on “bubble
diagrams.” In Hao and Jia’s (2010) project, they linked the floating
bubble systems to agent systems (Figure 3.2.2). The behavioral
rules relied on architectural specifications described through the
topological connectivity of architectural spaces (Hao and Jia 2010).

Attraction No force Push

Fig. 3.2.2: The behavioral rules of
interacting “bubble diagrams”; redrawn by
author based on: Hao and Jia (2010).

Spatial organization and configuration

The design process emphasizes both knowledge-based systems
and behavior-based systems. The comparison between these two
approaches determines the importance of agent-based systems as
behavior-based systems, from which the interactions among agents
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demonstrates the self-organization process of form generation. The
generative agent-based systems, which include different constraining
mechanisms to inhibit generated alternatives, might lead behavioral
formation towards exhibiting emergent patterns. In this sense,
Krause (1996, 1997) described a method to implement a Behavior-
based Artificial Intelligence (BBAI) within a computational
design tool. Krause’s (1996) method considered modulating
geometric constituents to generate behavioral forms. Krause’s
(1996) approach contrasted with the conventional architectural
design approach from which the top-down organization of a
knowledge-based system was converted to a behavior-based
system. In Krause’s project, the generative agent-based system was
developed through different types of agents, including varieties of
behaviors and communications. This project, as one of the early
projects, introduced behavior-based approaches through agent-based
modeling to the field of architectural design to differentiate this
attitude from a knowledge-based system of design (Krause 1996,
1997).

The approach of behavior-based systems followed abstracting
physical agents into computational agents. Integrating these
processes with an architectural application opened a new chapter
in architectural design. Coates and Schmid (1999) elaborated on
a series of students works, developed at the CECA1, with which
to utilize different computational techniques, such as cellular
automata (CA), Genetic algorithms (GA), and swarm algorithms
in architectural and urban design. Coates and Schmid’s (1999)
investigations included different computational tools, such as
StarLogo (Resnick 1994, pp. 31-35) and CAD applications through
which they initiated the two-dimensional cellular systems for
investigating urban design and three-dimensional CAD agents for
representing the interactions between agents and their surrounding
environments. Particularly in their proposed CAD agents, the
interactions between agents and environment (model) were
categorized in three feedback loops “agent-agent,” “agent-model,”
and “model-model” (Coates and Schmid 1999). In one of Coates and
Schmid’s (1999) works, the agents were facilitated with visionary
systems to sense the virtual models, and, in accordance to their rules,
the agents modified the NURBS-surfaces of model. In this example,
the agents modulated the environment behaviorally to accomplish
their embedded tasks, in which emergent properties arose from their
behavioral modifications (Coates and Schmid 1999).

1 Center for Evolutionary Computing in Architecture (CECA) at the University of
East London School of Architecture.
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Fig. 3.2.3: The generated traces based
on interactions between agents and the
environment; source: Carranza and Coates
(2000).

In other works, the boids algorithm was adopted within
architectural applications, such as CAD applications, through which
behaviors of agents provided different behavioral patterns. Carranza
and Coates (2000) emphasized the flocking algorithm to relate
the constituents’ element of formation to the agent’s behaviors,
through which behavioral patterns emerged simultaneously out
of translating agents’ coordination in three-dimensional space
to the geometric constituents of form. In addition, Carranza and
Coates (2000) utilized the flocking algorithm in both coupling with
environments and coupling with another system (Figure 3.2.3).
The process of their linkages was structured with indirect and
direct methods of communication with environments (Carranza
and Coates 2000). In comparison with morphogenetic movements,
the process of behavioral formation was adapted to environmental
conditions or other systems, while agents were exploring the possible
solution space. In addition to different evolutionary systems, their
investigations on the learning approaches extended the adaptability
of flocking systems with different conditions (Carranza and Coates
2000).

Although coupling with other agents and the environments
enhance the agents’ behaviors to generate more meaningful forms,
the emergence of forms requires more designers’ contributions to
the process of behavioral formation. Snooks (2012b) elaborated
a methodology for developing forms based on instable generative
systems. Snooks (2012b) postulated that the instable state of forms,
which is vulnerable to stimuli from the environment, necessitates
the utilization of a computational method to intelligently adapt the
system to new conditions. Accordingly, Snooks (2012b) used the
intelligence of swarm systems that relied on multi-agent algorithms
to generate forms from which the process of “behavioral formation”
was developed by translating architectural aspects into behavioral
rules. Therefore, Snooks (2012b) related the behavioral formations
to the geometrical constituents within computational design tools,
by which the agents’ responses to the environment were influenced
by architectural specificities. In addition to the behavioral formation,
Snooks (2012b) argued that the limitation of local interactions at the
micro-level was distinct from the macro-level. He proposed to inform
the micro-level with structural properties, which occurred at the
macro-level, through “messy computation” or “behavioral structural
formation,” which commences a negotiation between derived forms
and forms’ drivers (Snooks 2012b).
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Fig. 3.2.5: The development of an agent-
based system to simulate the Zollinger
system; source: Tamke et al. (2010b,a).

3.2.3 Performative and structural approaches

The manifestation of forms is associated with performative
criteria, such as structural properties and functional rules. The
implementation of different algorithmic rules facilitates the
process of form generation with self-organization approaches. The
implications of algorithmic rules to self-organize forms indicate
simulations of virtual form-finding.

Fig. 3.2.4: The behavioral rules for column-
like-agents; redrawn by author based on:
Scheurer (2007).

Growing

Splitting

Shrinking

Dying

For example, in Groningen Twister (2003), the construction of
a parking areas for bicycles, benefits from the agent-based modeling
where the agents were considered the columns (Scheurer 2003).
Scheurer (2003, 2005, 2007) indicated that embedding structural and
functional properties within the agents fostered a CAD application
to self-organize the columns’ positions. The negotiations among
column-like agents and the environment followed behavioral rules
(Figure 3.2.4), such as “growing,” “shrinking,” “splitting,” and
“dying” to lead self-organization towards stable states (Scheurer
2003, 2005, 2007). In the context of agent-agent interactions, another
example of integrating structural performance is the “lamella flock.”
Tamke et al. (2010a,b) developed a computational tool based on
the traditional wooden Zollinger (lamella) system, where each
one of beam elements were determined as an autonomous unit to
self-organize a structural system (Figure 3.2.5). Abstracting the
principle of lamella systems fostered a set of behavioral rules to
sequentially interlock agents (Tamke et al. 2010a,b).

Consequently, agent-agent interactions provide a self-
organized condition for structural elements. In addition, agent-
environment interactions facilitate another level of integrating
performative criteria within generative agent-based systems.
Durmazoglu et al. (2008) developed the “DROP” application
to analyze the performative criteria of free-form surfaces by
considering the rain-flow analysis method, which calculates the
“flow of forces on a surface,” including “loads on the free-edges,”
“bending moments,” and “drain curves” on the surface. Durmazoglu
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Fig. 3.2.6: The generation of fibers on the
target surface based on performative criteria;
source: Tsiliakos (2012).

Fig. 3.2.7: The implication of a flocking
algorithm and their responses to cellular
automata rules; source: Anzalone and Clarke
(2004).

et al.’s (2008) application associated the agent-based systems with
the surface geometry. The agents’ responses to the flow of forces
altered the form-finding process of generating a free-form surface
(Durmazoglu et al. 2008).

Moreover, the interaction with environments can provide
agents access to the necessary information about structural
performance. In this sense, the environment as a target surface
informs the structural properties of the surface to the agents.
Therefore, agents’ interaction with the structural information
requires different behavioral rules to self-organize their actions. For
example, Tsiliakos (2010, 2012) developed a multi-agent system,
which was based on Swarm Intelligence (SI) to integrate material
systems (fibrous materials), structural properties of a target surface,
and the environmental factors, such as sun radiation. In Tsiliakos’s
study (2012), the three inputs of a target surface, principal stresses,
and solar radiation were defined as stimuli to trigger the multi-
agent system through which agents’ responses provided a level of
adaptation between the fibrous system and the target surface (Figure
3.2.6). Therefore, the performative criteria, such as environmental
effectiveness and structural properties were implemented within
a multi-agent system, while the agents’ actions on the surface
eventually generate trail paths that determined the fiber placement
positions (Tsiliakos 2010, 2012).

3.2.4 Fabrication approaches

Developing applications that consider fabrication processes within
the process of form generation require an understanding of the
correlation between geometric constituents of form with fabrication
tools. Therefore, the investigation on the geometric definition of
form requires the interpretation of forms into generative algorithms,
such as cellular automata (CA), L-systems, and the boids algorithm.
On the other hand, the adaptation of these algorithms to agent-based
systems fosters a possibility to attribute agents with the necessary
knowledge of fabrication tools. For example, Anzalone and Clarke
(2003, 2004) developed a series of experiments to integrate the
design process with structural and fabrication systems. Anzalone
and Clarke’s (2003; 2004) design process was developed based
on cellular automata (CA) and the boids algorithm to generate
a free-form surface (Figure 3.2.7). This process was adopted to
the structural properties of a truss system, which were applicable
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Fig. 3.2.8: The simulation of the adaptive
growth based on the robotic constraints;
source: Narahara (2008, 2013a,b).

for fabrication tools, such as CNC1 machine with three-axis mill
(Anzalone and Clarke 2003, 2004; Clarke and Anzalone 2004).

Ultimately, generative algorithms require adapting the
process of growing forms with the logic of materializing through
fabrication processes. Considering material systems as active
factors coordinates the fabrication process towards the geometric
specificities of materials. Therefore, the development of generative
algorithms is accompanied with the geometric definition of
materials and the relationships among them. Narahara (2008,
2013a,b) developed a computational design tool based on simple
generative rules to grow an adaptive cluster of unit blocks. In
addition, Narahara (2008, 2013a,b) utilized the computational tool
with a Genetic Algorithm (GA) for generating new rules and a
physic-based algorithm for checking the stacking capacity of the
blocks (Figure 3.2.8). Moreover, considering the robotic fabrication
processes furthers the hard coding of the robotic tool path with
an adaptive generating process through which this tool generates
different possible positions for clustering blocks with respect to
the robotic constraints (Narahara 2008, 2013a,b). However, both of
these examples indirectly integrated the fabrication processes within
agents’ behaviors. Therefore, integrating fabrication and material
aspects within design processes necessitates further studies to gain
insight as to whether agents-based system can be adapted to the
materialization process in architectural design computation.

1 Computer Numerical Control.







4 Introduction of Experiments
and Case Studies

4.1 Reflection of the Adaptive Behavioral
Significances on Design Processes

4.1.1 Introduction

In the context of the behavior-based system, this experiment focuses
on the relationship between Constrained Generating Procedures
(CGPs) and Complex Adaptive Systems (CAS) to trace the
hidden lever-points for constraining the simple generative model.
The generative model consists of individual units with singular
competencies, which include their interaction rules. The behavioral
adaptations are allied with the self-organizing properties to maintain
the critical states of the system from bottom-up approaches. The
bottom-up mechanism proceeds simple tasks that are implemented
through the basic rules within agents. For example, agents comply
to maintain the internal pressure within a specific range. The
overall behaviors of agents automatically cover the whole manifold
without any global knowledge about the size of the environment.
Adaptations to the tasks arise out of lower-level competencies,
wherein the individual agents update the higher-level system with
their states of satisfaction. Accordingly, it represents that the
different states of agents, which are related to the agents’ behavioral
definitions, rely on other agents and the contextual environment.

The objective of this experiment is to investigate the
behavioral aspects of emergence phenomena, where the system
is self-organized at critical states with new arrangements of form
and force. Accordingly, critical factors of the system, which
originate within the agents’ behaviors, such as the displacement
vectors of motion behaviors, are analyzed to provide the relation
between different parameters with the overall emergent behaviors.
The obtained factors establish “IF/THEN” mechanisms within
Constrained Generating Procedures (CGPs) to coordinate the
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system towards a state of self-organization. In addition to the
boids algorithm (Reynolds 1987), this experiment considers
two other algorithms, which were developed by Walter (1998)
and Coates (2004, 2010). The mosaic algorithm emphasizes the
parameterization aspects of skin pattern formation where each
parameter affects the behavioral properties of the patterns (Walter
1998; Walter et al. 1998). In addition, the study of Coates’ (2004;
2010) algorithm provides the translation of simple behavioral
procedures within algorithms to the vector-based algorithms. The
turtle algorithms are embedded in the NetLogo1 application; these
algorithms represent simple behavioral procedures. Accordingly,
these algorithms structure a generative agent-based framework to
reflect the adaptive behaviors in design processes. Implementing
this generative tool provides insight into the significance of each
individual parameter at micro (low)-levels and how these parameters
change the order at macro (high)-levels.

4.1.2 Context

According to Holland (1995), the recognition of lever-points
within Complex Adaptive Systems (CAS) are necessary to model a
complex adaptive system. At these critical points, the behavior of
the system drastically transits from one phase to another (change
phases). The transition phases within system behaviors result from
interactions among lower-level elements, where the system consists
of several critical states. Exploring critical states enables modelers
to gain a better understanding of system behaviors. The critical
moment describes system adaptability; changing parameters in
the micro-level alters the state of the system at the macro-level.
For example, micro-level interactions cause different emergent
phenomena at the macro-level. Eventually, in this experiment,
different behaviors emerge from self-organizing at both the micro
and macro levels.

Critical states of system behaviors provide essential
knowledge about developing “IF/THEN” mechanisms to
enhance Constrained Generating Procedures (CGPs). These
constraining mechanisms enrich system behaviors by categorizing
the effectiveness of each parameter. This categorization determines
the singular level of adaptability by identifying a certain range of
parameters. Conditional states, which are developed within these
“IF/THEN” mechanisms, facilitate switching between different
emergent patterns. Exploring the emergence of the system requires

1 see Wilensky (1999a).
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a modulation of the level of forces within different states. The
self-organization within micro-macro levels adjust unstable levels
to return to stable states. This intervention requires mechanisms to
provide adaptation within the system. These mechanisms include
different procedures to evaluate the generative system through
internal conditional criteria.

4.1.3 State-Of-Art

Walter (1998) investigated the Clonal Mosaic discretization on
mammalian skins, such as a giraffe to develop pseudo code for
simulating their morphogenesis. The simple behavioral system,
which was described through a Clonal Mosaic algorithm, consists
of different parameters to control the behavior of each individual
cell and the overall behaviors of the whole system (Walter 1998;
Walter et al. 1998). Implementing Walter’s (1998) algorithm for
an agent-based system commences with distributing agents on a
two-dimensional field through random or stochastic algorithms. And
after this random distribution, agents gradually distribute themselves
with equal distances over the predefined boundary or environment
through behavioral mechanisms. Figure 4.1.1 illustrates these
two steps: first, of randomly distributing agents, and second, of
employing the behavioral mechanisms proposed by Walter (1998).

Fig. 4.1.1: Two steps: The random
distribution of agents (left image) and the
relaxation process of agents (right image).

In addition, Coates (2004, 2010) investigated agent-based
systems by differentiating the agents’ attributes to demonstrate
emergent patterns, such as rings or Voronoi cells. Coates (2004,
2010) tested his algorithm with a simple behavioral definition
through the NetLogo application. Conducting experiments based
on Coates’ algorithm involves emergent properties, which arise
out of a simple negotiation between two different types of agent.
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The first type of agent, as the main type A pushes all other agents
with the type B off its territory. In addition, type B agents have
internal interactions to retain their distances to the adjacent agents
in a specific range. As Coates (2010) mentioned in his work,
modeling these simple behaviors reflects emergent properties that
can metaphorically be abstracted to geometrical representations, like
circles, or rings around the main type of the agents (Figure 4.1.2).

Fig. 4.1.2: Increasing the force values among type B agents starts to generate rings around the type B agent with isolated force value.

In both of these computational setups, based on Walter (1998)
and Coates (2004, 2010) algorithms, increasing the number of
type A agents starts with colonizing type B agents. The overall
colonization is comparable to a Voronoi diagram (Figure 4.1.3).
Coates (2010) compares the behavioral formation of a Voronoi
diagram with computational geometric methods, which require
several lines of codes to describe the mathematical relationship
between each cell within the overall Voronoi diagram (Coates
2010). However, the Voronoi diagram generated with an agent-based
system, which follows behavioral procedures, emphasizes the
importance of behavioral procedures (computational behavior)
and highlights their advantages to the mathematical techniques
(computational geometry). In behavioral modeling, the generated
patterns are entirely related to behavioral actions and reactions or, in
other words, the negotiations between two different types of agents,
which have internal interactions.
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Fig. 4.1.3: Increasing the number of type A agents simulates cellular morphologies.

4.1.4 Methods

A computational framework is explored to simulate and model
motion behaviors by means of displacement vectors developed
within the boids algorithm (Reynolds 1987) and turtle graphic
algorithms. Figure 4.1.4 illustrates the differences between an
autonomous agent and a turtle agent in coordinating their direction
towards a target. The generative agent-based algorithm emerged
from both of these algorithms through a vector-based system within
the Rhinoceros1 as a CAD application and NetLogo2.

Turn Left Turn Right

Go Forward

-α +α
Main Direction

Target Direction

Target

Fig. 4.1.4: Schematic diagrams of an
autonomous agent (left image) and a turtle
agent (right image).

The algorithmic and behavioral thinking within NetLogo
contributes significantly to the development of the script through

1 see Robert McNeel & Associates (2015).
2 see Wilensky (1999a).
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Fig. 4.1.5: Relaxation behaviors of agents.

Fig. 4.1.7: Cellular behaviors of agents.

different programming languages, such as Iron Python1 and Visual
basic .Net2, which are customized for this CAD application. The
developed algorithm is explored by embedding parameterization
mechanisms to change the quantitative parameters sequentially and
to check the effect of this modulation on the quality of the system.

4.1.5 Development

Determining agent properties

Types of agents. A generative system was developed to investigate
the micro-level behaviors in two steps. Since, this generative system
investigates behavioral adaptation in a complex system, the type
of agents used was limited to provide better insights into growing
complexities through a simple arrangement. In the first step (Figure
4.1.5), the generative system was developed with one type of agent
(type A). In this system, agents maintain their distance from adjacent
agents. The agents are dynamically related to each other, and at each
iteration they check and adjust their distances in response to adjacent
agents. This dynamic behavior relies on the topological connectivity
of the agents at the micro-level to find the nearest agent. Figure 4.1.6
illustrates this process in which the selected agents find the closest
agents in a specific range, and then apply repulsion and attraction
behaviors.

Fig. 4.1.6: Simple interaction between an agent and its adjacent agents.

In the second step, two types of agent (types A,B) are
introduced into the system from which the type A as a static agent
are relatively independent to the type B as active agents (Figure
1 see Dino Viehland (2014).
2 see Microsoft (2015).
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4.1.7). The independent behaviors of static agents are essential to
simplify the basis of the generative system. The steady states of the
static agents with the invariant locations reduce the complexity of
the system at the initial stages and facilitate further study of the
second type of agents. Figure 4.1.8 shows the interaction behaviors
between type A and type B. These behaviors consider the attraction
and repulsion behaviors of type A against type B.
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A B B
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Fig. 4.1.8: Repulsion and attraction forces
between types A and B.

The next experiment considers type A agents with dynamic
behaviors. Furthermore, type A is independent from type B, while
type B relies on the behaviors of type A agents. Type A agents
actively repel and attract type B agents. The coherent behaviors
among type B agents rely on internal mechanisms. Establishing
internal mechanisms allows agents to repulse and attract each other
simultaneously. In addition to this internal interaction, type B agents
have to calculate the external repulsion forces imposed from type A
agents and vice versa (Figure 4.1.9).
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Fig. 4.1.9: Repulsion forces among type B
agents.
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In general, this process is accompanied by checking the
distances among agents. The repulsion and attraction behaviors rely
on the relation between the circumferences of the agents. When the
distance between two agents is greater than the summation of their
radii, the attraction behaviors will add displacement factors to each
agent (Figure 4.1.10). Simultaneously, employing attraction and
repulsion behaviors provides tangencies among agents.

Fig. 4.1.10: Attraction forces among type B
agents.
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Geometric properties. Understanding behavioral adaptations within
a complex system necessitates an emphasis on the interactions
between one type of agent at first, and then later, between two types
of agents. Accordingly, an agent’s morphology is reduced to simple
geometrical shapes. In this case, the geometrical properties of the
agents are determined through a simple point without dimension.
In Euclidean space, a simple point is represented by a three-axis
coordinate system. This morphological simplification contributes
to the study of behaviors that arise from simple interactions among
agents. Each point agent has an attribute to maintain its own area
that eventually adds a boundary or circumference to the agents.

Behavioral properties. The interactions among agents rely on
rule-based techniques. The agents with basic morphologies perceive
their surrounding environment. Then, the evaluation of observed
data releases appropriate responses through a set of “IF/THEN”
mechanisms. Considering agents’ typology specifies the basic rules
within this experiment. The basic rules are the general behaviors of
attraction and repulsion among agents. The generative agent-based
system links agents to other agents and environments through three
levels of sensing (perceiving), processing, and responding (Figure
4.1.11). Accordingly, behavioral properties are the outcome of
agent responses to external and internal attributes and factors, for
example, the factors that control the distances among agents and
their relations to the relevant environment.
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Perception Process Action

Fig. 4.1.11: A schematic diagram of a
behavioral layer.

Determining a contextual environment or field

Modeling a generative agent-based system requires an investigation
in the development of a relevant environment, which considers
environmental aspects within the agents’ interactions that trigger
different levels of actions. Accordingly, the computational
framework includes environmental aspects. The geometric
features of the environment delineate the essential parameters
that affect agents’ behaviors. A basic environmental setup for this
computational framework is a confined area that is projected on a
horizontal plane, which provides a simple two-dimensional field
of action for agents. Therefore, the environment is fundamentally
distinguished into middle and edge areas. The circumference of the
environment imposes external forces on the agents’ distribution. The
circumference is considered an active element within the modeling
system. Boundary conditions in mathematical modeling, such as
periodic or reflective boundaries, improves the circumference’s
ability to act as an agent, see Figure 4.1.12.

Fig. 4.1.12: The effect of environment
circumferences on macro-regularities; left
image: The environment with reflecting
boundary; right image: The environment
with periodic boundary.

The circumference is distinguished by several behaviors, such
as repulsion and attraction behaviors. These behaviors use the same
logics that are applied for developing a behavioral interplay between
the aforementioned agents (Figure 4.1.13). These behavioral
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characteristics define the environment as an active agency within the
process of modeling.

Fig. 4.1.13: The attraction and repulsion
behaviors of circumferences; left image:
Repulsion behaviors; right image: Attraction
behaviors.

Determining interaction behaviors or rules

The rules of interaction between agents are abstracted from three
different modeling techniques that are categorized as parametric
based modeling (Clonal Mosaic Model), vector-based modeling
(Boids algorithm), and a turtle graphics algorithm (NetLogo
application), which are all implemented with a vector-based
approach.

According to Walter (1998), the Clonal Mosaic Model (CM)
is a parametric based modeling technique that simulates cell division
and cell-cell interactions. This modeling techniques synthesizes
“mammalian coat patterns” (Walter 1998; Walter et al. 1998). In
Walter’s (1998) algorithm, the initialization procedure of generated
patterns lies on a relaxation mechanism that is implemented by two
main behaviors: adhesion and repulsion. Each cell maintains its own
area by repulsing other neighboring cells; furthermore, each cell
uses adhesive forces to preserve the integrity of cellular structures
(Walter 1998; Walter et al. 1998).

Coates (2010) developed an algorithm to represent the
emergent behaviors. Coates’s (2010) algorithm utilizes simple
behavioral rules within the NetLogo application. Similar to the
Clonal Mosaic algorithm, this algorithm is designed to attract and
repel agents from each other. The NetLogo application simplifies the
implementation of these behaviors through a set of commands that
ask agents to do specific tasks. For example, one command includes
a request from an agent (turtle) to move toward the nearest neighbor
but, also, to preserve its distance from the chosen neighbor (Coates
2010).
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The flocking algorithm, developed by Reynolds (1987),
is a collective behavioral modeling technique that simulates the
locomotion behaviors of a flock of birds. This model utilizes three
main behaviors: “collision avoidance,” “velocity matching,” and
“flock centering” (Reynolds 1987). Further development of the
flocking algorithm has evolved to support different behaviors, such
as “flee,” “seek,” and “path following” (Reynolds 1999). However, in
the context of this experiment, three main behaviors of “cohesion,”
“separation,” and “alignment” (Reynolds 1999) are investigated to
cooperate with vector-based methods to give internal cohesions to
the closest agents and maintain separation between them.

All three algorithms are investigated to generalize the essential
behaviors that self-organize the complexity of interactions among
embedded elements within a system. The strength of each algorithm
is evaluated to develop a catalog of behaviors. The catalog consists
of general considerations of behaviors and specific details of those
behaviors, which, in this experiment, are adhesion and repulsion.
The interconnections among agents are established through
different types of connectivity. Agents explore their neighbors
with topological or topographical connectivity (CECA 2004).
Topological connectivity links agents regardless of the distance of
their separation, in contrast to topographical connectivity, which
is the agents’ connectivity within Euclidean space (Figure 4.1.14).
Therefore, the closest agents in Euclidean space might differ from
the nearest agents in Topological space.

radius

Fig. 4.1.14: Topographical and topological
connectivity; left image: Euclidean space;
right image: Topological space.

In Euclidean space, the connectivity among agents is effective
in generating different collective behaviors. For example, Figure
4.1.15 illustrates that utilizing the generative agent-based tool on
random distributed agents on a two-dimensional manifold exhibits
two different types of emergence. Considering the connectivity
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between an agent and its closest neighbor leads the system to
equally distribute agents throughout the environment (Figure 4.1.15
left). On the other hand, changing the number of interconnections
between agents and their closest neighbor drastically change their
interaction behaviors. The collection of their interactions cluster
agents around a central core (Figure 4.1.15 right).

Fig. 4.1.15: Connectivity effect on
emergence behaviors; left image: Interaction
between agents and their closest neighbor;
middle image: Random distribution of
agents; right image: Interaction between
agents and all other agents.

Interrelating agents, under Euclidean space, employ simple
controlling mechanisms to sort the closest agents into an array list.
The sorted list demonstrates the access of main agents to adjacent
agents via their indices or their distances (Figure 4.1.16). These two
ways provide different levels of access to the agents at the micro-
levels, which directly affects the emergent behaviors at the macro-
levels.

Fig. 4.1.16: The sorting mechanism that
finds the closest agents within the specific
radius.

radius

a5
a2

am

a0

a1
a3

a4

a6

am a0

a1

a2

a3

a4

a5

a6

an

Determining the inhibitory mechanism

The inhibitory mechanism, which is established within the first
phase of the experiment, self-organizes the micro-macro effects
in the generative agent-based system. This process is followed
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Fig. 4.1.17: The development of self-
organization at the micro and the macro
levels. At the micro-level, agents avoid any
overlapping boundaries. At the macro-level,
agents fill the manifold with the agents.

by measuring the agent’s displacement vector, and calculating the
summation of all agents’ displacements1. The relations between
these two values define a specific domain in which deviation from
the domain destabilizes agents and, accordingly, the whole system.
In other words, the inhibitory mechanisms measure the distances
to the perceived closest agents and if the distance has a large
deviation from the accepted tolerance then the inhibitory mechanism
triggers the related behaviors. In this experiment, the “IF/THEN”
mechanism examines these two aforementioned aspects to analyze
any deviations from the mean average displacement factors. The
inhibitory mechanism self-organizes the system by varying the
number of agents, when displacement factors have any differences
with average mean displacements (Figure 4.1.18). Applying this
inhibitory mechanism enables the generative agent-based system
to fill the empty environment by comparing collected individual
behaviors as macro orders with the single behavior of individual
agents at the micro-level (Figure 4.1.17).
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Fig. 4.1.18: The diagram of mean displacements that are analyzed over time.

Determining the coordination mechanism

The general attributes of agents, which are developed in this
experiment, are their coordinates on the manifold or environment

1 Reeves (2013) develops a sphere packing mechanism that considers altering the
number of spheres when the average pressure of all spheres is less or greater
than the predefined threshold. The author’s experiment has a different approach
to investigate micro-macro effects within a Complex Adaptive System (CAS).
Determining the lever-points through statistic analyzing automatically determines
the tolerance at the macro-level and agents dynamically adjust their local behaviors
with this tolerance.
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and their displacement vectors. Each agent utilizes a mechanism
of assembling behaviors to compute the position and displacement
vector throughout each iteration. Similar to the steering mechanisms
in the flocking algorithm, the displacement vector is a summation
of behavioral responses that are translated into vector-based
algorithms. After each iteration, the new position is calculated by
adding the displacement vector to the current agent’s coordinate
position. Computing displacement vectors relies on inhibitory
mechanisms to selectively activate the layers of actions. These
layers provide two levels of interaction, one level provides the
intrinsic behaviors, such as a repulsion or adhesion behavior, and
another level determines the extrinsic behaviors that consider the
agents’ interaction with environmental aspects. A classifier system
prioritizes agents’ responses for each action. The summation of
these prioritized values indicates the displacement factors for next
step. Figure 4.1.19 highlights the behavioral assembly procedures.

Fig. 4.1.19: Assembling behaviors,
including inhibitory mechanisms, intrinsic
and extrinsic behavioral layers, and classifier
actions.
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The classifier mechanism coordinates the summation of
responses. It prioritizes the behaviors by weighting the agent’s
responses. In this experiment, since agents have limited behavioral
mechanisms that are confined to repulsion and adhesion behaviors,
the prioritization, as an overall allocator, is limited to internal
variables for parameterizing these behaviors (Figure 4.1.20).

Determining the parameterizing mechanism

Development of this generative agent-based tool is monitored
by parameterizing the agents’ attributes. Monitoring agents’
behaviors to fix one variable while the other variable changes
frequently. This monitoring mechanism is customized to change
the variable’ value automatically or by the user’s interventions.
Accordingly, the adhesion variable is parameterized to alter the
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Fig. 4.1.20: Parameterizing repulsion and adhesion behaviors; left image: Increasing repulsion behaviors; middle image: Random distribution of agents;
right image: Increasing adhesion behaviors.

adhesive behaviors among agents. The correlation between different
variables changes the overall behavior of the system, which is the
consequence of interactions between internal variables and external
forces. Equipping the computational framework with monitoring
mechanisms enables the framework to investigate the behavioral
transition phases from one level of self-organization to other
levels. Understanding the location of the lever points within the
complex system requires the continuous monitoring of one variable
by constantly increasing its value and then observing the overall
system’s behaviors. For example, the adhesion variable of agent
type A is parameterized within the monitoring mechanisms through
which the value of this variable is automatically incremented with
the tolerance value defined within the system operator. In parallel,
the other agent’s attributes, such as iteration times, velocities, and
locations, are stored to analyze the agent’s behavior in both the
micro and the macro levels.

4.1.6 Discussion

Understanding the behaviors of the system requires an investigation
of both the micro and macro levels. The bottom-up approach of
this investigation introduces the significant effects of micro-level
interactions onto the overall behavior of the system. For example,
the inhibitory mechanism sequentially adds agents to the system.
This process allows designers to study interactions at the micro-level
and to observe pattern formation, which is determined by the sum
of agents’ micro-behaviors. In this specific set up, the emergence of
pattern covers a range of different patterns: from branching patterns
to square and hexagonal packing. These patterns are generated
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from overall agents that interact with environments. The negotiation
between agents and the environment informs the lower-level
agents to change their position, which subsequently changes the
connectivity network between other agents. This means that the
individual agents not only sense the whole system behaviors, but
also change the behavior of the whole system. When a new agent is
added to this dynamic system, the agents’ behaviors expand radially
through the embedded agents. The wave-like pattern that represents
the transfer of information among agents through direct interactions
also explores the behavioral-based approaches within the system.
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Fig. 4.2.1: A schematic diagram of
intertwined micro-macro levels.

4.2 Agent-Based Digital Morphogenesis
for Plate Shell Systems

4.2.1 Introduction

Generative agent-based systems enables a better understanding
of micro-level effectiveness when determining the purpose of the
model. The inter-relations among parameters require an investigation
of their effects on interactions at different levels. Extending the
concept of micro-macro effects to the different levels of interaction
enhances the generative agent-based system with micro-generating
mechanisms. Micro-generating mechanisms are responsible for
producing macro-stable states. In this case, macro-effects at one
level become micro-generating modules at higher-levels (Figure
4.2.1). Accordingly, each level is the aggregation of various micro-
generating systems, which gradually determine the purpose of the
model.

This experiment focuses on self-organizing cellular structures
to produce complex surfaces. It investigates the bottom-up principles
of shell structures in which the geometric features of materials are
abstracted into the agents’ morphology. The agent’s morphology
benefits from the aggregation technique that is described as an
essential property of a Complex Adaptive System (CAS) (Holland
1995, pp. 10-12). Accordingly, the morphological structure of the
agent considers the aggregation of different constructor agents. This
aggregation follows the morphological consistency of agents that
are found in interactions both with other agents and environmental
factors. In relation to their interactions, agents are required to adapt
themselves to changing situations, so they can perform the embedded
tasks of assembly. The aggregation of agents generates a macro-
level structure with self-organizing microelements. In addition,
adaptation with the environment correlates macro-level regularities
with different levels of emergent complexities. Moreover, regulating
the collective behaviors of agents relies on the internal mechanisms
within agents and the external influences of the environment.

The preliminary findings of this experiment were published in
Baharlou and Menges (2015).
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4.2.2 Context

Generally, both bottom-up and top-down approaches are widely
applied to construct shell structures. The structural properties of shell
structures are investigated to rationalize a predefined geometry. In
this context, differential geometrical algorithms, such as triangular
meshes, planar quad-lateral meshes (PQ meshes) are developed to
discretize free-form surfaces (Pottmann et al. 2007, p. 671). The
mathematical approaches of discretizing free-form surfaces follow
integrative methods, such as “fabrication aware-design” to consider
fabrication criteria within the rationalization processes (Pottmann
2013). The main challenge in developing shell structures will arise
when designers require an integration of performative aspects and
fabrication principles within the process of rationalizations.

From bottom-up approaches, the free-form surfaces arise
from combinatorial interrelations among material structures and
generated forms. Accordingly, the self-organization of materials
is investigated to construct shell structures using form-finding
techniques. A notable example of this technique is Mannheim
Multihalle by Frei Otto, Carlfried Mutschler, and Ove Arup and
Partners (1975), in which the lattices and cells are modulated to
integrate material behaviors with structural behaviors. The result
of this modulation is a free-form structure, which demonstrates
the importance of utilizing the intrinsic properties of a material.
Encapsulating these intrinsic properties into micro specifications
offers a potential to generate a shell structure at the macro-level.
The micro-macro linkages provide insight into the bottom-up
organization of material elements and their effects on generating
free-form surfaces.

4.2.3 State-Of-Art

An early example of a computational tool for generating structural
geometry is the “eifForm” application, which investigates form
generation from a structural perspective; a triangulated structure
is studied through structural elements and their connectivity
(Shea 2004, p. 93). A recent project in the context of behavioral
organization is “Lamella Flock,” which investigates the generation
of self-organized tectonic structures (Tamke et al. 2010a,b). In this
project, the structural properties of lamella systems are abstracted
into agent systems. The agents in this system are in constant
interactions with each other. Their interactions are utilized through
a sematectonic communication to self-organize agents’ connectivity
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within a three-dimensional space (Tamke et al. 2010a). Then, the
abstracted reciprocal structures are connected to generate a free-form
surface. The self-organization behaviors of this free-form structure
are constrained to the fixed topological mapping. The hybrid
relation between the bottom-up connectivity of cells are coordinated
from the top-down approach of fixed topological connectivity.
The concept of the “lamella flock” is further investigated through
the release of agents’ interrelations from a predefined topological
connectivity. Agents with a dynamic network connectivity are
initiated sequentially within the three-dimensional environment
(Parascho et al. 2013). In this example, communication between
agents, as triangular structures, enables the development of a
triangulated free-form structure, which regulates the micro-level
interplay with macro-level coordination.

4.2.4 Methods

In this experiment, the development of generative agent-based
computational tools relies on VB.Net and IronPython. Both of
these programming languages are accessible within the Rhinoceros
CAD application. The material properties of shell elements are
abstracted into the geometric elements of a polygon, such as nodes
and inter-nodes. The bottom-up organization of a shell structure
requires an aggregating technique to categorize the common
geometric properties as various classes of elements and behaviors.
For each class, the development of specific rules and procedures
is essential to link micro-specifications to macrostructures. The
aggregation process furthers generative agent-based systems at three
different levels: the level of “agent,” the level of “meta-agent,”
and the level of “meta-meta-agent” (Holland 1995, pp. 6-15).
Transitioning from one level to another requires the development of
“IF/THEN” mechanisms and tagging mechanisms. Accordingly, the
simultaneous utilization of these two methods within an inhibitory
mechanism fosters the development of generative agent-based
systems.

4.2.5 Development

Determining agents attributes

Types of agents. This experiment consists of three types of entities
that are determined by their level of aggregation. Aggregation
techniques commence by developing a group of entities with a set of



108
Introduction of Experiments
and Case Studies

common behaviors. The ubiquitous properties between the entities
provide possibilities to form another level of aggregation. For
example, Holland’s (1995, p. 15) classification proposes three levels
of aggregations: “agents,” “meta-agents,” and “meta-meta-agents”
(Figure 4.2.2).

Fig. 4.2.2: A simple representation of inter-
relations among agents, meta-agents, and
meta-meta-agents.

Agent

Meta-Agent Meta-Meta-Agent

Furthermore, this study provides both micro and macro
levels to facilitate aggregation techniques for self-organizing agent
behavior. At each level of aggregation, the interplay between entities
is located at the micro-level, where the new level of aggregation
(meta-agent) arises from interactions among lower-level entities
(agent). In relation to the micro-level structure, the new aggregation
level generates macro-level properties (Figure 4.2.3). The transition
from one level to another level, from micro to macro, requires
different class of behaviors to coordinate the linkage between these
two levels. In the behavior-based context, entities with similar
tasks aggregate with each other to form a new level of entities with
common purposes. Accordingly, the new aggregation types are
manifested from interactions between entities with the same type of
behaviors.

Fig. 4.2.3: A conceptual diagram comparing
micro-macro levels with different level of
aggregation.
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Fig. 4.2.4: Conducting an aggregation
technique via the transition of lower-level
elements to higher-level orders.

These three types of agents are linked together through
micro-generating systems that organize dynamic structures with
different versatilities. Accordingly, the higher-level of aggregation is
generated by lower-level synergies. Interaction between lower-level
elements emerges in higher-level entities (Figure 4.2.4). The agent
and the meta-agent are theoretically interrelated; however, meta-
agents are the emergent properties of agents’ interactions, at least
conceptually. The meta-agents’ morphologies are the result of agent
aggregation. Meta-agents also inherit some characteristic features
from the agents. This inheritance allows meta-agents to benefit
from the agents’ properties and behaviors; moreover, meta-agents
utilize a different class of behaviors to accomplish their own tasks.
Assigning tasks to different levels of aggregation necessitate the
definition of diverse rules and behaviors for agents and meta-agents.
These rules must be in proportion to the morphologies of agents
and meta-agents; otherwise, the entities are incapable of performing
their tasks.

Geometric properties. The aggregation technique provides a method
for constructing the geometric elements of polygonal shapes.
Abstracting polygonal structures requires a study of the geometrical
capacities of each structural element. Polygonal structures consist
of n-gons that are defined by a set of nodes and inter-nodes (Figure
4.2.5). An aggregation of these nodes makes one polygon, in
accordance to the agents and meta-agents, each of these nodes is
abstracted to a subset of agent as a valence.

HexagonSquareTriangle

Fig. 4.2.5: Three types of n-gons with
different configurations of nodes and inter-
nodes.

Generating a polygon is necessary to develop appropriate
rules for collecting sub-agents, which are used to generate an agent
(i.e., a polygon). One essential attribute of this set of rules is the
number of valences at one level of aggregation in which the number
of valences defines the geometrical capacities of agents (Figure
4.2.6). For example, a triangle has three valences, a square has four
valences, and a hexagon has six valences. Sub-agents with similar
behaviors are collected within one type of agent. Each valence
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Fig. 4.2.7: A schematic Diagram of a
valence with five connections.

Fig. 4.2.8: Agent-Agent interactions at
shared valences and available edges.

Fig. 4.2.9: A morphology of one meta-agent.

requires a mechanism to count the number of agents, which limits
agents’ connectivity on the higher-level.

Sub-agent Agent Meta-Agent

Fig. 4.2.6: An aggregation process of a hexagon, which includes sub-agents, agents, and meta-agents.

The number of sub-agents, which are collected within agents,
is a minor parameter without any effect on defining the behavioral
rules. However, this secondary parameter in the micro-level changes
the agents’ morphology. A minor parameter at micro-levels is
converted to a major parameter at macro-levels. Figure 4.2.10
illustrates the importance of the number of sub-agents that impose
the valences connectivity numbers. Considering the mathematical
relationship between these two factors enables aggregating agents to
assemble singular types of meta-agents.

Fig. 4.2.10: Different assemblies of agents and meta- agents.

At another level of aggregation, when the agents are collected
to assemble meta-agents, the inherited properties of sub-agents
determine the degree of agent connectivity at one node, see
Figure 4.2.7. This process follows the agent properties, where the
naked edges of agents modulate the assemblage of meta-agents.
Accordingly, the morphology of a meta-agent is not only related
to the sub-agents’ capacities, it is also related to the availability
of the agent’s edges (Figure 4.2.8). The correlations between
geometrical capacities at the macro-level are interrelated to
secondary parameters at the micro-levels. The secondary parameters
that have minor effects on their aggregation level lead to the
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Fig. 4.2.12: Combination of two different
connections in generating one meta-agent.

fundamental behavioral changes at the higher-level of aggregation
(Figure 4.2.9). Figure 4.2.11 illustrates two setups of sub-agents,
agents, and meta-agents, in which the orders of self-organization
demonstrate the emergence of two different complex surfaces. The
regulated degree of connectivity provides insight into the effect of
valences’ connectivity and edges availabilities.

Fig. 4.2.11: The comparison between two
different capacities of valences.

This process also considers the irregular capacity of valences
through which it increases the level of complexity. Figure 4.2.12
shows this complexity by varying the capacity of valences between
six and seven.

Behavioral properties. The behavioral properties of agents are
organized at both the micro and the macro level. Micro-level
behaviors self-organize the modeling system toward macro-level
behaviors, with the possibility of exhibiting emergent phenomena.
This concept necessitates an organization of behavioral rules in the
micro-macro categorizations. Similar to the concept of homeostasis
in biology, these two levels use self-organization to maintain the
consistency of internal properties, and to adapt overall organism
to the external factors. Figure 4.2.13 schematically represents
a behavioral layer, which considers micro-macro effects when
adapting and regulating external and internal pressures. Each
level considers self-organization procedures. The consistency
of an agent’s morphology is defined within the micro-level of
the generative system, wherein stability arises from the synergy
among elements. The elements with informed tasks apply several
mechanisms to adjust their behaviors. This adjustment is required
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Fig. 4.2.14: Assembly procedures
demonstrate the importance of edges and the
valences.

to assemble elements and to preserve the cohesion of their
accumulation.

Fig. 4.2.13: Indicating micro-macro levels
within a behavioral layer.
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The micro-level behaviors rely on generating mechanisms
that are constrained by specific rules. The implementation of these
constraints requires feedback loops with “IF/THEN” mechanisms.
These mechanisms impose the conditional states of rules to regulate
the behaviors of each element. The micro-level behaviors are in
bilateral relation with the macro-level behaviors. The macro-level
behaviors, which are associated with external factors, indirectly
coordinate micro-behaviors by informing them about outer features.
At the macro-level, elements have the tasks of adapting systems
to external influences and informing microelements of external
stimuli. Accordingly, low-level elements will release appropriate
responses to adjust the system to new external conditions. Hence,
at the micro-level, the cohesive behaviors are elaborated further by
negotiating higher-level signals.

The interrelation between agents and meta-agents corresponds
to the basic attraction and repulsion behaviors that are associated
with direct communication between agents and meta-agents.
Interaction among agents, which are situated at the same level of
aggregation, arranges at a new level as meta-agent. This aggregation
requires topological and topographical networks to coordinate the
agents’ assembly. At the micro-level, agents explore the environment
to find the closest set of agents, and then communicate with the
closest set to provide information about the target set of agents.
The agent’s tag signals the potential for accepting other agents
for aggregation. This potential is associated with examining the
topology of the closest agent for detecting empty valences and naked
edges. Figure 4.2.14 schematically illustrates the relation between
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an active agent and a target agent. Through assembly, two agents
will change the state of the edges from naked sides to inner sides.

The “IF/THEN” mechanisms execute two possible directions
to iterate the aforementioned exploration mechanisms or run
the assembly mechanisms to connect with the selected agent.
Defining the cyclic repetition of these two conditional rules enables
the explorer agents to maintain the level of aggregation while
successfully executing the “IF/THEN” mechanisms that break
the cyclic repetition, and attains a new level of aggregation. The
“IF/THEN” mechanisms aids in the transition from one level to
another by tagging the different states to the agent systems. In this
experiment, these states include active agents, dynamic agents, and
connected agents (Figure 4.2.15).

Connected AgentActive Agent Dynamic Agent Fig. 4.2.15: A schematic representation of
the assembly process.

Active agents wander across the environment to find available
target agents, including unoccupied pair valences with free sides
between them. When an agent finds its target, its tag changes from
“active” to “dynamic.” This process is accompanied by a change in
the course of agents’ actions toward the target agents. Approaching
the targets activate the assembly process by which one mechanism
changes the agents tag from “dynamic” to “connected.” A successful
assembly of connected agents send signals to other agents that, as
target agents, are ready for further assemblies. Accordingly, each of
these states steers the micro-level of agents’ behaviors toward the
desired macrostructures (macro-level of regularities).

Determining a contextual environment or field

The contextual environment or field in this experiment is determined
by three categories: the neutral field, the passive field, and the
active field. Each of these fields is elaborated with the purpose
of investigating the adaptation processes within the macro-level
interactions. The neutral field considers an empty field with an
anchor point (Figure 4.2.16). The anchor point initiates a cluster
of agents to examine the meta-agents’ aggregation while the
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meta-agents execute different mechanisms, such as the hinging and
pivoting mechanisms, to improve the possibility of connectivity by
avoiding self-intersection.

Fig. 4.2.16: Results of the self-assembly
process within an environment with an
anchor position.

After appraising the internal mechanism of aggregation, the
active fields that consist of several attractor points are established
with a three-dimensional vector field. The external forces that are
imposed on the active field modulate the meta-agents’ formations.
The meta-agents include these forces as internal mechanisms to
reflect their morphogenetic movements. Initiating meta-agents
through this field steers their behaviors toward self-organizing and
self-forming complex surfaces. In contrast, the passive field, which
includes surfaces with different curvatures, imposes its structural
complexity on the agents and meta-agents (Figure 4.2.17). The
agents are forced to follow the surface curvatures; however, they
self-organize on the surface without emergent properties. Due to
the macro-level definition of formation, agents only self-organize
their assembly process, and then adjust their behaviors to follow
environmental factors.

Fig. 4.2.17: Assembly processes on target
surfaces (synclastic and anticlastic).
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Determining interaction behaviors or rules

The behavioral mechanisms of agents and meta-agents, which are
developed within the micro and macro behaviors, facilitate internal
stabilizations and external adaptations. The stimulus-response
mechanisms trigger behavioral mechanisms embedded within
agents. Following aggregation behaviors, the stimulus includes
several aspects that are directly related to the agents’ assembly
mechanisms and meta-agents’ formations. In corresponding to
the agents’ assembly, the inhibitory systems direct the agents’
perceptions with several conditional executions. Along with
“IF/THEN” mechanisms, an inhibitory mechanism requires tagging
procedures to revise and update the agents’ conditions. Updating the
agents’ tags provide necessary signals for other agents to indicate
their availability for exploring assembly processes. These two
processes narrow the agents’ responses down to trigger specific
behaviors, which gradually prepare the agents to assemble and form
meta-agents. The formation process at the level of meta-agents is
accompanied by coordination systems that weigh all the responses
to assign rated displacement vectors to every sub-agent, agent, and
meta-agent. Figure 4.2.18 schematically illustrates the process of
assembling behaviors from perceptions to actions.
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Fig. 4.2.18: Assembly behaviors utilized with inhibitory mechanisms.

Determining the inhibitory mechanism

Inhibitory mechanisms are established to facilitate self-organizations
within micro-level structures. The inhibitory mechanism stabilizes
the interrelations among a singular level of aggregation. Establishing
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a different level of micro-behaviors within agents, meta-agents, and
meta-meta-agents relies on micro-constructors, such as valences
and their topological connections. For example, at the level of
agent, the macro-level structure of the meta-agents is related to the
attributes of sub-agents and their connectivity. Accordingly, the
process of inhibiting agents emphasizes the “IF/THEN” mechanism
to check the internal properties, which are derived from attributes
of valences, such as the availability of valences (nodes) and the
possible permutations of connected agents at their adjacent edges
(inter-nodes). This mechanism collects the topological descriptions
of valences and edges to compute the state of the agents (Figure
4.2.19).

Fig. 4.2.19: Calculating permutations and
probabilities for assembly sequences.
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For meta-agents, inhibitory mechanisms have two phases;
first, the phase of checking the current state of all the connected
agents; second, the phase of comparing the evaluated results
with the meta-agents’ tasks. This comparison flags the state of
their constituents’ agents. These two processes are accompanied
with procedures that calculate the assembly permutations and
probabilities. These calculations require the ratio of assembled
agents to the overall meta-agent. In addition to inhibitory
mechanisms, tagging mechanisms dynamically flag agents and
meta-agents with their availability ratio to avoid any wrong
connection and to maintain the level of adaptation within the agent
system. The activation of tagging mechanisms relies on “IF/THEN”
mechanisms to check the state of the agents. Furthermore, the
inhibitory mechanism commences the self-organization of the whole
agent system to exhibit macro-level regularities.
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Determining the coordination mechanism

Coordination systems enable the micro-generating system to
synchronize the motion behaviors of each agent within the
environment. The coordination system calculates displacement
vectors and then transmits the relocation values to the agents’
coordinate systems. In addition, different types of agents have their
own classifiers to manage the agents’ actions within the system. The
coordinating systems that are implemented within all the dynamic
elements of the agents and the meta-agents, seek to synchronize
their behaviors with the identified flows. The coordination of new
positions is associated with parallel computation, which set all
agents on the same stage to compete.

Each agent has equal opportunity to explore the environment.
This equality promotes competition among the agents, as the
search for available valences and edges. Agents that are competing
for the same available position exhibit convergence, which is an
emergent behavior. Agents that converge towards the same target
manifests high correlations among all coordination systems. In
addition, agents’ convergence toward an available target causes
competition among agents, to the extent that one agent updates
its tag to the connected state. This means that the winning agent
is within a certain radial distance of the target. Subsequently, the
state tags of target agents and the winner agents will be changed to
“occupied” and “connected.” Together with this process, when the
target position is engaged with one agent, other competitors change
their course to the next unoccupied target.

Determining the parameterizing mechanism

The parameterization of aggregation techniques is determined
by n-gon structures. In general, parameterization mechanisms
are associated with aggregation types of agent systems. The
number of gons, the topological connectivity of nodes, and the
length of each inter-node within the agent are all described by
parameterizing procedures. Accordingly, nodes and inter-nodes
(gons) are articulated with static and dynamic variables. The
variables that define the n-gons’ connectivity are instantiated with
a number of connections at each node. In the context of graph
theory, the nodes conceptually correspond to valences. The variable
connectivity of each valence elaborates the type of aggregation.

The valences’ attributes define the possible permutations of
agents for assembling the meta-agents. This number is circumscribed
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to the agents’ morphology. The agents’ structure imposes geometric
constraints that are abstracted from material properties. When agents
have a certain number of inter-nodes, then the permutation values
of valences should support the agents’ morphology. For example,
agents with four inter-nodes require valences to consider a value to
support four connections. Otherwise, the meta-agents’ morphology
will deform at the inner angles of n-gons, and it will eventually
collapse. Although, the agents’ inhibitory mechanism will prevent
any drastic deformations by stabilizing the distances and the angles
between the valences of each agent. The geometrical definition of
connectivity among elements also requires consideration.

4.2.6 Discussion

This experiment used coordination systems and inhibitory
mechanisms to organize connectivity among the different types of
agents. The controlling mechanisms within this experiment suggest
a bottom-up shell structure. A complex surface is achievable both by
specifying an exact number of connections at each valence and by
modulating agents through the environment to coordinates agents’
behaviors. In addition, aggregation techniques provide behavioral
classes for each level of aggregation. The interactions among
different levels of aggregation, such as agents and meta-agents
require mechanisms to adjust their behaviors for assembling the
free-form surface. In this sense, approaching stable states within
each group avoids flaws within the assembly process.

Fig. 4.2.20: Agent’s adaptation to the user
intervention: i.e., user can control agents
assembly by fixing individual agents (A/B).

The synchronization within this process leads agent-based
systems towards self-organizing n-gon agents. The adaptation
process advances agents to fit within the solution space, where
macro-regularities determine the purpose of the agents’ assembly.
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This process necessitates the imposition of some order on the agents’
interactions, such as determining the target surface through which
agents only self-organize their behaviors to adequately assemble.
This process can be improved further through users’ interventions to
directly control agents’ exploration, see Figure 4.2.20.
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4.3 Fabricational Morphogenesis
for Panelizing Free-Form Surfaces

4.3.1 Introduction

This experiment investigates the panelization of free-form surfaces
with respect to the constraints of material and fabrication systems.
This investigation follows inclusive computational design to include
fabricational morphogenesis in the process of panelization. In
this experiment, fabricational morphogenesis considers material
systems and fabrication tools. These separate drivers are abstracted
to develop a hyper-dimensional morphospace, which is defined by a
restricted space for negotiating the geometric capacities of a material
and the potential of a fabrication system. The implementation of
the theoretical morphospace within a generative agent-based
system requires inhibitory mechanisms and coordination systems.
This experiment proposes to embed material properties into the
agents’ morphology. This process provides direct participation
of agents in the morphogenetic movements. Accordingly, the
establishment of behavioral negotiations between agents and
fabrication morphospaces modulates the agents’ morphology with
materials and fabrication constraints, while agents are adapted to
environmental factors.

The structure of agents as an individual and a collective system
modulates inclusive design computation. In this sense, regularities
that arise from collective micro-behaviors gradually evolve
within the theoretical morphospaces. The multi-dimensionality
of a morphospace provides a cloud of solutions that cover the
possible solutions of each dimension. This cloud extends with little
tolerance to form a multi-criteria solution space that might include
optimal solutions for each dimension. The extended multi-criteria
optimization space facilitates the agent’s exploration of optimal
solutions. The decision-making units of each agent require this
optimization space to determine optimal solutions simultaneously.
The decision-making unit is also accompanied with inhibitory
mechanisms and coordination systems to regulate the behavioral
decisions of each agent. Moreover, the decision-making units
convert the behavioral objectives of agents into a vector-based
system that map behaviors onto coordinating systems.

The preliminary findings of this experiment were published in
Baharlou and Menges (2013a,b).
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4.3.2 Context

An investigation on the discretization of geometric surfaces provides
several approaches to discretizing surfaces with planar faces,
which consider the fabricational capacities of flat sheet materials
at the early stages of design. These approaches include triangular
meshes, quad mesh algorithms, PQ-mesh algorithms, and planar
hexagonal mesh algorithms (Wang et al. 2008; Wang and Liu
2010), advancing mesh frontiers (Atmosukarto et al. 2001; Zhou
et al. 2002), tangent plane intersection (TPI) (Luping 2001; Troche
2008; Stavric et al. 2010; Stavric and Wiltsche 2011; Manahl et al.
2012), and variational tangent plane intersection (VTPI) (Zimmer
et al. 2013). In the context of fabricational morphogenesis, tangent
plane intersection (TPI) retains the planarity of each component.
Moreover, the complex interactions among these individual
elements work to panelize the target surface. The correlation
between planarity and panelization suggests the use of this method
for integrating material and fabrication systems in the early stages
of design.

Tangent plane intersection algorithms require underlying
mechanisms to distribute point clouds on a surface, then relaxation
mechanisms are required (Turk 1992; Walter et al. 1998; Cutler and
Whiting 2007) to equalize the distances between distributed points.
This process is similar to implementing circle packing algorithms
(Beardon et al. 1994; Höbinger 2009; Schiftner et al. 2009) on a
surface, which provide a basis for triangulating the surface. The
triangulated surface describes the topological connectivity among
the distributed plane geometries on the surface.

Fig. 4.3.1: Conducting the tangent plane
intersection algorithm on synclastic surface
(left image) and anticlastic surface (right
image).

Associating the plane geometry to the circles, whose centers
are tangential to the surface, develops the tangent plane geometry.
The locations of this tangency overlap the vertices of each triangle.
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Accordingly, the triangulation network enables tangential planes to
recognize adjacent planes. This recognition provides a sequential
intersection between the main plane geometry and the surrounding
planes to gradually polygonize the desired plane geometry. Figure
4.3.1 schematically illustrates the tangent plane intersection of one
such plane, where P = {P0, P1, P2, · · · , P5} are the locations of
surrounding tangent planes T P = {T P0, T P1, T P2, · · · ,T P5}.

The TPI benefits from the Dupin duality algorithm (Wang
et al. 2008) to evaluate the intersection vertices of the generated
polygon. In accordance with the Dupin duality, Wang et al. (2008)
stipulates that the intersection vertices need to be located within
a circle, which is obtained from the original coordination of the
three intersecting planes, which are coincident at the location of the
triangle’s vertices. Figure 4.3.2 explains the Dupin duality algorithm
where the intersection among three tangent planes T Pi, T Pi+1, T Pi+2
denote the Ui, where Vi, Vi+1, Vi+2 as the locations of tangent
planes, denote the red circle. The Dupin duality algorithm studies
the relation between the generated circle and the location of Ui.

Fig. 4.3.2: The Dupin duality for three
intersecting planes.
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In a tangent plane intersection (TPI), the planarization
process considers the planarity of a material system, such as
flat sheet materials. This property is then embedded within the
geometric description of the planar surfaces. Other panelization
algorithms, such as the quad-mesh algorithm, utilize planarization
to approximately planarize each quad mesh face with acceptable
tolerance (Liu et al. 2006). The PQ-mesh algorithm, which is
developed using discrete differential geometry, is accompanied with
a fabricational awareness that considers the constructible properties
of fabrication elements (Pottmann 2013).

4.3.3 State-Of-Art

Developing a method that includes material properties and
fabrication tools requires a study of natural morphology, where
the materials and structures evolve and grow together as inclusive
organisms. For example, the plate structures of sea urchins have been
widely studied by biologists, engineers, and architects (Cummings
1985, 1989; Trotter and Koob 1989; Wester 1989; Cummings
1990; Bletzinger and Reitinger 1991; Philippi and Nachtigall 1991;
Telford 1991; Spirov 1993; Ellers 1993; Seilacher and Gishlick
2014) to gain insight into the morphogenetic movements of this
organism, specifically, the growth pattern of plate structures and
the interrelation between different plates, as well as, their relation
to external factors. Developmental approaches use morphogenetic
simulation and materialization to study the organism. Simulation
and modeling of the sea urchin not only considers the knowledge of
the plates’ geometry and structural properties, they also provide a
novel insight into design processes.

Fig. 4.3.3: ICD/ITKE research pavilion
2011; source: ICD/ITKE University of
Stuttgart.
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Fig. 4.3.4: A theoretical morphospace based
on plywood systems and fabrication tools;
source: Institute for Computational Design
and Construction (ICD), University of
Stuttgart.

At the research pavilion ICD/ITKE 2011 (Figure 4.3.3),
the scalability of the sea urchin as a biological role model was
investigated through a consideration of material organization
and fabrication tools. Concurrent with the wave of integrative
architectural design, this investigation attempted to integrate the
geometric properties of flat sheet materials with robotic fabrication
tools. This linear computational integration led to the concept of
a “machinic morphospace” (Schwinn et al. 2012). The concept of
a “machinic morphospace” is used to investigate the limitations
and constraints imposed by material systems and fabrication
tools (Menges 2013). Theoretically, this concept suggests the
development of a solution space (Figure 4.3.4) through an analysis
of the relation between the geometric capacities of plywood systems
and robotic fabrication environments.

4.3.4 Methods

A computational framework was developed with different algorithms
similar to circle-packing and simple two-dimensional Voronoi
diagrams, such as a clipping algorithm1 and the tangent plane
intersection (TPI) algorithm. The fabrication setup consists of a
KUKA KR125/2 robot with a KUKA KPF1-V500V1 turntable along
with a HSD ES 350 spindle. The milling tools, and their limitations,
were calculated for cutting wood with a thickness of 6.5 mm (Figure
4.3.5). This initial setup was utilized to develop an analytical
morphospace that considers material properties and fabricational
limitations within the generative process of panelization. However,
parameterizing this computational framework required the system
to consider various analytical morphospaces from similar material
systems and fabrication tools.

Fig. 4.3.5: The fabrication setup: Milling process of timber plates; source: Institute for Computational Design and Construction (ICD), University of
Stuttgart.

1 The clipping algorithm is an extended version of Rutten’s (2005) algorithm,
where he developed an algorithm for constructing individual two-dimensional
Voronoi cell. For more detail, see Rutten (2005).
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4.3.5 Developments

Determining agent properties

Types of agents. This experiment includes a collection of active
agents that dynamically contribute to the development of polygonal
patterns. The type of agent is limited to the particular system for
evolving planar polygonal faces. Accordingly, conceptualizing a
generative agent-based system via this type of agent requires a
consideration of the multi-agent system. However, the decision-
making process of each agent is independent from other agents,
while its behavior is under the influence of surrounding agents.
Agent behaviors reflect the collection of responses to internal and
external influences. In addition, each agent has predefined tasks that
it must accomplish using predefined rules. These predefined tasks
relate to the geometrical definition of agents, in which dynamic
interactions among agents and the environment are correlated with
agent morphology. This dynamic morphology is established based
on the plane geometry that facilitates evolvements of polygonal
faces from the multi-agent interstitial interactions.

Geometric properties. The geometric description of agent
morphology is related to the material properties of flat sheets that
necessitate the consideration of planar polygonal faces. A planar
polygonal face is determined by a plane geometry circumscribed
with polygon edges. The transition of these principles into an agent’s
morphology relies on the consideration of plane geometry as the
center of the agent system. The geometrical features of agents arise
out of interactions among them. An investigation of the intersections
between different plane geometries is required to understand the
geometric relations among agents. The results of these intersections
generate bounding lines and vertices that demonstrate the geometric
forms of agents. The agents’ geometry, as polygonal faces, are
formed by collecting separated lines that originate from intersections
of one agent and its neighbors. Figure 4.3.6 shows the relationship
between the plane geometry and the polygonal geometry of each
agent. The intersection among the main tangent plane T Pc and other
surrounding planes T P0, T P1, T P2, · · · , T P5 generate polygons Pc
and P0, P1, P2, · · · ,P5, where these agents are tangent to the surface
at locations Vc and V0, V1, V2, · · · , V5.
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Fig. 4.3.7: Different types of polygonal
geometry based on Gaussian curvature.

Fig. 4.3.6: Geometrical definition of agents
at the level of plane geometry and the level
of polygonal geometry.

Agent morphology is structured at the level of the determined
and the level of the undetermined. A determined level is the basis for
an agent’s morphology, which is described through plane geometry.
In contrast, the undetermined level is a dynamic description of the
agent’s geometry, which arises from the interplay among agents.
The undetermined geometry of an agent is designated as a polygonal
base that limits the outer perimeter of the agent. The polygonal base
can take both convex and non-convex forms, such as “bow-ties”
and “butterflies,” which rely on the curvature of the target surface
(Troche 2008). Therefore, the environment, as a target surface with
principal curvatures, indirectly establishes the undetermined level
of an agent’s morphology (Figure 4.3.7). For example, plate-like
agents on a synclastic surface will produce a convex polygonal
structure. The bilateral negotiations between determined and
undetermined states of an agent’s geometry conduct the gestalt of
agents (formation). This gestalt introduces a dynamic manifestation
of the agent’s form through behavioral processes and the interactions
among agents and environment, which are associated with different
embedded tasks within an agent’s structures.

Behavioral properties. In this generative agent-based system,
behavioral characteristics are inherited from a geometrical
constituent of an agent’s morphology, which is associated with
tasks, and determined by fabricational morphogenetic principles.
The fabricational movements of agents are developed through
a theoretical morphospace, which includes material capacities
and fabrication constraints. The abstraction of these two factors
provides simple geometrical descriptions and multi mathematical
constraints that are represented within a theoretical morphospace.
Accordingly, the establishment of an analytical morphospace
requires several “IF/THEN” procedures to examine the state of
agents with the fabricational movement. Any deviations from this
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movement generate a signal to maintain the states of the agents. The
morphogenetic movement of the agents determine the relationship
between agent and agent, at one level, and the relationship between
agent and environment, at another level. In these relationships, agent
behavior is characterized by geometric relations and negotiations
with the environment or field. The geometric relations of agents
consider intersections between plane geometry through the clipping
algorithm (synclastic surfaces) and the tangent plane intersection
(TPI) algorithm (anticlastic surfaces) to generate the vertices of
polygonal faces. In addition to these algorithms, the Dupin duality
provides the development of “IF/THEN” procedures within the
inhibitory mechanism to examine the generated vertices, so they will
fit in the acceptable tolerances. The interstitial interactions of agents
use the adhesion and repulsion behaviors that were developed in the
previous experiments. Figure 4.3.8 illustrates a simulation of these
behaviors on plate-like agents.

Fig. 4.3.8: Agent-Agent interactions; left
image: Adhesion behaviors; right image:
Repulsion behaviors.

In the context of morphodynamics, the agents’ negotiations
with the environment use intrinsic and extrinsic drivers, which also
affect the agent’s gestalt. The environment, as an internal driver,
coordinates the behavioral states of agents on the target surface. The
geometric description of agents is tangent to the surface. Within this
context, the tangency of agents determines the normal of the plane
geometry is parallel to a surface normal vector, which is generated
at the contact coordination. The principal curvatures of the surface
provide internal drivers for tangential agents to coordinate their
morphological behaviors. The external features of the environment
directly change the course of the agents’ actions. The geometrical
and mathematical features of the surface determine the extrinsic
influences over the agents. Extrinsic effects, such as surface edges,
define the field of actions for agents. For example, the inner and outer
loops of the target surface bind agents to the topological definition
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of the surface. In addition, the geometrical behaviors of the agents
follow the topological connectivity of agents, which corresponds to
the topology of the surface. Moreover, the surface edges benefit from
adhesive and repulsive behaviors, which impose forces on the agents
(Figure 4.3.9).

Fig. 4.3.9: Agent-Environment interactions;
left image: Adhesion behaviors; right image:
Repulsion behaviors.

Determining a contextual environment or field

In this generative agent-based system, an environment that is
considered a target surface is a passive field. This field uses agents’
explorations to cover the whole area of the field. The agents control
their distances from other agents to maintain their areas. In the
context of the differential geometry of surfaces, the passive field
is considered a mathematical surface that provides a geometrical
description at any given point. This description could be a normal
vector or principal surface curvatures. The normal vector, which
is perpendicular to the field, defines one agent attribute that is
used to develop a plane geometry. An agent’s behavioral variation
is informed by principal surface curvatures, which also provide
information on the intersections among plate-like agents. Checking
the curvature at an agent’s location on the target surface and
comparing it with neighboring agent curvatures determines the type
of agent morphology (Figure 4.3.10).

Fig. 4.3.10: A conceptual relation among
agents’ morphology and surrounding agents’
curvatures, where K represents Gaussian
curvature.
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Fig. 4.3.11: The intersection of naked
agents with surrounding plate-like agents
T Pa, T Pb, T Pc and the bounding plane BPa.

The topological features of the surface, such as the inner
and outer loop, form the agent’s connectivity. Agents require these
topological features to recalculate their connectivity, when they
are close to the edges. Synchronization between the topological
connectivity of agents and the manifold categorizes interactions
among agents. For example, one group of agents, close to the edge
area, is tagged as naked agents. This group of agents requires an
artificial bounding area to accomplish the intersections between
plate-like agents by enclosing the polygonal face (Figure 4.3.11).
Therefore, the agents’ tags correlate to the types of agent interactions
used for computing their morphological behaviors.

Determining the interaction behaviors or rules

The behavioral structure of this generative agent-based system
focuses on both micro and macro levels of interaction. These
two levels are indicated for specific tasks. At the micro-level, the
interrelations among agents are investigated through behavioral
negotiations over different panelizing algorithms that describe the
geometric relationships between agents. Panelizing algorithms, such
as the clipping algorithm and the tangent plane intersection (TPI)
algorithm, determine the geometric representation of agents that is
continuously transformed within the polygonal structures during the
process of modeling. Figure 4.3.12 illustrates the clipping algorithm.

Fig. 4.3.12: The clipping algorithm; bottom
row represents the sequence of clipping the
base geometry to develop the final form
determined by the agents.

A comparison between these two algorithms reveal similar
methods for computing the vertices of polygon geometry. The
difference between the two is found in their approach to finding
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adjacent agents. The clipping algorithm considers a local approach
to finding adjacent agents. This approach to finding neighboring
agents limits the applicability of the clipping algorithm to synclastic
surfaces. In contrast, the TPI algorithm interplays between local
and global levels. At the global level, triangulation algorithms
determine the topological connectivity of agents. At the local level,
the topological connectivity of agents determines the intersection
between agents to develop their polygonal geometry. In this
sense, the TPI algorithm has comprehensive knowledge of agent
connectivity. This method of finding adjacent agents fosters the
applicability of the TPI algorithm for both synclastic and anticlastic
surfaces.

At the micro-level, both algorithms require controlling
mechanisms to maintain the internal cohesion of the agent’s
morphology. The proper algorithms are embedded in the micro-
level avoiding disruptions to the system’s cohesion. One of these
algorithms is responsible for avoiding self-intersection among
polygonal structures. To accomplish this, the algorithm sorts the
sequence of vertices in a clockwise or counter-clockwise order.
Figure 4.3.13 compares two different orders of intersected points
P0, P1, P2, · · · , P5. Employing the (counter-) clockwise algorithm
alters undesirable agent morphologies–ones with self-intersected
sides–to desired morphologies.

Fig. 4.3.13: The implementation of a
clockwise-ordered algorithm to sort
intersected points.

The enhancement of an agent’s intersections requires the
Dupin duality algorithm, which checks the intersection between
three plane-like agents and controls the cohesion of the agent
morphology. This algorithm determines whether the intersected
vertices are adequate for circumscribing the plane-like agents.
Any failure of the vertices within the agents’ morphology release
predicted behaviors, such as eliminating the agents, applying forces
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to change the agents’ location, or activating different intersection
mechanisms to bound the agents’ morphology (Figure 4.3.14). For
example, in the latter case, the generated circle between agents
might determine an artificial intersection position. By iterating
this mechanism for all of the three plane-like agents the polygonal
morphology will be generated. However, applying this mechanism
will generate tolerances at the shared edges between the agents.
Decreasing this deviation might benefit from finding the average
coordination between shared vertices. In addition, relocating the
original vertex towards the mean average location might change the
planarity of plate-like agents, but it will also decrease the deviation
among the shared edges of agents.

Fig. 4.3.14: The implementation of
the Dupin duality algorithm to control
intersected point U .

At the macro-level, agent behavior relies on the internal and
external influences of the environment. The internal factors regulate
the behaviors at the micro-level with normal vectors and principal
surface curvatures. The normal vectors at the surface are developed
within an algorithm that maintains the tangential properties of the
agents within a specific distance to the target surface. Moreover, the
algorithm retains the normal of the plane geometry, which remains
perpendicular to the surface through identified angles. However,
the external factors that change the agents’ behavior bound the
agents’ activity to the surface. The surface edges affect the agents
at the level of topography and the level of topology to change their
behavior and morphology. The topography of the surface alters the
behavior of agents by driving them away or attracting them to the
surface edges, while the surface topology reconfigures the agents’
connectivity network. Accordingly, tagging mechanisms within the
inhibitory mechanism dynamically update the topological relation
among agents by differentiating the inner agents from the outer
agents or naked agents.
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Determining the inhibitory mechanism

Fabricational morphogenesis requires mechanisms to inhibit the
generative potential of systems toward constructible elements with
specific tools and materials. In relation to the planar polygonal
elements, the constraints of materials and fabrication tools are
investigated to develop a theoretical morphospace. The theoretical
morphospace is structured with the geometrical limitations of the
material system and the related constraints of the robotic fabrication
tools, for example, plywood materials and a set of robotic fabrication
tool (Figure 4.3.15).

Fig. 4.3.15: The robotic milling process: An
interplay between material and fabrication
setups; source: Institute for Computational
Design and Construction (ICD), University
of Stuttgart.

In the context of this experiment, the development of a
theoretical morphospace, which considers these two factors,
is determined by three main constraints: “connection angles,”
“polygonal radii,” and “polygonal internal angles,” see Figure
4.3.16 (Menges 2013, p. 42). Each of these constraints indicate
one dimension of the hyper-dimensional morphospace that can be
followed by other mechanisms to inhibit the intersection problems
and to negotiate the principal curvatures of the free-form surface.

In particular, the fabricational morphogenesis includes
a theoretical morphospace of robotic fabrication. Each of the
constraints relies on the direct relations between geometric
capacities of the materials and robotic fabrication tools. The
plate-like agents interact directly with the target surface and the
robotic fabrication system. In addition, the geometric features of the
materials impose their properties on the fabrication processes. The
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Fig. 4.3.16: Fabrication and material constraints: “Polygon angle,” “polygon radius,” and “connection angle” (Menges 2013); source: Institute for
Computational Design and Construction (ICD), University of Stuttgart.

correlations between plate-like agents are required to address these
constraints to prepare the constructible elements. Accordingly, the
inhibitory mechanism considers the relationships among plate-like
agents, the target surface, and the robotic fabrication.

These mechanisms consist of several “IF/THEN” procedures
to examine the relation between plate-like agents and the target
surface. These conditional procedures coordinate the flow of agents
towards the constructible area of the theoretical morphospace, which
also considers almost all of the material and fabrication conditions.
The establishment of these conditions relies on the development
of an analytical morphospace through an experimental empirical
study of different materials and fabrication setups. Furthermore, the
inhibitory mechanism benefits from tagging procedures to flag the
interrelation among agents and the target surface. For example, the
topological edges of the target surface affect the relationships among
agents by categorizing agents as either outer agents or inner agents.
This categorization requires appropriate procedures to flag each class
of agent for further implementation of intersection mechanisms.
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Fig. 4.3.17: An analysis of surface curvature.

Fig. 4.3.18: The controlling mechanism of
connection angles.

Limiting agent behavior with selected experimental
constraints, such as connection angles, polygonal radii, and
polygonal internal angles, necessitate the development of behavioral
rules that maintain agents within an acceptable range of the
theoretical morphospace. In this experiment, a synclastic surface
with the Gaussian curvature minimum 3.901683797E-7 and
maximum 4.725764133E-7 is investigated to test different
behavioral layers for solving these problems (Figure 4.3.17). If
these constraints are not solved, the morphospace will need to be
redesigned. These layers of action are developed similar to the
mechanisms that are used to avoid obstacles, and will prevent agents
from reaching the impossible area of the morphospace.

[i] Controlling the angle between a plate-like agent and
the neighboring agents require an examination of the angle of
agents with their adjacent agents. Angles that deviate from the
acceptable range require agents to rotate towards the constructible
areas of the morphospace. This process considers two similar
methods for rotating plate-like agents along the shared edges that
are tangential to the surface (Figure 4.3.18) and relocating agents
on the target surface. The latter method relies on the target surface
curvature, in which the tangent agents try to find locations on
the surface that generate appropriate connection angles. In this
sense, the rotation angles must be converted into the transformation
vectors. The generated vector is the output of one behavioral layer,
assembled with other behavioral layers (Figure 4.3.19). However,
the exploration of adequate angles relies on the curvature of target
surface. Agents that are tangential to the surface might not be able
to find the right spot to solve the connection angle problems.

Fig. 4.3.19: The simulation of a connection
angle mechanism; left-top image: The initial
state; left-bottom image: The final result;
right image: The process of approaching to
the appropriate angle.
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[ii] The polygonal radii of the agents rely on the area
of the polygonal face, where the areas of the geometric agents
are calculated at each iteration. When “IF/THEN” mechanisms
determine that the agents’ areas are not within the acceptable range
then, from the longest edge of the polygonal face, the agent’s cell
is divided into two agents. The new generated agents inherit all the
characteristics of their ancestor of the same type (Figure 4.3.20).

Fig. 4.3.20: A simulation of the polygonal
radii mechanism via the agent division
mechanism.

Figure 4.3.21 illustrates the results of applying this
mechanism. It also shows the inheritance among generated
cells and divided cells. The time delay between relaxing agents on
the surface and applying the controlling polygonal radii mechanism
provides enough time to adjust the distances between adjacent
agents. Furthermore, the interaction behaviors among agents, such
as repulsion and attraction behaviors, increase the time-frame
to achieve equilateral states. Integrating a time-frame within the
process of controlling radii facilitates the process of self-organizing
to erect different arrangement of cell divisions.

[iii] During the process of cell division, the topology of agent
connectivity dynamically adjusts itself to the elimination of one
agent and the originating two new agents. The dynamic interrelations
between agents demonstrate that the topological network of the
system can adapt itself to variations in the number of agents. This
adaptability requires a mechanism to control the polygonal internal
angles by changing the number of adjacent agents. There is a direct
relation between the number of agent connections and the polygonal
internal angles. Reducing the number of connections will decrease
the number of angles and vice versa. This description is based on
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Fig. 4.3.21: The analyses of implementing the polygonal radii mechanism.

the equation used to find the internal angle of a regular polygon,
(n−2)× 180◦/n, where n is the number of vertices or sides. Thus,
the number of sides is equivalent to the number of adjacent agents.
This layer of action is under the influence of other mechanisms,
such as primitive layers of repulsion and adhesion behaviors. The
assembly of all the layers of behavior dynamically alters the number
of adjacent connections. Figure 4.3.22 illustrates the application of
all of these behavioral layers in which the generative model tries to
self-organize with one morphospace configuration.

Agents are allocated to the level of topology and the level
of topography. The topological space determines the relationship
between agents together and the topological characteristics of the
contextual environment. These two spaces are mapped through
a coordinate system to facilitate communication between the
topological and topographical agents. At the topological level,
the coordination system adapts agents to a topological definition
of the mathematical surfaces. At the topographical level, the
coordination systems maintain agents within the defined boundary
of the environment.
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Fig. 4.3.23: Overlapping topological and
topographical spaces on tagging procedures.

Fig. 4.3.22: Generative agents-based
design computation for plate-like agents;
top row images: Initiated with five
agents, connection angle [40◦ − 140◦] and
polygonal radii [25 units − 550 units];
bottom row images: Initiated with four
agents, connection angles [30◦ − 150◦] and
polygonal radii [50 units−350 units].

Correlations between these two levels are adjusted by mapping
mechanisms that relate the topology of a manifold to the surface
topography. For example, the relation between the inner and the
outer loops are investigated at the topological level and mapped to
the topographical space. In addition, each agent recognizes adjacent
neighbors. Accordingly, agents determine that they are surrounded
with other agents or that they are located at the edges’ border (Figure
4.3.23). In the topographical space, the classifier system utilizes a
translation mechanism that adopts the topological networks to the
topographical system, which is determined by a free-form surface.

Determining the coordination mechanism

The main agencies of the inclusive design computation, such
as fabricational morphogenetic and environmental factors, are
developed within the coordinating system and the inhibitory
mechanism. The generative agent-based system requires
mechanisms to adapt itself to the gradual changes of inclusive
drivers. The environment, as a target surface, is a parameterized
factor that can be altered dynamically during the design process.
However, different mechanisms are developed to control the range
of possible changes and avoid drastic alterations. For example, the
coordinating system adapts agents to transit from synclastic surfaces
to anticlastic surfaces, which require adaptations to normal vectors
and surface curvatures.
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Fig. 4.3.24: Conducting an inhibitory
mechanism and a coordination system to
interrelate topological connectivity (left-top
image), morphospace or parametric space
(left-bottom image), and Euclidean space
(right image).

Another level of the coordination system relates fabricational
morphogenetic aspects to the inhibitory mechanism. Fabricational
effects of the inclusive design computation are translated into a
theoretical morphospace, which provides analytical procedures
within the inhibitory mechanism. The parameterization of the
theoretical morphospace is correlated with differentiating the
conditional states of “IF/THEN” procedures through which agent
exploration corresponds to the fabricational movement. In this
sense, the development of a theoretical morphospace begins with the
geometrical principle of material organization, which correlates to
constraints within the process of robotic fabrication. The inhibitory
mechanism considers the parametrization of the constraints that
coordinate agent behavior. It is important to note that the underlying
principles of theoretical morphospace are fixed but the articulations
of its dimensions are modulated (Figure 4.3.24). For example,
the possible range of angles between plate structures can be
parameterized to explore different panelization patterns.
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4.3.6 Results and examples of implementation

Example 01: Rob|Arch 2012

Fig. 4.3.25: A schematic illustration
of agent-agent and agent-environment
interactions via two mechanisms of motion
behaviors and geometrical mechanisms.

In Rob|Arch 2012, a generative agent-based design computation
was investigated to blur the distinction between the design intention
(panelizing a free-form surface) and the construction process
(robotic fabrication). The agent design tool benefited from two main
libraries, which dealt with the agents’ morphologies and their motion
behaviors (Figure 4.3.25). In this sense, the agents’ morphology,
which was determined through a geometrical mechanism, relied on
clipping algorithms. This algorithm constrained the design process
to synclastic surfaces. Figure 4.3.26 illustrates the computational
model of the prototype, in which generated plate-like agents are
fabricated for construction.

Fig. 4.3.26: The simulation model of the
prototype.

The goal of this tool was to panelize synclastic surfaces to
generate fabricable components with plywood plates. The agent
design tool was accompanied with fabrication computational tools
to determine the robotic milling paths. Both of these sequences were
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accomplished using the Echinoid1 Add-on, which was developed
for the Grasshopper2 plug-in. Figure 4.3.27 shows the details of the
physical prototype, which was developed using three steps of design:
plate-like agents, tool-paths generating, and fabrication processes.
In the agent design tool, producibility of generated plate-like
structures was evaluated by mechanisms that determine fabrication
and material constraints. If the agent-based system was unable to
find the right configuration, then a redesign or new implementation
of fabrication tools became essential. This modification furthered
the specific criteria for the theoretical morphospace, and the possible
solution space was expanded.

Fig. 4.3.27: Details of the physical
prototype; source: Institute for
Computational Design and Construction
(ICD), University of Stuttgart.

The generative agent-based system was associated with the
motion behavioral mechanism. This mechanism was developed
as a primitive behavior to explore the overlay of topological and
Euclidean environments. Parameterizing the behavioral mechanisms
gave users the ability to alter agent behavior on a target surface.
The agent design tool benefited from the integration of Constrained
Generating Procedures (CGPs) and behavior-based systems. The
developed generative agent-based system was analyzed with
fabrication and material constraints. Figure 4.3.28 represents the
built physical prototype, where the assembled plates are consistent
with computational plate-like agents. This correlation proved
that the generative agent-based system could be used to panelize
surfaces. However, this agent-design tool requires an enhancement

1 see Subsection 4.3.8.
2 Grasshopper is a visual programming interface for Rhinoceros.
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of geometrical mechanisms that can also panelize anticlastic
surfaces.

Fig. 4.3.28: The final physical prototype;
source: Institute for Computational Design
and Construction (ICD), University of
Stuttgart.

Example02: Landesgartenschau Exhibition Hall 2014

Fig. 4.3.29: Landesgartenschau Exhibition
Hall 2014; source: ICD/ITKE/IIGS
University of Stuttgart.

The Landesgartenschau exhibition hall (Figure 4.3.29) was
constructed to demonstrate the potential of integrating design
computation and fabrication processes. Similar to rob|arch
2012, the agent design application, the computational tool that
was developed for this project benefited from the elaboration
of agent-based systems. This computational tool utilized a
tangent plane intersection (TPI) algorithm to panelize a free-
form surface. Moreover, this computation tool implemented a
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machinic morphospace to adjust agent behavior with fabrication
and material constraints. The computational tool was strategically
developed to deal with transitions from synclastic to anticlastic
surface areas. According to Schwinn et al. (2014), a vector field was
used to avoid areas with zero curvatures. This vector field would
lead agents to areas of increasing curvature (Schwinn et al. 2014,
p. 118). Similar to plate-like agents, this generative tool distributed
agents on the target surface and after several iterations the agents
converged towards their relaxation states.

4.3.7 Discussion

Agents’ morphology is determined by the geometrical definition
of the material organization. The agents’ behavior is partially
determined by their geometry. Interactions among agents are
controlled by intersections between two planes. When agents are
surrounded by their neighbors, their interactions are sequentially
described through the clipping algorithm and the tangent plane
intersection (TPI) algorithm from which each agent computes its
intersection with surrounding agents sequentially in a clockwise
or counter clockwise order. The result of these interactions is a set
of points that are collected in the data-structure of the main agent.
From these points, an agent is formed into a convex or non-convex
polygonal cell. The behavioral cell formations are accompanied
with other inclusive design aspects. Agent behavior also follows the
fabrication constraints that are abstracted from specific fabrication
tools. Accordingly, the development of a theoretical morphospace
is related to environmental factors, such as the inner and outer
edges of the surface and the surface principal curvatures. These
parameters are embedded within the surface in which they are
computed from the second derivative of the surface equations. These
parameters are available to agents when they explore the surface.
This environmental information is distinct from the agents, but is
still fully associated with the agents as internal properties.

The theoretical morphospace that defines a possible solution
space requires behavioral mechanisms to lead agents toward
constructible areas. The use of different rules proved the possibility
of developing a behavioral mechanism that can produce fabricable
elements. However, retaining the tangency of an agent to the target
surface demonstrates the limitation of morphospace. Therefore,
releasing agents from the surface is similar to drastically redesigning
the surface to change the possible solution space. This example
demonstrates that the theoretical morphospace only considers
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fabricational morphogenesis, which is required to consider the
effectiveness of the environments. Due to the agents’ dependency on
the environment, it is necessary to consider the environmental layers
in parallel to the morphospace layers.

Expanding the machinic morphospace would require the
utilization of different types of materials or fabrication tools. For
example, the connection angles are directly related to the depth of
the milling tools. Increasing the depth of the milling tools will also
increase the connection angles of the morphospace. The application
of these methods consequently modifies the acceptable range of
connection angles. It is notable that this process is applicable for
two other problems.

4.3.8 Acknowledgments
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workshop. Its authors were Ehsan Baharlou, Tobias Schwinn, and
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4.4 Agent-Based Morphodynamic Generation
of Fibrous System

4.4.1 Introduction

This experiment focuses on an inclusive design computation to
integrate robotic fabrication processes into the early stage of
composite design. In this study, the generative agent-based system
computes the robotic tool-paths to lay fibers on a target surface.
The generative agent-based system is facilitated by three main
agencies: fabricational morphogenesis, environmental factors, and
the performative aspects of design. This experiment investigates a
methodological approach of extracting the principles of natural fiber
composites, for example, the water spider (Argyroneta aquatica),
which makes its home by spinning a silk enclosure underwater. The
main objective of this experiment is to develop a computational
tool for generating the tool-path of fiber placements, which is
applicable for robotic fabrication in the context of architectural
design. The agent-based system is developed to represent the robotic
end-effectors. The structural and mechanical properties of fiber
systems, as well as, the principles of fabricational morphogenesis
were used to generate the robotic tool-paths. This inclusive process
interacts constantly with environmental factors. The environment is
a formwork that requires fibers for stabilization and reinforcement.
Accordingly, the formwork is modulated by agents, whose behavior
is modulated, in turn, by the environment.

The preliminary findings of this experiment were published
in Vasey et al. (2015), which was written for ICD/ITKE research
pavilion 2014-15.

4.4.2 Context

The versatility of fibrous composites (Kuo et al. 1988,
p. 1004; Hensel et al. 2010, p. 86) allows for the integration
of fabrication methods in the early stage of the structural design
process. The advantage of a fiber machinery system, such as robotic
fiber placement, is that it facilitates this integration by advancing
composite fibers to obtain high-performance. The customized
composite is associated with parameters, such as “path geometries,”
“steering orientation angles,” and “stacking sequences,” in which
altering these parameters will significantly change the mechanical
and structural properties of the fiber composite (Van Campen
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et al. 2011, p. 2; Brampton and Kim 2013, p. 1). Developing a
method that considers the performative aspects of customized fiber
composites requires a number of different mechanisms embedded
within a computational tool. The sequential interactions between
laid fibers inform the whole composite in terms of the strengths
and weaknesses of the system. This awareness coordinates path
orientation and the sequence of stacking fibers on previously laid
fibers. Consequently, computational techniques for fiber placement
are critical to integrating the robotic fiber placement with the
performative behaviors of a fiber shell structure.

4.4.3 State-Of-Art

In nature, fiber-forming polymers are limited due to the versatility
and metabolically expensive materials; nevertheless, the designing
potential of composite fibers is almost limitless (Jeronimidis
2000, 2004, 2008). In aerospace and sailing industries, automated
processes of fiber layering enhances fiber composite manufacturing
techniques, via a series of methods, such as Resin Transfer Molding
(RTM), Automated Tape Laying (ATL), and Automated Fibre
Placement (AFP) (Debout et al. 2011, p. 122). In architectural
practice, fiber composites are investigated to develop an adaptive
composite that integrates structural and functional properties
(Doumpioti 2008). In other works, the process of fiber layering
derives from the interaction of structural and ornamental properties
through a swarming algorithm (Snooks 2012a). This algorithm
benefits from informing agents about structural data that is
embedded within the design field (Tsiliakos 2012). In addition,
the performative criteria of solar radiation can enhance the
design performance (Gerber et al. 2014). An Investigation of the
performative aspects of fiber layering without a consideration of
fabricational movements would rely too heavily on assumptions
about the high accuracy of fabrication tools and the homogeneous
properties of standardized materials. Moreover, these assumptions
would be accompanied by the over-design the composite structure
to cover unpredictable nonlinear failures.

4.4.4 Methods

The development of a generative agent-based system relies on
individual-based modeling. The controlling mechanisms of this
tool consider behavior-based robotic fabrication, which reflects
computational agents in physical industrial agents. As a case study,
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ICD/ITKE research pavilion 2014-15 elaborates the development of
this tool with respect to a setup that uses a singular morphospace.
Furthermore, this generative agent-based design computation
benefits from algorithms and tools that were explored in previous
experiments.

4.4.5 Developments

Determining agent properties

Types of agents. In this experiment, individual-based modeling
requires focus on one type of agent to provide insight into the effects
of individual agents on the environment and the built environments.
The agent’s effects include trail paths that are generated from the
agent’s behavior on the environment. The generated trails correlate
to material systems and fabrication tools, which are established by
individual agents. Individual agents integrate two separate systems
that are described by fabricational morphogenesis. Accordingly,
agents correspond to the chosen fabrication system, in this case, a
single industrial robot that lays synthetic fibers on a formwork. The
behavior of the agent, in the virtual world, defines the tool-paths
of the robotic end-effector. This coordination between the virtual
world and the physical world required an abstraction of the material
system, the environment, and the fabrication tool. The agent’s
behavior is determined by all three criteria. The consideration
of these criteria is fostered within a class library of design data.
The initialization of this class provides necessary details about
environmental, material, and fabricational agencies.

In this experiment, the agent communicates with the built
environment, instead of interacting with other agents. The built
environment is developed through interactions between the
material system with the environment. An agent must be equipped
with mechanisms that gather data from the environment, and
then coordinate that data within the fabrication process. Thus,
individual agents require specific perception mechanisms to
exploit the field and to collect data from that field for further
explorations (Figure 4.4.1). Moreover, collaborations between
agents and environments facilitate agent with less computation
to analyze the built environment and to act upon that. In the
context of a behavior-based system, the visioning system senses
the environmental parameters and identify the observed elements
via “IF/THEN” mechanisms. These elements trigger the agent’s
responses. Accordingly, an agent without a memory system observes
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the environment and reacts directly to it using a simple recognition
mechanism.

α = 90°

α = 45°

R = 5 units

Fig. 4.4.1: A schematic diagram of an
agent with a parametrized field vision and a
sensory field tentacle.

Geometric properties. The individual agent comprises of a
collection of data that is represented with a basic geometry of a
vector. This type of agent, without a specific morphology, has the
potential to modulate the environment. Additively layering the agent
trails on the environment modulates the environment. Therefore,
the agent’s morphology has negligible effects on the process
of pattern formations. In the context of agents with negligible
morphology, the emphasis on the interactions among agents
shifts to the interactions between agents and their environment.
In relation to the structure of the environment, the interactions
between an agent and an environment require communications
between agent and environment-like agent. Accordingly, the
behaviors generated by these communications exhibit a behavioral
arrangement that includes fabricational morphogenesis within
the environmental system. The manifested structure provides a
behavioral consideration of morphodynamics, constructed by an
agent with basic morphology.

Sensing properties. Perception mechanisms underlie agent
communication structures, at least, in the context of agent
communication with the environment. These mechanisms are
directly related to conducting environment-like agents. This type
of environment provides individual agents access to embedded
information for further exploitation. The main factors of the
environment as agent are initialized within the class of design data,
which include the target surface, external structural elements, and
anchoring positions. In addition, during the process of simulation,
it provides access to other information, such as laid trail paths.
Perceiving the environmental stimuli is delivered via two perception
mechanisms: a vision field detector and a sensory fixed tentacle
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(Figure 4.4.2). In the context of computational modeling, each of
these detectors is developed to probe information that is embedded
within the environment.

Fig. 4.4.2: The simulation of an agent’s
perception mechanisms.

Anchor Point

Inner Edge

Structural Element

Trail Path

The vision field detectors are developed to control the number
of patches that an agent can exploit. The agent’s displacement
vector identifies the vision direction, which also limits the angle
and depth of vision. This narrows the field of vision to the specific
number of patches. Therefore, limiting the number of patches
facilitates communication between individual agents and patch
systems. The patch systems collect the information regarding laid
trails along with other necessary information, such as the structural
and mechanical properties of the environment. Reducing the number
of patches controls the amount of interactions among agents, the
built environment, and the environment. These limited interactions
avoid unnecessary computations. In addition, this mechanism is
enhanced at the level of topography and the level of topology. At
the topography level, the vision field utilizes a Cartesian distance
calculation, and at the topology level, the surface considers mesh
connectivity to find related patches in the vision field. Figure
4.4.3 illustrates the combination of these two levels to explore
the environment. In this model, the von Neumann neighborhood
algorithm calculates the connectivity among patches.
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α = 90°

α = 45°

Fig. 4.4.3: Overlapping Topological and
Topographical levels to find related patches.

The fixed sensory tentacle is developed to exploit the agent’s
location on the target surface or the formwork. This mechanism
detects any anomalous areas on the formwork, which consist of the
inner and outer edges of the surface (Figure 4.4.4). This mechanism
maintains the presence of an agent within the environment, where
the agent can also benefit from the vision field detector to self-
organize its behaviors. This mechanism calculates the intersection
between the sensory fixed tentacle and the target surface. The
fixed tentacle system is a circular element, where the center is the
agent’s tangential location to the target surface and the radius is
the parameterized value of the agent’s step. In addition, this circle
is mapped onto the plane geometry. The plane is developed by the
tangential location of an agent on the target surface and two vectors.
One vector is a normal on the target surface. The other vector is
the agent’s displacement vector. The collision of this element with
external entities, such as laid fibers, activates the related behaviors.
The accuracy of this mechanism is parameterized with system
tolerances. The agent step size is related to the predefined tolerance
value of the system. Additionally, the length of this sensory system
can be adjusted to satisfy the required sensitivity for searching the
anomalous area within the environment. This mechanism helps the
agent locate its next position on the formwork. The agent explores
the topography of the environment without any affiliation to the
surface topology.
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Fig. 4.4.4: A schematic diagram of
interaction between a sensory fixed tentacle
and the environment anomaly.

Behavioral properties. The behavioral properties of the agent rely
on tasks that orient the agent’s actions. By accomplishing tasks, the
agent is confronted with laying trails on the formwork. The sequence
of a behavioral composite is categorized by reinforcing structural and
mechanical properties (Figure 4.4.5, left) and following a force field
to cover all areas of the formwork (Figure 4.4.5, right). These two
tasks describe two layers of actions upon the behaviors of wandering
and exploring the surface geometry.

Fig. 4.4.5: Two main behaviors; left image:
Reinforcing the structural elements; right
image: Covering the surface target.

In the realm of developing inclusive design computation
tools, the performative criteria, which are defined through a
set of interactions between internal properties and the external
environment requires a translation of internal features to external
factors. Therefore, analyzing the structural properties of a formwork
promotes the externalization of principals of strains and stresses as
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a set of scalar and vector quantities (Figure 4.4.6). These structural
principals explicitly orient the agent’s behaviors. The generated
trails are aligned with these forces to guide structural loads toward
the formwork edges. Gradually, the agent modulates the structural
properties of the system by laying trails on the formwork. Therefore,
the agent is capable of mediating between performative movements
and fabricational morphogenetic principles. Mediating these two
inclusive drivers is accompanied by a consideration of environmental
effectiveness that includes the topological and geometrical features
of the formwork.

Fig. 4.4.6: Embedding structural principals
on the formwork. The example of ICD/ITKE
research pavilion 2014-15.

Determining a contextual environment or field

In this experiment, the environment is an active field, which
considers a manifold as a topological space for an individual agent’s
exploration. The manifold facilitates communication between an
agent and its built environments. This process utilizes stigmergic or
sematectonic communication methods to store information about
the agent’s actions into the topological space. This communication
method allows the agent, which has no memory system, to utilize
the environment as a memory system (Figure 4.4.7).

Fig. 4.4.7: The details of a selected patch
system with stored data that contains the
trails of agents and the external cables.
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Patch systems. Developing a memory system within the
environment benefits from a topological definition of the field.
This process discretizes the field with a topological mesh system,
wherein each mesh face is considered a single patch system (Resnick
1994, p. 34). Abstracting patch systems into a static type of agent
underlies basic communication mechanisms. At each step, the
agent recognizes the value of the patch that it occupies. The patch
stores all the locations of an agent as it moves across the patch to
produce an agent trail. Each position of an agent on the occupied
patch is accompanied with local interactions of the agent with the
environment. All the trails in this way are stored in the field. In
addition to the patch systems, the generated trails suggest another
type of static agent. Each trail demonstrates an agent’s behavior. All
the previous positions occupied by the agent determine agent’s trail
(Figure 4.4.8).

Fig. 4.4.8: Agent-Patch system interactions: The simulation of the agent’s behaviors on the environment and the process of storing its behaviors into the
environment.

Trail systems. Trails also record all indices of the patches that the
agent explores. This process provides further interaction between
trail systems and patch systems. This interaction means that the
geometrical description of one trail, which manifests as a polyline
in this experiment, can dynamically adjust its coordinate points with
the patch systems. Even after the generated trails are smoothened,
this mechanism updates the relationship between patch systems
and trail systems. Both of these systems dynamically update their
relationships. This postulates another level of interaction within
the environment, through which built environments interact with
the patch environments. This process optimizes the embedded
signals within the environment, which affects the behavior of the
individual agent and regulates its behavior. Figure 4.4.9 represents
the process of interactions between trail systems with patch systems.
Furthermore, the assemblage of trails demonstrates how local
interactions between these two systems affect the global results of
individual agent’s behaviors.
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Fig. 4.4.9: Agent’s trail system interactions: The simulation of agent’s behaviors on the environment and the process of extracting previously stored
behaviors from the environment.

Fig. 4.4.10: A gradient system that informs
the agent about the position of the anchor
points.

Anchor systems. In the context of stacking fibers on the formwork,
utilizing anchor points at specific positions, such as the contact
positions of external cables and environment edges, enables agents to
approach the edge, and then continuously lay trails on the formwork.
A gradient patch around each of these anchor points notifies the
agents about the anchor points (Figure 4.4.10). The gradient values
that are stored within the patch systems provide prioritization values.
Agents leave anchor points by applying these values. To put it more
concisely, several mechanisms work together to facilitate corrective
actions at the anchor points. Perception mechanisms allow the agent
to access the anchor point gradients and to prevent edge collision.
Tagging mechanisms flag the agent with the anchor point conditions.
These mechanisms tell the agent to finish one trail and to commence
a new one. After a trail is generated, it is smoothed through post
processing.

Determining interaction behaviors or rules

In this experiment, the agent is a task-oriented entity with a behavior-
based structure that emphasizes the hierarchy of stimuli, processes,
and actions. Accomplishing the task relies on the sequential
processing of the agent that is determined with a behavioral
mechanism to explore the environment. The behavioral method is
simplified into a perception mechanism to exploit an environment
with sensory mechanisms and act upon pre-determined rules. The
pre-determined rules are established to coordinate the behavior of
the agent toward gradually realizing the tasks, which are comparable
with the process of exhibiting emergent phenomena. From this
perspective, achieving the tasks is a complex system that is rooted in
simple rules and behaviors. The agent uses perception mechanisms
to probe the environment. In addition, “IF/THEN” mechanisms
analyze the explored area to trigger appropriate responsive actions,
and later flag the agent to provoke a different set of rules (Figure
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4.4.11). Provoking the agent to release an action is underlain by
predefined rules.

Fig. 4.4.11: The inhibitory mechanisms with
three procedures: Perception, “IF/THEN,”
and Tagging.

C
oo

rd
in

at
io

n 
M

ec
ha

ni
sm

Percepts Actions

B
eh

av
io

ra
l L

ay
er

s

Inhibitory Mechanisms

Ta
gg

in
g 

P
ro

ce
du

re
s

"I
F/

TH
E

N
" 

P
ro

ce
du

re
s

P
er

ce
pt

io
n 

P
ro

ce
du

re
s

Activating predefined rules requires several “IF/THEN”
mechanisms to categorize the explored situations. The evaluation
mechanisms rely on the tasks that define the agent’s behavior.
Each task emphasizes a specific set of “IF/THEN” mechanisms.
Aggregating all of the agents’ behaviors triggers certain responses
that manifest the next states of the agents. These states should
be adjusted to the predefined rules for determining appropriate
actions between all generated response actions. This selective
process prioritizes actions through a set of rules that determine the
appropriate actions. Accordingly, this process utilizes coordination
mechanisms to determine the next state of the agent.

Determining the inhibitory mechanism

Fig. 4.4.12: The details of a tagging
mechanism with two steps: Approaching and
leaving anchor points.

Developing an inhibitory mechanism enables the behavioral system
to adapt agents to unpredictable situations, for example, avoiding
the edges, clustering at the edges, and anchoring at the predefined
positions. The tagging mechanism is utilized to inform agents that
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are approaching the edges or anchors or leaving them altogether
(Figure 4.4.12). In addition, the inhibitory mechanism provides
smooth transition from one set of behaviors to another. This
process follows the development of a parameterizing system that
parameterizes agent behavior and the formwork. Figure 4.4.13
schematically illustrates the relation between fabrication tools and
the formwork. The development of a machinic morphospace that
indirectly determines the design data setup relies on fabrication
tools that lay fibers on the formwork to develop a composite
shell. The correlation between the robotic fabrication tool and the
formwork determines the possible design solution space. In relation
to fabrication tools, it is required to study robotic workspace. The
workspace of the industrial robot determines the reachability of
end-effectors, which provides certain limitations for designing a
formwork. For example, if the designed formwork falls outside the
workspace, it will not be fabricable. Individual agents prevent the
generation robotic tool-paths in these areas. Additionally, the axis
limitations of the robotic setup need further consideration, for which
computational agents only generate applicable traces.

Fig. 4.4.13: The interaction between robot
end-effectors and the formwork.

Determining the coordination mechanism

Aggregating the behaviors of the agent requires a mechanism to
integrate all responses triggered by environmental factors. This
mechanism prioritizes different action layers by ignoring one layer
and emphasizing the others. This prioritization advances the agent’s
behaviors by selecting related responses to perform particular tasks.
In Behavior-Based Robotic (Arkin 1998), responses to different
environmental stimuli are assembled through notational formalisms
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and other methods of coordinating behaviors (Arkin 1998, pp. 104-
119). These methods are accompanied by subsumption-based
robotics that include several layers of task-achieving behaviors built
upon a set of primitive behaviors (Pfeifer and Scheier 2001, pp. 201-
206; Matarić and Michaud 2008). In accordance to notational
formalisms developed by Arkin (1998), each layer of behavior at
a given time t is noted to consider stimuli S, behavioral response
R = B(S), and the relative strength G in which the notational
mechanism is defined through the coordination function C of:

ρ =C(G×B(S)) or ρ =C(G×R) (4.1)

, where:

R =


r1
r2
·
·
·

rn

 , S =


s1
s2
·
·
·

sn

 , G =


g1
g2
·
·
·

gn

 , and B =


β1
β2
·
·
·

βn


(Arkin 1998, pp. 108-111).

The generated coordinative behaviors are combined through
comparative and competitive methods (Arkin 1998, pp. 111-116). In
this experiment, the summation of values as a steering mechanism
(Reynolds 1987, 1999) is employed to release selective actions.

Fig. 4.4.14: The schematic illustration of
behavioral layers with their stimuli S and
responses R.
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A coordination mechanism is developed to follow the two
main tasks of this experiment, reinforcing the structural and
mechanical properties of the formwork and covering the empty area
of the field. The formwork is reinforced by strengthening of the
naked edges. Each of these tasks is layered separately on top of a set
of primitive behaviors. The primitive behaviors and sophisticated
behaviors are described as locomotion, wander, follow external



Agent-Based Morphodynamic Generation
of Fibrous System 157

structures, follow generated trails, follow scalar and vector fields,
avoid open areas, avoid edge areas, and approaching and leaving
the edges. Figure 4.4.14 schematically illustrates the combination of
primitive and sophisticated behaviors within behavioral layers. Each
behavior requires a stimulus to activate a singular response. All of
these behaviors are noted and converted to the vector-based system.
This notation facilitates the task-achieving behaviors, amplified
with strength values. These values can generate gradient systems
informed by the patch systems. The behavior of agent dynamically
adjusts and weights with the embedded scalar values. Additionally,
parameterizing the strength values establishes a mechanism for
users to intensify specific layers or responses, while the users are
capable of ignoring several behaviors and focusing on a single
behavior. Figure 4.4.15 shows the classifier actions that weigh the
responses S with the relative strengths of G to intensify or weaken
a specific behavior. Accordingly, the agent has the potential to
behave as an autonomous agent or a semi-autonomous agent. The
classifier actions determine the applicable range of strength values
for coordinating and combining agent’s behavioral layers.

Actions∑
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Fig. 4.4.15: The schematic illustration of
a coordination mechanism, including the
classifier responses R with relative strengths
G.
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Fig. 4.4.17: The biological role-model, a
water spider; source: ICD/ITKE University
of Stuttgart.

Fig. 4.4.18: The relation between the
industrial robot and the composite shell;
source: ICD/ITKE University of Stuttgart.

4.4.6 Results and example of implementation

ICD/ITKE research pavilion 2014-15

Fig. 4.4.16: The research pavilion 2014-15;
source: ICD/ITKE University of Stuttgart.

The ICD/ITKE research pavilion 2014-15 (Vasey et al. 2015) was
an example of taking inspiration from biological role model, such
as a water spider, to develop fabricator agents that modulate the
environment. Fabricator agents, in interaction with the environment,
erect morphological patterns. Morphological patterns accumulate
local patterns, and then emerge as a global morphology. The global
morphology, which is a modulation of the environment, determines
the built environment of the individual agent. These aspects were
translated into the ICD/ITKE research pavilion 2014-15, while
respecting the biological principles of the water spider (Figure
4.4.17).

The fabricator agent was required to lay fibers on the
inflated membrane, which functioned as the environment. The
environment was an inflated Ethylene tetrafluoroethylene (ETFE)
membrane, wherein the fabricator agent included a Kuka KR
120 R3900 industrial robot, which was situated at the center of
the membrane. These two aspects defined the possible solution
space for the agents to execute allocation tasks, such as design
intentions, fabrication constraints, material behaviors, and structural
and mechanical performances (Figure 4.4.19). Executing these tasks
resulted in a layering of fibers on the shell structure. The overlay of
agent’s traces on the membrane produced a unique emergent fiber
layout (Figure 4.4.18).
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Fig. 4.4.20: The process of laying fibers on
the membrane.

Fig. 4.4.19: Overlapping behavioral layers
on the final fiber layers; source: ICD/ITKE
University of Stuttgart.

The study on fabrication constraints that was done by
ICD/ITKE researchers provided insight about the reachability of the
robotic setup (Figure 4.4.20). Overlapping robotic workspaces with
the membrane shell developed a hyper-dimensional morphospace,
which directly influenced the agent’s behavior for generating robotic
tool-paths. The behavior of the computation agent reflected in the
robot end-effector, which determined the kinematics of industrial
agents. The robot fabrication setup imposed two constraints on
Axis 1 and Axis 6. The angle rotation around Axis 1 limited the
locomotion behavior of the computational agent to 185 degrees.
This means that the robot can generate trails between two anchor
points, which are positioned relative to the maximum 185 degrees.
Axis 6 limits the reachability of the robot to the membrane, in which
the robot workspace forces the membrane to fit within a specific
volume. Figure 4.4.21 illustrates these limitations for the fabrication
setup.

Fig. 4.4.21: The fabrication constraints; left
image: The robot Axis 1 limitation to 185
degrees; right images: The robot Axis 6
limitations; source: ICD/ITKE University of
Stuttgart.

In the research pavilion 2014-15, the industrial agent, as a
physical agent, was associated with different behavioral factors,
such as the ethological construction of the biological role model
(biomimetic), the structural and mechanical properties of the
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membrane and stacked fibers (material), and imposed constraints
of robotic setup (fabrication). Translating these behaviors into a
set of action layers provided through embedded information in
the environment, which was indicated as stimuli to trigger action
behaviors (Figure 4.4.22).

Fig. 4.4.22: Behavioral categorization,
including biomimetic, fabrication, and
environment.
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In addition to overlapping the environment with the robotic
workspace, the environment was converted to discrete units as
patch systems that utilized procedures of dynamically preserving
information. The patch systems were capable of storing different
kinds of information, such as geometrical and numerical data.
However, in the context of this study, the patch systems were
customized for storing mechanical and structural properties,
constraints of the robot setup, opening areas, and a number of laid
fibers on each patch. Additionally, the environment discretization
was associated with the mesh geometry, where the discrete units
were related to mesh faces. Due to the mesh geometry, each patch
provided supports for utilizing geometrical information, such as the
normal vectors at the centroid of patch.

Accessing these properties via a vision field triggered the
agent’s actions through: following the stress principal directions;
perceiving the opening areas and projected robotic constraints;
approaching and leaving the anchor points located at the pavilion
contacting area with the ground; and adjusting distances to the
laid fibers (Figure 4.4.23). Prioritizing these layers of actions
indirectly navigated the agent’s behaviors, for example, increasing
the density of fiber layout at the pavilion opening. Additionally,
this technique enhanced the structural properties of the composite
shell by increasing the activity of agents on the high stress areas.
The notational formalisms of these behaviors provided the high
level of negotiations between the predefined limitations and the user
intentions. Consequently, the user could activate one behavior and
change the magnitude of that behavior, while the other behaviors
could act upon predefined values and rules.
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Fig. 4.4.23: Over-layering fibers in response
to different behavioral layers; source:
ICD/ITKE University of Stuttgart.

4.4.7 Discussion

The stacking sequences defined the fiber placement as an additive
fabrication process. The new sequence of fiber path generation will
be informed by the previous fiber layouts. The process of informing
the system sequentially changes the system behaviors, not only the
current fiber path behavior, but also the next path generation. This
dynamical system relies on the method of encoding the generated
path data into the manifold. The manifold contains stimuli field,
which dynamically changes by storing the generated fiber path at
each iteration. For example, the path generator tool changes the
structural behavior, when it laid one fiber path against the shell
structure. The stimuli field triggers the behavior of the agent in which
the fiber path-generating agent selects a suitable action to execute an
appropriate behavior in response to the induced stimuli. The bilateral
relation between the path-generating agent and the field dynamically
changes the overall state of the system in which the agent’s behaviors
simultaneously modulate the field as the field modulates the agent’s
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behaviors. Finally, the adaptation of fiber layout emerges during the
process not after the process.
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5 Towards Generative Agent-Based
Architectural Design Computation

5.1 Preamble to Generative Agent-Based
Design Computation

Model relations

Introduction to utilizing a formal model. Abstracting the physical
aspects of materials, such as their geometrical definitions or their
fabricational dependencies, eases the transition from natural system
to formal system. In the context of architectural design, formalizing
the semantic contents of forms to computational syntax relies
on mathematical and geometrical descriptions of forms, where
mathematical structures of form are imposed on the materials and
fabrication systems. In contrast, these mathematical structures can
arise from morphogenetic movements. Employing computational
applications, such as CAD1, CAE2, and CAM3 assist designers to
find flaws before materializing developed forms. The linear nature
of this integrated process emphasizes the independent sectors of
building industries in which each section, according to their needs,
develops specific tools and applications for routinizing design tasks.

Relation between the real world and the computational model.
Blurring the lines between design, engineering, and construction
processes underlies the formalization of a computational model,
which consists of independent and interconnected units. Each
individual unit is responsible for adapting the design’s emergence
with the constraints of material and fabrication systems. The virtual
environment reflects the real model of construction at time t, which
enables the micro units to model the process of making at time t +1.
The accompaniment of this transition considers the effectiveness of

1 Computer-Aided Design.
2 Computer-Aided Engineering.
3 Computer-Aided Manufacturing
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F(S)

f(s)

E(S) E(S)

World Agencies
at time t

World Agencies
at time t+1

Model Agencies
at time t

Model Agencies
at time t+1

Fig. 5.1.1: Formal model of inclusive
agencies, where F(s) defines the transition
laws, f (s) is transition algorithms, and E(S)
is the observation for abstraction procedures.
The development of this diagram is adjusted
to the models developed by Holland (2000);
Miller and Page (2007).

environments and limitations within available fabrication tools and
materials. Figure 5.1.1 schematically illustrates the formal model
of this transition from inclusive agencies, such as fabricational
morphogenesis, performative criteria, and environmental effects.
The development of “model relations” enables individual units with
a general awareness of construction processes to integrate abstracted
principles of materials and fabrication systems. The result of this
integration at time t+1 must be consistent with the real construction
processes to identify the effective factors of construction failure.

Transition function. A formal model of integrating material
behaviors and robotic fabrication systems includes both real and
virtual stages. In real world, transition from the state of fabrication
setup at time t to time t + 1 is associated with physical laws from
which the interactions between materials and fabrication tools at
each state can be followed by determined setups. These setups
rely on simple geometrical properties in relation to the fabrication
tools and techniques, which are utilized within the manufacturing
processes. However, in virtual environments, the transition of
computational setups at time t to time t + 1 is based on translation
and the interpretation of physical laws by mathematical algorithms,
such as motion or kinematic equations, which provide a virtual
simulation of fabrication processes.

In the context of virtual manufacturing, CAM applications
enable modeling fabrication setups in which the examination
of the fabrication processes helps to recognize the limitations
of fabrication procedures. In the realm of robotic fabrication,
monitoring the accessibility of the last axis, such as Axis 6 within
industrial robots with six axes, particularly determine the fabrication
space. This robotic workspace is a reachable space for end-effectors,
but even within these space–customized fabrication processes
confront some axis limitations. For example, in the ICD/ITKE
research pavilion 2014-15, evaluating Axis 6 through random
distributed points on the pneumatic formwork determined accessible
areas for specific inverse kinematic (IK) solver. Inaccessible areas
on the formwork determined the repulsion zones, so the agents
consider those areas during the process of virtually determining
robotic tool-paths.

The limitations that arise from the interactions between
material behaviors and fabrication processes determines the rules
and procedures of fabricational morphogenesis. Implementing these
constraints within design processes necessitates analytical methods
to highlight the producible areas of solution space. Accordingly,
the analytical theoretical morphospace facilitates the design space
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Fig. 5.1.3: The formal model of fabrication.
Dashed areas indicate the hyper-dimensional
morphospaces. Dotted lines represent the
equivalence classes, which map the
observation of real fabrication setups.

with two areas of producible and improducible form. The dynamic
modeling of fabrication processes requires “transition functions”
as generative mechanisms to relate producible area in time t and
time t +1. The transition function includes mechanisms to maintain
proper modulation between these two related states (Figure 5.1.2).
Figure 5.1.2 represents the two transition functions of f1(s) and
f2(s), where f1(s) successfully transits the model towards the
producible zone (the dashed area) but f2(s) transits the model to the
non-producible zone.

f1(s)

f2(s)

Model of problems
at time t

Model of problems
at time t+1

Fig. 5.1.2: The transition model of two
generative mechanisms of f1(s) and f2(s).

Equivalence classes or observation. The relationship between the
real and the virtual world significantly depends on determining
the maximum capacities and the effective properties of fabrication
setups. Mapping these aspects from real fabrication processes to
the virtual setup relies on developing theoretical morphospaces. In
theoretical morphospaces, developing geometrical and functional
models of morphology is extensible to developing equivalence
classes of observation that map the geometrical definitions of
forms with their material behaviors and fabrication procedures
onto the hyper-dimensional morphospace. At each state, the
producible areas in the real world is correspondent with the
hyper-dimensional morphospace through which the application of
fabrication procedures to virtual materials generates forms that exists
within the range of the producible areas at the next state. Figure
5.1.3 schematically represents the mapping process of theoretical
morphospaces between real and virtual setups, in which the proper
generative algorithm transits the fabrication process at time t to the
producible areas at time t+1. Neglecting effective factors within the
process of mapping the real world to the virtual construction setup
generates fundamental flaws in the morphospaces. Accordingly, any
faults in developing morphospaces lead a simulated design towards
the improducible area of real fabrication setups.
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Fig. 5.1.4: The customized end-effector for
layering fibers on the membrane; source:
ICD/ITKE University of Stuttgart.

Abstract models

A generative agent-based system represents the integration of basic
principles and features, which exist within materials and robotic
fabrication tools. Mapping these principles onto computational
frameworks is a process of developing an “abstract model,” a model
that only considers a certain part of fabrication processes. Neglecting
the physical and mechanical properties of a material system enables
designers to focus on the geometrical behaviors of a material
system. The geometric definition of raw building components has a
direct relation to the manufacturing settings. Utilizing customized
fabrication methods, such as different types of end-effectors (Figure
5.1.4), provides a vast range of fabrication settings. This range of
settings will enhance insight into the agency of fabrication within the
abstract model. Therefore, empirical experiences of working with
the specific fabrication setup provides a better understanding about
the effectiveness of fabrication parameters. These mathematical
parameters specify the constraints and capabilities of fabrication
settings, which have decisive roles in agents’ behaviors.

The abstraction level of these two agencies determines the
accuracy in modeling behaviors of integrative fabrication processes.
High-level and low-level of abstractions indicate the proximity of
the abstracted model to the real fabrication setup from which a
certain level of abstraction is required to avoid oversimplifications
and complexifications. Abstracting mathematical and geometrical
definitions into a generative algorithm supports the investigation of
a formal model that integrates material and fabrication processes.
The generative models that were experimented in this study only
cover a small part of the construction industry. This study is limited
to robotic fabrication and materials, such as plywood and fibers.
Developing inclusive models that integrate manufacturing conditions
and constraints into design principles provide a generative system
with a cognitive knowledge that is experienced within fabrication
procedures. On a certain level, it might be possible to validate the
output of this abstracted model with the existent empirical data of
tools and materials. In some cases, the validation of the model only
relies on similarities to real construction conditions.

Agent’s agencies

Developing a formal model that is mostly a homomorphism map
between an abstracted model and the process of construction
requires an agent’s agency to interplay between the agencies of
material and fabrication. An agent’s agencies rely on structures
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that differentiate the level of interactions with environments to
accomplish the task. In one case, agents require external information
to achieve their desired goals. While in the other, agents are aware
of the way of solving tasks. This awareness reflects the level of the
agents’ ontology that is embedded within the agents’ data-structure.
The term ontology refers to the comparison between “Classical AI”
and “Modern AI,” where developing a robotic agent requires the
specification of the level of primitive knowledge in interaction to
the real world (Pfeifer and Scheier 2001, p. 117). The low-level of
ontology requires that agents yield the necessary knowledge from
the environment through a series of negotiation and communication
with external systems. The high-level of ontology shifts the focus
of agents from exploiting environments to searching within its
vast embedded knowledge. Embedding or situating abstracted
knowledge about material and fabrication constraints in the agents’
ontology fosters agents’ behaviors with the limitations of material
and fabrication agencies. These processes follow by developing
mechanisms and procedures to narrow the generated outputs down
to the range of possibilities that are producible with the construction
setup. Eventually, this process fosters the definition of agents’
morphology and their associated behavioral systems.

5.2 Developing Agent-Based Models
in Integrative Design

Purpose of models

The development of an explicit model requires clear problems to
find useful solutions. The purpose of modeling an agent’s agencies is
integrating fabrication and material systems within design processes
from the beginning. Consequently, the goal of active agencies is to
shift conventional knowledge-based method of design integrations
to find behavioral methods. The behavioral methods are consistent
with interplaying agents that are embedded with the ontology of
construction processes. This process transits integrating processes
from a high-level of knowledge about construction processes to a
low-level of behaviors from which agents gain an awareness of the
abstracted principles of construction and materials. Fusing these
abstracted agencies onto the basic elements of production, like
building materials and fabrication processes, leads the integration
procedures towards constructible components. Accordingly,
searching for common features of materializing design computation
enables the agencies of material and fabrication systems. This
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Fig. 5.2.1: The schematic illustration of
micro-macro effects with the process of self-
organization. Adapted from De Wolf and
Holvoet (2005).
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Fig. 5.2.2: The correlations between local-
global levels and micro-macro effects.

generalization is proportional to the purpose of modeling from
which it determines the level of amalgamation among inclusive
drivers.

The relationships between micro-levels and macro-levels

Approaching the main purpose of modeling is associated with
micro and macro perspectives that determine a general system
with subsystems and their interrelations. Figure 5.2.1 shows the
relation between micro-behaviors and macro behaviors, where
each level considers self-organization processes to demonstrate
emergent properties. Interrelating subsystems at the micro-level
advance a system with interstitial interactions to produce appropriate
outputs. These outputs mostly result in a macro-level, which is in
a higher-level than their own generator subsystems. In comparison
with design processes, the global design is aligned with a macro-
level of regularities that are merged from a local modulation of
elements and components. Interplaying at the local level combines
micro-behaviors to adjust (regulate) the intended macro-level of
global design. Accordingly, there is direct relationship between
micro-behaviors and specific macro-regularities from which the
global design is divided into local behaviors, instead of generating
the global design from decomposed global knowledge.

Coalescing local behaviors might generate behaviors that
overarch the global criteria. In behavioral strategies, the macro-
regularities form the basic principles for developing rules and
procedures. Translating these rules into micro tasks advances the
model to distribute the purpose of modeling to the constituents’
units. Therefore, the rule-based units are oriented toward the micro
tasks, where completing these tasks enables the model to obtain a
general state adapted to desired orders. Desired orders, which exist
within a cloud of answers, describes the dynamic states that are in
balance with the global design.

The relationships between self-organization and emergence

The cloud of solutions considers multiple answers that are close
to the regularities that designers intend to achieve these orders
within their design. The multi-dimensionality of this space
provides the possibility for generative models narrowing the scope
of the searching space by considering different criteria. As a
result, the generated outcomes must exist within the cloud of
solution, including the purpose of the model; otherwise, there
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is a misinterpretation of the purpose to the elements’ behaviors.
Interrelating the macro interpretation of the purpose to the micro-
behaviors of the elements underlies an understanding about the
rules that organize the emergence of the model. Cross relation
between micro-behaviors in social science and self-organization
in biological systems fosters the design process to describe local
interactions among elements under abstracted manufacturing rules,
such as laying fibers on the formwork. The abstracted rules at local
levels retain the generation of satisfactory states for all elements,
while the overall state of the model is far from representing the
emergent properties. However, correlating the emergence of global
design to the macro-regularities enables a behavioral framework that
allows the micro-behaviors not only to complete their tasks but also
to self-organize the model to exhibit emergent properties (Figure
5.2.2). This process provides additional intervention to increase
regularities within the system, while the elements self-organize their
behaviors to generate solutions within the multi-dimensional space.
Accordingly, interpreting the global design as the purpose of model
requires relating micro-level of self-organization to the macro-level
of regularities.

5.3 Developing Agent-Based Systems:
Mapping Active Agencies
into Agent-Based Systems

5.3.1 Defining agents: Types and attributes

Agent types

Characterizing computational agents with particular behaviors
narrows the agents’ type down to procedures underlying the
morphology of design. In nature, the ethological morphogenesis
defines the level of insects’ involvement within the development of
the natural morphology. In one type, insects apply their bodies to
construct temporary structures, such as boats or bridges, in which
converting their bodies to smart materials allows individual insects
to aggregate into one living structure (Bonabeau 1997, pp. 193–194).
The dynamic structure that emerges from the interrelations among
insects consists of a distributed network of individual elements.
The distributed elements have a global goal while they locally
self-organize via their assembly knowledge. For example, in a
simulation of assembly agents, such as the process of developing
ant bridges, provides procedures for agents to locally evaluate their
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stability. This process regulates the whole system. The evaluation
mechanisms with the agents’ morphology feed the outcomes back
to the individual elements to attain appropriate states towards
exhibiting the global goal.

Insects with knowledge about their degree of competencies
obtain their assembly sequences by interacting locally with other
individuals. Aggregating the competences of insects together fosters
the insects’ community with a collective consciousness that will help
the insects reach communal goals. In this sense, agents with specific
types of morphologies require their structures to adapt to changing
conditions. Maintaining the basis of their morphologies affect
the implementation of a global goal. Therefore, the morphology
of agents is significant in defining the agents’ behaviors. In a
comparative equivalence to integral design materialization, the
correlation between an agent’s morphology and an agent’s behavior
fosters the importance of material systems in fabrication processes.
In plate-like agents, the material systems of each plywood plate
determines the morphology of the agents, while their interactions
under the influence of a geometrical definition interplays with
fabrication processes. The cross relation between fabrication tools
and utilized materials manifest the form of each agent. Eventually
the aggregation of all plate-like agents accomplishes the global goal
of panelizing a target surface.

In the other type, insects employ a natural material to build
their own nest, such as termite mounds and ants nests, in which
the insects use their bodies as patterns to check the constructability
of a nest (Theraulaz 2014, p. 59). Modulating local materials
are associated with insects’ capabilities in utilizing their bodies
as smart fabrication tools that are self-aware of limitations and
capacities. The awareness of potencies indicates constraints that
insects confront to carry, shape, and assemble each piece of their
nests. Interacting insects with available materials exhibit behavioral
developments of nests’ morphology that follow global criteria.
For instance, the fibrous-like agent experiments emphasize this
process where the motion of an individual agent on the formwork
determines the robotic tool-paths. Layering fibers through the
industrial robot arm motions conceptually is the imitation of the
spider silk spinning. However, the accessibility of end-effectors to
the formwork determines the potential areas for agents’ behaviors.
Avoiding inaccessible areas changes the agents’ behaviors. The
development of morphology follows these limitations. Similar to
the insects that utilize their bodies as main patterns for developing
their nests, the workspace of robots indicates one dimension of
the theoretical morphospace that defines the possible morphology
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Fabricational
Morphogenesis

Material Fabrication

Fig. 5.3.1: The schematic illustration of the
fabricational morphogenesis that includes
material agencies and fabrication agencies.

for robotic tool-paths. The amalgamation of all of these tool-paths
fosters the fibrous morphology of the ultimate composite.

The agents’ participation in both types of morphological
movements establishes ethological or behavioral strategies that arise
from involving individual insects with a collective consciousness
to build behavioral structures. The ubiquitous insects have a
great significance in their built environments. According to their
conditions, insects consciously change their roles on establishing
the structural morphology. Extending the unique behaviors of
insects into the development of computational agents furthers the
integration of material and fabrication behaviors into the structure
of agents.

Inclusive design computation: Fabricational morphogenesis

Investigating the built environments of insects fosters the
significance of agents in adapting the process of construction
via mediating between material and fabrication agencies (Figure
5.3.1). Further study on the development of morphology entrenches
the importance of constructional procedures by interrelating
the fabricational morphogenetic principles with functional and
environmental effectiveness. Conceptually, considering these factors
in the design process determines the concept of inclusive design. The
fabricational morphogenesis includes both materials and fabrication
agencies. Establishing these two agencies fosters the basis of
behavioral constructions. In the context of manufacturing processes,
agents’ agencies are developed into two categories of materials and
fabrication tools. Agents that correspond to these agencies change
their focus from the geometrical definitions of material systems to
manufacturing procedures.

Negotiating between these two separated systems, as it
is predicted within the fabricational morphogenesis, begins
with developing theoretical morphospaces to coordinate the
agents’ behaviors indirectly. Hyper-dimensional morphospaces
indicate analytical spaces that examine the constructability of the
simulated morphogenesis from which the theoretical morphospace
might determine courses of actions for agents. Intrinsic and
extrinsic constraints within a theoretical morphospace are effective
in structuring two types of agents. One type emphasizes the
geometrical principles of material systems and the other determines
the effectiveness of manufacturing systems.
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Fabricational morphogenesis: Material agencies

Agents that are imputed to consider geometrical principles consist
of a specific morphology with behavioral attributes. Programming
agents to consider geometrical principles initiates the agents’
morphology from which the agents’ behaviors are mostly inherited.
In addition to the primitive behaviors, such as exploring the
environment with motion behaviors, computational agents with
a morphological body have behavioral layers that are relevant to
the geometrical definitions. The class of geometrical behaviors
determines the interaction among agents. Differentiating the
morphology of agents dynamically produces new bodies. Moreover,
the geometrical behaviors are associated with internal mechanisms
that maintain the agents’ body within the morphological tolerances.
Accordingly, any deviation from the defined tolerances informs the
internal mechanisms to tend towards the morphological stable states,
or homeostasis state of agents.

Fabricational morphogenesis: Fabrication agencies

On the other type of agent, the manufacturing process indicates the
behaviors of agents, which are inseparable form defining agents’
body. Embedding fabrication behaviors in agents’ structures directly
relies on the different types of available fabrication tools. In the
context of robotic fabrications, the mounted industrial robots, i.e.,
KUKA KR125/2 robot, provides necessary information about the
work space, the axes limitations, and the pay loads of the robots.
Numerically controlling the robot’s end-effector establishes specific
performances within the fabrication constraints. Generating codes
that enables robots’ movements indicate the rules and regularities
of modeling a computational agent. Transferring the agency of this
process to the computational agents virtually merges the tool-path
generating of robotic industries with the simulating agents. In the
context of fabrication agencies, agents might reduce the geometrical
definition of the morphology to the behavioral actions of agents.
Neglecting the morphology of the agents corresponds to the fact that
the physical shape of end-effectors is a customized setup suitable for
fabrication processes. However, colliding or impacting the effector
tool with its built environment necessitates a consideration of the
physical shape of tool as the agent’s body from which the agent is
informed with its limitations. This consideration is similar to the
process that occurs in nature in which animals or insects involve
morphologies of their body as comparative factors within the process
of constructing their nests.
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The intelligent behaviors of agents rely on dynamic
interactions with external entities that include other agents, the built
environment, and the initial environment. Agents’ awareness of the
external entities are associated with the perception mechanisms that
observe the surrounding environment. The process of observation
and action is compatible with the agent’s tasks, which correlates
the agents to their milieu. In the context of computational agents,
awareness of the external entities requires a consideration of both the
agents’ morphological definitions and perception mechanisms; the
former is suitable for static environments, such as target surfaces,
where the surface provides necessary geometrical knowledge
to limit the agents’ actions by defining “IF/THEN” behavioral
mechanisms. The latter is capable of coupling with dynamic
environments, which detect any change to the environments and the
built environments through perception mechanisms. Computational
agents with perception mechanisms technically advance agents with
procedures to gain knowledge of the external environments through
sensory mechanisms. Therefore, determining the morphology of
agents relies on the specification of tasks that are required to be
fulfilled within the environment.

5.3.2 Defining environments: Types and significances

The significance of the environment

Situating agents within the environment enables them to explore
the environment to obtain necessary information for solving the
problem. Exploring embedded information in the environment
improves the agents’ behaviors, where agents with a limited
ontology have a certain level of knowledge about their milieu.
Interactions with the environment through a series of rules and
regularities enables the agents to accomplish the defined tasks via
limited competencies and specifications. Coupling agents with
the environment through different mechanisms allows agents to
justify their actions in accordance with environmental stimuli. In
these processes, hidden layers of actions, which evoke the required
responses to the environments maintain higher-level actions towards
the desired intentions.

In the realm of design morphologies, the environment
underlies the surface geometry as a target of design or a formwork
of stacking elements. Extending the environments to overall forms
of design establishes two levels of effectiveness on the morphology.
At one level, the environment participates actively on the design
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processes by modifying the agents’ behaviors, while in the other, the
environment is passively modulated by the agents’ behaviors. Within
the context of morphodynamics, the effectiveness of environment
amends the regulation of inclusive organisms by considering
the environmental factors within the morphogenetic movements.
Including environmental factors in the development of organisms
adjusts functional criteria and fabricational morphogenetic principles
to the natural circumstances that organisms are accustomed.

Environment as a multi-layer space

Relating the environment to the geometrical realm provides access to
the structural and mathematical definitions that are the simulation of
mechanical and structural properties of force flows or the derivatives
of geometric equations. In the context of a mathematical definition,
the environment as a target surface provides further information to
self-organize agents’ behaviors. Extracting this information changes
the agents’ behaviors. For example, the principal curvatures of the
surface provide a gradient transition among different curvatures
from which the environment imposes drastic changes to the agents’
morphology. In plate-like agents, the transition from positive
Gaussian curvature to negative curvature changes the types of
agents’ morphology from convex to concave polygons.

Moreover, simulating force flows on the surface determines
the strain and stress principals that explain the structural behaviors
of the environment. Applying structural behaviors as effective
parameters enriches the agents’ activities with flow diagrams that
might intervene in the steering behaviors of agents on the surface.
Such effective parameters allow agents to locally reinforce the
weak area of the environment, so that a stabilized morphology can
globally emerge. For example, the implementation of this process
informs the fibrous-like agents to gradually reinforce the predefined
beam elements of the compression shell within the ICD/ITKE
research pavilion 2014-15. Imposing environmental effectiveness
on agents enhances the performances of agents by adapting agents’
behaviors to external criteria.

The mathematical definition of an environment provides a
level of topography and a level of topology. Mediating between these
two levels enables agents to benefit from two sets of information.
The topological map informs the agents about the inner and outer
loops that indirectly coordinate relationships between agents and
the environment. The topographical map provides access to the
information that exist within the Euclidean space that enable
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interactions among the agents and the external entities. Overlapping
these two system fosters the behavioral development of agents
through an interplay between the two environments. Mapping this
information onto the agents’ data structure increases an awareness
of their milieus.

Developing an environment with parallel layers, such as
Euclidean and topological layers, enables agents to simultaneously
access a variety of information. Within the context of agent-based
modeling, the contextual environment is not limited to these two
layers. By adding more layers of information, the contextual
environment can be considered a multi-layer of information. This
multi-layer is a new type of environment, an environment that is
informed by a variety of information. Retrieving this information
affects the agents’ behaviors through which it helps agents to
converge towards a focal point of the environment. Developing
this multi-layer of information offers different ways of reading
the existing information about geometrical and mathematical
definition of the environment. Extending these layers of information
to the fabricational morphogenesis facilitates the development of
an analytical layer, which considers information about material
and fabrication constraints. This analytical layer enhances the
multi-layer of information to the extent that mapping agents on
these layers raises the understanding of neighborhood connectivity,
surface topography, and fabricational constructability.

Coalescing these layers onto the environment establishes
a knowledge space from which agents coordinate their actions
towards the cloud of solutions. The effectiveness environment
enables agents with a low-level of ontology (specification) to rely
on their competences and extract information from their interactions
with the environments. From this perspective, the environment
provides necessary knowledge about the problem that allows
agents to extend their competences for finding a proper solution.
It means that the agents require rules and mechanisms to extract
knowledge from environments. These mechanisms advance agents
with the freedom of interacting locally with subproblems. Solving
local problems might lead agents to solve the global problems.
Accordingly, local behaviors correspond to local problems from
which self-organizing these behaviors exhibit emergent behaviors.
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5.3.3 Defining behavioral rules

Transferring behavioral agencies to agent’s behaviors

Behavioral agencies determine that the whole system knows about
the communal behaviors. The transition between a global level of
behaviors to a local level of actions provides agents with layers of
action to foster their decision-making procedures. The assemblage
of these behavioral layers furthers agent-based systems to exhibit
self-organization and emergent behaviors, which might go beyond
the initial purpose of determining global behaviors. Therefore,
global behaviors arise from accumulating sub-layers of actions or
behaviors that are generated through local interactions. Connecting
global behaviors to macro-regularities evokes a state to consider
the purpose of model as a series of tasks. Individual and collective
agents have to perform these tasks within the process of modeling.

Fig. 5.3.2: The schematic diagram for
generating plate-like-agents with one setup
of behaviors. Inspired by Arkin (1998,
p. 119).
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In the context of behavior-based systems, local behaviors
orient agents’ structures toward task achieving mechanisms
consisting of different behavioral layers. Therefore, completing a
task requires an assembly of singular layers, each layer is responsive
to specific stimuli. For example, generating one plate-like agent
requires a consideration of behavioral layers, such as motion
behaviors, geometric behaviors, and morphogenetic behaviors
(Figure 5.3.2). Each of these behaviors needs a stimulus to activate
the behavioral layer. The appropriate responses to internal and
external stimuli relies on algorithms or rules developed within each
layer. In addition, behavioral layers further the generated responses
with coordination systems to properly assemble generated responses.
Therefore, assembling layers of behaviors merges various responses
into a specific action that leads the agents towards performing the
task. Figure 5.3.3 shows the intrinsic and extrinsic activation of
behavioral levels. The inhibitory mechanism restrains the internal
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and external stimuli and the coordination mechanism coordinate the
generated responses to complete the agents’ tasks.
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Behavior 2

Behavior n
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Actions

Extrinsic  Levels
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Inhibitory
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Coordination
Mechanism

Fig. 5.3.3: The extrinsic and intrinsic levels
of behaviors.

Behavioral classification

Behaviors in the generative agent-based system arise from a
combination of intrinsic and extrinsic causes that rely on initial rules
and tasks embedded within the agent’s data structure. Embedding
some beliefs within the agents enables these entities to express their
genuine desires from which agents’ willingness might change the
course of actions towards their beliefs. Internal desires that motivate
agents to perform particular actions reflect the individual autonomy.
Agents are able to independently maintain their internal states,
such as their morphologies. Intrinsic behaviors as homeostatic
behaviors regulate the internal properties to preserve individual
agents’ boundaries in interaction with external entities. Confronting
with external entities requires a classification of the importance of
extrinsic behaviors in two levels of interactions among agents and
the environment.

Behaviors of agent-agent interactions. In the case of agent-agent
interaction, interplay among agents consist of a set of behaviors that
specify the depth and complexity of interactions. The interstitial
behaviors are effective enough to modify the connectivity among
agents through attracting and repelling mechanisms, which also
follow steering behaviors to aggregate agents. In addition, the
complexity of extrinsic behaviors carries more engagements in
the agents’ morphology in which establishing and maintaining
their morphological shapes require geometrical mechanisms. For
instance, interaction among plate-like agents are accompanied with
different algorithms, such as clipping algorithms and tangent plane
intersection (TPI) algorithms. At each time step, these algorithms
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adaptively compute and generate the border cell of each agent
(Figure 5.3.4). However, the maintenance of border cell relies on
intrinsic behaviors, while the development of border cells depends
on extrinsic behaviors.

Fig. 5.3.4: The external and internal levels
of agent-agent interactions for generating a
plate-like-agent.
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Behaviors of agent-environment interactions. In the case of
agent-environment interactions, the environment provides a space
of knowledge for agents, accessing that knowledge is essential
for agents with a low-level of ontology (specification). In the
context of behavior-based systems, agents try to accomplish
their tasks by exploring and extracting embedded knowledge
from the environment. The exposure of an agent’s agency to the
environment has direct impacts on triggering agents to appropriately
act upon environment stimuli. Behaviors that emerge from the
process of perceiving, processing, and acting provide a behavioral
method to accomplish agents’ tasks. The inclusion of agents’
built environments on the environment establishes external storing
mechanisms to keep the computational cost of agent behavior
low. This establishment enables agents to exploit the external
entities with simple mechanisms of wandering including repulsion
and adhesion behaviors. Through these behaviors, agents seek to
regulate their actions in confronting identical elements, such as
surface boundary edges, or any type of environmental anomaly. For
example, the individual fibrous-like agent converges its wandering
on the target formwork to (semi-) autonomously lay fibers on its
own built environments, while extracting the embedded information
determines the course of its behavior on the formwork (Figure
5.3.5).

Fig. 5.3.5: The based behavior definitions
for interacting the fibrous-like agent with the
environment and the laid fibers.
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Primitive and sophisticated behaviors. In the context of behavior-
based systems, particularly subsumption architecture, the generative
agent-based system employs primitive layers of behaviors1 to exploit
the external entities. These primitive layers provide basic behaviors
for agents to interact with other agents and the environment. One
of these primitive behaviors is the locomotion/motion behavior
that relies on applying displacement factors to the current locations
of agents. Determining displacement factors entails interactions
between agents together and the environment in which considering
the significance of each one represents the influence of that
interaction on the agents’ behaviors. The first layer of behavior
is highly effective on approaching agents to the desired goal.
For example, an individual fibrous-like agent wanders across the
formwork based on its motion behaviors. Orienting these actions
towards the agents’ tasks requires stimuli to activate corresponding
layers. Therefore, when the individual agent perceives attractor
or repulsion points, such as external cables or an anomaly on the
formwork, the agent activates attraction or repulsion layers upon the
motion behaviors. After that, a summation of these layers of actions
steers the behaviors of agent.

In the context of multi-agent systems, randomly distributing
agents in the environment increases the probability of finding
appropriate states. The basic locomotion behavior fosters the
distribution of agents to their particular weights and values, which
effectively changes the states of agents. In addition, the state of
agents includes different layers, which are accompanied with
negotiations among agents and the environment. In the sense
of complex adaptive systems, these negotiations tend to adapt
generated complexities with the main purpose of modeling. It means
that applying the primitive behaviors accompanied with constraining
mechanisms might gradually reduce the system volatility with
convergence towards a satisfactory state. Figure 5.3.6 schematically
represents the over layering of sophisticated behaviors on primitive
behaviors. It allows agents to calculate the summation of the
sophisticated behaviors onto the primitive behaviors. Moreover,
within individual agent systems, reducing the number of agents
to one individual agent necessitates the utilization of a suitable
strategy to explore embedded information. In this case, primitive
behaviors focus on exploring the main aspect of the model, which

1 According to Pfeifer and Scheier (2001), the term behavior is defined as
the result of interaction between agents and the environment. In subsumption
architecture, they suggest the use of “layer” or “module” for internal mechanism
instead of “behaviors” or “task-achieving behaviors” that Brooks (1986) applied
in “behavior-based approaches” (Pfeifer and Scheier 2001, pp. 199-200).
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is embedded within the environment, for example, following the
structural elements to enhance the stability of the global geometry.

Fig. 5.3.6: The mechanisms of assembly
sophisticated behaviors onto the primitive
behaviors.
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Comparing the behavioral layers within these two types of
agent-based systems enables an understanding of the significance
of primitive behaviors in driven behaviors. Primitive behaviors at
the low-level layers enable advancing agents’ behaviors by adding
more sophisticated behaviors at higher layers. Extending behavioral
layers with more sophisticated actions necessitate determining a set
of predictive responses to various stimuli. Structuring and applying
these behaviors relies on the purpose of the model.

Fig. 5.3.7: The intervening mechanism of
behaviors by activating and deactivating the
behavioral layers.
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In the behavior-based system, disentangling various behaviors
into basic and advanced layers enables an examination of the
effectiveness of sophisticated layers on arising macro behaviors.
After that, the behavioral weighing mechanisms apply these
assessments to value sophisticated layers. Assembling the rated
layers with primitive behaviors triggers the ultimate response to
the environment. In addition, the intervening mechanism provides
an interface for the designers to activate and deactivate behavioral
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layers. Isolating behavioral layers furthers insight into the behavioral
layers (Figure 5.3.7)

Eventually, utilizing control mechanisms to constrain the
agent’s behaviors enables the most exact determination of the
next displacements of agents. These mechanisms allow the agents
to smoothly reduce their disturbance within their actions. The
significance of constraining mechanisms is evident in Constrained
Generating Procedures (CGPs). In this sense, limiting agents’
behaviors with control mechanisms indicates generative agent-
based systems that constantly constrain generating alternative
behaviors upon primitive behaviors. Therefore, Constrained
Generating Behaviors (CGBs) within agent-based systems integrate
behavior-based systems with the constrained generating approaches.
Coalescing these two methods into agent-based systems assists
steering behaviors to regulate the purpose of modeling.

5.3.4 Defining communication network

The establishment of a generative agent-based system relies on
the integration of two levels of agent-agent and agent-environment
communications. Furthermore, considering elements of the
environment, such as patch systems, as static types of agents
fosters another level of communication between environment-
environment, which suggests a structural similarity of transition
information to agent-agent communications. Concisely, the
interstitial communications among agents within agent-based
systems underlay two methods of direct or indirect contacts. For
instance, the experiments of the assembly agents and the plate-like
agents benefit from direct communication while the fibrous-like
agent, as an individual-based system, was facilitated with indirect
communication.

Direct communications are associated with negotiating one
agent with either an agent or a group of agents. This negotiation
comes with exchanging information by accessing the data structures
of agents. Existing data within the agent’s structure specifies
different classes of data, such as geometric properties, availability
states, spatial coordination systems, and neighborhood connectivity.
Direct access to all existing information within an agent requires
proper procedures to control the level of access for avoiding
unnecessary computations. The network of direct communications
among agents facilitates two methods to find the adjacent agents.
One method considers topological connectivity, such as von
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Fig. 5.3.9: A patch system with embedded
trail paths and the external cable.

Neumann or Moore neighborhoods and the other includes Euclidean
space to find the Cartesian distances between agents. Due to the
need to control the number of interactions, this network connectivity
is accompanied with “IF/THEN” mechanisms to reduce or increase
the number of agents. The simple mechanism that provides this
level of control sorts agents’ relationships by considering agents
within the specific range of radii (Topological connectivity) or
distances (Euclidean space) (Figure 5.3.8). Considering the different
numbers of agents within the connectivity network alters the
number of interactions. This alteration is significantly effective on
generating macro behaviors, through which the inclusion of one or
a group of agents, in the process of interaction, exhibits different
self-organization and emergent patterns.

Fig. 5.3.8: The communication network;
left image: The topological connectivity of
von Neumann neighborhoods with the radius
three; right image: The Euclidean space with
the specific radius.

Indirect communication requires at least one mediator to
transfer data between agents. This method is necessary when the
modeling system consists of only one agent. The individual agent
with low-level of ontology relies on stored data in the environment
or the mediator. However, this method is also applicable for
multi-agent systems. Both the individual agent systems and the
multi-agent systems exploit the environment as a mediator, where
agents, through storing data, modulate the environment for further
exploration. Storing data establishes an indirect link among
agents by adding signals to the environment, or between agents
and their built environments (Figure 5.3.9). In biology, indirect
communication methods, such as sematectonic or stigmergic
communication, enable agent-based systems to access hidden
signals in the environment.

The process of embedding information within the environment
relies on discretization. In relation to the environment dimension,
these small parts are described as pixel or voxel systems from
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which the pixel system is consistent with patch systems. The
geometry of a patch system relies on the method of discretizing
the surface; for example, triangulating the surface generates a
triangular mesh topology. Each mesh face as a patch follows the
topological definition of the mesh system. Storing information in
patch systems enables agents to get embedded information via a
mediator. The mediator allows the transfer of data among agents, the
built environment, and the environments through a transfer protocol.
The protocol includes the topological connectivities among patch
systems and the process of storing and accessing the information.
These processes foster a simple indexing mechanism. The indexing
mechanism assigns a reference number to each patch. The reference
number enables agents to access the stored information. For
example, the ICD/ITKE research pavilion 2014-15, the inflated
formwork represents the environment that is discretized with a
triangular mesh algorithm.

In the indirect communication among agents, the significance
of the environment refers to mediating between stored information
and agents, while these processes reveal a direct contact between
agents and the environment. This method of storing data
utilizes the topological definition of the mesh system to gain
the topological connectivity of a discretized environment. However,
the effectiveness of the environment is independent from the stored
data. Agents that are behaving on the environment detect external
factors by predefined mechanisms. Exploring the environment with
topographical and topological methods advances the perception
mechanisms to interact with external factors.

At the topographical method, direct communications
coordinate the involvement level of agents with external factors,
for example, avoiding the obstacle, attracting to the anchors, and
tangential behaviors to the external structural elements. Recognizing
the relationships between agents and external elements within
Euclidean space enables the agents to coordinate their displacements
factors. In parallel, topological methods determine the topological
connectivity of agents by informing agents about the manifold.
The inner and outer loops restructure the topological connectivity
of the agents while they dynamically redefine the topological
types of agents, such as agents at the edges, corners, or at the
middle. Accordingly, the direct communications of agents with the
environment underlies two parallel systems that have the necessary
information about the environment’s effectiveness.





6 Behavioral Strategies
for Inclusive Design Computation

6.1 Preamble to Behavioral Inclusive
Design Computation

Behavior-based systems versus knowledge-based systems

The determination of knowledge-based systems relies on the global
establishment of hierarchically distributed knowledge among parts
and components of systems. The top-down distribution of knowledge
determines the ultimate specifications for system components. The
accumulation of specified knowledge of components is limited
to results within established boundaries. One circumstance of
this hierarchical organization of knowledge is system rigidity
to unknown situations, for instance, “perpetual novelty”1 of
the environment. Therefore, constraining systems with limited
knowledge and with controlled inputs excludes systems from
adaptations beyond the determined knowledge. In this sense,
knowledge-based systems are extremely volatile to undetermined
areas of problem domains. Exploring these problem domains with
limited knowledge is narrowed to exploit only predefined solution
spaces. Therefore, knowledge-based systems provide overall
knowledge about the problem domain through which it explores
parts of problem domains that systems have complete domination
on those.

Accordingly, knowledge-based systems resist any heuristic
methods of generating new solutions, which are consequently
located outside of dominated areas. In confrontation with perpetual
novelty, systems are required to generate alternatives to further their
adaptation with problem domains. On the contrary, behavior-based
systems rely on developing components with competencies. These
competencies further components to perform as individual units

1 see Holland (1995, p. 35); Holland (2010, p. 23).
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within the lower-level of systems. Each unit, based on its structured
capability, interacts with other units and its relevant framework to
trigger micro-behaviors. Coalescing these micro-behaviors advances
the system to assemble macro-regularities. Generating high-level
regularities is some developments of heuristic methods that underlies
the microelement competencies. When developments of heuristic
methods are not comparable with macro-regularities, then revising
the units’ competencies is required to narrow the generated macro
behaviors down to the range of acceptable macro-regularities.
Indirect linkages between lower-level competencies and higher-level
behaviors entails intangible analysis that correct emerging behaviors
out of microelements.

Heuristic models versus analytical models

In the context of soft systems, applying a heuristic method
to develop a generative system enables an exploration of the
solution space via behavioral mechanisms to find adequate
answers. Therefore, the exploration of solution space relies on
defining the units’ competencies and applying them. Implementing
these competencies as generative mechanisms in units provides
proportional outcomes to the explored inputs. The generated
approaches via heuristic algorithms reflect the experimental
methods that produce non-optimal alternatives. The alternatives
that provide satisfactory explanations require some mechanisms
to narrow generated possibilities down to an acceptable range
of aspects. The establishment of bottom-up processes within
the heuristic methods controls generative systems with internal
mechanisms. These controlling mechanisms underlay rule-based
systems that adopt micro-behaviors to the general regularities
of the model. Hence, the model is accompanied with analytical
mechanisms to examine the state of generated possibilities with
specific criteria that is developed by modelers.

For inclusive organisms within the context of morphodynamics,
the rules are abstracted from functional factors, fabricational
morphogenetic constraints, and environmental effectiveness. The
generative agent-based system that abstracts the inclusive drivers
to develop agents’ systems requires a computational framework
to model interconnections among these agencies via behavioral
strategies. These interconnections are convoluted networks of
different properties and capacities, derived from the geometrical
aspects of material systems and fabrication processes. Moreover,
the whole system is an attempt to adapt fabricational movements to
performative criteria and environmental factors.
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Correlations among inclusive agencies enables the adaptation
of morphogenetic movements with the intrinsic and extrinsic
properties of environmental effectiveness and other performative
criteria. Translating these factors requires a structuring of agent
systems with different attributes. These attributes could include
geometric specificity (agents’ morphology), perception mechanisms,
the environment, behavioral rules, and communication procedures.
In this sense, each aspect of the inclusive design is covered with
one of these structures. For example, the geometrical definition of
material system particularly contributes on the agents’ morphology,
while the geometric relationships determine behavioral fabrication
rules and procedures among agents.

6.2 The Development of Generating
Agent-Based Systems

Generative explanandum

The generative agent-based system is an explanatory model that
attempts to explain macro-regularities. Macro-regularities emerge
from the interactions among microelements that include different
features and properties. Each feature characterizes agents with
specific behaviors, from which utilizing different features develops
different characters for the same type of agents. In “generative
explanandum,”1 combining different microelements as agents with
various characters can demonstrate emergent properties that might
explain the macro-regularities.

With plate-like agents, macro-regularities consider panelizing
a target surface, such as synclastic surfaces in which micro-
behaviors follow morphogenetic constraints, polygonal radii for
example. Distributing an initial set of plate-like agents is expected
to perform a particular task, which are allocated within the agents’
rules at the lower-level of system. In the knowledge-based system,
panelizing a surface with a specific size of elements determines
the optimum number of plates for panelizing the target surface.
On the contrary, agents with a schematic knowledge of the macro-
regularities execute the micro process of cell division. After several
iterations, the cell division process regulates the population of agents
while it maintains the size of polygonal radii.

Accomplishing macro-regularities only relies on the precise
determination of micro-behaviors. The comparison between

1 This term borrowed from “macroscopic explanandum” (Epstein 2006, p. 6).
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simulated results and empirical data provides insight into the main
generative parameters and constraining procedures. Allocating these
parameters within a generative agent-based system demonstrates
the importance of a behavioral framework in producing different
possibilities under the same macro-regularities. The emergence of
these possibilities demonstrates the existence of multiple solutions in
which optimum solutions might exist within the generated solutions.
In detail, panelizing a target surface with a specific area of a and
the radii of r for each component, might approximately consider
n components. It can be obtained through a simple calculation of
n = c× (a/r), while c denotes the constant values of complexity of
the surface. This indicates the approximate number of components
while considering the value of c, which determines the exact
number of panels. In the behavioral framework, however, the results
converge towards the optimum calculated values.

Generative ABM: Definition

A behavioral framework, which is a generative exploration method,
includes two types of agent systems. One in which the agent systems
are performing individually (individual-based systems), and another
where the agents are collectively (multi-agent systems). Explaining
the performance of these systems requires a consideration of their
methods of interaction – both the individual and the collective. In
individual-based systems, complex interplays between an individual
agent and the relevant environment highlight the importance of the
environment and the way that an agent can modulate the environment
and the built environments. In this case, the generative tool explores
the development of an additive process to build a structure, while it
considers the environmental effectiveness onto the agent’s behaviors.

In multi-agent systems, interactions between agents produce
a form of collective consciousness. For example, the assembly
behaviors of agents emerge in generating a complex surface,
from which clustering active agents around the assembled group
represents adaptive behaviors with a specific level of complexity.
This level of adaptation arises from a collective collaboration
among generative agents. Utilizing the generative process in the
context of integrative design computation provides a structure
for a developmental morphospace. This developmental approach
requires heuristic methods that are accompanied with material
and fabrication constraints. Developing an analytical morphospace
fosters the environment with producible areas as a possible solution
space. The agents’ behaviors are constrained to emerge in the
developed solution spaces where generating macropatterns might be
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Fig. 6.2.1: The design data for constraining
the agent’s behaviors.

comparable to actual fabrication setups. Accordingly, exploring this
fabricable space generates complex constructible geometries.

Constrained generating behaviors (CGBs)

Extending Constrained Generating Procedures (CGPs) to the agent-
based system advances the agents data structures with mechanisms
and procedures. In this case, agents require mechanisms to generate
possibilities and procedures to constrain them. The generation of
possibilities relies on triggering the perception mechanisms of
agents through which rule-based agents analyze the driving factors
with internal criteria, and then release the appropriate signals to the
actuators. This process generates a wide variety of behaviors that
selectively enable layers of actions. Generating behaviors blindly
explores the problem domains, wandering without specific purpose.
Therefore, similar to the CGPs, the generative mechanisms require
constraining procedures, such as an analytical morphospace to
improve the agents’ behavior. Enhancing this process requires a
balance between exploration mechanisms and analytical techniques
to narrow the problem domain down to the possible solution spaces.

In particular, an agent-based system with Constrained
Generating Behaviors (CGBs) utilizes the exploration mechanisms,
which rely on a different level of interactions between agents
together and the contextual environment. This process includes
locomotion behaviors that enables the exploration of the
environments considering solution spaces. Applying the constraining
mechanisms adjusts the agents’ exploitation to some rules. The
outcome of this generative process is a set of adaptive behaviors. For
example, fibrous-like agents generate robotic fabrication tool-paths
by mapping their trail tracks, as constrained behavioral outputs, on
the formwork. Constraining the agents’ behaviors on the formwork
relies on sequential stacking fibers (material agency), as well as,
the velocity and reachability of the robotic arm to the formwork
(fabrication agency). In addition, Figure 6.2.1 illustrates another
level of constraining mechanisms that include the design data, such
as external beams and opening areas.

Significance of micro-levels in macro-levels

Similar to Constrained Generating Procedures (CGPs), the
generative agent-based system is expected to benefit from contriving
micro CGPs within agents’ structure. A network of micro-generators
improves the computational framework by merging the framework



192
Behavioral Strategies
for Inclusive Design Computation

Fig. 6.2.2: The process of constraining the
connection angles, where t1, t2, · · · , and tn
indicate the time steps for constraining the
generated connection angles.

with a macro generative system (CGP). The macro CGPs employ
the interrelated systems as a system-of-system to generate a
complex inclusive system. Aligning micro-generators with agent
systems emphasizes the significance of constraining the generating
behaviors. In each iteration, outcomes of the micro interactions
are assessed with the micro limitations. In the next iteration, the
differences between the micro constraints are looped back to the
generative mechanisms to reduce deviations to the acceptable range
of defined criteria. Repeating this process leads agents towards
the adequate range of limitations that are linked with the macro-
regularities. Figure 6.2.2 illustrates the simulation of controlling
connection angles, where the generative mechanism produces new
locations for plate-like agents and the micro-constraints try to adopt
the connection angles within the acceptable ranges.

Consequently, the macro-regularities determine the general
boundary of global criteria to distribute the micro tasks to the
agent systems. The distributed macropatterns indirectly establish a
link between the agent’s behavior and the global behavior of the
system. The comparison between emerged global behaviors and the
actual macropattern clearly indicates the properly engineering of
micro-behaviors. The generating micro-behaviors are the rule-based
methods that are task-oriented approaches. The micro-generators
compute the outcomes via defined rules. If the generated micro-
behaviors were unsatisfying, then it is required to consider changing
the rules or the input values. Approaching the behavioral norms
ensures the accuracy of the rules and the input values. In this case,
the generative model is applicable for further investigations. The
interplay between generative and controlling parameters exhibits
emergent phenomena comparable to macro-regularities.

6.3 Controlling Systems’ Behaviors

Global and local levels of interaction

The behaviors of a system emphasize the importance of interaction
mechanisms that couple the system with the external environment
and the internal allocated tasks. Accordingly, the interaction
procedures indicate that the behavior is the consequence of
accumulating various actions and reactions in response to internal
and external factors. In the context of agent-based systems, agents
are in constant interaction with adjacent agents and the environment.
In the sense of interaction with the environment, indication of
both local and global interactions provide insight into the agents’
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awareness of the surrounding system. Accordingly, agents with a
certain level of environmental awareness will benefit from both
local and global interactions to accomplish allocated tasks or design
intentions. Utilizing agents to access the global level subjects to
preclude agents from the imposition of top-down intentions, and
to demonstrate the agents’ competences for task accomplishing.
Figure 6.3.1 schematically illustrates the global-local interactions, in
which the global behavior adjusts the tangential normal of plate-like
agents, when the local behavior constrains the polygonal radii.

GlobalLocal
detect-polygonal

radii

trigger-polygonal 
division

activate-division 
behavior

detect-tangential
 normal 

trigger-tangential
adaptation

activate-tangential
behavior

Fig. 6.3.1: The global-local effects on the
plate-like agents behaviors.

At the local level, communicating and interacting with
the environment require processes to integrate the environmental
effectiveness into the system. The environmental factors include all
necessary information that is effective in generating and triggering
micro-behaviors. In addition, micro-behaviors depend on low-level
communications among agents that might change the structure and
behavior of the agents. In the bottom-up approach, achieving macro-
regularities entirely relies on a proper understanding of generating
micro-behaviors and aggregating them. However, combining the
top-down and bottom-up approaches might benefit from informing
agents about the global environment through which insight into the
main features of the global systems will further agents to steer their
behaviors towards the macro-regularities.
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Fig. 6.3.2: The global-local effects on the
plate-like agents behaviors.
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For example, utilizing tangent plane intersection to
dynamically compute the morphology of plate-like agents relies on
triangulation algorithms, which require global knowledge about the
distribution of agents’ locations in the environment. Determining
the topological connectivity via Delaunay triangulation algorithms
requires a consideration of the relation of each agent’s location
with the whole set of agents. Therefore, this algorithm globally
determines the local connectivity of each agent with adjacent
agents (Figure 6.3.2). Regardless of informing agents with global
systems, agents’ system behaviors consider this information, global
and local information, with different layers of actions. Each layer
determines their effectiveness in the final actions, for example,
generating the agents’ border cells in the case of plate-like agents.
Establishing system behaviors with the concept of subsumption
architecture advances agents’ actions through parameterizing the
agents’ behaviors. In this sense, each layer responds to the specific
stimulus through behavioral rules that correspond to the type of
interactions with the external entities.

Development of internal and external mechanisms

The bottom-up strategies for organizing the internal structure of
agents allows the consideration of a specific approach to solving
problems, which exist in the problem domain. This method reflects
on a set of behavioral procedures to complete particular tasks,
such as maintaining the polygonal connection angles in the case
of plate-like agents. Considering these behaviors in behavioral
layers extends the system behaviors to behave on the problem
domain. Accordingly, solving problems with behavioral procedures
relies on the rules that generate responses to the task of facing
certain problems. Responsive rules in interaction with the problem
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Fig. 6.3.3: A theoretical morphospace with
two variable polygonal radii and connection
angles. The agent behaves within the
acceptable area, and it requires mechanism
to adjust its behaviors at the critical point c
to remain in the boundary. Inspired by Meyer
and Guillot (1991, p. 2) and Pfeifer and
Scheier (2001, p. 93).

domain converges agents toward the possible solution space. This
behavioral convergence demonstrates aggregating agents around
optimal solutions as a cloud of answers with diverse concentrations.
Each dimension of this solution space emphasizes a particular
combination of behavioral parameters in which the rule-based
agents attain combinations in interaction with the problem domain.
In contrast, knowledge-based approaches determine systems that
are already aware of the problem, and solving the problem is
accompanied by searching the predefined knowledge structures.

In fabrication processes, problems are derived from correlating
material systems with fabrication tools, when designers intend to
materialize their generated forms. Therefore, the process of
materialization is the main problem within design processes. From
the realm of CGPs, constraining the mathematically generated
possibilities of forms fosters a synergy between material systems
and fabrication tools. In morphologic studies, the coexistence
of extrinsic and intrinsic constraints develops a theoretical
morphospace that analyzes the simulated morphogenesis. In
this sense, the generative agent-based design computation requires
a maintenance of agents’ behaviors within this hyper-dimensional
morphospace. Figure 6.3.3 illustrates the developed morphospace
for plate-like agents to retain agents’ connection angles and their
polygonal radii. The development of adaptive agents necessitates a
consideration of the morphospace’s constraints as driving behaviors.
Therefore, conducting a theoretical morphospace that participates
in navigating agents’ behaviors, requires a consideration of the
intrinsic constraints and extrinsic constraints of the theoretical
morphospace. The extrinsic constraints that consider geometrical
rules (material systems) and physical laws (fabrication tools) enables
designers to consider the materialization process within the concept
of a machinic morphospace. That insists on the morphological
developments of forms, such as the generative process of formation
that is derived from mathematical and evolutionary definition of
organisms1.

The evolutionary pathways guide the agent’s behavior toward
the existent area of the organisms in which the fabricational
noises, as effective factors, justify the morphogenetic movements.
Developing a computational tool for employing behavioral
strategies relies on the methods of elaborating rules for considering
the fabricational noises within the generative design processes. Each
of these rules specifies inconsistencies between selected material
systems and fabrication tools. Isolating each divergence enables the

1 Historical or phylogenetic factors within the Morphodynamics (Seilacher 1991a).
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development of specific rules for certain problems. Validating each
rule manifests an action that leads agents toward the acceptable
ranges of the sub problem domain. However, the total validation of
system behaviors requires an aggregation of all behavioral layers
to remedy the overall problems. The consideration of fabricational
noises with multi-layers of actions results in a fabricable element.

6.4 Internal and External Behavioral Mechanisms

In the context of fabricational noise, the multi-layers of actions that
consider the extrinsic and intrinsic constraints of the theoretical
morphospace rely on generative mechanisms to mathematically
simulate forms and structures. At the same time, the generated
possibilities are limited to the extrinsic and intrinsic constraints. For
example, in generative plate-like agents, the extrinsic constraints
express the geometry of plate-like agents by inheriting geometrical
properties from plywood materials (material agencies) and the
method of their interactions is related to the fabrication and
assembly processes (fabrication agencies). However, the process of
developing agents’ morphology commences with basis geometries,
such as the plane geometry within the example of plate-like agents
that identifies the intrinsic constraints of a theoretical morphospace.
This morphological constraint contributes as a developmental layer
within the generative system.

Since the behavior of the agents relies on interaction with
the external entities, the mechanisms that deal with this level of
interaction determine the external level of behavioral mechanisms.
On the other hand, the generating procedures that deal with the
intrinsic features of agents establish the internal level of behavioral
mechanisms. This means that, material agencies are effective in
determining the geometric definition of agents’ morphology while
the interrelations among agents relies on fabrication agencies. Both
of these agencies, as external mechanisms, are under the influence
of internal mechanisms. The generative process of developing form
correlates significantly with these agencies through their geometric
and functional mediation. In addition, ignoring the significance
of the environment in generating internal and external behaviors
interferes with the process of stabilizing agents’ attributes, such as
derived morphologies by agents. Therefore, the environment not
only participates in coursing external behaviors, but also is involved
in the formation of internal properties, such as agents’ morphology.



Internal and External Behavioral Mechanisms 197

For example, generating cells with the clipping algorithm
is only applicable for synclastic type of surfaces. Neglecting the
surface curvature as intrinsic criteria fails computational tools to
properly generate cells on doubly curved surfaces. This means
that the clipping algorithm is only reliable for generating convex
polygons, and that altering the surface curvature begins to shift
the convex polygonal types to concave polygons. Moreover, the
environment facilitates agents’ communications with stored data,
other agents, and built environments. This inclusion in environment
modifies agents’ performances for constructing built environments.
It is obvious that stacking fibers on the formwork is indirectly
coordinated by external entities. The agents’ locomotion behaviors
represent aggregating reactions to various external stimuli. Without
attending to the external factor, agents only wander across the
environment, only employing internal parameters. Figure 6.4.1
illustrates the translation of external behaviors into sophisticated
behaviors that are overlaid on the locomotion behaviors.

Environmental-Behavior

Performative-Behavior

Morphogenetic-Behavior

Locomotion Behavior

Anchor BAnchor A

Fig. 6.4.1: The sophisticated behavioral
layers, which navigate the agent’s behavior
from one anchor point to the other anchor
point.

In the context of morphodynamics, synthesizing both
material and fabrication agencies into fabricational morphogenesis
considers the environmental effectiveness, such as principals surface
curvatures. Agents’ interactions with the relevant environment
also require adapting their behaviors to functional criteria, such as
structural performance. Although the environment is an external
element, access to the embedded information might internally inform
agents’ morphology with different possibilities. For example, with
the plate-like agents, different types of polygonal geometries are
influenced by the principal surface curvatures. Hence, the external
agency, like the environment, contributes significantly to the internal
properties of an agent. The bilateral relation between internal and
external levels also effect the micro-behaviors of agent systems.
Changing external behaviors modulates the internal behaviors of
the agents. For instance, interaction between two plate-like agents
slightly changes the overall arrangement of the collective agents that
might emerge in different panelization. Eventually, these two levels
comprise of two different behavioral libraries that facilitate the
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adjustment and adaptation of agents with the intrinsic and extrinsic
properties of inclusive drivers.

6.4.1 Internal level of agents’ behaviors

Intrinsic properties underlay the internal features of agents
that include the “morphological definition” and the “perception
mechanism.” The morphological definition is the extension of
material agencies, while the agencies rely on the interpretation and
abstraction of material systems into the agents’ data structures.
This abstraction requires insight into the relation between the
geometrical means of materials and the morphological definition of
agent systems. In addition, the geometrical procedures of material
systems determine the intrinsic properties of agent’s morphology.
Therefore, at the level of material agency, specifying the agents’
morphology denotes a geometric basis, such as plane geometry in
relation to building material systems, to initiate a structuring of the
agents’ forms.

The process of generating the forms of agents effectively
contributes to the behavioral structure that agents follow during
their interaction with external entities. Manifesting the agents’
form as morphology relies on a direct negotiation between the
initial geometries and the influence of internal and external forces.
These pressures might drastically change the morphology of the
agents. For example, the morphology of plate-like agents, under
the influence of surface curvatures, interplay between convex and
concave polygons. In that case, agents rely on internal mechanisms
to adjust the morphology of the agents with the principles of
the original morphology, such as retrieving planarization aspects
of plate-like agents or adjusting the polygonal structure within
assembly agents. These internal mechanisms inhibit agents from
losing their internal cohesions. Maintaining the agents’ structures
are consistent with their morphogenetic movements.

The morphogenetic movements that manifest agents’
morphologies are either a derivative process of geometrical elements,
such as the derivation of plane geometries to plate-like agents, or
an assembly of sub-elements, such as n-gons geometrical elements
to generate a complex surface. In the derivative processes that
generate agents’ morphology, differentiating between geometrical
elements determines the agents’ morphology with a specific type of
geometry. The ultimate forms of agents emerge out of modulating
these basis geometries. In addition, the geometric relation influences
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Fig. 6.4.2: The inter-node length adjustment
in assembly agents experiment. Inspired by
Wengzinek (2016).
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Fig. 6.4.3: The intersected vertices
arrangements in plate-like-agents.

the agents’ behaviors. The interaction between two adjacent agents
relies on their methods of geometric intersections. Moreover, the
geometric intersections change the morphologic base of agents to the
representative forms of agents. The derived form, as an abstracted
form, indicates the interrelation between the base geometry and its
modulation.

In the integration processes of erecting agents’ morphology,
the aggregation properties are effective at organizing the agents,
meta-agents, and meta-meta-agents. The geometrical structures
of agents rely on the behavioral process of assembling elements.
Similar to the derivative method, the assembling process of agents
(sub-agents) follows basis geometric rules, such as planarity of
agents, with determining type of polygons that imply main features
for assembling sub-elements. The implication of these features
underlies the sequence of interrelating sub-elements, which establish
the agents’ morphology. The behavioral rules for assembling sub-
agents are abstracted from the geometric definitions of polygonal
patterns that typically determine the ultimate morphology of agents.
The connectivity of each sub-agent with the others is consistent
with behavioral rules, derived from geometrical procedures. The
geometric pattern determines the number of sub-agents and their
behavioral correlations that structure the agents’ morphology.

Accordingly, the agents’ morphology evolves from two levels
of geometric constituents that consist of the basis form and the
abstract form. These two interrelated geometrical structures require
that their consistencies be maintained in interactions with external
entities. Applying the main principle of the agents’ morphology,
such as controlling length of linkages between sub-agents, requires
mechanisms to examine deviation from basic principles of the
initial geometry. This process leads polygonal structures to have
equilateral edges (Figure 6.4.2). On the other hand, avoiding
self-intersection among edges also requires mechanisms to order
the vertices’ arrangement, through which the irregular polygon is
adjusted to simple regular polygons (Figure 6.4.3). The homeostasis
approaches in biological organisms that adjust internal deviations
with external pressures, conceptually supports the necessity of
this mechanism within agent systems. However, finding the
deviation from the basic geometric patterns requires mechanisms
that approximate the generated morphology to those particular
geometrical features. Transferring defective morphologies to the
expected forms requires gradual changes to prevent completely
destructing the agents’ morphology. This process is accompanied
with another mechanism that is responsible for keeping the integrity
of the agents’ morphology.
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Consequently, examining the internal cohesion of the agents’
morphology is a necessary procedure within the proposed generative
agent-based system through which the agents self-organize the
geometric structures. The intrinsic properties depend on the
type of agents’ morphology from which the mechanisms control
different geometrical aspects of agents from planar qualities in the
plate-like agents to periodic features in the n-gon agents. Each of
these two types of agents, derivative and integrating, inherit the
controlling mechanisms from geometric definitions and geometric
relations. Extending the geometric rules to the agents’ constraining
mechanisms advances the layers of actions with various “IF/THEN”
mechanisms through which the self-organizing mechanisms adjust
internal behaviors via feedback loops. Analyzing the internal states
of agents through “IF/THEN” mechanisms confirms the significance
of feedback loops to adjusting agents’ deviation to the intrinsic
properties. This adjustment relies on internal procedures, which
are regulatory mechanisms within the “IF/THEN” mechanisms,
to perform comparative processes. The comparative processes
consist of positive and negative feedbacks that amplify some
actions and quiet others. These processes utilize self-regulating
and self-organizing mechanisms to prevent internal fluctuations
from intensifying the deviations. It enables agents to maintain
internal consistencies against extrinsic and intrinsic factors through
inhibitory mechanisms.

6.4.2 External level of agents’ behaviors

In the context of morphodynamics, extrinsic properties describe
external influences that change the development of organisms.
Specifically, the environmental and functional factors are particularly
effective on the morphological development of organisms. Adapting
these extrinsic properties into generative agent-based systems
furthers the development of the environment. The environment
contributes to activate the functional and behavioral characteristics
of agents. Considering the environments and other agents–external
entities–require perception mechanisms to collect data from external
entities.

For example, plate-like agents and fibrous-like agents
extract extrinsic properties of target surfaces in both topology
and topography. At the topological level, extrinsic properties
typically consider a two-dimensional manifold of bounded areas
that indicates the internal and external edges of target geometries. In
addition, at the topographical level, extrinsic properties inherently
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include a mathematical definition of surface curvatures and its
structural properties, such as stress-strain principals. In addition
to extracting information from the environment, utilizing a patch
system, such as pixel and voxel systems, furthers the environments
to store selected agents’ actions into the environment. This process
allows an agent-based system to update extrinsic properties, and
consequently enhances the agents’ behavior. For example, the
process of reinforcing external beams (cables) in fibrous-like agents
dynamically alters the extrinsic properties that are related to the
functional features of the environment.

Agents’ access to extrinsic properties triggers different layers
of actions. Adjusting agents’ behaviors to perform allocated
tasks requires coordinating mechanisms. The coordination
mechanisms adapt agents to any complex situations via activating
and deactivating behavioral layers. For instance, coordinating
complex situations, such as anomaly within the environment is
accompanied by changing the course of agents. As an example,
fibrous-like agents wandering on the formwork consider external
edges, approaching the formwork’s edges triggers layers of action
that adapt agents to the environment. The process of adaptation is a
summation of diverse behavioral layers from which integrating these
layers results in a selection action. Applying the selected action
coordinates agents’ behaviors toward special adaptive behaviors.
In general, extrinsic properties effectively coordinate the agents’
actions within the environment. Developing proper layers of actions
can effectively ease approaching agents to the adaptive level.

In the context of the agent’s agency at the fabrication level,
the morphological type of agents that actively participate in the
fabrication processes as fabricator agents relies on the external
environment to communicate with other agents or their built
environments. Indirect interaction with other groups of agents
promotes an extension of individual-based systems to the collective
systems. Storing agents’ trails and signals onto the environments
enhances their level of adaptation and learning. In addition,
considering the environmental effectiveness and self-organizing the
performative criteria enable agents to regulate their actions on the
environment as the formwork. The individual rule-based agents,
instead of collecting their behaviors into the memory systems,
store traces as the built environments on the formwork. Utilizing
this method of stigmergic or sematectonic communication enables
agents to retrieve their modulations from patch systems within the
environment. Fabricator agents, such as fibrous-like agents, leave
traces on the formwork, which are interpreted as built environments.
Considering these traces, as tool-paths for robotic fabrication
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Fig. 6.4.4: The laid fibers on the formwork;
source: ICD/ITKE University of Stuttgart.

tools, advances materializing the design process along with design
formation.

In the fibrous-like agents, the additive process of fabrication
lays down fibers on two different systems: The environment as
the formwork and previously laid fibers as the built environments.
Erecting morphology by stacking fibers on the formwork relies on
the processes of coordinating agents’ behaviors on the environment
(Figure 6.4.4). This process follows aggregating interrelated
behaviors abstracted from structural, biological, and fabrication
principles in which they all have different influences on the agents’
behaviors. The derived morphology gradually combines the agent’s
behaviors as tool-paths for robotic fabrications. Linking robot
end-effectors to the agent’s traces simulates fabrication movements
based on the agents’ behaviors on the formwork. This process
reflects the simulation of behavior-based robotics. The movements
of an industrial robotic arm are coupled with the behavior of the
computational agent. In this computational simulation, the agent
behaviors are manifested in the simple NURBS curves geometry.
These curves interpret the simulated geometry into robot tool-paths
that determine the physical robots’ behaviors. Coalescing the
simulated morphogenesis with physical manufacturing blurs the
gap between formation and materialization. Figure 6.4.5 shows the
process of laying fiber on the formwork based on the simulated
tool-path via the computational agent.

Fig. 6.4.5: The sequence of laying fiber on the formwork.

In the case study ICD/ITKE research pavilion 2014-15, the
fibrous morphology arose from generated computational patterns
that are the result of micro modulations between a computational
agent and the fibers systems. In this process, the agent, without
any knowledge of the ultimate morphology, mounds fibers on top
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of laid layers until it achieves the design principles. Gradually
developing a fiber composite promotes the growth of an adaptive
system by coordinating agents’ activities in both the local and
global levels. The local interactions between the fabricator agent
and the environment traces geometrical patterns that effect on
the next actions of agent. The evaluation of growing patterns
at both the micro and macro levels is accompanied with the
local adaptation to environment and global implementation of
performative criteria. Adapting agents’ activities to local conditions,
which are consistent with the fabrication setups, includes the
accuracy of agents’ behaviors on the formwork, maintaining agents
within the acceptable zone and associating agents’ traces with the
built environments. The local controlling mechanisms coordinates
agents’ behavior in each pace through which the agent tries to
adjust its behaviors with local rules. The effect of local modulation
might emerge in the global adaptation, however, failures in global
adaptations requires an implementation of performative criteria to
regulate the local behaviors for the global adaptations. Global rules
for this level of adaptation are abstracted constraints that indirectly
affect the agents’ behaviors. These procedures include performative
adaptations, such as mechanical and structural properties, which
globally analyze the generated morphology and locally inform the
necessary modifications of local rules. In addition to coordinating
behaviors, this process is effective in maintaining the morphological
structures by considering the significance of global performances.

In general, extrinsic properties can be summarized in two
adaptation levels of environmental factors and allocating tasks to
agents. Abstracting design intentions as demanded tasks into the
behavioral classes advances the environmental effectiveness, for
example, interpreting this process through the fields of vectors that
indirectly inform agents with the global design patterns. Integrating
tasks with the environmental factors reflect interactive negotiations
between these two levels to obtain macro-regularities. Therefore, the
developed vector fields and environmental factors indicate stimuli
layers to trigger the agents’ responses that are intended to adapt
their behaviors to external pressures. Systematically weighting these
layers contributes to investigate on the leverage points to find the
adaptability of each layers with the environments. For example,
prioritizing structural layers might significantly increase the strength
of the generated morphology. Consequently, iterating this process by
modifying effective parameters might enhance the desirable states.
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6.4.3 Synchronization agents’ behaviors

Similar to behavior-based systems, the differentiation of behavioral
procedures into inhibitory mechanisms and coordination systems
enables agent-based systems to contain internal and external
pressures. Filtering these influences facilitates inhibitory
mechanisms to adjust internal behaviors with sudden imposed
conditions. This means that synchronizing the internal mechanisms
with an external one follows two sequences of the adjustment of
behavioral inputs and the activation of behavioral outputs. Therefore,
the behavioral procedures require a delay to adjust internal
mechanisms and then send the adjusted signal to coordination
systems to activate behavioral layers. This delayed activation
provides agents with time lapses between maintaining internal
consistencies and employing next coordination. In addition, the
temporary lapses filter the external influences through inhibitory
mechanisms to trigger specific behavioral layers. Considering
inner states of stabilities alternates the triggered responses in
which the generated signals at these states are optimum levels for
consideration in coordination systems. Accordingly, scheduling
procedures enables agent systems to systematize correlations
between behavioral inputs restrained within inhibitory mechanisms
and behavioral outputs generated via coordination systems.
Therefore, behavioral sequencing in agent-based systems requires
adjusting input parameters with output behaviors to increase the
adaptation of system to external complexities.

For example, the adjustment of input parameters fosters the
assembly agents to stabilize n-gon geometries before each individual
polygon tries to assemble with the main cluster of polygons. In the
plate-like agents, the inhibitory mechanism furthers geometrical
behaviors to avoid self-intersection during the process of generating
plate-like agents. Therefore, inhibitory mechanisms consider several
procedures to restrain the input parameters, to adjust inner states
of agents and activate behavioral layers. In particular, inhibitory
mechanisms include three main levels: perception to contain the
inputs, “IF/THEN” rules to adjust and activate behavioral layers,
and tagging sequences to flag agents’ behaviors. Within a behavioral
system, the implementation of these levels provides a prohibiting
layer of certain features of perceiving environments, categorizing
inputs, adjusting internal states of agents, and tagging current
conditions of agents. The perception mechanism within the fibrous-
like agent determines conditions of the agent. The “IF/THEN”
mechanisms evaluate the agents’ conditions and attributes. The
tagging sequences flag agents to signify their states. Then, the
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inhibited or abstracted states activate essential actions to control the
flow of agents’ behaviors.

Coordination mechanisms consist of integrating different
layers of actions to select the next possible action for the agents.
This process is accompanied with prioritizing mechanisms that
weigh each action in accordance to their significance in fabrication
movements. This prioritization directly modifies the agents’
behaviors in response to external and internal levels. However,
the internal properties of agents, such as their morphologies,
dynamically adapt their geometries to external demands. It means
that the intrinsic properties of agents are coupled with agents’ efforts
to find the adequate solutions. Accordingly, coordinating agents’
locomotion to exploit the problem domains is accompanied with the
lower-level of agents’ properties. The agents synchronize internal
and external levels through different procedures, such as adjusting
its morphology or adapting its behaviors on the environment.
Moreover, coordination systems through exploiting the environment
establishes self-organizing mechanisms to complete assigned tasks.

6.5 Intervening Mechanisms: Monitoring Systems

Developing an inclusive design tool that provides a study of
integrating fabrication and material constraints into design
processes, requires a computational framework based on agent-
based systems. The structure of generative agent-based systems
requires specific procedures, such as developing agent systems,
determining the environment, and indicating agents’ behaviors
and communications. Interrelating these procedures fosters agent-
based systems to perform desired tasks. Formulating tasks for
agents reflects a general overview of macro-regularities in order
to indicate types of agents, rules, and regularities for determining
the interaction mechanisms of agents. The completion of tasks
follows accumulating different values of behavioral variables.
Employing different set of behaviors steers agents towards the
acceptable range of solutions. Hence, parameterizing the behavior
systems might enhance the computational framework to explore
the problem domain through user interventions. The intervening
mechanism that is a parametric method of changing the value of
behavioral parameters eases direct access to behavioral layers of
actions in which users can dynamically change behavioral rules
and communication mechanisms. Moreover, this mechanism, by
maintaining the type of agents and the environment, can alter their
properties during the simulation.
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The agent-based system that exhibits self-organization and
emergent properties, requires an analysis of the importance of
each parameter within the process of modeling and simulation.
In this context, the experiment of determining the appropriate
rules for controlling the polygonal radii exhibits the emergence of
system, when the cell division algorithms are applied with isolated
setups. Isolating all parameters enables designers to understand the
importance of the initial number of agents. The comparison between
two initial states, one with three agents and the other with seven
agents, emphasizes the role of hidden criteria, which arise from
differences between the number of interactions and communications.
The number of elements within the simulation indicates that the
same constraining mechanisms will generate different behaviors.
The emergence of the system represents the final equilibrium states
of the system, which exist within the solution spaces, but with a
different numbers of generated cells.

Recognizing the role of each parameter relies on monitoring
all possible states generated by different sets of values. In generative
agent-based systems, each setup might reflect a collection of
behaviors. The generated behavior requires consistency with
“IF/THEN” procedures, such as the analytical morphospace. It
means that monitoring mechanisms for each parameter require a
consideration of an interval correlation with each dimension of
morphospace. In addition, the analytical morphospace, as a possible
solution space, can indicate a parametric space. This parametric
space changes the dimensions and the values of the morphospace.
In addition, determining each dimension of the hyper-dimensional
morphospace expands the parametric space by defining a specific
range of values. Moreover, parameterizing these values alters the
analytical morphospace and, consequently, the overall agents’
behaviors. In that case, changes in theoretical morphospaces
modulates micro-behaviors through which agent-based system
self-organizes its properties to lead the system toward a new level
of emergent behaviors. It follows by constraining the solution space
through the development of a parametric system to confine agents’
behaviors.

In addition to the analytical morphospace, parameterizing
a generative agent-based system includes modifying agents,
remodeling the environment, and revising the behavioral systems.
Modifying agents commence with initializing agents as a sequence
of defining a number of agents, stochastic distribution mechanisms,
and determining the agents’ location in accordance to topographical
or topological map systems. Moreover, parameterizing the agents’
attributes related to morphologic properties or auxiliary perception
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mechanisms, such as the range of field vision, might dynamically
alter exploiting mechanisms in which it might directly change their
course of agents’ behaviors. After parameterizing the agent system,
remodeling the environment is too delicate for a generative agent-
based system where the agents’ behaviors directly or indirectly rely
on the effects of the environment. Although, a slight modification of
the environments fosters a new configuration, drastically remodeling
the environment requires informing the system at the early stage
of initializing agents. This means that determining the topological
and topographical definition of the environments informs agent
distribution. Any topological redefinition must be informed at the
early phase. In the context of revising behavior systems, the layer
structure of behavior-based systems enables the weight of each
layer of action. Users are able to revalue the predefined set of
weights for each layer. Revaluing the behaviors, from neutralizing
to intensifying them, advances the generative system to study
the significance of each action through a transfer of the relative
autonomy of agents’ decision-making to the user demands.





7 Conclusion and Discussion

7.1 General Review

The main objective of this thesis was to investigate the generative
potential of behavior-based systems when integrating materials and
fabrication constraints into a computational framework. A generative
computational framework based on a low-level of distributed units or
agents was developed to facilitate this integration. This development
was investigated through a series of experiments and case studies that
highlight the importance of behavioral strategies within formation
and materialization.

This research proposes the utilization of agent-based systems
as a computational approach to adapt materials and fabrication
processes for architectural design. Utilizing this approach in
four main experiments reflects the theoretical framework of this
computational method. In parallel, the theoretical development of
these approaches was implemented in practical studies to showcase
the importance and applicability of this research. The transition
from theoretical approaches to built architectural elements further
enhanced this research. The results of these practical developments
were effective in fostering behavioral strategies within integral
design computation.

This thesis required a background of knowledge on the
development of a computational model that mediates effective
drivers for coalescing materialization and formation. Therefore, the
background and ramification of integrated design were divided into
four parts to challenge the integration processes within architectural
design. The first part raised the question of integration methods,
which applied to architectural design, particularly in materializing
developed forms. This question applied more specifically to non-
standard design, which often challenges designers, and requires
innovative methods to rationalize design intentions. The second
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part, which drifted towards biology, briefly addressed morphologic
studies to highlight the main factors in the evolvements of
inclusive organisms. This investigation demonstrated that inclusion
drivers, such as fabricational morphogenesis, environmental
effectiveness, and performative criteria worked as active potencies
in design computation. An amalgamation of these drivers required
a framework to mediate their fusions. Part three studied the
development of generative systems to model the synthesis of the
inclusive drivers. The complexity that arose from this inclusion led
the inquiry to part four, which introduced agent-based modeling
and simulation that exhibits adaptive complexity. This introduction
was followed by the next part, which emphasized the importance of
agent-based systems in different field of sciences, more specifically,
in architectural design. The experiments and case studies were
structured to adjust and examine the potential of agent-based
systems for integrating inclusive drivers. Chapter 5 explained the
main approaches to setting-up generative agent-based applications.
In particular, generative agent-based computation was argued as a
mediator between material and fabrication agencies, while these two
agencies relied on environmental factors and performative aspects.
Chapter 6 highlighted the significance of behavioral strategies
within the generative agent-based architectural design computation.
In detail, this chapter discussed a negotiation between effective
drivers of inclusive design, and how these drivers can change the
process of integration from the bottom-up.

7.2 Generative Agent-Based Design Computation

Generative agent-based design computation introduces a promising
method for coalescing materials and fabrication characteristics
into design processes. The main structure of the experiments
was followed by an investigation on behavioral integration to
demonstrate a new strategy for fabricational morphogenesis.
Implementing behavioral strategies within a computational
framework required gaining insight into agent-based modeling
through soft systems. Expanding soft systems into a design and
fabrication paradigm required the development of computational
frameworks in modeling to encode semantic models into syntactic
models. The formalization of semantic models was investigated
to emphasize the significance of the agent’s agencies in both
abstraction and transition phases. In the abstraction phase, material
and fabrication agencies are mapped to a computational model at
time t through equivalence classes. And then in the transition phase,
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the generative model produces new states at time t + 1 through
behavioral algorithms.

The purpose of models was discussed as the main factor
for developing models. The purpose of behavioral models was
addressed by macro-regularities, which arose from the interplay
between micro-behaviors. The indirect relation between outcomes at
the macro-level and interactions within a micro-level is considered
through the development of agents and their behaviors. The
specification of agents and the process of generating regulatory
behaviors were considered the key to achieving the purpose of
the integrative models. The experiments represented the relation
between self-organization and emergence within both the micro
and macro levels. Self-organization regulates the interplay among
agents to obtain the purpose of the model. This revealed that the
equivalences between the emergent properties of the model and the
desired regularities are an outgrowth of the agents’ self-organization
properties at both local and global levels.

In particular, when the purpose of the model materialized
complex forms during the process of formation, the model was
expected to generate producible building components or fabrication
processes. The producible outcomes were investigated through
agents’ agencies; the interactions among agents demonstrated the
importance of controlling agents’ behaviors. The ethological or
behavioral morphology was discussed within insects’ formation
and their artifacts. Ethological morphogenesis was introduced at
two levels, by aggregating agents or by modulating agents. This
classification furthered the material and fabrication agencies to
develop an inclusive design computation. The inclusion of the
capacities and the constraints of these agencies entrenched the
main principle of generative agent-based design computation.
This principle was designated in four steps: agent specifications,
environments’ structures, behavioral procedures, and interaction or
communication principles.

The agents’ attributes and types were organized through
ethological morphologies, in which the realization of complex forms
relied on the agent’s morphology or was constrained to the agents’
body. Accordingly, experiments were developed to consider both
of these ethological concepts, which emphasized the significance
of agents’ morphologies and how these morphologies modulated
during their interactions with the other agents and the environments.
Developing agents’ types answered the need to relate the material
and fabrication agencies to the geometrical definition of agents.
The material agencies emphasized the morphological aspects of the
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agents, while the fabrication agencies underlined the importance of
the agents’ body to the construction processes. This comprehensive
classification fostered by environmental consideration, which
included extrinsic and intrinsic criteria. Therefore, the environment
imposed another level of modulation on the material and fabrication
agencies, from which it was effective on the development of
morphologies and the behaviors of agents. Concisely, under the
influence of the environment, the fabricational morphogenesis
self-organized the relationship between material and fabrication
agencies.

Self-organizing mechanisms in active agencies were provided
by the topological and Euclidean spaces that were overlaid on
theoretical morphospaces. The amalgamation of various spaces
under the context of the environment utilized the development
of behavioral procedures and communications. The behavioral
procedures extended the inclusion of material, fabrication, and
environmental agencies over behavior-based systems. The use of
behavior-based systems allocated different layers of actions for each
agency, wherein prioritizing processes highlighted the importance of
each layer upon primitive behaviors, such as locomotion behaviors.
The summation of these layers determined the transition behaviors
from one state to the next state, which could change the morphology
of agents or could build some variations on the environment.

The last step for developing the generative agent-based
system argued that the significance of the communication networks
in agent-agent, environment-agent, and environment-environment
interactions. More specifically, the argument categorized the
communication among agents into direct and indirect methods.
Direct methods focused on the immediate interactions among
agents, while indirect method emphasized the significance of
interaction with the environment as a mediator.

These two methods examined the application of material and
fabrication agencies to represent the importance of communication
and interaction within morphogenetic movements. These four steps
determined the agent-based modeling and simulation in the inclusive
design computation. The development of scaled models, such as the
rob|arch 2012 prototype and its advanced model, which was shown
at the Landesgartenschau Exhibition Hall 2014, and also ICD/ITKE
research pavilion 2014-15, proved the potential of agents’ agencies
to integrate materials, fabrications, and the environment. Due to this
potential, generative agent-based design computation opens a new
chapter to study behavioral strategies within computational design
and construction.
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7.3 Behavioral Design Computation
and Construction

In the context of inclusive design computation, behavioral strategies
were investigated to propose a novel method of integrating
fabrication and material constraints into design processes. In
particular, a comparison between knowledge-based systems and
behavior-based systems unfolded the confrontation methods to
the problem domain, wherein the former required the global
domination and the latter relied on local competencies. The micro
unit competencies consisted of material and fabrication constraints
and capacities from which their interactions could erect producible
design elements. The behavioral strategy of integrating these
competencies raised the possibilities and objections of an extremely
versatile system, which dealt with the problems of Constrained
Generating Behaviors (CGBs) towards the adequate solution space.
It was determined that behavioral strategies can only exhibit
emergent properties or organized complexities when all generated
behaviors were examined and compared with the possible solution
space. Therefore, in the context of generative agent-based systems,
a main contribution to behavioral strategies, applied within design
computation and construction, leads to the following three main
conclusions:

Generative agent-based design computation

The investigation on utilizing generative agent-based systems in
computational design and construction determined the importance of
micro-behaviors in explaining macro-regularities. Macro-regularity
was employed as the main purpose of the model, because it regulates
the process of design. In contrast, a hierarchical organization
imposes detailed behaviors on lower-level components. The micro-
behaviors were indicated as the competence of units to accomplish
the determined tasks, where each task required customized rules
and regularities. It was indicated that connecting micro and macro
levels require an analysis of the macro-level to find the general
regularity for determining the units’ tasks at the micro-level.
Therefore, the behavioral framework was considered as individual
agent systems and multi-agent systems, through which the micro-
behaviors arose from the competence of agents. It was discernible
that merging micro-behaviors regulate orders at the level of macro
behaviors that were implicit to the macro-regularities, due to the
behavioral characteristics of the system. This suggested that the
interactions among agents could exhibit emergent properties, while
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the generated results might be in correlation with macro-regularities.
The experiments confirmed that the completion of micro-units’ tasks
perpetually produces novelties to attain macro-regularities.

Constrained generating behaviors (CGBs)

The concept of constrained generating behaviors was developed
to extend behavioral-based systems to constrained generating
procedures. This method was implemented within generative
agent-based systems to steer agents’ behaviors towards the purpose
of the model. The experiments demonstrated that exploring the
problem domain requires constraining mechanisms to converge
agents’ behaviors to the appropriate solutions. The constraining
mechanisms within the concept of fabricational morphogenesis was
advanced with the development of the theoretical morphospace. The
theoretical morphospace was used to fuse material and fabrication
agencies together. The influence of each agency was changed from
adjusting material components together (e.g., plate-like agents) to
facilitating the reachability of fabrication tools within its workspace
(e.g., fibrous-like agents). It was realized that the inclusion of
constraining procedures, in particular the theoretical morphospace,
is an important mechanism that regulates the micro-behaviors of
agents to synthesize the producible design.

Controlling behavior systems

The interaction mechanism for agents was elaborated, with limited
specifications, at local and global levels. The study emphasized
that the interaction at the local level triggered micro-behaviors, to
approach macro-regularities. It concluded that the utilization of
constraining behavioral mechanisms also required global levels
of knowledge to course further agents’ behaviors. The adjustment
of local behaviors via interactions with global knowledge proved
the importance of this knowledge for finding agents adjacent to
the generated agents’ morphology (e.g., triangulation mechanisms
applied in plate-like agents), or informing agents about the strain
and stress principals of target surfaces (e.g., reinforcing the
external cables on the compression shell in fibrous-like agents).
In accordance to behavior-based systems, the controlling behavior
system was entrenched to different layers of actions from which this
system was advanced to prioritize the behaviors.

The study of the theoretical morphospace unveiled intrinsic
constraints, which dealt with morphological developments and



Behavioral Design Computation
and Construction 215

extrinsic constraints, which are considered fabricational noises
(machinic morphospace). The association of constraining
mechanisms with controlling behavior systems emphasized
the development of multi-layered actions, which established
the Constrained Generating Behaviors (CGBs). Corresponding
these multi layers of actions with internal and external levels of
constraints confirmed that the development of morphodynamics,
which is associated with fabricational morphogenesis, environment
effectiveness, and performative aspects were determined by the
bilateral effects of these constraints on the micro-behaviors.
Therefore, behavioral libraries were developed to address the
adaptation and adjustment of agents with the intrinsic and extrinsic
properties of morphodynamic developments.

Analogous to ethological morphogenesis, the intrinsic and
extrinsic properties of morphodynamic developments provided
insight into the agents’ agency with their tendencies towards
material systems and fabrication tools. The intrinsic properties
indicated that the internal features of the agents’ agency, such as
the geometrical definition of the agents’ morphology, required
behavioral libraries to maintain the main principles of geometrical
structures. It was found that the agents’ morphology could be
determined by derivative or aggregative procedures, through which
the interaction among agents was inferred from a geometrical
definition of material agencies and the physical laws that govern the
fabrication agencies. It was elaborated that the consistencies of the
agents’ morphology relied on inhibitory mechanisms to adjust driven
forms with their basis geometrical definitions. Furthermore, the
inhibiting mechanisms furthered the agents’ agency to self-organize
the geometrical structure of agents against any deviations imposed
from internal or external factors.

In contrast to the intrinsic properties, the extrinsic properties
corresponded to the external influences of the morphological studies
on agents’ behaviors. The emphasis on fabrication processes was
extended to the agents’ agency from internal features to external
factors. The external factors advanced agents to perceive information
from external entities, such as their relevant environment and to
act upon the processed information. The study of agents without
specific morphology provided support for developing fabricator
agents, which were operators on the environment. Consistent
with this level of agency, agents could adapt their behaviors
to environmental effectiveness and performative criteria, which
was indirectly determined by users. It was argued that a parallel
implementation of both of these levels required synchronization
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Fig. 7.4.1: The cyber-physical system,
research pavilion 2014-15; source:
ICD/ITKE University of Stuttgart.

Fig. 7.4.2: The woven structure developed
through the behavioral fabrication process;
source: Brugnaro (2015).

mechanisms to sequence the execution of internal mechanisms and
external systems.

7.4 Outlook and Trends

The ongoing studies on behavioral strategies for design computation
and construction postulate the development of agent-based systems.
This research attempts to open a dialogue for behavioral integration.
In the context of “Industry 4.0,” the development of cyber-physical
systems require novel methods to encode the real world with
virtual models (Figure 7.4.1). In particular, there is growing interest
in the investigation of material behaviors and manufacturing
processes that coalesce design computation through distributed
and decentralized units. Individual and collective units reflect the
complex behavioral adaptations between computational agents and
physical industrial agents. In the realm of computational agents,
the developed experiments and case studies present agent-based
systems to further behavioral strategies in the building industries.
This study indicates that agent-based systems have the capacity
to adopt building industries with the fourth industrial revolution
through behavioral strategies.

In the context of behavioral strategies, developing applications
via agent-based systems involves both constituent units of
fabrication processes (material agencies) and constructor units,
which participate directly in manufacturing processes (fabrication
agencies). Material agencies and fabrication agencies highlight
two important trends in construction industry. The development
of applications for material tendencies were exhibited in agent
assemblies and plate-like agents, wherein modulating raw materials
requires adaptation with fabrication tools. In contrast, the fabrication
tendencies, which were demonstrated in fibrous-like agents, signify
the importance of manufacturing tools, through which material
systems follow fabrication processes to erect the structures
and forms. Deliberate transition between these tendencies
are accompanied by analytical mechanisms that determine the
producibility of virtual designs. The significance of these trends
becomes notable when design computation and construction are
equipped with cyber-physical systems. The development of cyber-
physical systems as advanced soft systems blurs the distinction
between virtual and physical systems.

This transition is consistent with distributed networks of
intelligent units that interrelate the micro-behaviors of each agency
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Fig. 7.4.3: The filament structures developed
via overlapping virtual and physical agents;
source: Yablonina (2015).

Fig. 7.4.4: The transfer of a computational
simulation to a physical model; source:
Rusenova (2015).

with the macro-regularities of design intentions. In a cybernetic
manner, computational agents could merge with materials and
robotic tools to enhance manufacturing processes. In intelligent
manufacturing, negotiating between virtual and real construction
through agent-based systems fosters real time construction processes
by advancing efficiency in cost, sustainability, and a reduction of
the manufacturing time. In addition, the process of human-machine
interaction within cyber-physical manufacturing expects to benefit
from semantic technologies by applying augmented realities (AR)
and virtual realities (VR). In that case, the established network
of real and virtual agents actively informs digital design with the
physical constraints of materials and robotic fabrications, in which
the mediators dynamically generate a catalog of novel solutions to
achieve the design goals.

Coalescing semantic and syntactic systems could demonstrate
the potential of agent-based systems for developing future
applications that link the simulated world to the real world. Utilizing
these applications, such as the ones partially developed in ICD/ITKE
research pavilion 2014-15, will advance the fabrication process with
smart methods. The study of online controlling fabrication processes
transits the computational process of simulating and modeling to
the real-time modeling. Although this process is in its early stages,
the research developed under the author’s supervision represents
the high potential of this method in manufacturing processes. The
studies were developed to simulate and fabricate design intentions
online through industrial robotic agents and (semi-) autonomous
mobile agents. Under the author’s supervision, one of these studies,
developed by Giulio Brugnaro (2015), investigated woven structures
through online controlling mechanisms, through the behavior of
computational agents in real-time, determined the movements of
end-effectors (Figure 7.4.2).

In another study, the development of mobile end-effectors
as a fabricator was of interest. The research developed by Maria
Yablonina (2015) demonstrated overlaying virtual reality with
physical reality to reflect controlling computational agents with
mobile agents (Figure 7.4.3). Another research developed by
Gergana Rusenova (2015) investigated controlling mechanisms
to adapt the behavior of physical models through computational
simulation (Figure 7.4.4). These three studies, along with other
experiences that were developed under the author’s supervision at
the ITECH master thesis (2014-16), proved the greatest potential
of extending computational agents with behavioral controlling
mechanisms to the industrial agents. Eventually, further investigation
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on behavioral aspects in design computation and construction will
be embraced within industrial constructions.







Glossary

Agent: as an individual computational unit, has abstracted
characteristics and behavioral rules, which exhibit autonomous and
adaptable features (Holland 1995; Wooldridge and Jennings 1995;
Casti 1997b; Gilbert 2008).

Agent-based modeling: is an approach to modeling that is based on
a set of computational agents that interact with each other and with
the environment (Epstein and Axtell 1996; Axelrod 1997; Epstein
1999; Bonabeau 2002; Gilbert 2008).

Behavior-based system: emphasizes modeling building blocks
with some competences that “behave” in problem domains (Maes
1993).

Complex adaptive system: is a “complex system” with a network
of rule-based units or agents, in which their interaction steer the
complexity of the system towards adaptation (Holland 1992, 2006).

Complex system: is a system consisting of several elements that
interact with each other in such a way that the sum of the elements is
beyond the individual element (Simon 1962).

Constrained generating procedure: is a dynamic model that sets
mechanisms to generate possibilities and procedures to limit them
(Holland 2000).

Constructional morphology: is concerned with the different
criteria that are involved in the process of generating constructible
forms, such as “morphogenetic” (or “fabricational”), “functional,”
and “phylogenetic” (or “traditional”) aspects (Seilacher 1970, 1973,
1991a).

Disorganized complexity: is a system with a large number of
interrelated elements, that their overall behavior is predictable
through statistical techniques (Weaver 1948; Miller and Page 2007).
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Emergence: is the irreducible phenomena that the global properties
of a system are not reducible to individual properties of its
subsystems (Heylighen 1989).

Generative system: is a system that produces holistic behaviors, in
which the generation of these behaviors relies on the elements within
a system, their interactions, and the way they interact (Alexander
1968).

Knowledge-based system: emphasizes modeling a system with an
overall knowledge of the problem domain (Maes 1993).

Modeling relation: is a process of encoding a natural system to a
formal logical system through symbolic logics (Casti 1994).

Morphodynamics: as a dynamic morphology, exhibits an
interplay among “functional,” “fabricational,” and “environmental
effectiveness,” which is connected to the “historical development”
of an organism (Seilacher 1991a,b; Seilacher and Gishlick 2014).

Morphogenesis: is the process of growth and “the development of
pattern and form in living [organisms]” (Murray 1990).

Morphospace: is a “morphological space” that exhibits the
description and relation of a phenotypical definition of an organism
(Mitteroecker and Huttegger 2009).

Organized complexity: is a system with a finite number of
interrelated elements, that their overall behavior is not predictable
through statistical techniques (Weaver 1948; Miller and Page 2007).

Self-organization or autogenesis: is a process of self-regulating
within an open system (Anderson 1999).

Soft system: is a flexible system that adapts to its changing
environment through feedback loops and internal regulating
mechanisms (Kwinter 1993).

Theoretical morphology: studies the development of forms
in two steps: first, by mathematically modeling and simulating
a morphogenesis, and then, by developing a “hypothetical
morphospace” to analyze and evaluate the generated form (McGhee
1999).
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steered variable-stiffness laminates based on a given lamination
parameters distribution. AIAA paper, 1894.

Van Gigch, J. P. (1991). System Design Modeling and Metamodeling. The
Language of Science. Plenum Press, New York.

Vasey, L., Baharlou, E., Dörstelmann, M., Koslowski, V., Prado, M.,
Schieber, G., Menges, A., and Knippers, J. (2015). Behavioral
design and adaptive robotic fabrication of a fiber composite
compression shell with pneumatic Formwork. In Combs, L. and
Perry, C., editors, Computational Ecologies: Proceedings of the 35th
Annual Conference of the Association for Computer Aided Design
in Architecture (ACADIA), pages 297–309. University of Cincinnati,
Cincinnati OH.

Vincent, J. F. (2006). The materials revolution. Journal of Bionic
Engineering, 3(4):217–234. doi:10.1016/S1672-6529(07)60005-5.

Von Bertalanffy, L. (1968). General System Theory: Foundations,
Development, Applications. George Braziller New York.

Von Neumann, J. (1958). The Computer and the Brain. Mrs. Hepsa Ely
Silliman Memorial Lectures. Yale Univ. Press, New Haven.

Von Neumann, J. and Burks, A. W. (1966). Theory of self-reproducing
automata. University of Illinois Press, Urbana.
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