
Institute of Parallel and Distributed Systems

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Operator latency in a Complex

Event Processing application

Simon Hagenmayer

Course of Study: Informatik

Examiner: Prof. Dr. Dr. Kurt Rothermel

Supervisor: Henriette Röger, M.Sc.

Commenced: 2017-08-15

Completed: 2018-02-15

CR-Classification: I.7.2





Abstract

Complex Event Processing often comes with an enormous amount of event data that needs

to be processed. Hence, parallelization plays a significant role in handling high workload

situations. The cost of an application however is often defined by the amount of used

resources, like in Cloud computing, where the pay-as-you-go model applies. Still, one wants

to have a working system that can handle traffic peaks within a given latency bound, so the

resources-to-latency-proportion needs to be optimized. Previous work mostly focused on

studying complex operator types in specific environments. In this thesis however, we want

to get a general view, how parallelization degrees and types influence our CEP system, to

be able to estimate what costs could arise. Therefore, a CEP application was created that

simulates different system conditions with respect to workload, operator processing time

and others, in order to test and analyze the latency properties of a wait operator. This work

provides an overview over latency behavior of operators in an example Complex Event

Processing application, which can provide a basis for future work in creating an optimized

system, that not only keeps a certain latency threshold but also minimizes the costs and

resources needed to achieve this goal.

3





Contents

1 Introduction 9

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Complex Event Processing 13

2.1 Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 CEP System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Background 19

3.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Distributions / Queuing system . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Theoretical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Application tests 23

4.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Wait Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Data parallelization (D/D/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Data parallelization (M/M/c) . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Pipelining (D/D/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Pipelining (M/D/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Results 47

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Future Work / Resume 51

6.1 Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

5





List of Figures

2.1 Complex event generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 CEP pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Pipelining port connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Test cases folder structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Data parallelization (D/D/c) model . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Data parallelization (D/D/c) latency difference . . . . . . . . . . . . . . . . 30

4.5 Data parallelization (D/D/c) splitter plots . . . . . . . . . . . . . . . . . . . 31

4.6 Data parallelization (D/D/c) stability points . . . . . . . . . . . . . . . . . . 32

4.7 Data parallelization (M/M/c) model . . . . . . . . . . . . . . . . . . . . . . 33

4.8 Data parallelization (M/M/c) parameter approximation . . . . . . . . . . . 36

4.9 Pipelining (D/D/c) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.10 Pipelining (D/D/c) latency difference . . . . . . . . . . . . . . . . . . . . . . 38

4.11 Pipelining (D/D/c) splitter plots . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.12 Pipelining (M/D/c) on different machines . . . . . . . . . . . . . . . . . . . 40

4.13 Pipelining (M/D/c) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.14 Pipelining (M/D/c) parameter approximation . . . . . . . . . . . . . . . . . 45

7





1 Introduction

Complex Event Processing is used to extract information from continuous streams of

data. The vision of the Internet of Things contributed to the problem, that the amount

of input information to handle can be quite overwhelming. Furthermore, we often want

a specific delay threshhold at which our data needs to be processed. The solution to

this is parallelization. If we duplicate our working operator, we are able to treat more

information at the same time. However, more instances automatically come together with

more ressource utilization, representing additional costs. Minimizing these costs can be

quite beneficial, as cloud ecosystems like Amazon Relational Database Services [1] or

Google Cloud [5] often come with the pay-as-you-go model. It is therefore important to

investigate, how one can reach this objective while keeping the system under a certain

latency threshhold.

1.1 Overview

To be able to reduce the cost of our system while in the mean time maintaining a certain

threshhold, we need to examine, how our system reacts on different types and degrees of

parallelization. The problem we tackled in this thesis is exactly that: we wanted to know

how well our CEP system can deal with the two most important parallelization types in

general, with respect to varying input parameters. Furthermore, we desired a model, that

could predict our operator latency values, which would give us the possibility to minimize

parallelization costs.

We started by studying a simple operator under different conditions using data paralleliza-

tion. For accessing our test results, we compared them to an ideal model derived from

queueing theory formulas. We also took a look at the stability points of the system. After-

wards we changed the properties of the input parameters to have increased variance. Using

our measurements, we then created an approximation model by combining estimations for

the individual parts of our system. These were realised using linear regression linked with

linear or exponential interpolation. The same steps were repeated for pipelining, which we

implemented into our system.

Results show that our system realizes data parallelization really well and comes close to

an ideal model. Moreover, our approximation model reaches a good level of fit of our test

data. In contrast to that, pipelining shows large latency values for high parallelization

degrees, leading to a great discrepancy to an ideal model. The same holds for our pipelining

approximation model.

9



1 Introduction

1.2 Related Work

Our work can be placed in the section of system profiling. Profiling is a wide term and can

be realised in a lot of different ways. We therefore want to present examples that adopt a

similar approach as our work or fall into the region of Complex Event Processing in general.

Mulitple works deal with the automation of pipelining and data-parallelization with respect

to surrounding factors. In their work, Kombi et al. [15] let a system adjust their throughput

to the data arrival rate. This is done by estimating the operator workload for the near

future and scaling the system automatically on basis of its prediction. Afterwards they

implemented their model into apache storm, leading to less CPU and memory ressources

used in the test cases than without it. Liu et al. [18] pursued a similar goal. In their

paper, they provide a profiler for streaming applications. By comparing distinct operators,

they come up with a “stepwise approach” for twitter kestrel. This is done by evaluating

three operator configurations and making a conclusion which one works best for certain

situations. Two of these configurations are pipelining and data parallelization, while a third

one represents a star formation. In this star formation, events flow from multiple operator

instances to a single one, which then distributes its outputs again to several nodes. Gad et

al. [7] present a work in progress open source software for local parallelization. In their

paper they scale the problem of parallelization down from distributed systems to a single

core machine. They show that given three distinct scenarios, their profiling approach is

able to enhance the throughput of the system by ≈ 40% in comparison to a contemporary

profiling method.

Kiefer et al. [13] followed another interesting approach. They did not investigate how

cloud computing can increases the cost of an application, but rather how ressource sharing

in cloud computing can also lead to a difference in performance. In their tests, they

compared two “commercial cloud databases” and measured the time needed for executing

four different queries. They get the result, that the type of ressource distribution correlates

to the query response time.

1.3 Contributions

The contributions of this thesis can be split up into four parts:

• Our first contribution is the derivation of an ideal data parallelization model arising

from basic queueing theory formulas. This can be used to test the performance of

our system. It can further serve as reference point for the comparison of different

systems.

• Our second contribution is the derviation of an approximation model for the data-

paralellized system, regarding poisson distributed mean inter-arrival times and pro-

cessing times.

10



1.4 Outline

• Our third contribution is the implementation of pipelining into our CEP application.

We further derive an ideal pipelining model for evaluating our implementation. This

can also act as tool for system correlations.

• Our fourth contribution is the approach of an approximation model for (M/D/c)

pipelining, given our underlying CEP application. We do not present a finished end

product here, due to unexpected results of our pipelining tests.

1.4 Outline

In chapter 2, we explain Complex Event Processing in general, how it evolved and which

components define it. These are introduced in their own subsections. We further present

the two most important types of parallelization. Chapter 3 devotes itself to the background

subjects used in this work, seperated by the definiton of variables, processes and theoretical

models. At the start of chapter 4, we present our setup for the operator tests, split up into a

hardware and a software part. The latency experiments themselves are written attached

to that. Afterwards we discuss the results and what concludes from them (5). Chapter

6 provides an outlook for possible future improvements. In the end, we draw a whole

conclusion that summarizes the experiences of the thesis.

11





2 Complex Event Processing

In our thesis we do not discuss the creation of data in Complex Event Processing in detail,

but rather take our given CEP application as test object. Therefore, a lot of our work founds

on queueing theory and not on CEP specific formulas or arguments. Still, we want to

introduce in this chapter the framework of our thesis, and give a short overview over the

development of CEP.

2.0.1 Introduction

In the early stages of database management systems, data stored in tables or other available

data structures was considered static and structured. Tables could be created or dropped

and new entries could be inserted or deleted via command queries. These systems were

therefore well suited for the management of huge ressources, but also had some disadvan-

tages to them: Data needed to be stored before it could be further treated, and the time

of storage of an event was unconnected with its true arrival time [25, p. 9]. The latter

applied, because data was only processed when the user explicitly told the system to do

so. When regarding fitting examples, these disadvantages would not matter that much:

An account management system would just need the admin to create and delete accounts,

while changes in the account settings could be made by the employees themselves.

As nonstatic data tended to occur in more and more use cases, research in this field yielded

to the developement of multiple systems, that approached the task differently. The datas-

tream management systems [3] could be seen as an extension of the DBMS model. Carney

et al. [4] saw these systems as “Human-passive, DSMS active”, as the models got their

input from data sources and the only human participation was inserting queries, that would

once started filter and process the incoming data flow. In contrast to that the DBMS model

was “Human-active, DBMS passive”, as it received its queries from human input, and did

not “work” at its own.

The other important model that evolved was the complex event processing model [19].

While DSMSs usually try to adapt to their changing available data, retrieving more abstract

correlations between the information is often not realizable. This is where CEP models

come in handy.

13



2 Complex Event Processing

2.1 Event

Figure 2.1: Generation of complex events

CEP models are based on so called events. These can be classified into two categories:

The “low-level events” (Cugola) or also simple events present incidents in the world, that

need to be put together and processed to lead to more abstract information, the so called

complex events or also “high-level events”. The simple events are produced by the sources

of the system and can vary in their type (stock data, sensor feedback, tweets [16]). The

subesequently from the system processed complex events are then consumed by sinks or

consumers, which can react to the higher-level information.

Each event has the same recurring attributes [20] [6]: Its content is distributed into tupels

of two entries (attribute, value), it has a certain type and a timestamp. An event stream

E is a perhaps infinite (linear) sequence of events [9] [6], denoted as a tupel (e0, e1, ...).

Usually, events are ordered by time. This is done by marking every event with a sequence

number (id), that differentiates it from other events in a stream, and by the corresponding

source stream id to distinguish between event streams from different sources.

An example could be a safety CEP system in a car: Here, data sources like the speedometer

and the distance sensor would measure atomic data in small time intervals and send them

to the system. When your brake path gets nearly as long as your distance to the object your

aiming at, a complex event “collision incoming” is produced, that is then directed to the

consumer, in this case the car brake system, which will automatically reduce the velocity of

the automobile.

14



2.2 CEP System

2.2 CEP System

Figure 2.2: Example of a CEP system containing both data parallelization and pipelining.

In our thesis we used a Complex Event Processing framework developed by Ruben Mayer.

Among his last works with the system include a stream partitioning method for low latency

event detection [20] and the creation of a batch scheduling controller, tackling the problem

of overlapping partitions between parallelized operator instances [22]. Furthermore

he investigated the influence of communication overhead on a stateful operator using

overlapping windows [21].

The system consists of five different components, that can be connected through communi-

cation ports.

2.2.1 Source

The generation of events is done in so called sources. Here, the events’ type and content is

set, as well as the time between successive events. Examples of complex event processing

sources are including but not limited to physical sensors or statistical data (stock data,

tweets). There will usually be more than one source in a bigger complex event processing

system, but for abstraction reasons we will focus on a single source in this thesis.

2.2.2 Splitter

The splitter is the connecting link between the source and the operating system. It receives

events from the source and sends them to tied instances. The receiver is thereby determined

by the scheduling strategy of the splitter.

When using pipelining (2.3) we also work with splitters placed inside the operator. These

are put together with mergers around the operator instances, to be able to use both

pipelining and data parallelization simultaneously .

15



2 Complex Event Processing

2.2.3 Operator

The core of the system is the operator. Here, events flowing from the source are processed

and transmuted into messages or signals that can be understood by the consumer. We

differentiate between the operator itself, which represents the whole complex between

the first splitter and the last merger, and operator instances. Second are duplicated or

permutated instances of the operator that occur in parallelization. In data parallelization

(see 2.3) for example, the operator is duplicated as often as the parallelization degree. In

pipelining on the other hand, parts of the operator production process are divided into

different operator instances, that enable a faster run through the operator pipeline.

2.2.4 Merger

The merger collects the data produced by the operator or multiple instances of it. With

increasing data parallelization degree this gets more costly as various operator sources will

connect to the merger.

Mergers are, like splitters, also part of the operating system when using pipeling, where

they are used to collect intermediate events that are then further processed from other

instances. These modified mergers do not send the events to consumers, but to the next

connected splitter.

2.2.5 Consumer

What is in the end really done with the filtered complex events determine the consumers

plugged in at the end of the pipeline. These are not part of the complex event processing

production but rather react automized on different occuring events, like ringing a fire alarm

or creating a pop up message.

2.3 Parallelization

Figure 2.2 shows us an example of an arrangement of our previous introduced components.

Within the operator we find the two most common types of parallelization:

• Data parallelization: An easy method to improve the latency of the operator is to

create multiple operator instances. This way the work can be split and no instance is

overloaded or crowded. For a high parallelization degree though, the problem can

arise that the splitter has a lot of work to do and will slow down the system. In the

figure, the first chain of the operator represents a data parallelization of degree two

with two operator instances (O).

16



2.3 Parallelization

• Pipelining: The alternative to data parallelization is pipelining. In pipelining, the

complex event production process is split and put into several chained operators.

That way, events do not need to be fully processed in one step but are converted to

complex events until the end of the pipe. We put splitters and mergers around each

part of the pipeline to be able to combine it with data parallelization. The figure

represents a pipeling degree of two, the first part being data parallelized (S-OO-M)

and the second a single operator instance (S-O-M).

One could argue what pipelining has to do with parallelization. In fact, if we speak of

pipelining as parallelization method, we refer to the parallel use of CPU ressources rather

than their topology context, which is sequential.

17





3 Background

In this section, we explain the basics for our test scenarios. We define variables that we

will analyze and measure, as well as equations for the computation of context between the

variables. Furthermore we describe our notation used for certain test cases and methods

for the analysis and approximation of our end results.

3.1 Variables

• The inter-arrival time a is the amount of time that passes between the production of

events at the source. We use it as our parameter to change in our application tests.

Inter-arrival times in our scenarios are either of constant value, i.e. each subsequent

event follows at the same time as events before, or exponentially distributed. The

arrival rate λ = 1
a

is the amount of events flowing from the source to the system at a

given time interval, and is just the inverse of the inter-arrival time.

• The processing time or service time p describes the time a part of the system needs

to process a single event. Parts of the system are the splitters, operator instances

or mergers. Their service times are marked respectively as pe
s, pe

i and pe
m, with e

being the dedicated event. The mean processing time can be computed as average

of all event processing times: p
e1
s +p

e2
s +...+p

eN
s

N
, with N being the amount of events in

total. Calculating the (mean) processing time is important for our tests, as it gives

information about the time needed for an event to flow through the system. Its

inverse, the service rate µ = 1
p

specifies, how much events can be served at a given

time step.

• The utilization ρ of a queueing system represents the average amount of time the

system is busy processing events. It can be computed as the quotient of the arrival

rate of events and the system service rate ρ = λ
µ

. A queueing system is considered

stable for ρ < 1 and unstable for ρ > 1. The point where ρ = 1 is called stability point.

In our test section we try to analyze how our measured stability points will differ

from ideal computed ones, to recognize for which inter-arrival times our system is

stable / unstable.

19



3 Background

• The operator latency te
op is the delay, that occurs between the arrival of an event e at

the system, and its exit, i.e. the arrival at the last merger. Derived from that, we can

calculate the mean operator latency Top as the average operator latency of all events.

In short Top =
t
e1
op+t

e2
op+...+t

eN
op

N
, with N being the amount of events running through our

system, in our case always 100. The mean operator latency is the variable we want to

analyze and model in this thesis depending on parameters like the inter-arrival rate

or the parallelization degree. Another variable is often used in context of latency: the

throughput is the amount of input the operator or system can handle at once. We will

not consider this in our thesis though.

• The queue length of a splitter (les) / operator instance (lei ) / merger (lem) is the

queue size of the input queue when the event e arrives at one of these parts of

the system. The mean queue length L can then be computed by averaging over the

measured queue lengths at each event appearance. For the splitter this is for example:

Ls = l
e1
s +l

e1
s +...+l

eN
s

N
, with N = 100. We analyze queue lenghts in our tests as they can

represent large delay sources for our operator latency.

3.2 Distributions / Queuing system

• When running our tests we used externally saved distribution samples for the inter-

arrival and service times. They were created in an own java class, supporting the

java.lang types AbstractRealDistribution and AbstractIntegerDistribution. We wanted

samples, that would represent our underlying distribution well given a specific mean.

Due to the small amount of events per run though, namely 100, the mean varied

a lot when creating individual distribution samples. Indeed one can show that the

variance to the original mean can be computed as σ
√

c
[23], with σ being the variance

of the original distribution. We therefore discarded samples with high variance to our

desired mean until we got a good fitting one which we saved on the disk.

• A queueing system is a model containing some kind of queueing or waiting. In their

book, Gross et al. [8] split systems with respect to six defining characteristics: The

arrival time and service time distributions, the “queue discipline” which specifies

the type of the used queue (First-in-first-out, First-in-last-out, . . . ) and the “system

capacity”, indicating the feasible queue size. They then differentiate between the

“number of service channels” which in our case specifies the parallelization degree

and the “number of service stages”, that we will describe as pipelining degree. In

this thesis, we will confine ourselves on a First-in-first-out queue with infinite system

capacity.

An often used notation for queueing systems is the so called Kendall notation. In his

paper, Kendall [12] subdivides the processes into three properties: (i) The “input”

denotes if the arrival rate of events is deterministic (D) or poisson distributed (M).

For the “service-mechanism”, which maps our service rate, the same holds. The

20



3.3 Theoretical methods

“queue-discipline” specifies the amount of servers that process events.

In our thesis we will use the Kendall notation, looking at two different queueing

models in special: A (D/D/c) model with constant inter-arrival and processing times,

as well as different stages of parallelization. An example for this scenario could be

stock data arriving at certain specific time steps at the market, updating statistics for

a certain stock. We explain later on that we can represent pipelining in this case by

conjugating multiple (D/D/1) queueing systems.

The second model we will use is the (M/M/c) model with inter-arrival times following

a poisson process, exponentially distributed service times and a parallelization degree

of c. The most intuitive example for this kind of model is a shopping queue with c

cash points being able to serve multiple customers in parallel. For pipelining, we

restrict the processing time to be constant (M/D/c), as distributed processing times

would be hard to realize (see 4.6).

• A poisson process is a widely utilized stochastic process to model the arrival of events

at a system [17, p. 19]. One can show, that in a poisson process, the inter-arrival times

arising between two events are exponentially distributed. To get an exponentially

distributed random variable, we can make use of the algorithm provided by Donald

Knuth in his second volume of The art of computer programming: [14]

Algorithmus 3.1 Poisson process algorithm

procedure GETRANDOMPOISSON(µ)

L = e−µ, k = 0, p = 1

repeat

p = p · rand()

k++

until p > L

return k − 1

end procedure

We implemented this method in python and saved the required poisson processes for

our test runs in log files. Similar to the distributions, we created processes and payed

attention that the mean did not diverge too much from our desired mean. Otherwise

we would discard the process and try again.

3.3 Theoretical methods

• To analyze our results, we make use of three statistical terms (see [11]). The mean ab-

solute error (MAE) is the absolute deviation of observed values Ŷ to the true values Y :

MAE(Ŷ , Y ) =
1

n

N
∑

i=1

|yi − ŷi|

21



3 Background

To weight great discrepancies between values of Ŷ and Y more, we also regard the

mean squared error between the data sets given as

MSE(Ŷ , Y ) =
1

n

N
∑

i=1

(yi − ŷi)
2

The influence of a measured difference of the data sets is also dependent on the

values of Ŷ and Y themselves. A deviation of 5 ms can be huge in nanoseconds range,

but negligible in hours range. We therefore set the mean absolute percentage error

(MAPE) as

MAPE(Ŷ , Y ) =
1

n

N
∑

i=1

|
yi − ŷi

yi
|

• Linear regression is used to approximate a specific system variable by another parame-

ter or parameter set. Therefore, we represent our estimated output values Ŷ as linear

model depending on the variables X = (X1, X2, . . . , Xp)

Ŷ = β̂0 +
p

∑

i=i

Xiβ̂i

with β being our coefficients for the sum. If we increase the vector X by the value 1

we can shorten this equation to

Ŷ = XT β̂

• To do linear regression, we need a method to fit the linear model to our real data Y .

We do this by the method of least squares, which means that we want to minimize

the mean-squared error (here also called residue) between Y and Ŷ .

MSE(Ŷ , XT β) =
1

n

N
∑

i=1

(yi − xT
i β)2

We can calculate the minimum by setting the derivative to 0 and solving the equation

for our betas. We can then directly calculate them as

β̂ = (XT X)−1XT y

We will use linear regression and the least squares method in our approximation

models of our data-parallelized or pipelined system. To retrieve our optimal βs, we

used an online website supporting linear regression1. Beforehand, we compared

some sample regression sets by hand to verify its propriety.

1 http://www.xuru.org/rt/lr.asp

22



4 Application tests

4.1 Test setup

In this section we explain how we built up our operator latency tests for data parallelization

and pipelining, as well as going into detail about the instantiation of all the parts of the

system. We further give an overview over our folder structure that we used for saving and

plotting the data.

4.1.1 Hardware

Tests were executed on three different machines on an Open stack server of the institute:

• RAM: 8 GB, VCPUs: 4, Disk: 10 GB

• RAM: 32 GB, VCPUs: 4, Disk: 10 GB

• RAM: 32 GB, VCPus: 24, Disk: 5 GB

For data parallelization tests, we confined ourselves to the first machine. Pipelining tests

were run on all three machines to compare the behavior for high pipelining degrees and

recognize the benefit of more RAM or extra VCPUs.

4.1.2 Data parallelization

We executed our operator latency tests with different shell scripts, that set up our system

depending on our current test case. For data parallelization, we first instantiated the splitter,

which created a socket at port 48458 for sources or mergers to connect. Other parameters,

that are used in Mayers work [20] [22] were set to have no influence on the splitter. These

include the four cases after “48458”, as well as the last 5 parameters of the execution call.

The “&” at the end of the line signals that the jar-file is run in parallel with the next lines.

The scheduling strategy was set to round-robin, which is marked in the program call as

“rr”. The trailing zeros describe scheduling parameters which are in the round-robin case

negligible.

23



4 Application tests

Listing 4.1 Setup for our data parallelization tests, in this example with constant inter-

arrival and processing times.

java -jar Splitter.jar 48458 -1 tu 0 0 rr 0 0 0 0 0 0 none 100 100 100 100 &

java -jar Merger.jar 48459 null 0 &

for ((d=1;d<=$b;d++)); do

java -jar Instance.jar localhost 48458 constant_wait_operator 90 10 false 100 100 100

localhost 48459 &

done

java -jar Source.jar localhost 48458 false 5 Distributions/distribution_const_$a.txt

Distributions/distribution_const_90.txt $a 100 true

#Create own directory for the experiment, move log files there

mkdir -p master_wait_operator_data_sh/D90n_test/stage_$c/pdegree_$b"_iatime_"$a

#Move all log files

mv *.txt master_wait_operator_data_sh/D90n_test/stage_$c/pdegree_$b"_iatime_"$a

Afterwards the merger was started at port 48459, also listening for operator instance

connections. We implemented two additional arguments for the merger, to be able to

send elements to another splitter for pipelining. The first argument represents hereby

the ip of the next splitter, the second argument its port. As we did not need this for data

parallelization, we set it to “null” and “0”. With these parameters defined, the merger can

also realise if it is the last merger in a chain. That is why we bound the operator latency

measurement to the splitter ip being zero, as we only wanted to measure it at our last

merger of the system.

The program now instantiates operator instances depending on the given parallelization

degree p. These are connecting to the splitter with ip “localhost” and port “48458” (first

two arguments) and the merger with ip “localhost” and port “48459”. Our used operator

type is a simple wait operator which description is given as “constant_wait_operator”.

The behavior of the operator is easy to describe: for each event e arriving, it extracts the

processing time pe
i and waits via “Thread.sleep(pe

i )”, simulating the processing of the event.

The next two arguments describe operator specific variables. They can be ignored in our

case as the processing time (or wait time) of the operator is given by the events that arrive

at its port. The remaining parameters are needed for CPU measurement and monitoring,

which are not used in our case.

In the end the source is started, passing the events to the system. The first two parameters

of the function call are the splitter ip (“localhost”) and port (“48458”) it connects to. The

third argument set to “false” indicates that we want to produce events, with the fourth

parameter indicating which type of events we want to construct. In our case we want

events of type “SimpleValue”, which constitutes events that are given a simple double

value: the processing time at the operator instance(s). For the event inter-arrival times

and processing times we load our external sample distributions. In the (D/D/n) case

these are just files of constant values. As our processing time is of constant 90 ms, we

24



4.1 Test setup

always load the same file, but for the inter-arrival time we load different ones depend-

ing on the value of “$a”, which indicates the inter-arrival times used in the current run.

Our amount of events produced is given as penultimate parameter, which is consistently

100 for all tests. As we are playing a log file, the last argument of the source is not important.

4.1.3 Pipelining

Listing 4.2 Setup for our pipelining tests, in this example with constant inter-arrival and

processing times.

for (( b=$s_start; b<=$s_end; b+=2 )); do

java -jar Splitter.jar $b -1 tu 0 0 rr 0 0 0 0 0 0 none 100 100 100 100 &

done

for (( c=$m_start; c<=$m_end; c+=2 )); do

let next=$c+1

java -jar Merger.jar $c localhost $next &

done

java -jar Merger.jar $last_m null 0 &

for (( d=$s_start; d<=$s_end; d+=2 )); do

let merger=$d+1

java -jar Instance.jar localhost $d constant_wait_operator 90 10 false 100 100 100

localhost $merger &

done

java -jar Source.jar localhost 48458 false 5 Distributions/distribution_const_$a.txt

Distributions/distribution_const_$ptime.txt $a 100 true

#Create own directory for the experiment, move log files there

mkdir -p master_wait_operator_pipe_sh/D90n_test/stage_$f/pdegree_$e"_iatime_"$a

#Move all log files

mv *.txt master_wait_operator_pipe_sh/D90n_test/stage_$f/pdegree_$e"_iatime_"$a

For the pipelining tests, a little more work had to be done when setting up the system, as we

now also had more mergers and splitters. We introduced different variables for calculating

the ports: sstart represented the first splitter port (48458), send the last one of the chain,

mstart and mend respectively for the mergers. We then iterated from sstart to send and

started splitter instances, surpassing every second port, as these represented the affiliated

merger ports. An example of the port ips for pipelining degree c = 3 can be seen in figure 4.1

The same process was done for the mergers. Iterating from mstart to mend, every merger

connected to the next splitter, which could be computed as the current merger port in-

creased by 1. The last merger was set up exclusively, as it did not connect to any further

splitter.

Afterwards we instantiated the operator instances with the start port being the start port

for the first splitter, incrementing by 2 until the last. The port of the next merger could

25



4 Application tests

then be calculated by just adding 1 to the splitter port. All other arguments were kept the

same as for data parallelization.

In the end, the source connected to the first splitter (“48445”) and sent the events to the

system.

Figure 4.1: Port connections (with ips) for pipelining with degree three.

4.1.4 Folder structure

The test results were saved in a hierarchical structure like seen in 4.2. The highest layer

forms the parallelization type differentiation, afterwards the used inter-arrival time and

processing time model. Runs are then divided by stage. Afterwards we subdivide them into

different parallelization degrees and inter-arrival times. In each subfolder, the following

log files were saved, representing the results of a run:

• splitter queue size

• splitter processing time

• instance queue size

• operator latency

Figure 4.2: Example folder structure for our tests.

This was done for every part in the system except for the operator latency which was

measured at the last merger of the chain. The splitter queue size / instance queue size were

26



4.1 Test setup

measured at the arrival of each event. This lead to a queue size of 0 if the event arrived

and no events were in the queue. The splitter processing time measured the delay that

occured between picking an event and passing it on.

27



4 Application tests

4.2 Wait Operator

In this section we analyze a simple wait operator in different data parallelization and

pipelining situations. The results are then compared and interpreted to evaluate how

well both techniques perform with different parallelization degrees. A short extension

afterwards looks for sources of deviant operator behavior. We are assuming that we have a

task that can be data parallelized, which means that the events are independent from each

other, or the operator is stateless. We further determine, that the task done by the operator

can be split up into 45 atomar steps that can be executed in serial order using pipelining.

4.3 Data parallelization (D/D/c)

We set up an experiment consisting of three stages. In each individual stage, thirteen runs

were executed. The runs were built up the following way: we initialised our system with

the source producing 100 events with specific constant inter-arrival times. Next to that, we

connected the splitter, the wait operator with constant 90 ms event processing time and the

merger (4.1.2). In each run, a different inter-arrival time was chosen, varying from 1 ms to

9 · 101.4 ms in logarithmic time steps. Furthermore we tested for parallelization degrees

1,2,3,30 and 45. Repeating these runs three times resulted in the three stages. The outcome

can be seen in figure 4.3.

Figure 4.3: Measured mean operator latency (crosses) and our approximation model for

the data parallelization (D/D/c) case.

28



4.3 Data parallelization (D/D/c)

While the mean latency Top is assuming really high values for low inter-arrival times and

parallelization degrees, the curve flattens out for higher parallelization degrees. The slope

of the curves are linearly decreasing up to the stability point where λ = µ. From there on

the operator latency is just the service time, as no event needs to wait in the queue but can

be processed immediately.

4.3.1 Ideal model

We now want to compare how similar our CEP application is to an ideal sytem when using

data parallelization. Hence, we first have to derive an ideal model. For the moment, we

do not consider our splitter, to be able to determine its influence on the overall operator

latency after our comparison. We therefore just take into acccount the operator instances

in our simple model.

The mean operator latency can be calculated as

Top = T i
Q + s = s · Li + s = s(Li + 1) (4.1)

which results from Gross’ book [8, p. 11]. T i
Q is here the average time an event has to

wait in the queue. We further know that the average queue size for a = s
c

should be

0 as the system is stable at this point. We can also assume that when the events arrive

at an inter-arrival time a → 0 the queue will fill and no event is released before every

event arrived at the queue, which gives us a mean queue length of e
2 . As we have a

round-robin splitter, higher parallelization degrees split up the events evenly across the

operator instances, which results in a maximal mean queue length of e
2c

for degree c. With

the aid of these conclusions we get as our final equation for Li(a, c) (with inter-arrival time

a and parallelization degree c):

Li(a, c) =







−100
2s

a + 100
2c

if a < s
c

0 else

and as end result our model

Top(a, c) =







s(−100
2s

a + 100
2c

+ 1) if a < s
c

s else

Figure 4.3 shows the measured mean operator latencies with the approximated ones. The

model fits the data relatively well with a mean absolute error of 44.66 ms, which represents

our average absolute approximation deviation. Still, our MSE with 3293.23 is pretty high

(expected would be 44.662 = 1936), indicating that our error varys a lot for different values.

This does not have to be a significant deficiency, but rather results from the fact that our

range of y values differs from ≈ 90 ms to ≈ 4500 ms. We therefore also investigated the

mean absolute percentage error, that tells us how far our approximation differs from the

ideal model independent from the measured value. We obtained a value of 23.515%, which

29



4 Application tests

is very good for a naive approach. The results point out, that our application behaves very

similar to an ideal data parallelized system.

4.3.2 Operator latency difference

Figure 4.4: Difference between measured and approximated mean operator latency for

different parallelization degrees and mean inter-arrival times. From light grey

to black : degree 1 to degree 45

Plotting the difference between the two data sets directly, we get figure 4.4. There is a

recognizable peak in the data for each parallelization degree, which shifts more to the left

for higher degrees. A possible explanation for that is the stability point. Here, the exact

model thinks that the system is still stable, while our additional latency influences make the

system unstable and our operator instance queues begin to fill. We can further recognize

that for all parallelization degrees the difference ranges from about 10 ms to 90 ms while

for degree 45 we find the peak at ≈ 155 ms.

What are our subsequent latency resources? Like stated at the start of the chapter, we did

not consider our splitter in the ideal model as we wanted to compare our application with a

perfect data parallelization system. In figure 4.5 we can see, that for higher parallelization

degrees the splitter processing time indeed increases, although our data is too noisy to

specify a specific approximation. This growth is a consequence of the extra connections the

splitter has to handle when working with a high parallelization degree.

The plot of the splitter queue sizes is more meaningful. One can notice, that the length is at

around zero up until an inter-arrival time of 9 · 101.2. From there on the queue size starts to

grow with increasing values for larger parallelization degrees. The peak value of additional

latency caused by the splitter can be found for parallelization degree c = 45 and inter-arrival

time a = 9·101.4. Regarding the splitter as a unique (D/D/1)-system we can compute this as

Ts = (1 + Ls)Ps = (1 + 28.25) · 3.23ms = 94.4775ms

30



4.3 Data parallelization (D/D/c)

We see that especially for low mean inter-arrival times, the splitter plays a significant role

for the mean operator latency. For high mean inter-arrival times on the other hand, the

splitter transforms to a nearly constant delay source.

Figure 4.5: Splitter processing time (left) and queue size (right) for different parallelization

degrees and mean inter-arrival times. From red to green : degree 1 to 45.

4.3.3 Stability points

Another interesting information is the stability of our system. In particular, we would like to

know how far our stability point of our application differs from the ideal data parallelization

model. We therefore had to initially find out the points in our measured data sets. This was

done by first calculating the service time pop of the balanced system, i.e. an empty operator

queue. The points left over were then linear approximated using linear regression. The

intersection point was our calculated stability point for the given parallelization degree.

Two examples for parallelization degree 2 and 3 can be seen on the left of 4.6.

The right part of the figure shows us the difference of the stability points in terms of

their affiliated inter-arrival times. In concrete, this means that for our system the mean

inter-arrival time needs to be as much higher as the y-values of the plot present. Regard for

example parallelization degree c = 30: the ideal model has its stability point at a = s = 90

ms. Our system though works slower, resulting in the stability point at a = s = 93.6 ms

and a stability point difference of 3.6 ms. We can see that for low parallelization degrees

this difference decreases slightly, while for higher parallelization degrees the values starts

to grow, leading to 3.49 ms for c = 30 up to 8.5 ms for c = 45. One explanation for that is

already given by the increasing processing time and queue length of the splitter.

31



4 Application tests

Figure 4.6: Left: linear regression of measured operator latency for parallelization degree

2 (blue) and 3 (green). Right: difference between measured and computed

balance points for different parallelization degrees.

32



4.4 Data parallelization (M/M/c)

4.4 Data parallelization (M/M/c)

To simulate a more realistic environment, we worked with distributions for the inter-arrival

time and processing time. The inter-arrival times were thereby depicted as poisson process

and the service time exponentially distributed with given parameter λ, which equals our

arrival rate. We then ran the same tests as for our (D/D/1) environment.

Figure 4.7: Measured mean operator latency (crosses) and our approximation model for

the data parallelization (M/M/c) case.

In figure 4.7 (left), you can see the operator latencies for different degrees of data par-

allelization, already combined with our model that we will derive in the next paragraph.

The data actually just differs slightly from our (D/D/c) measurements (MAE: 39.11), due

to the distributions for the inter-arrival and the processing time. Like 4.3, the operator

latency curve flattens out for larger data parallelization degrees, which can be affiliated to

the declining queue sizes in the operator instances and the splitter.

4.4.1 Approximation model

To approximate the operator latency curve, we first divided the operator instance and the

splitter into two queueing models, which we can do due to their independent behavior in a

sequential chain [8, p. 167f]. We then get for our mean operator latency:

Top = T s
Q + Ps + T i

Q + Pi

= Ps · Ls + Ps + Pi · Li + Pi

Top = Ps(Ls + 1) + Pi(Li + 1) (4.2)

33



4 Application tests

We retrieve four variables that we need to approximate to create a working model. The

mean processing time for the instance is already known as the time parameter for the

wait operator, which in our case is 90 ms. The other variables are approximated via linear

regression (see 4.6 left plot).

We started with the mean splitter processing time of the system. Regarding the proper

graph, one can see that the processing time fluctuates between 0.6 ms and 0.3 ms for

low parallization degrees. In contrast to that, high use of parallelization lets the splitter

processing time rise between inter-arrival times 9 and 1. In the further course, the curve

stabilizes at around 1 ms for parallelization degree 45 and 0.6 ms for degree 30. Our

approximation just regarded degree 1 and 45, using both curves as marginal functions

and linearly interpolating immediate parallelization degrees. The functions itselfs were a

combination of a linear regression straight line and a constant or for parallelization degree

1 just a constant all the way. Combining these, we got as our final general function for the

mean splitter processing time given mean inter-arrival time a and parallelization degree c:

m =


−0.0001−0.1687
c − 1

46



, z =


0.3788+2.4628
c − 1

46



, y =


0.03788+0.6894
c − 1

46



Ps(a, c) =







ma + z if a < y−z
m

y else

Proceeding with the splitter queue size, the task got a little bit easier here. In the figure

4.8 one can recognize that the mean splitter queue size for all parallellization degrees

drops to 0 at a inter-arrival time of around 9. We therefore split the curves into two parts,

examining both pieces seperatly. The part from a = 0 to a = 9 was approximated by linear

regression, while the right part was just constant 0. Again, we linearly interpolated between

parallelization degree 1 and 45 for intervening parallelization degrees. The function for the

splitter queue length then reads as

m =


− 3.6322 − 0.3104
c − 1

46



, z =


17.5539 + 15.5603
c − 1

46



LS(a, c) =







ma + z if a < −z
m

0 else

The easist function arised for the instance queue size. Due to the linearity of the instance

queue length increment, we calculated one slope for all parallelization degrees and just

changed our z of our linear function depending on the current degree. Starting from the

root of the straight line, we then set all other values to 0. This resulted in the composite

function

m = −0.4401, z =
100

2c

LI(a, c) =







ma + z if a < −z
m

0 else

34



4.4 Data parallelization (M/M/c)

The result of the complex model is seen in figure 4.7. Here we plotted our approximated

mean operator latency values together with our measured results from the test.

To determine the accurancy of our approximation model, we compare it with the naive

approach established in the previous section (4.3.2). Analyzing the difference between the

measured mean operator latency values and the naive model, we get for the MSE, MAE and

MAPE: MSE = 11932.66 ms, MAE = 71.58 ms, MAPE = 45.88%. One recognizes, that the

approximation displays a really large MSE value, which indicates that the model does not

fit the data well. Furthermore we see, due to the MAPE value of 45.88%, that on average

our estimated values lie almost 50% under or over our measured values. We take these

results as a benchmark for our slightly more complex model.

Here, we receive an MSE of 9554.63. Still, this value seems pretty high. As we cover a

big interval with our measured mean operator latencies though, this does not say much.

One can see that when analyzing the MAE and MAPE values. Our mean absolute error

drops from 71.58 ms to 54.37 ms, which is an improvement of nearly 25%. The highest

change can be seen for the mean absolute percentage error. Its value declines from 45.88%

to 25.23%, resulting in almost 50% less biased results. This indicates a great improvement

of approximation accurancy in contrast to our naive model.

4.4.2 Evaluation

To test the peformance of the model, we executed three example runs:

• inter-arrival time and parallelization degree in our measured range (1-226, 1-45)

• inter-arrival time in our measured range, parallelization degree outside of our mea-

sured range (1-226,>45)

• inter-arrival time outside of our measured range, parallelization degree in our mea-

sured range (>226, 1-45)

The exact values can be seen in table 4.1. The value in our approximation range is esti-

mated with a small percentage error, while operator latencies outside our measured range

appear to be more biased. Still, the approximated values are well enough to be used for

a valuation of the latency delay in the operator, given a certain mean inter-arrival time

and parallelization degree. Obviously, these runs do not represent the whole range of our

model, and do just serve the purpose of small examples.

35



4 Application tests

a n Top Top(a, n) Error (absolut, prozentual)

57 20 108.8146 108.6636 0.151 0.14%

23 50 110.9318 109.1132 1.8186 1.64%

300 2 115.4882 108.3938 6.0944 6.14%

Table 4.1: Results for the performance measurement of our approximation model

Figure 4.8: Using linear regression for the parameter approximation. Top: mean splitter

processing time, middle: mean splitter queue length, bottom: mean instance

queue length. From red to green : degree 1 to 45.

36



4.5 Pipelining (D/D/c)

4.5 Pipelining (D/D/c)

We now want to analyze the wait operator as (D/D/c) queue using pipeling. The setup

for our experiment looked similar to our (D/D/c)-model for data parallelization: three

stages containing thirteen runs for five parallelization degrees were executed, with varying

inter-arrival times and a constant 90 ms processing time. The service time was distributed

to the amount of operators, i.e. each operator had a processing time of s
n

ms.

Figure 4.9 shows the point cloud arising from measuring the mean operator latency top.

One can directly see that for high parallelization degrees, the mean operator latency does

not decrease but rather increase a lot to almost 10000 ms. We therefore think that the differ-

ence to an ideal pipelining model will be very large. We compare both in the next paragraph.

Figure 4.9: Measured mean operator latency (crosses) and our approximation model for

the pipelining (D/D/c) case.

4.5.1 Operator latency difference

Recall the mean operator latency equation (4.1)

Top = T i
Q + s = s · Li + s = s(Li + 1)

By Gross [8, p. 167f], we know that we can consider each operator instance in a pipeline

as individual (D/D/1) queue. Therefore, we initially analyze our first instance in the chain.

We know that it has a processing time of s
c
, as for parallelization degree c, the processing

time is distributed equally over all c operator instances. Like in the data parallelization

case, we further conclude that for inter-arrival times a → 0 the queue will fill, which results

in Li = 50. Moreover, the queue stays empty when s
c

≤ a. In an ideal model, the operator

37



4 Application tests

instance takes s
c

ms to process an event, yielding to an mean inter-arrival time of the same

amount for the next operator. This way, subsequent operators have an empty queue, as they

can serve each event before the next one arrives. Taking these assumption into account we

get for the queue length of the first operator

Li0
(a, c) =







−100n
2s

a + 100
2 if a < s

c

0 else

The mean operator latency for the remaining operator instances in the chain is now simply

s − s
c

(empty queues), and if we plug Li0
into equation 4.1, we retrieve as our model

Top(a, c) =







s
c
(−100n

2s
a + 100

2 + 1) + s − s
c

if a < s
c

s else

Figure 4.10: Difference between measured and approximated mean operator latency for

different parallelization degrees and mean inter-arrival times. From light

grey to black : degree 1 to degree 45

The plot of the mean operator latency difference to the ideal model confirmed our previ-

ous assumption of great distinction between the values. The graph shows that for high

parallelization degrees the mean operator latency skyrockets, although our ideal model

says otherwise. We tried to analyze the mean splitter queue length and processing time to

see if we could find any context here (4.11). In the diagrams one can see, that for higher

degrees the two variables indeed increase steadily. However they do not generate a delay

this high as seen in our test plot, with the maximum delay occuring for parallelization

degree c = 45 and mean inter-arrival time a = 1, resulting in the latency of all splitters:

≈ 45 · (2.7 · 8.2) = 996.3 ms.

38



4.5 Pipelining (D/D/c)

Figure 4.11: Splitter processing time (left) and queue size (right) for different paralleliza-

tion degrees and mean inter-arrival times. From red to green : degree 1 to

45.

To prosecute the surprising results, we ran our tests on two other machines with different

specifications (4.1.1). For the first test, we increased our RAM from 8 GB to 32 GB. The

resulting plot can be seen on the left of figure 4.12. Analyzing the difference between

the measured values for degree 30 and 45 in comparison to our first test, we retrieved the

following mean operator latency reductions: for degree 30, the mean operator latency was

78.5% the amount of the original measurements and for degree 45 it even went down to

37.8%. We can derive from this fact, that the difference in RAM has a large influence on

the system. We now extended the system specifications even further, stocking up from 4

VCPUs to 24 VCPUs. The results went down to 74.8% the amount of measured latency than

our original test results for degree 30, and 27.7% for degree 45. Important to note is that

the change in hardware specification did just affect our high parallelization degrees, with

low latency values staying almost the same. Furthermore, the additional VCPUs have a

large impact on the high parallelization degree 45, dropping the mean operator latency

from 37.8% to 27.7%, but less on degree 30 with just 3.7% improvement.

39



4 Application tests

Figure 4.12: Plot of the system running on a 32 GB RAM machine (left), right additionally

with 24 VCPUs.

40



4.6 Pipelining (M/D/c)

4.6 Pipelining (M/D/c)

Also for pipelining we were interested in a more realistic scenario by analyzing the wait

operator for different pipelining degrees using inter-arrival times depict from a poisson

process. To be able to investigate our operator latency phenomen better, we increased our

measured parallelization degrees from 5 to 8. We kept the processing time constant, to

be able to divide it over all operator instances depending on our current parallelization

degree. Otherwise, a 2 millisecond processing time for example would be hard to split up

over 45 instances, especially as we implemented the smallest wait time to be 1 ms.

The results of the test can be seen in figure 4.13. The graph looks similar to the (D/D/c)

case, due to the fact that we just changed the variance of the inter-arrival time. We also

included our calculated model, which we derive in the next section. Comparing the two

data sets of the (D/D/c) test and the (M/D/c) test, given the five joint parallelization

degrees, we retrieve an MAE of 374.51 ms. We ground this large value on the great variance

in the data for the high parallelization degree range. This could signify, that our operator

can deal better with varianced inter-arrival times with a smaller pipeline than a bigger one.

Figure 4.13: Measured mean operator latency (crosses) and our approximation model for

the pipelining (M/D/c) case.

4.6.1 Approximation model

Based on our test results for the pipelined operator, we created a model for the (M/D/c)

case. Like for data parallelization, we used the splitter and instance queue lengths as well

as the splitter processing time to derive our approximation. We do not consider the mergers

properties here, as they just pass events on to the next splitter.

41



4 Application tests

We can see our pipelining configuration as expansion of equation 4.2, resulting in a sequen-

tial chain of splitter-instance pairs

Top = Ps0
(Ls0

+ 1) + Pi0
(Li0

+ 1) + . . . + Psc
(Lsc

+ 1) + Pic
(Lic

+ 1)

As each instance has the same processing time Pi1
= Pi2

= . . . = Pic
= Pi

c
ms, we can sum

up the instance clauses to a single clause, executing the following reductions

Pi1
(Li0

+ 1) + . . . + Pic
(Lic

+ 1) =
Pi

c
(Li0

+ . . . + Lic
+ 1 + . . . 1)

=
Pi

c
(Li · c + c)

= Pi(Li + 1)

For simplicity reasons, we also shorten our splitter clausels. We therefore do not consider

every splitter individually but assume that each splitter has the same processing time

Ps =
Ps0

+...+Psc

c
and queue length Ls =

Ls0
+...+Lsc

c
. These can now be plugged into

equation 4.1. As we have c splitters in the system we need to multiply the result with c. In

the end we can write our full approximation model as combination of the two parts

Top = c · Ps(Ls + 1) + Pi(Li + 1) (4.3)

which is almost identical with equation 4.2. Like in the data parallelization section, we

have four variables that we need to approximate. The instance processing time is already

given as s
c

for the total service time s and parallelization degree c.

Regarding the splitter processing time, one can see that for low parallization degrees up

to c = 15, the curve is nearly constant, while increasing its y-value for higher degrees.

The parallelization degrees 30 and 45 act differently: for c = 30 the curve seams to be

somewhat constant but one can recognize a small decay for higher mean inter-arrival times.

This is much more significant for c = 45. Due to this observation, we approximated the

mean splitter processing time linearly between paralleization degree 1 and 45, with the

first curve being a nearly constant function averaging all measured y-values for the c1

parameter. The second curve just used linear regression to identify its slope and offset. Our

final function then reads as

m =


0.003011 − 0.01246
c − 1

44



, z =


0.4166 + 4.5155
c − 1

44



Ps(a, c) = ma + z

The two other parameters act differently on their pipelining degree course. Figure 4.14

shows that for degrees c = 1 until c = 10, the mean splitter queue length shrinks for low

inter-arrival times and in the end hits a point where Ls ≈ 0. Due to that, we simulated

c = 1 up to c = 10 with linear regression of all the points that we thought were still part of

the straight line, and then took the mean of the remaining points for an approximation for

high paralleization degrees. Intermediate degrees were then linearly interpolated. From

parallelization degree c = 10 to c = 45, the mean splitter queue length now increases

though. Looking at the trend of the curve c = 45, one can see, that it slowly decreases up

42



4.6 Pipelining (M/D/c)

to a certain point which is not in our measurement range (possibly). We therefore just used

linear regression and took the resulting curve as our approximation for degree 45. Here

again, we interpolated linearly between parallelization degree c = 10 and c = 45. Putting

all together we get the function for the mean splitter queue length

m1 =


− 0.8702 + 0.2067
c − 1

9



, z1 =


6.8219 − 4.6563
c − 1

9



, y1 =


0 + 0.2063
c − 1

9



Ls(a, 1 − 10) =







m1a + z1 if a < −z1

m1

y1 else

m2 =


− 0.6635 + 0.6527
c − 11

34



, z2 =


2.1656 + 0.1437
c − 11

34



y2 =


0.2063 − 0.2063
c − 11

34



Ls(a, > 10) =







m2a + z2 if a < −z2

m2

y2 else

We calculated our instance queue length similar to our splitter queue length case. Figure

4.14 shows, that the mean instance queue length decreases linearly for pipelining degrees

1-10, and then rests at a point where Li ≈ 0. For that reason, we took both degrees as

our outer curves for an inner interpolation of intermediate degrees. Regarding some of

the degrees in between, we noticed that the values dropped exponentially, which made

us interpolate exponentially between degree 1 and 10. The functions for c = 1 and c = 10

were derived by a linear regression of the first points of the data, leading to a straight line.

This line was then intersected with the constant resulting from the mean of the remaining

data points. The outcome was a partial function and our first part of the approximation.

Higher degrees did not behave like we expected, figure 4.13 shows that for example for

pipelining degree 45. The curve starts with a lower mean instance queue size, but also

descends slower, resulting in higher values for a > 25 than the lower degrees c = 5 and

c = 15. Therefore, we did a second linear interpolation between c = 10 and c = 45, with

the curve for c = 45 being created from linear regression of all the data points. In the end

we retrieved the function for the mean instance queue length

m1 =


− 0.5099 + 0.13290(1 − e−(c−1))


, z1 =


50.3322 − 39.9922(1 − e−(c−1))


y1 =


0.735 − 0.0704(1 − e−(c−1))


Li(a, 1 − 10) =







m1a + z1 if a < −z1

m1

y1 else

m2 =


− 0.3762 + 0.3603
c − 11

34



, z2 =


10.34 − 6.5254
c − 11

34



y2 =


0.6646 − 0.6646
c − 11

34



Li(a, > 10) =







m2a + z2 if a < −z2

m2

y2 else

43



4 Application tests

4.6.2 Evaluation

For pipelining we confine ourselves to two example runs, as we saw in the previous section

that high parallelization degrees are not approximated properly:

• inter-arrival time and parallelization degree in our approximation range (1-226, 1-10)

• inter-arrival time outside of our measured range, parallelization degree in our mea-

sured range (>226, 1-10)

The results are listed in 4.2. One can recognize that both values are not that well approx-

imated as in the data parallelization case. Still, the error is in a acceptable range, being

2.66% higher for the test outside of our measured range. Of course, these two runs do not

reflect the whole model in detail and are just meant as example test cases.

a n Top Top(a, c) Error (absolut, prozentual)

57 2 185.1711 165.0282 20.1429 10.88%

300 2 132.2508 152.9598 20.709 13.54%

Table 4.2: Results for the performance measurement of our approximation model

44



4.6 Pipelining (M/D/c)

Figure 4.14: Using linear regression for the parameter approximation. Top: mean splitter

processing time, middle: mean splitter queue length, bottom: mean instance

queue length. From red to green : degree 1 to 45.

45





5 Results

In the last chapter, we tested our wait operator under multiple different conditions, leading

to affirmative but also surprising results.

In the (D/D/c) section for data parallelization, we analyzed the deviation of our measured

data to an ideal data parallelization model. Results showed, that the latency difference is

very high at the stability points and increases for higher parallelization degrees. Afterwards

we compared the stability points directly, with the corresponding figure indicating that for

higher degrees the stability point shifts up to 8ms of mean inter-arrival time, while being at

around 2ms for low parallelization degrees.

We then investigated the operator as (M/M/c) queueing system. We retrieved a model

by approximating different parameters of the system, namely the mean instance and

splitter queue lenghts as well as the splitter processing time. In the end, we measured the

distinction to the test data, resulting in an MSE of 9554.63. Hereafter, we executed three

runs that gave us an insight on how good the model approximates mean operator latency

values (i) in our measured range and (ii) outside our measured range. The result showed

that outside our range we had a larger absolut and percentage error than in our borders.

We then switched to pipelining, first regarding it as a (D/D/c) queueing system. Here, we

retrieved surprising results: for low parallelization degrees, the mean operator latency fell,

but became really large for degrees 30 and 45. Still, we compared the data to an ideal

pipelining model and oveserved, that there exists a large distinction of the mean operator

latency for high parallelization degrees.

In the (M/D/c) section for pipelining, we investigated our high mean operator latency

values for large pipelining degrees by running tests on multiple systems. The results show

that both more RAM and VCPUs yield to lower values, but have still a large deviation to

our ideal pipelining model. Afterwards, we created an approximation model, investigating

the same parameters as in the (M/M/c) section for data parallelization. The model ap-

proximated our parallelization degrees well up to c = 10. For higher degrees, our model

was not capable of approximating the values right. Like in the data parallelization case,

we added a little evaluation, comparing approximated values inside and outside of our

variable value range. We saw that, despite an higher prozentual and absolute error than

the data-parallelization test cases, the data was approximated pretty well. However, we

also used a small parallelization degree of 2 in our runs.

47



5 Results

5.0.1 Use Cases

The derived (M/M/c) or (M/D/c) models for data parallelization and pipelining can be

used in different scenarios:

In queueing systems, stability is a huge factor, as an unstable system gets out of control

quickly, leading to huge mean operator latency values. Therefore we can use our model

to approximate the stability points of our system. This can be done with linear regression

similar to the (D/D/c) case (4.3.3). We can then create systems that get close to the

stability points, reducing arising expenses.

Another important usage of our model is the latency reduction prognosis. Consider you

need to know, how much latency reduction you gain when you increase your paralleliza-

tion degree for your data parallelized system with c = 6 and a = 15 ms by one. This

can be easily calculated by just subtracting the values for both parallelization degrees:

Top(15, 6) − Top(15, 7) = 127.127 ms, leaving you with a value that can be used to estimate

between additional costs and latency reduction.

The model is further suitable for cost computation. As an example we can calculate how

high our parallelization degree has to be, so that the mean operator latency does not

exceed a certain threshhold. Given a = 15 ms and T̂op = 100 ms this is done by setting

Top(15ms, c) = 100 ms. We are then able to solve this equation by using a numeric process

like the newton method [2, p. 52 - 56], rounding up our found solution. In the end we

arrive at our result: c = 8.

Of course there exist non-negligible borders to our models: we just regarded 100 events

per run, meaning that the system is not able to stabilize itself perfectly. The used operator

is a simple wait operator, more complex operators could, by virtue of their composition,

affect the mean operator latency in their own way. Furthermore also the machine, we run

our system on, makes a difference, like seen in the pipelining (D/D/c) case.

5.1 Conclusion

In this thesis we especially wanted to analyze, how well our system can compete with

an ideal system regarding different degrees of data parallelization and pipelining. In the

(D/D/c) data parallelization section, we had the hypothesis that for higher degrees, the

splitter influences the system more and more. Our tests affirm this, as the difference

between measured mean operator latency and ideal one grows for high degrees, as well as

the splitter queue size and processing time. The same happens with the stability points, that

depart from the ideal mean inter-arrival time when we increase the data parallelization

degree. We had the same assumptions for our pipelining model, but due to the surprisingly

high mean operator latencies for large parallelization degrees, we can not assign our extra

delays in the operator to the increasing splitter service time. Rather, our machine properties

led to the unexpected results and created huge differences to the ideal model.

The second important part of our thesis was to create a model that is able to approximate

our results in a reasonable way. Our assumption was that by deriving an approximation

48



5.1 Conclusion

model from queueing theory formulas, we would be able to reach this goal. Ultimately we

can say, that the (M/M/c) model for data parallelization does a suitable job for approximat-

ing the mean operator latency of our system, while our (M/D/c) model for pipelining fails

to succeed in that due to the machine dependancy that we did not include.

49





6 Future Work / Resume

As this thesis was a basis work for future investigations of the given Complex Event

Processing application, there exist a lot of regions further research can expand on: A more

in depth analysis of the pipelining method used in this work is required, to be able to

explain the poor performance for high parallelization degrees. An example could be the

context between the mean operator latency and the hardware specifications, especially the

available RAM and VCPUs. Furthermore, we concentrated on a simple wait operator to

test the fundamental properties of the system. Based on these results, one can extend the

work for an analysis of Complex Event Processing specific operators like time-window or

entity-window operators (see [10] or [24] for additional information). Furthermore, there

exists the possiblity to explore the wait operator for example for different mean processing

times. Another interesting area is regarding the system as stationary process. In our case,

we only sent 100 events through our system, due to the high amount of individual test

procedures. If you run the system over a longer time period, it will equilibrate, leading

to new measurable values, that can be set in relation to our inputs (see [8]). Subsequent

research could use this, to create an operator latency prognosis for a running system, that

is able to adjust its data parallelization or pipelining degree solely on its historical sensor

information.

6.1 Resume

In our thesis we analyzed the behavior of an operator of a Complex Event Processing appli-

cation under different conditions. We investigated, how our system would react on different

degrees of data parallelization and pipelining, as well as examining, how the individual

parts of the operator would behave like. Furthermore, we compared our results with ideal

data parallelization and pipelining models, to be able to measure the performance of the

system. Going further, we introduced variance by adding exponential distributions to the

inter-arrival times (and processing times). For the resulting (M/M/c) or (M/D/c) queueing

sytems, we tried to create approximation models that are capable of estimating the mean

operator latency given a certain mean inter-arrival time and parallelization degree.

Complex Event Processing has been explored a lot in the last decades. Still, plenty of

research tasks are not completely exhausted yet, and there are arising further thematic

areas time and again. It is therefore important to prosecute this field and investigate,

especially in the direction of cloud computing, how one can reduce the cost for a Complex

Event Processing system, while in the meantime providing low latency.

51





Bibliography

[1] AWS | Amazon Datenbankserver Relational Database Service. URL: https ://aws.

amazon.com/de/rds/ (visited on 02/13/2018) (cit. on p. 9).

[2] K. E. Atkinson. An introduction to numerical analysis. Wiley, 1989, p. 693. ISBN:

0471624896 (cit. on p. 48).

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. “Models and Issues in Data

Stream Systems.” In: (). URL: https://infolab.usc.edu/csci599/Fall2002/paper/

DML2{\_}streams-issues.pdf (cit. on p. 13).

[4] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, S. Zdonik. “Monitoring Streams – A New Class of Data Management

Applications.” In: () (cit. on p. 13).

[5] Cloud-Computing, Hostingdienste und APIs von Google | Google Cloud Platform. URL:

https://cloud.google.com/ (visited on 02/13/2018) (cit. on p. 9).

[6] G. Cugola, A. Margara, P. Milano. “Processing Flows of Information : From Data

Stream to Complex Event Processing.” In: 44.3 (2012). DOI: 10.1145/2187671.

2187677 (cit. on p. 14).

[7] R. Gad, M. Kappes, I. Medina-Bulo. “Local parallelization of pleasingly parallel

stream processing on multiple CPU cores.” In: 2016 IEEE 7th Annual Information

Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2016,

pp. 1–8. ISBN: 978-1-5090-0996-1. DOI: 10.1109/IEMCON.2016.7746285. URL:

http://ieeexplore.ieee.org/document/7746285/ (cit. on p. 10).

[8] D. Gross, J. F. Shortie, J. M. Thompson, C. M. Harris. Fundamentals of Queueing

Theory. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008. ISBN: 9781118625651.

DOI: 10 . 1002 / 9781118625651. URL: http : / / doi . wiley . com / 10 . 1002 /

9781118625651 (cit. on pp. 20, 29, 33, 37, 51).

[9] M. Hirzel, S. Schneider, R. Grimm, R. Soulé, B. Gra Gedik. “A Catalog of Stream

Processing Optimizations.” In: ACM Comput. Surv. Article 46.46 (2014). DOI: 10.

1145/2528412. URL: http://dx.doi.org/10.1145/2528412 (cit. on p. 14).

[10] W. Hummer, B. Satzger, S. Dustdar. “Elastic stream processing in the Cloud.” In:

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.5 (2013),

pp. 333–345. DOI: 10.1002/widm.1100. URL: http://doi.wiley.com/10.1002/widm.

1100 (cit. on p. 51).

[11] R. J. Hyndman, A. B. Koehler. “Another look at measures of forecast accuracy.” In:

(). DOI: 10.1016/j.ijforecast.2006.03.001 (cit. on p. 21).

53

https://aws.amazon.com/de/rds/
https://aws.amazon.com/de/rds/
https://infolab.usc.edu/csci599/Fall2002/paper/DML2{\_}streams-issues.pdf
https://infolab.usc.edu/csci599/Fall2002/paper/DML2{\_}streams-issues.pdf
https://cloud.google.com/
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1109/IEMCON.2016.7746285
http://ieeexplore.ieee.org/document/7746285/
https://doi.org/10.1002/9781118625651
http://doi.wiley.com/10.1002/9781118625651
http://doi.wiley.com/10.1002/9781118625651
https://doi.org/10.1145/2528412
https://doi.org/10.1145/2528412
http://dx.doi.org/10.1145/2528412
https://doi.org/10.1002/widm.1100
http://doi.wiley.com/10.1002/widm.1100
http://doi.wiley.com/10.1002/widm.1100
https://doi.org/10.1016/j.ijforecast.2006.03.001


Bibliography

[12] D. G. Kendall. Stochastic processes occurring in the theory of queues and their analysis

by the method of the imbedded markov chain. Oxford University, England and Prince-

ton University, 1958. URL: https://projecteuclid.org/download/pdf{\_}1/euclid.

aoms/1177728975 (cit. on p. 20).

[13] T. Kiefer, H. Schön, D. Habich, W. Lehner. “A Query, a Minute: Evaluating Perfor-

mance Isolation in Cloud Databases.” In: Springer, Cham, 2015, pp. 173–187. DOI:

10.1007/978-3-319-15350-6_11. URL: http://link.springer.com/10.1007/978-3-

319-15350-6{\_}11 (cit. on p. 10).

[14] D. E. Knuth. The art of computer programming. Addison-Wesley Pub. Co, 1973, p. 132.

ISBN: 9780201038224 (cit. on p. 21).

[15] R. K. Kombi, N. Lumineau, P. Lamarre. “A Preventive Auto-Parallelization Approach

for Elastic Stream Processing.” In: Proceedings - International Conference on Dis-

tributed Computing Systems (2017), pp. 1532–1542. DOI: 10.1109/ICDCS.2017.253

(cit. on p. 10).

[16] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,

K. Ramasamy, S. Taneja. “Twitter Heron.” In: Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data - SIGMOD ’15. New York, New

York, USA: ACM Press, 2015, pp. 239–250. ISBN: 9781450327589. DOI: 10.1145/

2723372.2742788. URL: http://dl.acm.org/citation.cfm?doid=2723372.2742788

(cit. on p. 14).

[17] G. Last, M. Penrose. Lectures on the Poisson Process. Cambridge University Press,

2017. ISBN: 9781107088016. DOI: 10.1017/9781316104477. URL: https://www.

cambridge.org/core/product/identifier/9781316104477/type/book (cit. on p. 21).

[18] X. Liu, A. V. Dastjerdi, R. N. Calheiros, C. Qu, R. Buyya. “A Stepwise Auto-Profiling

Method for Performance Optimization of Streaming Applications.” In: ACM Transac-

tions on Autonomous and Adaptive Systems 0.0 (2017), pp. 1–33 (cit. on p. 10).

[19] D. C. Luckham. The power of events : an introduction to complex event processing

in distributed enterprise systems. Addison-Wesley, 2002, p. 376. ISBN: 0201727897

(cit. on p. 13).

[20] R. Mayer, B. Koldehofe, K. Rothermel. “Predictable Low-Latency Event Detection

With Parallel Complex Event Processing.” In: 2.4 (2015), pp. 274–286 (cit. on pp. 14,

15, 23).

[21] R. Mayer, M. A. Tariq, K. Rothermel. “Minimizing Communication Overhead in

Window-Based Parallel Complex Event Processing *.” In: (2017). DOI: 10.1145/

3093742.3093914. URL: ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.

ustuttgart{\_}fi/INPROC-2017-33/INPROC-2017-33.pdf (cit. on p. 15).

[22] R. Mayer, M. A. Tariq, K. Rothermel. “Real-Time Batch Scheduling in Data-Parallel

Complex Event Processing.” In: (). DOI: 10.1145/1235. URL: ftp://ftp.informatik.uni-

stuttgart.de/pub/library/ncstrl.ustuttgart{\_}fi/TR-2016-04/TR-2016-04.pdf

(cit. on pp. 15, 23).

[23] S. McKillup. Statistics explained : an introductory guide for life scientists. Cambridge

University Press, 2006, p. 267. ISBN: 0521543169 (cit. on p. 20).

54

https://projecteuclid.org/download/pdf{\_}1/euclid.aoms/1177728975
https://projecteuclid.org/download/pdf{\_}1/euclid.aoms/1177728975
https://doi.org/10.1007/978-3-319-15350-6_11
http://link.springer.com/10.1007/978-3-319-15350-6{\_}11
http://link.springer.com/10.1007/978-3-319-15350-6{\_}11
https://doi.org/10.1109/ICDCS.2017.253
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788
http://dl.acm.org/citation.cfm?doid=2723372.2742788
https://doi.org/10.1017/9781316104477
https://www.cambridge.org/core/product/identifier/9781316104477/type/book
https://www.cambridge.org/core/product/identifier/9781316104477/type/book
https://doi.org/10.1145/3093742.3093914
https://doi.org/10.1145/3093742.3093914
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart{\_}fi/INPROC-2017-33/INPROC-2017-33.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart{\_}fi/INPROC-2017-33/INPROC-2017-33.pdf
https://doi.org/10.1145/1235
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart{\_}fi/TR-2016-04/TR-2016-04.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart{\_}fi/TR-2016-04/TR-2016-04.pdf


[24] K. Patroumpas, T. Sellis. “Window Specification over Data Streams.” In: (). URL:

http://dl.ifip.org/db/conf/edbtw/edbtw2006/PatroumpasS06.pdf (cit. on p. 51).

[25] R. Ramakrishnan, J. Gehrke. Database management systems. McGraw-Hill, 2000,

p. 906. ISBN: 0072322063 (cit. on p. 13).

All links were last followed on February 15, 2018.

http://dl.ifip.org/db/conf/edbtw/edbtw2006/PatroumpasS06.pdf





	1 Introduction
	1.1 Overview
	1.2 Related Work
	1.3 Contributions
	1.4 Outline

	2 Complex Event Processing
	2.1 Event
	2.2 CEP System
	2.3 Parallelization

	3 Background
	3.1 Variables
	3.2 Distributions / Queuing system
	3.3 Theoretical methods

	4 Application tests
	4.1 Test setup
	4.2 Wait Operator
	4.3 Data parallelization (D/D/c)
	4.4 Data parallelization (M/M/c)
	4.5 Pipelining (D/D/c)
	4.6 Pipelining (M/D/c)

	5 Results
	5.1 Conclusion

	6 Future Work / Resume
	6.1 Resume

	Bibliography

