
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Master Thesis No. 0838-004

Persistence, Discovery, and Generation
of Viable Cloud Application Topologies

Abhilash Mishra

Course of Study: INFOTECH

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Santiago Gómez Sáez
Commenced: June 08, 2015
Completed: December 08, 2015

CR-Classification: C.2.4; D.2.0; D.2.11

Abstract

Cloud computing is gaining popularity among application developers with each passing day
because of the many benefits introduced by the cloud paradigm. Also the number and range
of available cloud services is continuously increasing and hence the application developers
are willing to migrate complete or partial applications to cloud environment. Applications can
be designed to be run on the cloud, and utilize its technologies, or can be partially or totally
migrated to the cloud. The application’s architecture contains three layers: presentation,
business logic, and data layer. Each of this layers can be deployed on a different cloud service
basing on the requirements and the constraints and it is also possible to deploy a layer of the
application on an on premise physical server if required and topologies need to be designed
for the deployment of the application.

There are standards like TOSCA, or approaches like GENTL and MOCCA which allow for
the modeling and management of application topologies. Cloud application topologies can
be defined as typed labeled graphs constituted by a set of nodes, edges, and labels. Nodes
represent the application components, while the edges depict the relationship among them
and sub-topologies can be built by grouping multiple nodes. A cloud application viable
topology is a feasible distribution of the application components according to the depicted or
discovered application independent sub-topologies. Some objectives like cost, performance,
etc also need to be considered in order to help analyze the fitness of the services for the
desired operation.

This Master Thesis focuses on optimally distributing application components across cloud
offerings efficiently. More specifically this work deals with providing a topology modeling
framework capable of supporting the following three fundamental aspects: (i) leveraging
existing technologies and mechanisms for analyzing the different aspects of the evolution of
cloud application topologies, (ii) design and develop the concepts and mechanisms towards
dynamically discovering and constructing cloud application viable distributions (viable
topologies) specifications (typically XML representations) in an optimal manner, and (iii)
developing the visualization means within an existing topology modeling environment.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivating Scenario . 2
1.3 Definitions and Conventions . 3
1.4 Outline . 4

2 Fundamentals 7
2.1 Cloud Computing . 7

2.1.1 Definition and Motivation . 7
2.1.2 Essential Characteristics . 9
2.1.3 Service Delivery Models . 9
2.1.4 Deployment Models . 10
2.1.5 Layered Architecture of Cloud Computing 10
2.1.6 Cloud Service Lifecycle (Cloud Service Lifecycle (CSL)) 11

2.2 Cloud Application Topology Specification . 13
2.2.1 Cloud Application Topology . 13
2.2.2 Topology and Orchestration Specification for Cloud Applications (Topology

and Orchestration Specification for Cloud Applications (TOSCA)) . . . 14
2.2.3 Generalized Topology Language (Generalized Topology Language

(GENTL)) . 15
2.3 DevOps . 16
2.4 Optimization Algorithms . 17

2.4.1 Genetic Algorithm Genetic Algorithm (GA) 17
2.4.2 Multi-Agent Genetic Algorithm (Multi-Agent Genetic Algorithm (MAGA)) 19
2.4.3 Simulated Annealing (Simulated Annealing (SA)) 20
2.4.4 Ant Colony Optimization . 20

2.5 Migration of Applications to Cloud . 22
2.5.1 Optimal Distribution of Applications in Cloud 22
2.5.2 Genetic Optimization for Deployment and Reconfiguration of Software

in the Cloud . 22
2.6 Case Based Reasoning . 24
2.7 Feature Models and Feature Diagram . 24
2.8 RESTful Services . 25

2.8.1 RESTful API Design . 27
2.9 Nefolog Cost Calculator . 28
2.10 OpenTOSCA . 29

3 Related Works 33

iii

Contents

3.1 Search-Based Genetic Optimization for Deployment and Reconfiguration of
Software in the Cloud . 33

3.2 TOSCA-based Method for Adapting and Reusing application Topologies (TOSCA-
based Method for Adapting and Reusing application Topologies (TOSCA-MART)) 33

3.3 CloudGenius . 35
3.4 Context-Aware Cloud Topology Optimization and Simulation (Context-Aware

Cloud Topology Optimization and Simulation (CACTOS)) 36
3.4.1 MOve to Clouds for Composite Applications (MOve to Clouds for

Composite Applications (MOCCA)) . 38

4 Concept and Specification 41
4.1 State-of-the-Art on Optimization Algorithms 41

4.1.1 ACO . 41
4.1.2 Simulated Annealing . 41
4.1.3 Genetic Algorithm . 42

4.2 Optimal Discovery of Cloud Services . 43
4.2.1 Discovery, Selection, and Composition of Cloud Services - Genetic

Algorithm . 43
4.2.2 Feature Diagrams for Discovery of Middleware Alternatives 50

4.3 System Requirements . 50
4.3.1 Functional Requirements . 50
4.3.2 Non Functional Requirements . 51

4.4 Use Cases and Roles . 52
4.4.1 Application Developer . 52
4.4.2 Description of Use Cases . 52

4.5 System Overview . 62

5 Design 63
5.1 General Architecture . 63
5.2 Resource Model . 65
5.3 RESTful API . 66

5.3.1 API Design . 66

6 Implementation and Validation 75
6.1 Implementation . 75

6.1.1 RESTful Interface . 75
6.1.2 Pricing Knowledge Base Interaction - Nefolog 77
6.1.3 Cache Mechanism . 79
6.1.4 Optimization Algorithm . 80

6.2 Validation . 92
6.2.1 Store Requirements . 92
6.2.2 Get Compatible Services . 92
6.2.3 Discover Optimal Services . 93

7 Outcome and Future Work 97

iv

Contents

Bibliography 99

v

Contents

vi

List of Figures

1.1 Application deployment alternatives to be analyzed and optimized 2

2.1 Cloud Model [Bis11] . 8
2.2 Cloud computing architecture [ZCB10] . 11
2.3 Cloud Service Lifecycle.[MTS13] . 12
2.4 Application Topology Example. [Sta13] . 13
2.5 TOSCA Service Template. [Sta13] . 14
2.6 TOSCA Service Template Sample. [Sta13] . 15
2.7 Structure of Cloud Service Archive (CSAR) Example. [Sta13] 15
2.8 GENTL Meta model. [ARSL14] . 16
2.9 Extended μ-Topology of the Webshop Application. [ASLW14] 23
2.10 Feature Diagram Notations. [Bat05] . 24
2.11 Architecture of Nefolog. [XA+13] . 29
2.12 Data Model of Knowledge Base.[XA+13] . 30
2.13 OpenTOSCA Architecture Overview and Processing Sequence.[BBH+13] . . . 31

3.1 The TOSCA-MART matchmaking and adaptation method. [SBB+15] 34
3.2 Migration Process of the CloudGenius Framework. [MR12] 36
3.3 The continuous cycle of the CACTOS Observe-Plan-Act loop. [OGW+14] . . 37

4.1 Steps for Discovery of cloud services. 44
4.2 Generic Structure of the Chromosome. 44
4.3 Deployment Alternative of Application coded as a Genotype. 45
4.4 NSGAII Procedure.[DPAM02] . 45
4.5 Algorithm for computation of Crowding Distance.[DPAM02] 46
4.6 The Media Wiki Application Topology.[SALS15] 47
4.7 Example of some Offerings.[San15] . 47
4.8 The Randomly Selected Parents. 48
4.9 Optimal set of Services. 49
4.10 Sample Feature Diagram. 50
4.11 Use Case Diagram for Developer. 54
4.12 System Overview. 62

5.1 General Architecture of the System. 63
5.2 Data Flow within the System. 64
5.3 Resource Model representation using Class Diagram 66

6.1 Class Diagram for jMetal4.5 [ND14] . 81
6.2 Solution Representation in jMetal4.5 [ND14] 82
6.3 Request and Response for Store Requirements using Postman API Client . . . 93

vii

List of Figures

6.4 Request and Response for Get Compatible Services using Postman API Client 94
6.5 Request and Response for Discover Optimal Services using Postman API Client 95

viii

List of Tables

4.1 Description of Use Case: Enrich Application Topology 53
4.2 Description of Use Case: Discover Compatible Topologies 55
4.3 Description of Use Case: Get Compatible Services 56
4.4 Description of Use Case: Discover Optimal Services 57
4.5 Description of Use Case: Get alpha Topologies 58
4.6 Description of Use Case: Discover Middleware Alternatives 59
4.7 Description of Use Case: Discover Viable Distributions 60
4.8 Description of Use Case: Persist Selected Topology 61

5.1 Description of REST API: Enter the requirements 67
5.2 Description of REST API: Display the compatible services 68
5.3 Description of REST API: Display the Pareto Optimal services 69
5.4 Description of REST API: Display the pareto optimal set of alpha topologies . 70
5.5 Description of REST API: Display the set of suitable middleware 71
5.6 Description of REST API: Display the application distribution alternatives . . 72
5.7 Description of REST API: Persist the selected application distribution alternative 73

ix

List of Tables

x

List of Listings

6.1 XML Schema . 75
6.2 JAXB Marshalling . 76
6.3 JAXB Unmarshalling . 76
6.4 Analyze XML . 77
6.5 Query Nefolog . 78
6.6 HTTP Request . 78
6.7 Cache Management . 79
6.8 Put Resources in Cache . 80
6.9 Put Resources in Cache . 83
6.10 Problem class for our project. 84
6.11 Defining the Chromosome Solution Type. 88
6.12 Service Types as an example of the added Variables. 89
6.13 Definition of encoding Variable Chromosome. 90
6.14 Post Request for Store Requirements . 92
6.15 Get Request for Compatible Services . 93
6.16 Get Request for Optimal Services . 94

xi

1 Introduction

Cloud computing has gained popularity in the recent times because of its advantages such
as pay per use, rapid scalability, resource pooling and broad network access which helps
the users to reduce capital and maintenance costs and also reducing business risks and
maintaining expenses. This has also changed the way the computing resources were used
and provided by offering them as high quality and highly available services to the users on
demand as metered services. Nowadays more and more applications are partially or fully
migrating to cloud environment given the rise in the number and variety of cloud services by
various cloud providers. Cloud providers target to maximize their benefits by maximizing the
resources usage with a minimum management effort or human interaction, while the cloud
consumers can significantly reduce their capital expenditures in their IT infrastructure by
outsourcing the demanded computational and storage resources to a cloud environment.

In the following sections we discuss the problem statement and motivating scenario this
thesis relies on.

1.1 Problem Statement

Due to the various benefits of the cloud paradigm, there is a constant growth in the number
of people willing to use it to host their applications. In order to achieve this, there can be
two scenarios, either existing applications would be migrated to the cloud environment or
applications are built and deployed as per the offerings available in the cloud. In either of
this cases, the developer needs to know how he can deploy the applications such that he
gets an optimal performance as per his requirements and constraints. This may be achieved
by deploying the whole application in one particular cloud offering or deploying parts of it
on various cloud offerings and also keep some part of it on premise within their physical
boundaries. Topology needs to be designed for this which would tell the developers what is
the best way to deploy their application.

As shown in Figure 1.1, the applications can be deployed on the various services available off
premise on cloud providers like Amazon1, Rackspace2, Google3 or on premise on physical
servers. In order to provide the application developers with optimal topologies to deploy
their application, all the available on premise as well as off premise alternatives need to be
analyzed to check their suitability to deploy parts of an application as per the requirements.
This masters thesis focuses on the discovery of optimal set of services for deploying each
part of the application and building set of topologies with this services and providing them

1https://aws.amazon.com
2http://www.rackspace.com/cloud
3https://cloud.google.com

1

1 Introduction

Figure 1.1: Application deployment alternatives to be analyzed and optimized

to the application developer. We have studied various existing optimization techniques for
the purpose of finding optimal set of services and decided on the best one. The application
developer can then choose which topology they would like to use for their application and
that would be persisted so that it could be used by another user who has similar requirements.
The interface of the topology modeling tool would be used to accept the users requirements,
enrich topologies and build topologies from the optimal set of services. It would get the
data regarding all the available cloud services from the knowledge base and uses it for the
optimization process.

1.2 Motivating Scenario

Application developers as well as companies aim to minimise their initial investments as well
as maintenance costs by deploying their applications in the cloud. It also makes their tasks
easier as it can dynamically scale up or scale down depending on the workload on the hosting
servers. The deployment of applications partially or completely in cloud environments
involves the need of topologies to guide how the applications should be deployed.

2

1.3 Definitions and Conventions

Optimal distribution of applications in the cloud environment is important in order to
make the most of cloud services to deploy applications as per the users requirements and
constraints. The performance of an application as well as the cost of hosting it can vary
significantly depending on the resources used to host various components of the application.
Also it is not feasible for each and every application developer to take a look at all the available
services and evaluate their feasibility as per the requirements on their own. Toward this goal,
a number of approaches provide decision support for migrating existing applications to the
cloud which are discussed in Chapter 3 but they do not consider as part of their process the
application topology and the possibility of deploying parts of the application on physical
servers. The idea for this has been introduced in [ASLW14] and we will be extending it in
this thesis.

1.3 Definitions and Conventions

In the following section we list the definitions and the abbreviations used in this diploma
thesis for understanding the description of the work.

List of Abbreviations

The following list contains abbreviations which are used in this document.

API Application Programming Interface

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

CACTOS Context-Aware Cloud Topology Optimization and Simulation

CSAR Cloud Service Archive

CSL Cloud Service Lifecycle

CDO Cloud Deployment Option

GA Genetic Algorithm

GENTL Generalized Topology Language

HATEOAS Hypermedia as the engine of application state

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IT Information Technology

JSON JavaScript Object Notation

XML EXtensible Markup Language

3

1 Introduction

MAGA Multi-Agent Genetic Algorithm

MOCCA MOve to Clouds for Composite Applications

NI Number of Instances

NIST National Institute of Science and Technology

NSGAII Non-dominated Sorting Genetic Algortithm - II

OS Operating System

PaaS Platform as a Service

PDAs Personal Digital Assistants

PI Provider Instance

SA Simulated Annealing

SaaS Software as a Service

SN Service Number

SPL Software Product Line

ST Service Type

SLA Service Level Agreement

TGI Type Graph with Inheritance

TOSCA Topology and Orchestration Specification for Cloud Applications

TOSCA-MART TOSCA-based Method for Adapting and Reusing application Topologies

VM Virtual Machine

1.4 Outline

The remainder of this document is structured as follows:

• Fundamentals, Chapter 2: provides the necessary background on the different concepts,
technologies, and tools used in this masters thesis.

• Related Works, Chapter 3: discusses relevant State of the Art and positions our work
towards it.

• Concept and Specification, Chapter 4: explanation of the concepts used, functional and
non-functional requirements and use cases are discussed in this section.

• Design, Chapter 5: gives a detailed overview of the architecture of the system, and the
needed extensions to the already existing ones.

4

1.4 Outline

• Implementation and Validation, Chapter 6: the implemented components, as well as
the necessary extensions or changes are detailed in this section from the point of view
of coding and configuration and tests the prototype based on the scenario described in
this document.

• Outcome and Future Work, Chapter 8: provides a conclusion of the developed work
and investigate some ideas in which this master thesis can be extended.

5

1 Introduction

6

2 Fundamentals

2.1 Cloud Computing

2.1.1 Definition and Motivation

According to the National Institute of Science and Technology (NIST) [MG11] definition,
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service
provider interaction.

Cloud computing has adopted many things from utility computing, grid computing and
cluster computing. Utility Computing[BVB08] offers IT resources as services on demand and
metering service is introduced where service users are charged only the amount of resources
they used. This is used by cloud computing as cloud offers everything as a service to cloud
customers on pay per use basis. Cluster Computing [Ste02] combines multiple identical
computing resources within the same network to perform as a single system hence leading
to high availability and redundancy in the system. The members of a cluster have identical
configuration and performance properties and are tightly coupled. Grid Computing [BFH03]
is loosely coupled and more distributed type of cluster computing. Cloud Computing
facilitates us to access data and applications remotely over the network, instead of our
local machines or on-premise resources. Cloud based computing resources are located
outside or inside the premises of the organization and resources are provisioned and released
dynamically according to the cloud consumers’ needs with minimum involvement of cloud
providers and little overhead. Cloud software takes full advantage of the cloud paradigm by
being service-oriented with a focus on statelessness, low coupling, modularity, and semantic
interoperability [BGPCV11].

The emergence and growth of cloud computing has brought a significant change in the
Information Technology (IT) industry over the past few years. A number of large companies
such as Google, Amazon and Microsoft strive to provide more powerful, reliable and cost-
efficient cloud platforms, and business enterprises seek to rethink their business models to
benefit from the cloud paradigm. Cloud computing provides several compelling features that
motivates business owners to use it, as shown below [ZCB10].

• No up-front investment: Cloud computing uses a pay-per-use pricing model. A service
provider does not need to invest in the infrastructure to start using the facilities of cloud
computing. Rather, it rents resources from the cloud according to its own needs and
pay for the usage [ZCB10].

7

2 Fundamentals

• Lowering operating cost: The allocation and de allcation of resources in a cloud envi-
ronment can be done rapidly, on demand. Hence, a service provider no longer needs
to provision capacities according to the peak load and waste resources in case of low
service demands. It helps to conserve resources by releasing them when not required
and hence reduces operating cost [ZCB10].

• Reducing business risks and maintenance expenses: By outsourcing the service infras-
tructure to the clouds, a service provider shifts its business risks (such as hardware
failures) to infrastructure providers, who often have better expertise and are better
equipped for managing these risks. In addition, a service provider can cut down the
hardware maintenance and the staff training costs [ZCB10].

• Capacity planning, [All08] is one of the biggest chanllenge for an organization as it
involves the assessment of future demands of IT resources of an organization to provide
optimized performance mainly because it is very difficult to determine the maximum
amount of workload a computing resource can be able to handle. So often organizations
allot more resources than required called over-provisioning causing wastage of re-
sources and increasing the cost, or they allot less resources than the requirement known
as under-provisioning which leads to unavailability or poor performance. Cloud com-
puting removes the need of capacity planning as it dynamically allocates or provisions
more cloud resources and releases the resources as well according to the dynamically in-
creasing or decreasing demand. This characteristic of the cloud computing is known as
elasticity [Inc15]. Horizontal scaling is very frequently used in cloud environment which
involves scaling out (allocation) and scaling in (de allocation) of resources dynamically.

The cloud model is composed of five essential characteristics, three service models, and four
deployment models[MG11] which can be seen in figure 2.1.

Figure 2.1: Cloud Model [Bis11]

8

2.1 Cloud Computing

2.1.2 Essential Characteristics

The 5 essential characteristics which define cloud computing in a better way are :

• On-demand self-service: A consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring
human interaction with each service provider [BGPCV11].

• Broad network access: Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and Personal Digital Assistants (PDAs)) [BGPCV11].

• Resource pooling: The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a sense
of location independence in that the subscriber generally has no control or knowledge
over the exact location of the provided resources but may be able to specify location at
a higher level of abstraction (e.g., country, state, or data center). Examples of resources
include storage, processing, memory, network bandwidth, and Virtual Machine (VM)
[BGPCV11].

• Rapid elasticity: Capabilities can be rapidly and elastically provisioned, in some cases
automatically, to quickly scale out and rapidly released to quickly scale in. To the
consumer, the capabilities available for provisioning often appear to be unlimited and
can be purchased in any quantity at any time [BGPCV11].

• Measured Service: Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type
of service (e.g., storage, processing, bandwidth, and active user accounts). Resource
usage can be monitored, controlled, and reported providing transparency for both the
provider and consumer of the utilized service [BGPCV11].

2.1.3 Service Delivery Models

There are 3 basic service delivery models which defines how and at what levels the services
are delivered by a cloud provider.

• Software as a Service (SaaS): The capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The applications are accessi-
ble from various client devices through a thin client interface such as a Web browser.
The consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific application configuration settings
[BGPCV11].

9

2 Fundamentals

• Platform as a Service (PaaS): The capability provided to the consumer is to deploy
onto the cloud infrastructure consumer-created or -acquired applications created using
programming languages and tools supported by the provider. The consumer does
not manage or control the underlying cloud infrastructure including network, servers,
operating systems, or storage, but has control over the deployed applications and
possibly application hosting environment configurations [BGPCV11].

• Infrastructure as a Service (IaaS): The capability provided to the consumer is to pro-
vision processing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which can include
operating systems and applications. The consumer does not manage or control the un-
derlying cloud infrastructure but has control over operating systems, storage, deployed
applications, and possibly limited control of select networking components [BGPCV11].

2.1.4 Deployment Models

The 4 cloud deployment models represent different types of cloud environments categorized
by ownership, size, and access.

• Private cloud: The cloud infrastructure is operated solely for an organization. It may be
managed by the organization or a third party and may exist on premise or off premise
[BGPCV11].

• Community cloud: The cloud infrastructure is shared by several organizations and
supports a specific community that has shared concerns (e.g., mission, security require-
ments, policy, and compliance considerations). It may be managed by the organizations
or a third party and may exist on premise or off premise [BGPCV11].

• Public cloud: The cloud infrastructure is made available to the general public or a large
industry group and is owned by an organization selling cloud services [BGPCV11].

• Hybrid cloud: The cloud infrastructure is a composition of two or more clouds (private,
community, or public) that remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and application portability (e.g., cloud
bursting for load-balancing between clouds) [BGPCV11].

2.1.5 Layered Architecture of Cloud Computing

The architecture of a cloud computing environment can be broadly divided into 4 layers:
the hardware layer, the infrastructure layer, the platform layer and the application layer, as
shown in figure 2.2. Compared to traditional service hosting environments such as dedicated
server farms, the architecture of cloud computing is more modular. Each layer is loosely
coupled with the layers above and below, allowing each layer to evolve separately.[ZCB10]

10

2.1 Cloud Computing

Figure 2.2: Cloud computing architecture [ZCB10]

• The hardware layer: This layer is responsible for managing the physical resources of
the cloud, like servers, routers, switches, power and cooling systems and is typically
implemented in data centers which contains thousands of interconnected servers. The
issues which may arise at hardware layer are hardware configuration, fault-tolerance,
traffic management, power and cooling resource management [ZCB10] .

• The infrastructure layer: The infrastructure layer uses virtualization technologies to
creates a pool of storage and computing resources by partitioning the physical resources
and is also known as the virtualization layer. This layer is responsible for many key
features, such as dynamic resource assignment which are only made available through
virtualization technologies and hence is an essential component. [ZCB10] .

• The platform layer: It is built on top of the infrastructure layer and consists of operating
systems and application frameworks. The purpose of the platform layer is to minimize
the burden of deploying applications directly into VM containers. For example, Google
App Engine operates at the platform layer to provide API support for implementing
storage, database and business logic of typical web applications [ZCB10] .

• The application layer: It is at the top of hierarchy and consists of the actual cloud appli-
cations which can leverage the automatic-scaling feature to achieve better performance,
availability and lower operating cost[ZCB10] .

2.1.6 Cloud Service Lifecycle (CSL)

The CSL consists of nine stages: Deployment, User Requirements, Matchmaking, Negotiation,
Execution, Monitoring, Analyzing, Adjusting, and Ending which can be seen in the figure 2.3.

11

2 Fundamentals

In the Deployment stage all information about a service in a service description is collected
by a provider. By publishing the description a service is registered and potential consumers
can find it. A service can be deployed after the consumer has sent a request for it. A service is
supplied to the market once all related information is published on the Internet. During the
next stage the User Requirements and priorities for a service are specified by the consumer.
In this stage, the consumer details the technical and functional specifications that a service
needs to fulfill. [MTS13]

Figure 2.3: Cloud Service Lifecycle.[MTS13]

After the consumer has sent his search request a list of matching services is delivered which is
called Matchmaking. From the returned list of matching services the consumer picks the most
fitting one. For this service he may negotiate a Service Level Agreement (SLA) and specify
the desired guarantees for the service and then the provider replies if he can fulfill them. The
SLA Negotiation is similar to the Service Negotiation in the life cycles. The Execution stage is
entered once the SLA is concluded where the service is activated before its execution. The
Monitoring, Analyzing, and Adjusting stages are looped through during the execution. The
cloud service is monitored permanently and performance data of specific service features are
analyzed. The measured values are compared with their contractually agreed value qualities
and if a value is not in line with its guaranteed quality a message to the Adjusting or Ending
stage is triggered to start problem solving activities. In the Adjusting stage the infrastructure
of a service can scale rapidly during run-time if necessary. In the Ending stage the costs for
the service execution are billed, and the service is rated by the consumer.[MTS13]

12

2.2 Cloud Application Topology Specification

2.2 Cloud Application Topology Specification

The cloud application topology specification is done by using various languages which
are used to represent the structural components and their relationships as required for
the application. The topology model representation helps to easily port the applications
and deploy them on multiple cloud vendors. The cloud application topology and different
topology specification languages such as TOSCA and GENTL are explained in the following

2.2.1 Cloud Application Topology

Application Topology is the graphical representation of the set of structural components and
relationships among them which are used to build multi-tier distributed applications[Sta13].
The interaction among the various structural components, dependency among them and
how they are deployed on cloud environment is defined in the Application topology model.
Application components and their relationships are called elements of application topology.
A Visual Notation for application topologies based on the TOSCA [Sta13] is shown in figure
2.4.

Figure 2.4: Application Topology Example. [Sta13]

13

2 Fundamentals

Figure 2.5: TOSCA Service Template. [Sta13]

2.2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA)

TOSCA is an OASIS standardized language for the portable description of service compo-
nents, their relationships and management processes [BBLS12]. It specifies the structure
of multi-tier cloud application components and their relationships with the help of service
topology and it also describes the management and deployment procedures to create or
modify service instances using orchestration process[Sta13]. The TOSCA specification enables
the portability of applications among different cloud environments. As shown in figure 2.5,
Service Templates are TOSCA documents which contain node types defining the properties
and interfaces of components, node templates representing specific components as a reference
to a defined node type, relationship types between node types and relationship templates
instantiating the relationship types, topology templates that bring together node and rela-
tionship templates, and management plans that define how to deploy, provision, update etc
[Sta13].

The properties of non-functional behavior are defined in TOSCA policy type. Policies can
be attached to node or relationship templates by means of an external language like WS-
Policy. TOSCA also allows for the annotation of node types with requirement and capability
definitions, as well as the composition of different service templates.[Sta13]

Cloud application or service is typically packaged in TOSCA using Cloud Service Archive
(CSAR) file [Sta13] to run and manage it at different cloud environments. The CSAR archive
contains specific hierarchical structure of folder and file as shown in figure 2.7. TOSCA.meta
file has information about other files and directories of the CSAR zip. Payroll.tosca file defines
the service template of an application. Node and relationship templates are defined inside
the service template, whereas the deployment template is defined within node template. The

14

2.2 Cloud Application Topology Specification

Figure 2.6: TOSCA Service Template Sample. [Sta13]

Figure 2.7: Structure of Cloud Service Archive (CSAR) Example. [Sta13]

PayrollTypes.tosca file defines node and relationship types and is imported by Payroll.tosca file.
The deployment and implementation executable files are stored in different directories of
CSAR. AddUser.bpmn file describes imperative management plan. [Sta13]

2.2.3 Generalized Topology Language (GENTL)

The cloud topology languages may use different representations but they have some common
fundamental features which can be reused. The application topologies generally contain
components or nodes and edges or connectors that connect the components. The components
and the connectors form the graphical representation of the topologies. It allows re-usability
of existing models, extensibility to accommodate future developments, and composing

15

2 Fundamentals

of topology models of various granularity levels into larger, more complicated ones and
facilitates the mapping from and to other languages. It relies on a generic, but typed system
and GENTL models are built around a Topology element, which acts as a composer of the
other elements in the model. Topology elements may have Topology Attributes that capture
information about the topology model as a whole. Components have one or more attributes
attached to them and have links to other GENTL Topology elements, which allows for
decomposing large topology models and reusing existing ones. A Connector has attributes
associated with it and captures a relationship between a source and a target component.
Groups allow for the organization of components into sub-graphs of the topology model
with non-exclusive memberships, enabling the creation of views on the topological model
and have attributes to provide further information about the components they aggregate.
[ARSL14]

Figure 2.8: GENTL Meta model. [ARSL14]

2.3 DevOps

According to [Htt12], “DevOps is a mix of patterns intended to improve collaboration between
development and operations. DevOps addresses shared goals and incentives as well as shared
processes and tools. Because of the natural conflicts among different groups, shared goals
and incentives may not always be achievable. However, they should at least be aligned with
one another.” DevOps is an emerging paradigm to eliminate the split and barrier between

16

2.4 Optimization Algorithms

developers and operations personnel that traditionally exists in many enterprises today. The
main promise of DevOps is to enable continuous delivery of software in order to enable fast
and frequent releases. This enables quick responses to changing requirements of customers
and thus may be a critical competitive advantage. To overcome the split between developers
and operations personnel, that is predominant in many organizations today, organizational
changes, cultural changes, and technical frameworks are required [WBL14].

DevOps enables the benefits of Agile development to be felt at the organizational level.
DevOps does this by allowing for fast and responsive, yet stable, operations that can be kept
in sync with the pace of innovation coming out of the development process. The important
theme of DevOps is that the entire development-to-operations lifecycle must be viewed as
one end-to-end process. Individual methodologies can be followed for individual segments
of that processes (such as Agile on one end and Visible Ops on the other), so long as those
processes can be plugged together to form a unified process. [dev10]

DevOps approaches are typically combined with Cloud computing to enable on-demand
provisioning of resources such as virtual servers and storage in a self-service manner . Dif-
ferent interfaces are offered by Cloud providers such as graphical user interfaces, command
line interfaces, and APIs to provision and manage these resources. Especially APIs and
command line interfaces are an efficient means to integrate DevOps automation approaches
with Cloud resource management programmatically. This can be done for public, private,
and hybrid cloud scenarios. Moreover, some cloud providers offer higher-level services such
as middleware services (e.g., runtime-as-a- service, database-as-a-service, etc.) and operations
automation services, abstracting from the underlying infrastructure. These services can be
used alternatively or complementary to the lower-level infrastructure services. [WAL]

2.4 Optimization Algorithms

In this section, we discuss about the various optimization algorithms we considered to use in
our application.

2.4.1 Genetic Algorithm GA

According to [Mit96] Genetic Algorithms (GAs) are adaptive heuristic search algorithm
based on the evolutionary ideas of natural selection and genetics[Mit96]. They represent an
intelligent exploitation of a random search used to solve optimization problems by exploiting
historical information to direct the search into the region of better performance within the
search space by simulating the survival of the fittest among individuals over consecutive
generation for solving a problem[Mit96].

A population of individuals is maintained within search space for a GA, each representing
a possible solution to a given problem. Each individual is coded as a finite length vector
of components, or variables, in terms of some alphabet, usually the binary alphabet 0,1. To
continue the genetic analogy these individuals are likened to chromosomes and the variables

17

2 Fundamentals

are analogous to genes. A fitness score is assigned to each solution representing the abilities of
an individual to compete. The individual with the optimal (or generally near optimal) fitness
score is sought. The GA aims to use selective breeding of the solutions to produce offspring
better than parents by combining information from the chromosomes.[Mit96]

The GA maintains a population of n chromosomes (solutions) with associated fitness values
from which parents are selected to mate, on the basis of their fitness, producing offspring.
The solutions with higher fitness are given more opportunities to reproduce, so that offspring
inherit characteristics from each parent. As parents mate and produce offspring, new gen-
erations of solutions are produced containing, on average, more good genes than a typical
solution in a previous generation. Individuals in the population die and are replaced by the
new solutions, eventually creating a new generation, hence over successive generations better
solutions will thrive while the least fit solutions die out. Each successive generation will
contain more good partial solutions than previous generations. Eventually, once the population
has converged and is not producing offspring noticeably different from those in previous
generations, the algorithm itself is said to have converged to a set of solutions to the problem
at hand.[Mit96]

After an initial population is randomly generated, the algorithm evolves through the following
steps[Mit96]:

1. Selection Operator - It works on the principal of the survival of the fittest.

• Give preference to better individuals to produce fitter offspring.

• The goodness of each individual depends on its fitness, which is determined by an
objective function or by a subjective judgment.

2. Crossover Operator - This is used to mate different individuals

• Two individuals are chosen from the population using the selection operator

• A crossover site along the bit strings is randomly chosen and the values of the two
strings are exchanged up to this point

• The two new offspring created from this mating are put into the next generation of
the population, which are likely to be better.

3. Mutation Operator - It is used to introduce random modifications

• A portion of the new individuals will have some of their bits flipped with a low
probability.

• It is done to maintain diversity within the population and inhibit premature
convergence.

Effects of Genetic Operators

• Using selection alone will tend to fill the population with copies of the best individual
from the population [Mit96].

18

2.4 Optimization Algorithms

• Using selection and crossover operators will tend to cause the algorithms to converge
on a good but sub-optimal solution [Mit96].

• Using mutation alone induces a random walk through the search space [Mit96].

• Using selection and mutation creates a parallel, noise-tolerant, hill climbing algorithm
[Mit96].

Pseudo Code for Genetic Algorithm[KP13]

begin GA procedure;
generate populations and fitness function;
evaluate population;
while (termination criteria not meet) do

while (best solution not meet) do

crossover mutation evaluate;
end

end

post-process results and output;
end GA procedure;

Algorithm 1: Genetic algorithm

2.4.2 Multi-Agent Genetic Algorithm (MAGA)

According to [ZSL+11], Multi-Agent Genetic Algorithm is a improved hybrid algorithm
combining genetic algorithm and multi-agent techniques and demonstrates greatly enhanced
convergence time and optimization results compared to that of traditional GA specially when
handling very large-scale, high- dimensional, complex, and dynamic optimization problems.
It treats an individual within GA as an agent which is capable of local perception, competition,
cooperation, self-learning, and reaching the purpose of global optimization through the
interaction between both agent and environment, and agent and agent. The genetic operators
used here are neighborhood competition operator which realizes the operation of competition
among all agents; the neighborhood orthogonal crossover operator achieves collaboration
among agents; the mutation and self-learning operators which accomplish the behavior that
agents exploit their own knowledge. [ZSL+11]

To establish a load balancing model, the main parameters required from a single user include:
User (ReqPerHrPerUser, ReqSize, ReqCPU, ReqMemory, Count). To solve the issue of explod-
ing dimension, group strategy is exploited to set up a resource scheduling model. It is based
on the user requested parameters, and the parameters inside the group all have the maximum
value. The establishment of the load balancing model mainly refers to the design of fitness
function. On the basis of group strategy, all of the virtual resources on a physical resource’s
host correspond to the user group strategy request. VM is able to allocate several groups like:
Group (ReqPerHrPerUser, ReqSize, ReqCPU, ReqMemory, Count). Binary encoding is used
here.[ZSL+11]

19

2 Fundamentals

2.4.3 Simulated Annealing (SA)

According to [Bro11], Simulated Annealing is inspired by the process of annealing in metal-
lurgy in which a material is heated and slowly cooled into solid crystal state with minimum
energy and larger crystal size to reduce defects in metallic structures. The heat increases the
energy of the atoms allowing them to move freely, and the slow cooling schedule allows a
new low-energy level to be discovered.

Each set of a solution represents a different internal energy of the system and heating the
system results in a relaxation of the acceptance criteria of the samples taken from the search
space. As the system is cooled, the acceptance criteria of samples are narrowed to focus on
improving movements. Once the system has cooled, the configuration will represent a sample
at or close to a global optimum. The SA algorithm allows the search to sometimes accept
worst solutions with a probability that would decrease with the temperature of the system.
Initial temperature and cooling rate should be set such that the slower the temperature is
decreased, the greater the chance an optimal solution is found. [KP13]

Pseudo code for Simulated Annealing [KP13]

begin SA procedure;
generate populations initial solutions;
set temperature and cooling rate;
while (termination criteria not meet) do

generate new solutions;
access new solutions;
if (accept new solution) then

update storage;
adjust temperature;

end

end

post-process results and output;
end SA procedure;

Algorithm 2: Simulated Annealing

2.4.4 Ant Colony Optimization

As per [KP13], ACO is inspired by a mechanism called stigmergy or indirect communication
and coordination which is used by ants to find optimum path between colony and food source.
When food is located, real ants initially roams randomly from their colony to food depositing
pheromones on their paths while going as well as returning. The ants following shortest path
return earlier and amount of pheromone on that path is more and after sometime it has more
traffic. The pheromone evaporates at a certain rate so the longer paths are eliminated after
certain time. The ants use the history in terms of pheromone trail to search shortest path from
colonies to their food.[KP13]

20

2.4 Optimization Algorithms

ACO algorithm is employed to imitate the behavior of collective foraging of real ants
[GGQ+13]. It has been successfully applied to solve numerous optimization problems and is
also now used to solve continuous optimization problems. According to [GGQ+13], there are
three basic points on which ACO algorithm and its variations are based:

1. Pheromone update - When updating pheromone trails, one has to decide on which of
the constructed solutions to lay pheromones. There are usually two strategies to update the
pheromone trails. A first strategy is to select the iteration-best or best-so-far solutions to
update the pheromone matrices, with respect to each objective. A second strategy is to collect
and store the non-dominated solutions in an external set which are allowed to update the
pheromones. [GGQ+13]

2. Definition of pheromone and heuristic information - At each step of the construction
of a solution, a candidate is chosen relative to a transition probability which depends on a
pheromone factor and a heuristic factor. The pheromone/heuristic information can be defined
using one or multiple matrices. When only one matrix is utilized, the pheromone information
associated with each objective is combined to reduce the multiple objectives into a single one.
If multiple matrices are used, usually each matrix corresponds to one objective. With respect
to the pheromone information, each matrix may contain different values depending on the
implementation strategy applied. The same applies to the heuristic information. [GGQ+13]

3. Pheromone and heuristic aggregation - Whenever multiple matrices are used, one must use
some form of aggregation procedure to aggregate the pheromone/heuristic matrices. There
are three common strategies for this: the weighted sum, where matrices are aggregated by a
weighted sum; the weighted product, where matrices are aggregated by a weighted product;
and random, where at each step a random objective is selected to be optimized. Weights used
for aggregating multiple matrices, can be set dynamically, where each ant may be assigned a
different weight from the other ants at each iteration or fixed, where we can assign to all ants
the same weight and each objective has the same importance during the entire algorithm run.
[GGQ+13]

Pseudo Code for Ant Colony Optimization [KP13]

begin procedure ACO;
generate pheromone trails and other parameters;
while (termination criteria not meet) do

construct solutions;
update pheromone trails;

end

post-process results and output;
end procedure ACO;

Algorithm 3: Ant Colony Optimization

21

2 Fundamentals

2.5 Migration of Applications to Cloud

2.5.1 Optimal Distribution of Applications in Cloud

According to [ASLW14], there are many ways which can be used for the distributed deploy-
ment of the application across cloud providers like TOSCA, CloudML or Cloud Blueprints
which allow for a portable and inter operable topological description of the application stack.
But these approaches lack decision support capabilities towards optimally selecting the best
of the identified application topologies in a given situation. The main aim was to provide a
technology-agnostic formal framework that provides the means to:

– Model, verify and automatically generate alternative scenarios for the distribution of an
application stack across cloud offerings. Applications in this context may entail a complete
information system, or only part of it [ASLW14].

– Evaluate each one of these distribution scenarios with respect to various dimensions using
different criteria, and allow the selection of an optimal scenario given the application needs
[ASLW14].

An application topology is a labeled graph G = (NL,EL,s,t) where N is a set of nodes, E is
a set of edges, L a set of labels, and s,t the source and target functions. A type graph with
inheritance TGI is a triple (TG,I,A) consisting of a type graph TG=(N,E,s,t),an inheritance
graph I sharing the same set of nodes N, and a set NA c N, called abstract nodes.A typed
topology T is viable w.r.t. Type Graph with Inheritance (TGI), iff all elements of T are labeled
(typed) over the elements of T GI , i.e. there exists a graph morphism m : TGI -> T which uses
the inheritance clan relation. There are two ways to look at the morphism m that translates
TGI to T: top-down and bottom-up [ASLW14].

The type graph with inheritance for a viable application topology is called μ-topology and
has two parts: the application-specific α-topology and the non application-specific, reusable
γ-topology [ASLW14]. A sample μ topology for the Web shop application is shown in the
figure 2.9.

2.5.2 Genetic Optimization for Deployment and Reconfiguration of Software in the
Cloud

According to [FFH13], CDOSim can evaluate CDOs, e.g., regarding response times and costs.
CDOSim simulates the response times, SLA violations, and costs of a Cloud Deployment
Option (CDO) by exploring the CDO search-space on the basis of automatically extracted
architectural models and approximates the corresponding pareto optimum.

CDOXplorer optimizes the allocation of software components to VMs, but also searches for
reconfiguration rules that are aligned with the cloud’s elasticity and the specific performance
and pricing models of the available cloud environments. It uses techniques of the search-
based software engineering field and simulation runs of CDOSim to restrict the search-space
and to steer the exploration towards promising CDOs.Four input models(architectural model,

22

2.5 Migration of Applications to Cloud

Figure 2.9: Extended μ-Topology of the Webshop Application. [ASLW14]

status-quo deployment model, workload profile, and cloud profile) have to be provided
to CDOXplorer so it can find well-suited cloud deployment models and reconfiguration
rules.[FFH13]

There exists no single global optimum, so genetic algorithms aim to iteratively approximate
the pareto optimal set (pareto optimum) which is a subset of all individuals that includes
all pareto optimal individuals, i.e., individuals for which the improvement of one objective
would lead to a deterioration of another objective. The reproduction of each generation
includes the following four basic steps: Select parents, Recombine parents (crossover), Mutate
offspring and Evaluate offspring’s fitness. Appropriate pairs of diverse parents are selected
based on NSGA-II algorithm. [FFH13]

Multi-objective optimization problem that is tackled by CDOXplorer can be described as
follows. The goal is to find a CDO from the set of all feasible options that complies with
the structure of CDOs, the value ranges defined, and the constraints that are described. The
crossover operator was designed to produce only feasible individuals; hence the mixing was
restricted to dedicated positions. As a mutation also has to maintain the inner structure of a
chromosome, it is divided in five sub operators for cloud environments, node configurations,
initial start configuration, service composition and a reconfiguration rule. [FFH13]

23

2 Fundamentals

2.6 Case Based Reasoning

It is the process of solving new problems based on the solutions of similar problems encoun-
tered in the past. It involves four steps: Retrieve, Reuse, Revise and Retain. Retrieve refers to
looking up cases from past relevant to problem at hand which tells us about the past problem,
its solutions and how the solution was derived. In the Reuse step, we try to map the older
problem to the problem at hand and try to modify the solution as per our needs. Next, we
Revise the modified solution in real world scenarios and after it has been completely adapted
to the problem at hand, we need to Retain it as a new case. [Wik15]

2.7 Feature Models and Feature Diagram

Software Product Line (SPL) engineering is a paradigm to develop software applications
using platforms and mass customization.A feature model is a hierarchically arranged set of
features [SHT06]. As per [Bat05], relationships between a parent feature and its child features
are categorized as:

• And — all subfeatures must be selected,

• Alternative — only one subfeature can be selected,

• Or — one or more can be selected,

• Mandatory — features that required, and

• Optional — features that are optional.

The graphical representation of the various notations can be seen in the Figure 2.10

Figure 2.10: Feature Diagram Notations. [Bat05]

According to [Bat05],Feature models are used to specify members of a software product
line and a member is defined by a unique combination of features. A feature diagram is a
graphical representation of a feature model organized as a tree. It is a tree where primitive
features are leaves and compound features are interior nodes. A tree grammar requires every
token to appear in exactly one pattern, and the name of every production to appear in exactly
one pattern. The root production is an exception; it is not referenced in any pattern. More
general grammars can be used, but iterative trees capture the minimum properties needed
for our discussions.[Bat05]

24

2.8 RESTful Services

2.8 RESTful Services

The Representational State Transfer (REST) style is an abstraction of the architectural elements
within a distributed hypermedia system [Fie00]. The details of component implementation
and protocol syntax are ignored in REST in order to focus on the roles of components, the
constraints upon their interaction with other components, and the interpretation of significant
data elements. It encompasses the fundamental constraints upon components, connectors
and data that define the basis of the web architecture and thus the essence of its behavior as a
network-based application. The RESTful architectural constraints as mentioned in [Fie00] are
:

• Client-server - It is the most basic constraint and enforces separation of concerns which
helps establish a decoupled architecture supporting independent evolution of logic on
the client and the server. As per [Fie00], A client is a triggering process and a server is a
reactive process. Clients make requests that trigger reactions from servers thus, a client initiates
activity at times of its choosing; it often then delays until its request has been serviced. On the
other hand, a server waits for requests to be made and then reacts to them. A server is usually a
non-terminating process and often provides service to more than one client.

• Stateless - The communications in a RESTful system must be stateless which means no
session state is saved in the server. It means each request from a client should include
all the necessary contextual information which the server requires to understand the
request. This in return relaxes the web server by freeing it from memorizing the state of
its client application. The benefit lies in the possible scalability of the web’s architectural
style.[Fie00]

• Cache - Caches help the server, client, or one of the intermediary middleware compo-
nents to store the response for reuse in later requests which enables increased overall
availability of responses, reliability of an application thus controlling a web server’s
load and reducing the cost. The advantage of adding cache constraints is that they
have the potential to partially or completely eliminate some interactions, improving
efficiency, scalability, and user-perceived performance by reducing the average latency
of a series of interactions [Fie00]. Caching also counter balances some of the negatives
incorporated in REST design due to stateless constraint.

• Uniform Interface - To ensure effective and robust communication system, the unifor-
mity of the interfaces for interaction between the web components such as servers,
clients and network-based intermediaries is of major concern. [Fie00] identified four
constraints in order to achieve the uniformity which are:

1. Identification of resources - According to [Fie00], The key abstraction of information
in REST is a resource. Any information that can be named can be a resource: a document
or image, a temporal service, a collection of other resources, a non-virtual object, and so on.
The resources can be identified by defining a global addressing space for resource
and service discovery. E.g., for a particular home page has to be unique in order to
be specific to that website’s root resource.

25

2 Fundamentals

2. Manipulation of resources through representations - We should be able to ma-
nipulate the representations so that the same exact resource can be represented
to different clients in different ways. This provides the freedom for the varied
representation of the same resource. [Fie00]

3. Self-descriptive messages - We need to ensure that the messages are complete in
itself thus including the meta-data to convey details regarding the resource state,
the representation format and size to enable multiple formats for the resource
representation as mentioned above. [Fie00]

4. Hypermedia as the engine of application state (HATEOAS) - A resource’s state
representation includes links to related resources and so the resource’s current state
has to be within the message and not on the server end. This leads to interactions
which are stateful as the information is contained in hyperlinks but is not stored at
the server side but at the client side. A client interacts with a network application
entirely through hypermedia provided dynamically by application servers. [Fie00]

• Layered System - A layered system is organized hierarchically, each layer providing services to
the layer above it and using services of the layer below it but no one layer can see past the next
[Fie00]. Hence it helps reduce coupling across multiple layers by hiding the inner layers
from all except the adjacent outer layer, thus improving re-usability and the ability to
evolve. This helps to transparently deploy components like proxies and gateways which
are required for enforcing security, load balancing or response caching. By restricting
knowledge of the system to a single layer, we place a bound on the overall system
complexity and promote substrate independence.

• Code-On-Demand - This constraint tends to establish a technology coupling between
web servers and their clients, since the client must be able to understand and execute
the code that it downloads on-demand from the server. This optional constraint is
primarily intended to allow logic within clients (such as Web browsers) to be updated
independently from server-side logic [Inc].

The architectural properties offered by REST that help establish the design goals that lie
behind the application of REST constraints are:

• High performance - REST can support the Performance goal by using caches to keep
available data close to where it is being processed and can further help by minimizing
overhead associated with setting up complex interactions by keeping each interaction
simple and self-contained (as a request-response pair) [Inc]. The most common kind
of resource is a file, but a resource may also be for example a dynamically-generated
query result or a document.

• Scalability - This property supports the growing demand in the form of need to support
a large number of instances or concurrent interactions. Being stateless, all the required
state information for the interaction are contained within the request itself. The request
hence has no server affinity which enables to spray the request across cluster of servers
hence providing a scaling system. As per [Inc], four basic approaches for dealing with
scalability demands are identified and can be combined in various ways:

26

2.8 RESTful Services

– scaling up - increasing the capacity of services, consumers, and network devices

– scaling out - distributing load across services and programs

– smoothing out - evening out the number of interactions over peak and non-peak
periods to optimize the infrastructure (thereby reducing the impact of the peaks to
avoid the infrastructure sitting idle at other times)

– decoupling the consumption of finite resources - such as memory from concurrent
consumers

• Simplicity - For the application to be simple and understandable, the proper application
of separation of concerns is required. Four generic verbs Create, Read, Update and
Delete (CRUD) allows for the ease of implementation.

• Portability - The ease at which services and solutions can be moved from one deployed
location to another is represented by the goal of portability [Inc].The application must
be capable to be run on heterogeneous environments as the service oriented architecture
supports the provision to use services being technology and platform independent.

• Data Independency - REST promises to allow the possibility to use any possible format
for a resource. Different formats may be used to represent the data of a single resource
therefore the request may contain client’s formatting capabilities allowing for content
negotiation.

2.8.1 RESTful API Design

An API or Application Programming Interface lets the client program communicate with
the service. In order to use the web services there are APIs for the client program and an
API exposes a set of data and functions to facilitate interactions between computer programs
and allow them to exchange information. A REST API is a web API that confirms with
REST architectural style. To design a REST API, there are certain practices implicit to the
HTTP standard but due to the flexibility of designing the API it becomes easier to develop
comprehensible APIs according to what a service has to offer. The designing of the API is
of significance as for a client to be able to use a service, the functionalities it offers and how
these functionalities can be used is visible via the API alone. The resources are the most
fundamental units to a REST API. Hence, to access the resource a URI must be designed to be
able to reach out to a resource. The other aspect to it is to perform any action on the resource
which can be done via standard methods offered by HTTP. [Mas11]

API Design Rules

A set of rules have been defined for designing REST APIs in order to maintain the consistency
and to leverage a standard and clean API for the client usage. These rules let the client use
the API with clear understanding of what service is offering and saves the designer from
confusions and provokes them for a careful consideration while designing the API. Many of

27

2 Fundamentals

the rules have become standard for the design while some rules can be accepted or slightly
modified to make the URIs more readable and easier to understand. The design rules for URI
format are [Mas11]:

• Forward slash separator (/) must be used to indicate a hierarchical relationship.

• A trailing forward slash (/) should not be included in naming the resources.

• Lowercase letters should be preferred in URI paths. File extensions should not be
included in URIs rather REST API clients should be encouraged to utilize HTTP’s
provided format selection mechanism. The REST API clients should allow the user to
explicitly mention the format they expect for the response.

• URI path conveys the REST API’s resource model, hence each forward slash separated
path segment must correspond to a unique resource within the model’s hierarchy.

• While considering different resource archetypes, a singular noun should be used for
document names 15, a plural noun should be used for collection names 16 and a plural
noun should be used for store names 17.

• CRUD function names should not be used in URIs.

• The query component of a URI may be used to filter collections or stores. This would
help to distinguish between the resources.

• GET and POST must not be used to tunnel other request methods where tunneling refers
to incorrectly using the HTTP methods to limit the client with less HTTP vocabulary.

• GET must be used to retrieve a representation of a resource, PUT must be used to both
insert and update a stored resource with a a request message having a body to represent
the desired changes. POST must be used to create a new resource in a collection and
DELETE must be used to remove a resource from its parent.

• The HTTP Location response header must designate the URI of the newly created
resource.

• Custom HTTP headers must not be used to change the behaviour of HTTP methods.

These rules are of importance for designing any REST API therefore have been considered for
this thesis work. The use of these rules has been discussed in a elaborate manner in Chapter
5.

2.9 Nefolog Cost Calculator

Nefolog contains the collection of decision support services and the knowledge base and
its basic architecture can be seen in the figure 2.11. The services have 2 representations-
JavaScript Object Notation (JSON) and EXtensible Markup Language (XML) and are defined
by different URIs which can also present the requirements of users. They are also used to
handle the interactions between users and the Cloud provider knowledge base. Knowledge

28

2.10 OpenTOSCA

Base is a relational database and data are organized by tables which are linked by foreign
keys. Web services are implemented in the Restlet framework and operated in conjunction
with the knowledge base. There are two main decision support services offered: candidate
search and cost calculator. The candidate search service is accomplished by the comparisons
between user demands which are presented by the query part of URIs and data in knowledge
base. The cost calculator service is used to calculate the costs of candidate offerings with
the help of cost formulas. analyze can query on the system to get service types, providers,
etc.[XA+13]

Figure 2.11: Architecture of Nefolog. [XA+13]

2.10 OpenTOSCA

OpenTOSCA is a runtime supporting imperative processing of TOSCA applications. Impera-
tive means that the deployment and management logic is provided by plans. The key tasks
of OpenTOSCA, addressed by the architecture depicted in Fig. 2, are to operate management
operations, run plans, and manage state. Requests to the Container API are passed to the
Control component, which orchestrates the different components, tracks their progress, and
interprets the TOSCA application. The Core component offers common services to other
components, e. g., managing data or validating XML.[BBH+13]

According to [BBH+13], Management operations of nodes and relationships are either pro-
vided by running (Web) services or by Implementation Artifacts contained in the CSAR. In
the latter case, the Implementation Artifact Engine is responsible to run these artifacts in
order to make them available for plans. Implementation Artifacts, e. g., a SOAP Web service
implemented as Java Web archive (WAR), are processed by a corresponding plugin of the
engine which knows where and how to run this kind of artifact. The plugins deploy the
respective artifacts and return the endpoints of the deployed management operations to be
stored in the Endpoints database. [BBH+13]

The management plans contained in CSARs are processed by the Plan Engine, which also
employs plugins to support different workflow languages, e.g., Business Process Model
and Notation (BPMN) or Business Process Execution Language (BPEL), and their runtime
environments. Plans only define abstractly which kind of service they require but not their

29

2 Fundamentals

Figure 2.12: Data Model of Knowledge Base.[XA+13]

concrete endpoints. Therefore, the corresponding plan plugin binds each service invoked
by the plan to the endpoint of the management operation before it deploys the plan to the
respective work flow runtime. The service’s endpoint was added to the endpoint database
before by the Implementation Artifact Engine. This way of binding workflows ensures
portability of management plans between different environments and runtimes. By using the
Plan Portability API, management plans can access the topology and instance information,
e.g., the property values of nodes and relationships.[BBH+13]

30

2.10 OpenTOSCA

The OpenTOSCA architecture can be seen in the Figure 2.13. The plugin architecture of the
Implementation Artifact Engine and Plan Engine ensure extensibility. Portability is ensured
by the two engines working together when binding management plans. Strict separation of
architectural components through well-defined OSGi interfaces enables the replacement of
implementations of components. This also allows each component to be scaled independently.
[BBH+13]

Figure 2.13: OpenTOSCA Architecture Overview and Processing Sequence.[BBH+13]

31

2 Fundamentals

32

3 Related Works

There are several existing approaches for analyzing and processing the evolution of Cloud
application topologies in an efficient manner. These approaches, such as Search-Based Genetic
Optimization for Deployment and Reconfiguration of Software in the Cloud and TOSCA
Mart, are described in the following subsections.

3.1 Search-Based Genetic Optimization for Deployment and
Reconfiguration of Software in the Cloud

This work deals with deploying applications in the cloud and gives the user various cloud
deployment options.CDOSim can evaluate CDOs, e.g., regarding response times and costs.
CDOSim simulates the response times, SLA violations, and costs of a CDO. It explores
the CDO search-space on the basis of automatically extracted architectural models and
approximates the corresponding pareto optimum. CDOXplorer optimizes the allocation of
software components to VMs, but also searches for reconfiguration rules that are aligned
with the cloud’s elasticity and the specific performance and pricing models of the available
cloud environments. It uses techniques of the search-based software engineering field and
simulation runs of CDOSim to restrict the search-space and to steer the exploration towards
promising CDOs.Four input models (architectural model, status-quo deployment model,
workload profile, and cloud profile) have to be provided to CDOXplorer so it can find well-
suited cloud deployment models and reconfiguration rules.[FFH13]

This work provides well suited deployment models for applications on cloud. We will be
using similar idea as the one here to provide application topologies with parts of application
deployed on physical servers. In this work, they build the topologies and then compare
among them to find out the pareto optimal set. But we would be discovering the optimal set
of services for each tier of the application and then build the optimal deployment alternatives
for the whole system. Also we divide the application topology into an application specific
part and a non application specific, reusable part.

3.2 TOSCA-based Method for Adapting and Reusing application
Topologies (TOSCA-MART)

TOSCA-MART allows to concretely implement application components with certain re-
quirements by adapting and reusing fragments of existing application topologies. It allows
developers to define custom TOSCA application components by declaring the offerings and
requirements they need to be properly operated. These features are then matched against

33

3 Related Works

those provided by each of the topologies available in a repository of existing cloud applica-
tions, so as to determine the topology fragments and automatically select the best. It can be
used to discover complete topologies as well as middleware and infrastructure fragments to
host new applications so instead of modeling complete topologies, application developers
can define only the offerings and requirements and TOSCA-MART will then automatically
implement them, thus significantly decreasing the effort and cost needed for developing
cloud applications. It does not restrict to applications developed with a specific methodology,
nor it requires the availability of application’s source code, and it is hence applicable also to
non open-source, third-party services. [SBB+15]

Figure 3.1: The TOSCA-MART matchmaking and adaptation method. [SBB+15]

TOSCA-MART method is illustrated in the figure 3.1. The goal is to derive an implementation
for a target Node Type N by excerpting it from a repository Repo of cloud applications.
Once N and Repo are available, each application topology in Repo is compared with N by
employing the Matchmake procedure and obtain the set Candidates. Due to the potentially
huge number of already avail- able topologies and to the possibility of having multiple
candidates for each of these topologies, the set Candidates may become huge. The number of
available candidates is reduced by applying 3 subsequent steps. First, Rate computes a score
for each candidate and the set Candidates is transformed in the set RatedCandidates. After
this, Filter reduces the number of RatedCandidates by removing duplicates and gives the set
FiletredCandidates. Finally, Cut reduces the number of candidates according to a threshold
and the set FilteredCandidates is reduced to the set ElectedCandidates, which contains only
the best candidates. Each of the ElectedCandidates has to be adapted to properly implement
the target. MappingSelection step helps to select the most proper mapping among the
available ones in order to avoid the user to select mappings. Once the mappings are selected,
each of the ElectedCandidates is adapted by resolving the unsatisfied dependencies of the
selected components, and by enclosing the candidate fragments into standalone application
specifications which implement the target NodeType N. All these specifications compose the
set ReusableImplementations, which is the output of the TOSCA-MART method. Finally,
an optional ManualRefinement step may be done to allow the cloud application developer
to manually modify the outputted NodeType implementations, if they are not designed as

34

3.3 CloudGenius

desired. [SBB+15]

As per [SBB+15], TOSCA-MART goes a step further, by allowing to reuse not only entire
application topologies, but also fragments of such topologies. It focuses mainly on topology
completion and reusability i.e. it can be used to discover complete topologies as well as mid-
dleware and infrastructure fragments to host new applications. TOSCA-MART automatically
implements the topologies as per the offerings and requirements defined by the developer
but it does not focus on providing an optimal set of topologies. Also it does not take into
account the option of deploying parts of applications on physical servers when building the
topologies.

3.3 CloudGenius

CloudGenius is a framework, which helps in migration of web applications to the cloud.
Migrating Web applications to cloud services and integrating cloud services into existing
computing infrastructures is non-trivial, the problem being selecting the best and compatible
mix of software images (e.g., Web server image) and infrastructure services to ensure that
Quality of Service (QoS). CloudGenius automates the decision-making process based on
a model and factors specifically for Web server migration to the Cloud. It leverages a
well known multi-criteria decision making technique, called Analytic Hierarchy Process, to
automate the selection process based on a model, factors, and QoS parameters related to an
application. [MR12]

Cloud infrastructure service selection, cloud VM image selection, cloud VM image customiza-
tion, migration strategy definition, and migration strategy application are the 5 main steps
that outline a migration of an organization’s Web application to an equivalent on a cloud
infrastructure service. CloudGenius provides a decision support system that is capable of
enhancing the quality of cloud infrastructure service selections and cloud VM image selec-
tions. This approach that translates both selection steps into multi-criteria decision-making
problems to determine the most valuable combination of a cloud VM image and a cloud
infrastructure service. defines a Cloud migration process. CloudGenius offers a model and
methods to determine the best combined choice of a Cloud VM image and a Cloud infrastruc-
ture service. The framework leverages an evaluation and decision-making framework, called
(MC2)2 to support requirements and adopt a profound multi-criteria evaluation approach.
[MR12]

CloudGenius allows users to define an abstract Web server and set requirements for a Web
server implementation that condition what attributes are acceptable for a Cloud equivalent
from which, a user has to choose relevant factors from a criteria list and define their priorities
by setting weights for criteria in pair-wise comparisons [MR12]. From the information given
by the user the CloudGenius approach employs a model and the user preferences to apply
the (MC2)2 framework and suggest a best cloud image and cloud service combination. But,
it does not provide the user with a set of pareto optimal deployment alternatives to choose
from. Also, it selects a cloud image and service configuration for the whole application rather
than providing a chance to deploy various parts of applications in various cloud offerings.

35

3 Related Works

Figure 3.2: Migration Process of the CloudGenius Framework. [MR12]

3.4 Context-Aware Cloud Topology Optimization and Simulation
(CACTOS)

CACTOS approach to cloud infrastructure automation and optimization addresses hetero-
geneity through a combination of in-depth analysis of application behavior with insights from
commercial cloud providers. The aim of the approach is threefold: to model applications and
data center resources, to simulate applications and resources for planning and operation, and
to optimize application deployment and resource use in an autonomic manner. The vision of
CACTOS is to produce new data center optimization and simulation mechanisms that can
handle the scale, heterogeneity, and complexity of modern cloud application workloads while
providing advanced infrastructure capabilities such as resource elasticity and controllable
application quality of service (QoS). The long-term goal of this work is to develop integrated
monitoring, simulation, and management tools that accurately capture the dynamics of com-
plex workloads, abstract the heterogeneity of resource sets, and optimize virtual machine
and resource configurations to increase the resource and energy efficiency of cloud data
centers. It emphasizes the three core concepts: Context-awareness, Topology optimization
and Simulation.[OGW+14]

There are 2 major challenges which exist for realizing the CACTOS vision :

• Cloud System Scale and Complexity : The scale of cloud applications ranges from basic
services running in individual virtual machines to complex and distributed applications
spanning multiple services hosted in multiple geographically distributed data centers
[OGW+14].

• Cloud Workload and Infrastructure Heterogeneity : Heterogeneity permeates both
cloud workloads and infrastructures at multiple levels. Modeling and prediction of
workloads requires understanding of application behavior and heterogeneous workload
characteristics. Resource requirements may vary and depends heavily on the resource
usage profile. Modeling and characterizing changes in the behavior of heterogeneous
workloads on heterogeneous hardware poses major challenges. [OGW+14]

36

3.4 Context-Aware Cloud Topology Optimization and Simulation (CACTOS)

The key challenges in cloud infrastructure topology optimization include the identification
of key performance indicators and management actions that can be monitored and used to
control data center resources. In CACTOS, data centers are modeled in a sensor-actuator
model where sensor (monitoring) data are captured in infrastructure topology and load
models and actuator actions are represented in optimization plans that list recommended
changes to the infrastructure using instructions from a predefined optimization plan language.
Using this model, data center operations are then described in a closed Observe-Plan-Act loop,
where the state of the data center resources and applications are continuously monitored, and
plans (changes to resource configurations and application mappings) are made and enacted
to optimize data center operations towards selected objective functions. [OGW+14]

Figure 3.3: The continuous cycle of the CACTOS Observe-Plan-Act loop. [OGW+14]

The main focus of CACTOS is to develop tools that accurately capture the dynamics of com-
plex workloads, abstract the heterogeneity of resource sets, and optimize virtual machine and
resource configurations to increase the resource and energy efficiency of cloud data centers. It
also helps to model applications and optimize application deployment but it is more focused
on middleware and infrastructure related problems rather than topologies for deploying
complete applications. It aims to optimize the mapping of services to resources rather than
providing set of optimal topologies for deploying applications as per the requirements of the
developer.

37

3 Related Works

3.4.1 MOve to Clouds for Composite Applications (MOCCA)

[LFM+11] says, MOCCA aims to split an application and decide which component of the ap-
plication should be put in which cloud basing on the functional and non-functional properties.
The rearrangement of the application’s deployment topology is a major challenge in moving
applications to cloud. It solves the Move-to-Cloud problem which is how to rearrange the
components of a multi-tier, multi-component application into disjoint groups of components.
Each such group can be provisioned separately to different clouds while preserving the
desired properties of the whole application. It transforms the Move-to-Cloud problem into a
graph-partitioning problem and provides a methodology and a corresponding tool chain that
allows application developers and architects to model their applications. MOCCA assumes
that the architecture model, the deployment model and the deployment artifacts for the
application are provided. A cloud distribution is a set of architectural components of the
application that are to be moved to the same cloud and is derived based on the architecture
model and deployment model. The actual provisioning of the cloud distribution in the target
clouds is performed based on the automatic creation of provision clusters.[LFM+11]

A customizable application is represented by an instance of the entity type Application
Template, which consists of one or more instances of the Component entity type. A component
has a name and type and may contain other components, is related to other components
and is realized by exactly one Implementation and the type attribute of implementation
indicates the main manner or technological basis used to realize the implementation. An
implementation consists of zero or more Artifacts and an artifact has zero or more Variability
Points with a Name and a Locator attribute. The Locator attribute is used to point directly
into the artifact to distinguish the piece and variability point support users in customizing an
application template by providing a list of potential values to choose from for variability point
which is assigned a value of exactly one of the associated alternatives. The various types of
alternatives are explicit which has a predefined value, free which allows the input of arbitrary
values and visible, which points to a Visible property of a component. Visible Properties
and Variability Points can be defined for the components of an application to support the
specification of the parametrization aspects of a deployment, which will support an automatic
provisioning of applications. To support an automatic installation of an application the
Implementation and Artifacts of a component have to be defined. A generic orthogonal
variability allows all variability of an application to be expressed in one model and is necessary
as variability in one component might depend on the binding of other variability points of
other components.[LFM+11]

An architecture model of the application to be moved to the cloud has to be provided which
is enriched with deployment information and rearranged into groups of components that
belong into the same cloud creating a cloud distribution, auto provisioning is done. Finally,
the cloud distribution and the combined architecture/deployment model annotated with
the required implementation units are combined into a provision cluster which represents
all the information needed to provision the rearranged application into its target clouds. To
automatically compute an optimized cloud distribution hill climbing, simulated annealing,
an evolutionary algorithm and a hybrid approach. Clouds are modeled as tuples of properties

38

3.4 Context-Aware Cloud Topology Optimization and Simulation (CACTOS)

relevant for deciding the cloud distribution problem. The Architecture Modeler helps to
model the architecture models; the Deployment Modeler specifies deployment topologies
and models, middleware deployments, deployment relevant parameters and installation
relevant artifacts, and the Cloud Distributor helps to split the application. The Provision
Preparation component determines the corresponding provision cluster and the Customiza-
tion Flow Generator generates a customization workflow that derives the properties required
for provisioning and deployment of the rearranged application. [LFM+11]

MOCCA has a proper tool set for realising the proposed method for splitting applications
in order to deploy various part of it on various clouds. But, MOCCA assumes that the
architecture model, the deployment model and the deployment artifacts for the application
are provided. So it rearranges the deployment topology of an application but does not provide
the option for building topologies for applications from requirements. It seems to be a very
effective method for migrating applications to cloud but does not seem to have support for
deploying new applications.

39

3 Related Works

40

4 Concept and Specification

In this chapter we first present a comparison of various algorithms we have studied for
discovery of cloud services and then provide an overview of the system. In the second part of
this chapter we specify the functional and non-functional requirement the system must fulfill,
and provide a list of the use cases.

4.1 State-of-the-Art on Optimization Algorithms

In this section, we will list down the advantages and disadvantages of the following ap-
proaches and then compare and decide which one is the most suitable for our use.

4.1.1 ACO

The Advantages of this approach are :

• It has advantage of distributed computing. [KP13]

• It is robust and also easy to accommodate with other algorithms.[SGGB]

• When the graph may change dynamically, the ant colony algorithms can be run contin-
uously and adapt to changes in real time.[SGGB]

Some of the shortcomings of this approach are :

• Though ant colony algorithms can solve some optimization problems successfully, we
cannot prove its convergence.[YJB08]

• It is prone to falling in the local optimal solution because the ACO updates the pheromone
according to the current best path.[ZZZ06]

4.1.2 Simulated Annealing

The Advantages of this approach are :

• It is relatively easy to code, even for complex problems.[KP13]

• It statistically guarantees finding an optimal solution.[KP13]

• SA can deal with nonlinear models, unordered data with many constraints.[KP13]

• It is versatile because it does not depend on any restrictive properties of the model.
[KP13]

41

4 Concept and Specification

Some of the shortcomings of this approach are :

• It is very time consuming, especially if the cost function needs more computation.
[KP13]

• SA is not that much useful when the energy landscape is smooth, or there are few local
minima.[KP13]

• SA is a meta-heuristic approach, so it needs a lot of choices to turn it into an actual
algorithm. [KP13]

• There is a trade-off between the quality of the solutions and the time needed to compute
them.[KP13]

• More customization work needed for varieties of constraints and have to fine-tune the
parameters of the algorithm.[KP13]

• The precision of the numbers used in implementation have a major effect on the quality
of the result. [KP13]

4.1.3 Genetic Algorithm

Some of the main advantages of GA are :

• It always gives solution and solution gets better with time. [SGGB]

• It supports multi-objective optimization. [SGGB]

• It is more useful and efficient when search space is large, complex and poorly known or
no mathematical analysis is available. [BS12]

• The GA is well suited to and has been extensively applied to solve complex design
optimization problems because it can handle both discrete and continuous variables,
and nonlinear objective functions without requiring gradient information. [HCDWV05]

A few limitations are :

• When fitness function is not properly defined, GA may converge towards local optima.
[BS12]

• GA is not appropriate choice for constraint based optimization problem. [BS12]

Here we have discussed about the advantages and disadvantages of the various optimization
algorithms discussed by us in the fundamentals chapter. This is done in order to be able to
select the algorithm that best suits the requirements of our application. We see that GA is
better for solving complex optimization problem involving large search spaces and without
the availability of much mathematical analysis. Also it supports multi objective optimization
and provides us a pareto optimal set of solutions. SA gives an optimal solution but is largely
impacted by external factors and also is of not much use when the energy landscape is
smooth. ACO can solve optimization problems but its convergence cannot be proven and
also it is prone to falling into local optima more often then not. GAs also at times tend to

42

4.2 Optimal Discovery of Cloud Services

converge towards local optima but this can be avoided by defining proper fitness functions.
Although the solutions of GA gets better with time but it guarantees a solution even in lesser
number of iterations and it works for nonlinear objective functions without requiring gradient
information. All of these features of GA which suits the requirements of the system we want
to design is the motivation behind using GA.

4.2 Optimal Discovery of Cloud Services

In this section, we would give an overview about the steps we are going to follow to complete
the objective of discovering cloud services and topologies for an application. Algorithm 4 is a
basic algorithm stating the same:

Receive the α or preliminary mu topologies from the user;
Analyze the topology to interpret requirements and hard constraints;
Apply hard constraints using queries to get compatible services;
Use Genetic Optimization on compatible services to get Pareto optimal sets of deployment
alternatives;
Use feature models to get middleware alternatives;
Combine the deployment alternatives and middleware alternatives and build a set M of
viable μ topologies;
Show the μ topologies to the developer;
Persist the topology selected by the developer;

Algorithm 4: Optimal Discovery of Cloud Services

4.2.1 Discovery, Selection, and Composition of Cloud Services - Genetic Algorithm

Concept

To implement the genetic algorithm, we first need to design a basic structure for the chromo-
some which we are going to use and the description of the various genes taken into account
while building the chromosome. The basic structure of the chromosome is shown in the
figure 4.2. The genes that are taken into consideration while building the chromosomes of
population are:

• Service Type (ST) : It defines the cloud service provider or physical server that we are
taking into account. Ex - AWS EC2,AWS RDS, IBM Z Series

• Provider Instance (PI) : It defines the instance type of the service provider considered.
e.g. - m3.xlarge in AWS EC2

• Operating System (OS) : It tells us about the operating system used on the selected
service provider.

• Number of Instances (NI) : It tells us about the number of instances of the particular
service being used.

43

4 Concept and Specification

Figure 4.1: Steps for Discovery of cloud services.

Figure 4.2: Generic Structure of the Chromosome.

The above section shows how the chromosome for a particular service would look like but
an application would ideally have more than one service. So now in the figure 4.3 we will
see how a deployment alternative of an application with more than one service could be
represented as a genotype. Here in order to identify the various services, we have to introduce
an additional gene :

• Service Number (SN) : It indicates the various services with a unique number.

The Genetic algorithm that we are using for the thesis is Non-dominated Sorting Genetic
Algortithm - II (NSGAII). The figure 4.4 gives a brief overview of the working of NSGAII
algorithm which we shall explain in detail in the remaining of this section.

In terms of genetic algorithms, fitness refers to the quality of the members of a population
basing on the objectives taken into consideration. In NSGAII, random population are created
and sorted based on non domination. Each solution is given a fitness, 1 being the best. A
solution is said to be non dominated, if it is better in atleast one objective and worse in no
objectives. So if we compare two solutions x and y basing on 2 objectives namely cost and

44

4.2 Optimal Discovery of Cloud Services

Figure 4.3: Deployment Alternative of Application coded as a Genotype.

Figure 4.4: NSGAII Procedure.[DPAM02]

availability, x dominates y if it is at least cheaper or more available then y but not costlier and
not lesser available. [DPAM02]

Considering a pool of solutions, we need to calculate 2 entities:

• domination count (np) - It refers to the number of solutions that dominate the solution
p.

• A set (sp) of solution that the solution p dominates.

All the solutions which have minimum domination count are put into the first Non Domi-
nated set or the First front(F1). For each solution with np=0, we visit each member q of its
set sp and reduce its domination count by one. In doing so, if for any member the domi-
nation count becomes zero, we put it in a separate list and all such members belong to the
second non dominated front. Now, the above procedure is continued with each member
of second front and the third front is identified. This process continues until all fronts are
identified.[DPAM02]

Once we have the population divided into various non domination fronts, we move on to
the main loop of the algorithm where we implement the genetic operations to select the
pareto optimal set of solutions. Initially, a random parent population P0 is created and each
solution is assigned a fitness corresponding to its non domination front. Then the usual

45

4 Concept and Specification

binary tournament selection, recombination, and mutation operators are used to create a
offspring population Q0 of size N. In NSGAII, elitism is introduced by comparing current
population with previously found best non dominated solutions, the procedure is different
after the initial generation[DPAM02].

Let us consider the kth generation or iteration of the algorithm. Here, after generating Qk
from Pk, we combine them to get a population Rk = Pk ∪ Qk of size 2n. Then the population
Rk is sorted according to non domination. All current and previous generations are including
in Rk hence ensuring elitism. Now, solutions belonging to the best non dominated set F1 are
best solutions in the combined population and must be emphasized more than any other
solution in the combined population. If the size of F1 is smaller than n, we definitely choose
all members of the set for the new population. The remaining members of the population are
chosen from subsequent non dominated fronts in the order of their ranking. This procedure
is continued until no more sets can be accommodated. In the process, a point of time will
mostly come when we cannot accommodate the complete population of a particular front.
In this case we have to sort the population of that particular front and select the best few so
as to select exact n number of elements. In such cases, we need to calculate a value called as
crowding distance[DPAM02].

The crowding-distance computation requires sorting the population according to each objec-
tive function value in ascending order of magnitude. Thereafter, for each objective function,
the boundary solutions (solutions with smallest and largest function values) are assigned an
infinite distance value. All other intermediate solutions are assigned a distance value equal
to the absolute normalized difference in the function values of two adjacent solutions. This
calculation is continued with other objective functions. The overall crowding-distance value
is calculated as the sum of individual distance values corresponding to each objective. Each
objective function is normalized before calculating the crowding distance. The figure 4.5
shows the algorithm for crowding distance computation[DPAM02].

Figure 4.5: Algorithm for computation of Crowding Distance.[DPAM02]

Example- MediaWiki Application

Let us consider an example for deploying the media wiki application. The topology of the
application is shown in figure 4.6. This figure shows a representation of how parts of the
application can be deployed on various cloud offerings and some parts on physical machine.
Now we shall explain how the various topologies can be formed basing on the available

46

4.2 Optimal Discovery of Cloud Services

offerings. The objectives that we use for the implementation of this multi objective algorithms
are Cost and Availability. For this purpose, we select some examples of the offerings with
generated values for cost and availability and we assign the various offerings codes from
A-G(for ease of reference when explaining the example) as seen in the table in figure 4.7

Figure 4.6: The Media Wiki Application Topology.[SALS15]

Figure 4.7: Example of some Offerings.[San15]

Now first we calculate the domination count(np) and the set(sp) of solutions each solution
dominates.

For A: There is no solution that A dominates as for none of the solutions, A has better cost

47

4 Concept and Specification

and availability. The cost of A is lesser than only E but the availability is not better. Hence sA
= {}
The solutions B,C,D have similar availability as compared to A but offer better cost and hence
dominate A and the solution F has better cost as well as availability as compared to A. Hence
nA = 4 {B, C, D, F}
Similarly, For B: sB = {A}, nB = 2 {C, D}
For C: sC = {A, B, G}, nC = 1 {D}
For D: sD = {A, B, C, G}, nD = 0 {}
For E: sE = {}, nE = 1 {F}
For F: sF = {A, E}, nF = 0 {}
For G: sG = {}, nG = 2 {C, D}

So here the non dominated fronts can be defined as :
First Front (F1) = {D, F}
Second Front (F2) = {C, E}
Third Front (F3) = {B, G}
Fourth Front (F4) = {A}

Now we demonstrate an example where we take into account an application needing just
one service for the ease of explanation. So we start the process with randomly selected
parent population P0. In figure 4.8, we can see the randomly selected parent populations be
considered for this example.

Figure 4.8: The Randomly Selected Parents.

Here we have 3 randomly selected parents P0(A,C,F) so we have odd number of elements
and hence the best one among them should be replicated to mate with two other parents
to ensure better offspring. In this case F is the fittest parent and has to be replicated. If the
randomly selected parent population had even number of elements, we can mate them in 2
pairs to produce offspring. So after crossover and mutation, we get the set of offspring Q0.
The offspring are the services (B,D,E). Here we get 2 instances of E as offspring so use it only
once for the next step.

So now we have the population R0 = {A, B, C, D, E, F} from which we have to select the best
3 to be the parents for the next step. So now we look in the non dominated fronts and select
2 elements D,F from the first front and the set becomes {D, F}. Now in the second front,
we have two elements C,E but we have to select only one of them to complete the set of 3
elements so here we use the crowding distance operator to calculate the crowding distance.
Here we have 2 objectives namely cost and availability and for calculating crowding distance,
we need to arrange the values in ascending order and apply the formula :

48

4.2 Optimal Discovery of Cloud Services

I[i]distance = (I[i]distance + (I[i + 1].m − I[i − 1].m)/(f max
m − f min

m))

Now we arrange the services in ascending order of cost as a function where minimum cost
is the best. So we arrange it in the order as maximum cost first and then go on decreasing
till the minimum {E, A, F, B, G, C, D}. As per the definition now we calculate the crowding
distance of the offerings C and E as

For C, I[3]distance = (0 + (0.06 − 0.23)/(0.06 − 0.62) = 17
56 = 0.3035

Similarly for E, I[5]distance = 0 + ∞ = ∞ (Solution with boundary values are always selected)

Now considering the objective availability, the services will be ordered as {G, A, B, C, D, E, F}.
Now we use the same formula to calculate the total crowding distances

For C, I[1]distance = 0.3035 + (0.0004)/(0.0009) = 0.7479

For E, I[5]distance = ∞.

So here the crowding distance value is more for E as compared to C, so E gets selected to fill
the set and hence the final set to be the parent population for the next step, P1 will be D, F, E
and the same procedure repeats.

Also, there is a special case we have to consider when taking into consideration offerings
which hides the OS layer from the user and have 0 for the field OS as in RDS or have no PI
type and have value 0 for it as in IBM Z series. We will have a condition that whenever we
find a value 0 for the OS or PI, the crossover has to be done for more than one genes. In case
we have the value 0 for PI then we have to crossover both the ST and PI. In case we have a
value 0 for the OS, then we need to crossover both PI and OS. And suppose we need to make
a crossover between the above mentioned 2 special cases, then we have to do a crossover of
all the 3 genes; ST,PI and OS.

This processes are repeated for a large number of times before we reach at a final result which
would be the set of optimal services which would be something that shown in figure 4.9

Figure 4.9: Optimal set of Services.

49

4 Concept and Specification

4.2.2 Feature Diagrams for Discovery of Middleware Alternatives

We will use the feature diagrams for the purpose of discovery of middleware. We will use an
extensible framework where current research on VM automated analysis might be developed
and easily integrated into a final product. The framework is built following the SPL paradigm
supporting different variability meta models, reasoners or solvers, analysis questions and
reasoner selectors, easing the production of customized VM analysis tools. [TBRC+08]

Figure 4.10: Sample Feature Diagram.

Feature models have hierarchical tree like structures and we can specify how we will select
from the many available children of a node by using various relationships like And,Or,Alternative,etc.
The middleware required for the Mediawiki application can be broadly categorized into those
required for presentation layer, business logic layer and persistence layer out of which the
first two are mandatory and the third can be marked as optional in the feature diagram. It can
be seen in the figure 4.10 which has been drawn as per the standards discussed in the section
2.7. As per the diagram, it is mandatory to select one middleware each for the presentation
and business logic layers and if needed one can also be selected for the persistence layer.

4.3 System Requirements

This section aims to provide the set of requirements of the application which were extracted by
taking into consideration the problem statement and previous works. We tried to understand
the previous works which aimed at solving problems similar to what we have at hand. After
making a proper analysis of other works and then relating them to our problem, we arrived
at the following requirements which have been discussed below.

4.3.1 Functional Requirements

• Application Topology and Requirements Analysis : The application profile provided by
the developer are analyzed in order to find out the hard constraints needed to filter the

50

4.3 System Requirements

services. The system must interpret what exactly the developer requires to deploy the
various tiers of his application and then try to find out the parameters which could be
used to filter services.

• Filtering of Services: The hard constraints discovered in the previous step are used to
filter out the services which suit the application’s requirements from the pool of services
available.

• Application Distribution Cloud Service Alternatives Discovery: After the system gets
the filtered set of services as per the requirements, NSGAII algorithm discussed above
is used to discover the pareto optimal set of service alternatives among all the services
that suit the requirements.

• Application Middleware Discovery: After the service alternatives have been discov-
ered,the middleware alternatives are discovered using feature diagrams. Here, the
system searches through a tree of various alternatives for deploying each tier of the
solution and finds out the suitable deployment options.

• Construction of μ topologies: Once the service alternatives and the middleware alter-
natives are found, the system must build the set of concrete μ topologies which can be
given to the developer.

• Persist the μ topologies: Once the pareto optimal set of μ topologies are ready, we need
to return it to the developer and persist the one in a database which is selected by the
developer.

• Discover Compatible topologies: When the set of requirements for the application are
known, there is a possibility to search for an already existing topology that fulfils the
requirements. In this case, developer can reuse the topology if it suits the application to
be deployed.

4.3.2 Non Functional Requirements

• Performance : The topology discovery perform very efficiently by fulfilling the required
steps of filtering services and discovering optimal set of services.

• Availability : The framework should always be able to discover topologies for the
requirements provided by the developers for the applications or retrieve the topologies
from the available set of topologies if suitable for the application.

• Security : The implementation of the framework should not violate the security of used
tools like winery,nefolog,etc.

• Compatibility : The implemented service discovery framework should be compatible
with the topology modelling tool such as Winery.

51

4 Concept and Specification

• Consistency: The topology discovery and optimization framework should work consis-
tently on the various requirements and objectives provided by the application developer.
The user interface and all the operations should always behave in a similar fashion. The
framework should also be consistent while

• Usability: The user interface should be easy to use and informative for the develop-
ers to provide the data and query for whatever they need. There should be proper
documentation of the framework which should be complete and self explanatory.

4.4 Use Cases and Roles

The system contains the application developer as an actor. The application developer roles
are described in the following subsection. The identified use cases of the use case diagram in
figure 4.11 are also described in the subsequent subsection.

4.4.1 Application Developer

The application developer is the actor responsible for the roles described below.

• Specifying application requirements: The developer provides the α or a preliminary μ

topology of his application or in some cases developer may provide just the require-
ments of the application.

• Specifying the objectives and the allowable limits for them: The developer should
provide what are the main objectives which is to be taken into consideration when
selecting the pareto optimal set of alternatives. In this thesis, we take into consideration
two objectives namely cost and availability.

4.4.2 Description of Use Cases

Name Enrich Application Topology

Goal The developer wants to enrich the application topology as per the requirements.

Actor Application Developer

Pre-Condition The application developer has access to the winery system and has the applica-
tion requirements ready.

Post-Condition The developer gets an enriched topology.

Post-Condition in
Special Case

Here goes the post-condition in special case

52

4.4 Use Cases and Roles

Normal Case 1. Developer selects Enrich Topology and specifies the partial topology of the
application.

2. The topology modelling framework enriches the topology and returns it
back to the user.

Special Cases 1a. The provided partial topology does not match the allowed format.

a) System shows Enter Valid data message.

Table 4.1: Description of Use Case Enrich Application Topology.

53

4 Concept and Specification

Figure 4.11: Use Case Diagram for Developer.

54

4.4 Use Cases and Roles

Name Discover Compatible Topologies

Goal The developer searches for the topologies in the database which may be suitable
for the requirements of the application.

Actor Application Developer

Pre-Condition The developer has access rights to the database and has the application require-
ments ready.

Post-Condition The developer may finds topology matching the application requirements.

Post-Condition in
Special Case

Here goes the post-condition in special case

Normal Case 1. Developer selects Search for Topology and specifies the requirements.

2. The framework looks for the relevant topologies in the database and returns
a list of topologies which may match the requirements.

Special Cases 1a. The requirements provided are not in correct format or incomplete.

a) System shows Enter Valid Requirements message.

Table 4.2: Description of Use Case Discover Compatible Topologies.

55

4 Concept and Specification

Name Get Compatible Services

Goal The developer sends a request to the framework to fetch all the services compati-
ble with the requirements of the application.

Actor Application Developer

Pre-Condition The developer must have access to the system and should have provided the
application requirements.

Post-Condition The system returns a set of services which fulfil the requirements for the applica-
tion.

Post-Condition in
Special Case

The system does not return any services.

Normal Case 1. Developer provides the requirements and the objectives to consider for
optimization to the system.

2. Developer selects the Get Compatible Services option.

3. The system analyzes the requirements and finds out the hard constraints.

4. The system then queries the Nefolog basing on the hard constraints and
gets a set of filtered services and returns it to the user.

Special Cases 3a. Some of the requirement provided are vague.

a) System shows Enter Valid Requirements message.

Table 4.3: Description of Use Case Get Compatible Services.

56

4.4 Use Cases and Roles

Name Discover Optimal Services

Goal The developer sends a request to the framework to discover all the pareto optimal
services for each tier of the application.

Actor Application Developer

Pre-Condition The developer must have access to the system and should have provided the
application requirements and the objectives for optimisation to the system.

Post-Condition The system returns a set of services which are best suited as per the requirements
for each tier of the application.

Post-Condition in
Special Case

The system does not return any services or returns the services only for some
parts of the application.

Normal Case 1. Developer provides the requirements and the objectives to consider for
optimization to the system.

2. Developer selects the Discover Optimal Services option.

3. The system analyzes the requirements and finds out the hard constraints.

4. The system then queries the Nefolog basing on the hard constraints and
gets a set of filtered services for each tier.

5. Then the system uses the optimizer to find out the pareto optimal set of
services for each tier and returns it to the developer.

Special Cases 3a. Some of the requirement provided or the objectives to be considered for
optimization are vague.

a) System shows Enter Valid Requirements and Objectives message.

Table 4.4: Description of Use Case Discover Optimal Services.

57

4 Concept and Specification

Name Get alpha Topologies

Goal The developer sends a request to the framework to discover all the alpha topolo-
gies for the application.

Actor Application Developer

Pre-Condition The developer must have access to the system and should have provided the
application requirements and the objectives for optimisation to the system.

Post-Condition The system returns a set of pareto optimal alternative alpha topologies for the
application.

Post-Condition in
Special Case

The system does not return a set of pareto optimal alternative alpha topologies
for the application.

Normal Case 1. Developer provides the requirements and the objectives to consider for
optimization to the system.

2. Developer selects the Discover Optimal Services option.

3. The system analyzes the requirements and finds out the hard constraints.

4. The system then queries the Nefolog basing on the hard constraints and
gets a set of filtered services for each tier.

5. Then the system uses the optimizer to find out the pareto optimal set of
services for each tier.

6. Once the services are discovered for each tier, the system combines them
and builds alternative alpha topologies and returns them to the developer.

Special Cases 3a. Some of the requirement provided or the objectives to be considered for
optimization are vague.

a) System shows Enter Valid Requirements and Objectives message.

Table 4.5: Description of Use Case Get alpha Topologies.

58

4.4 Use Cases and Roles

Name Discover Middleware Alternatives

Goal The developer wants the system to find out all the middleware alternatives
feasible for the application.

Actor Application Developer

Pre-Condition The developer must have access to the system and should have provided the
application requirements to the system.

Post-Condition The system returns a set of best suitable middleware alternatives for the applica-
tion.

Post-Condition in
Special Case

The system does not return a set of best suitable middleware alternatives for the
application.

Normal Case 1. Developer provides the requirements for the application to the system.

2. Developer selects the Discover Middleware Alternatives option.

3. The system analyzes the requirements and finds out the hard constraints.

4. The system uses feature diagram to search through the middleware alterna-
tives and find out the best suitable ones and return them to the developer.

Special Cases 3a. Some of the requirement provided are not appropriate.

a) System shows Enter Valid Requirements message.

Table 4.6: Description of Use Case Discover Middleware Alternatives.

59

4 Concept and Specification

Name Discover Viable Distributions

Goal The developer sends a request to the framework to discover all the viable distri-
butions or mu topologies for deploying the application.

Actor Application Developer

Pre-Condition The developer must have access to the system and should have provided the
application requirements and the objectives for optimisation to the system.

Post-Condition The system returns a set of near optimal alternative mu topologies for the appli-
cation.

Post-Condition in
Special Case

The system does not return a set of near optimal alternative alpha topologies for
the application.

Normal Case 1. Developer provides the requirements and the objectives to consider for
optimization to the system.

2. Developer selects the Get mu Topologies option.

3. The system analyzes the requirements and finds out the hard constraints.

4. The system then queries the Nefolog basing on the hard constraints and
gets a set of filtered services for each tier.

5. Then the system uses the optimizer to find out the pareto optimal set of
services for each tier.

6. When the services are discovered for each tier, the system combines them
and builds alternative alpha topologies.

7. The system then searches for the middleware alternatives.

8. Once all the alpha topologies and middleware alternatives are discovered,
the mu builder builds the mu topologies and gives them back to the devel-
oper.

Special Cases 3a. Some of the requirement provided or the objectives to be considered for
optimization are vague.

a) System shows Enter Valid Requirements and Objectives message.

Table 4.7: Description of Use Case Discover Viable Distributions.

60

4.4 Use Cases and Roles

Name Persist Selected Topology

Goal The developer wants to persist one of the topologies in the database.

Actor Application Developer

Pre-Condition The developer should have access to the system and successfully discovered
topologies for deploying the application at hand.

Post-Condition The selected topologies get persisted in the database.

Post-Condition in
Special Case

The topologies may not be persisted in the database.

Normal Case 1. The developer has a set of topologies out of which he marks the topology
to persist and selects Persist Topology.

2. The system persists the topology in the database.

Special Cases

Table 4.8: Description of Use Case Persist Selected Topology.

61

4 Concept and Specification

4.5 System Overview

In this section, we provide an overview of the system we are going to design for the purpose
of discovery, generation and persistence of cloud application topologies. This topologies
will help the developers to deploy their applications such that parts of the application can
be deployed on cloud based services while some others on physical machines. We design a
framework which accepts the requirements and objectives of the application from the user as
input. The system analyzes the requirements and hard constraints are interpreted which are
used to filter services from those available in the knowledge base.

As shown in Figure 4.12, the system that we have designed for this purpose basically com-
prises of a topology modeling framework and a topology discovery and optimization frame-
work. The topology modeling framework helps us enrich the topologies that we receive from
the application developers or build the topologies from the requirements we get from the
developers. The topology discovery and optimization framework does the task of filtering
viable services from knowledge base as per the application requirements. It also helps us to
find the optimal set of services from the filtered services and discover the suitable middle-
ware required for the application. It also helps us to persist the topologies in the topology
registry or search for existing topologies which would be suitable for the deployment of the
application.

Figure 4.12: System Overview.

62

5 Design

In this chapter we present the architectural solution taken into account to build the system
which fulfills the requirements specified in Chapter 4. We present the general architecture
stating the main components of the system.

5.1 General Architecture

The system analyzes the requirements, finds out best suitable services as well as middleware
solutions and designs topology alternatives for deployment of applications. The Winery
modeling system and Nefolog knowledge bases are used to support the framework which
will be used for discovery and generation of topologies as shown in Figure 5.1. They are
described below:

Figure 5.1: General Architecture of the System.

• Topology modelling Framework:We use the web based graphical modelling tool for
TOSCA-based applications called Winery [KBBL13]. Application topologies and man-

63

5 Design

Figure 5.2: Data Flow within the System.

agement plans are modelled using it. In this thesis, the graphical user interface of
Winery is extended to include an additional part for receiving application requirements
and workload from the developer. The workload is specified under the properties of
application service template.

The Topology Modeler creates graph based visual application topology model by using
node and relationship template in the service template. The Topology Modeler attaches
relationship constraint, deployment artifact, requirement, capability and policy to the
node and relationship template of the topology [KBBL13]. In this thesis, the graphical
user interface of the Topology Modeler is extended so that the application developer
can specify the application performance requirements. The performance requirements
are specified in the policy template of specific policy type[Gan]. Subsequently, the appli-
cation developer can attach them as policies to the individual application component or
node template level of the application topology. Each policy has specific policy template

64

5.2 Resource Model

and type.

• Cost calculation Framework: Nefolog[XA+13] contains knowledge base and collection
of decision support services which can be represented as JSON or XML and are defined
by different URIs which can also present the requirements of users. Knowledge Base is
a relational database and data are organized by tables which are linked by foreign keys.
In this thesis, we are going to use the Nefolog to retrieve the viable services fitting the
requirements of the application. Also, we are going to retrieve the cost for the services
from the Nefolog system which will be used as a parameter for the determination of
optimal set of services.

• Optimization Framework: The optimization framework is designed to get the require-
ments from the user and finds out the optimal α and μ topologies for the application.
A detail insight into the processes can be found in the Figure 5.2 which shows the
interaction between various parts of the framework and also the Topology Modelling
and Cost Calculation frameworks.

As we can see in the Figure 5.2, the framework receives the requirements for the
application from the topology modeler. The analyzer then interprets the hard constraints
and fetches the compatible services from the cost calculation framework. The compatible
services are passed on to the Optimizer which uses the NSGA2 algorithm to find the
pareto optimal set of services.Once the pareto optimal services are discovered for each
tier, they are used to build pareto optimal set of α topologies. Then the middleware
alternatives are found for the application. Finally the μ builder is used to build concrete
application deployment alternatives. It uses the pareto optimal α topologies and the
middleware discovered in previous steps to build the μ topologies or application
deployment alternatives which are returned to the user. The user then selects one of the
application deployment alternatives to use for his application which is then persisted in
the database. The topology which is persisted can be reused later for another application
with similar requirements.

5.2 Resource Model

In the section above, the architecture of the system exposes the resources like: topologies,
services and middleware. The other resources like hard constraints, sub topologies, require-
ments and filters are not explicitly defined but are dealt in detail in the next section. A REST
Application Programming Interface (API) consists of an assembly of interlinked resources
which are known as the REST API’s Resource model [Mas11]. Resources for a REST-based
service must be defined as, REST uses a resource identifier to identify the particular resource
involved in an interaction between components‚[Fie00].

The resource model represents the resources and the relations among them as: topologies,
sub topologies, application specific sub topologies, reusable sub topologies, requirements,
hard constraints, services, middleware and filters. We use a class diagram to represent the
resource model which can be seen in figure 5.3. The relation between the resources is depicted

65

5 Design

using a class diagram. Concrete application topologies are made from sub topologies which
are of two types application specific and reusable. It goes on to show that the reusable sub
toplogies consists of services and middleware and the compatible services are discovered by
using filters on all the available services.

Figure 5.3: Resource Model representation using Class Diagram

5.3 RESTful API

REST API design rules are dealt in detail in the previous section 2.8.1. The need for following
the design rules mainly provides consistency for the design and sticking to standards make it
easier for being used.

5.3.1 API Design

The resources for this prototype can be basically explained as one group for modelling and
other for execution. The first one deals with the modelling of α and μ topologies and enriching
existing topologies. The one for execution deals with the main tasks of the optimization
framework like analyzing the requirements, building optimal deployment alternatives, etc.
To address each resource uniquely, an easy to understand URI is assigned for each.

• The first part of the URI shows which resource the client is addressing to. Hence, the
first part is going to be /modelling, /execution. These URIs represent the modelling
environment and the execution environment respectively.

• The second part of the URI shows the individual operation of the environment which is
to be carried out, e.g. /execution/analyze would be for analyzing the requirements.

66

5.3 RESTful API

The proper use of HTTP methods GET, POST, PUT and DELETE has been defined for the
resources. The description about the effect a HTTP request will have on the resource, are
described below:

• /resource

– GET: shows a limited list of the resources on the system. If the URI contains a
query which are defined later in this section, the list of resources returned will meet
the criteria specified in the URI. This is accessible to all the users in the prototype
we design.

– POST:adds a new resource of the specific type to the system taking the information
embedded in the body of the request.This method will be used to persist the
topology selected by the developer.

– PUT: This method is applicable to the developer for providing the requirements
and workload for the applications.

– DELETE: This can be used to remove a resource from its parent.

• /resource/x (x=resource identifier)

We make sure to stick to the rules specified in the section 2.8.1 to design the URI and use only
nouns for the expression. To stick to the guidelines for better readability of the responses by
the user, custom response messages are used. The response is made available to the client
in XML format. Some of the URLs with the request response characteristics are put in table
below:

Description Enter the requirements

Access Control Application Developer

HTTP Request POST

HTTP URI /topologies/subtopologies/storeRequirements

URL Params none

Query Params

• value : none

• criteria: none

Post Params Requirements of the application.

Response The requirements have been successfully uploaded. The requirement id is x

Error Response • 500 Internal Server Error.

• 400 Bad Request - If the function is not recognized.

• 400 Bad Request - If the input parameters provided are incorrect.

Table 5.1: Description of REST API Enter the requirements.

67

5 Design

Description Display the compatible services

Access Control Application Developer

HTTP Request Get

HTTP URI /topologies/subtopologies/getCompatibleServices

URL Params none

Query Params

• value : requirementsID

• criteria: none

Post Params none

Response Set of compatible services.

Error Response • 500 Internal Server Error.

• 400 Bad Request - If the function is not recognized.

• 400 Bad Request - If the input parameters provided are incorrect.

Table 5.2: Description of REST API Display the compatible services.

68

5.3 RESTful API

Description Display the Pareto Optimal services

Access Control Application Developer

HTTP Request Get

HTTP URI /topologies/subtopologies/discoverOptimalServices

URL Params none

Query Params

• value : requirementsID

• criteria: none

Post Params none

Response Set of Optimal services.

Error Response • 500 Internal Server Error.

• 400 Bad Request - If the function is not recognized.

• 400 Bad Request - If the input parameters provided are incorrect.

Table 5.3: Description of REST API Display the Pareto Optimal services.

69

5 Design

Description Display the pareto optimal set of alpha topologies

Access Control Application Developer

HTTP Request Get

HTTP URI /topologies/subtopologies/discoverAlphaTopologies/

URL Params none

Query Params

• value : requirementsID

• criteria: none

Post Params none

Response Set of pareto optimal alpha topologies.

Error Response • 500 Internal Server Error.

• 400 Bad Request - If the function is not recognized.

• 400 Bad Request - If the input parameters provided are incorrect.

Table 5.4: Description of REST API Display the pareto optimal set of alpha topologies.

70

5.3 RESTful API

Description Display the set of suitable middleware

Access Control Application Developer

HTTP Request Get

HTTP URI /topologies/subtopologies/reusable/middleware/displayMiddlewares

URL Params none

Query Params

• value : requirementsID

• criteria: none

Post Params none

Response Set of suitable middlewares.

Error Response • 500 Internal Server Error.

• 400 Bad Request - If the function is not recognized.

• 400 Bad Request - If the input parameters provided are incorrect.

Table 5.5: Description of REST API Display the set of suitable middleware.

71

5 Design

Description Display the application distribution alternatives

Access Control Application Developer

HTTP Request Get

HTTP URI /topologies/discoverDistributionAlternatives

URL Params none

Query Params

• value : requirementsID

• criteria: none

Post Params none

Response Set of application distribution alternatives.

Error Response • 500 Internal Server Error.

• 400 Bad Request - If the function is not recognized.

• 400 Bad Request - If the input parameters provided are incorrect.

Table 5.6: Description of REST API Display the application distribution alternatives.

72

5.3 RESTful API

Description Persist the selected application distribution alternative

Access Control Application Developer

HTTP Request Post

HTTP URI /topologies/persistSelectedTopology

URL Params Selected application distribution alternative

Query Params

• value : none

• criteria: none

Post Params none

Response Set of application distribution alternatives.

Error Response • 500 Internal Server Error.

• 400 Bad Request - If the function is not recognized.

• 400 Bad Request - If the input parameters provided are incorrect.

Table 5.7: Description of REST API Persist the selected application distribution alternative.

73

5 Design

74

6 Implementation and Validation

In this chapter we describe the challenges and problems during the implementation phase to
fulfill the requirements specified in Chapter 4 and the design presented in Chapter 5 and then
discuss about validation of the system.

6.1 Implementation

The implementation of this work is mainly about building a framework which seamlessly
interacts with the knowledge base, modelling framework, implementation of genetic algo-
rithm for optimization and the cache mechanism for storing the intermediate data. The
implementation of the genetic algorithm has been done by extending and rewriting parts of
the jmetal framework. The modelling framework has been extended and the knowledge base
is used to query on it and retrieve the cloud services. To maintain the stateless behaviour
and to be able to use the format of request response, REST architectural style is chosen for
designing the services.

6.1.1 RESTful Interface

To initiate the implementation, the XMLs have been developed for the Hypertext Transfer
Protocol (HTTP) request messages and JAXB used for marshalling the java objects to XML
and vice versa.

XML Schema

An XML schema for the request Discover Topology is shown in Listing 6.1

1 <complexType name="DiscoverTopologyType">

2 <sequence >

3 <element name="userData" type="tns:UserDataType"></

element >

4 </sequence >

5 </complexType >

6

7 <complexType name="Requirements"></complexType >

8

9

10 <complexType name="Specification"><sequence >

75

6 Implementation and Validation

11 <element name="sds" type="tks:tRequirementRef"></element >

12 </sequence ></complexType >

13

14 <complexType name="UserDataType">

15 <sequence >

16 <element name="Objectives" type="tns:ObjectivesType"></

element >

17 </sequence >

18 </complexType >

19

20 <complexType name="ObjectivesType">

21 <sequence >

22 <element name="Objective" type="string" maxOccurs="

unbounded" minOccurs="1"></element >

23 </sequence >

24 </complexType >

25

26 <element name="discoverTopology" type="

tns:DiscoverTopologyType"></element >

Listing 6.1: XML Schema

Marshalling and Unmarshalling

We have used JAXB for marshalling and unmarshalling. Marshalling is the process of
converting objects to XML and the conversion of XML to object is called as unmarshalling.
This is used to ease and standardise the process and for this purpose we need to create Java
class and annotate the class as root element for the XML and each variable as an XML element.
After the class is created and elements are annotated as XML, we can marshal an instance of
the class to an XML. The code for this can be seen in Listing 6.2

1 JAXBContext jxb = JAXBContext.newInstance(Resource.class);

2 Marshaller jxbMarshaller = jaxbContext.createMarshaller ();

Listing 6.2: JAXB Marshalling

The code for unmarshalling an xml to an object of the annotated class can be seen in Listing
6.3

1 JAXBContext jxb = JAXBContext.newInstance(Resource.class);

2 Resource r = (Resource) jxb.createUnmarshaller ().unmarshal(ht1.

getContent ());

Listing 6.3: JAXB Unmarshalling

76

6.1 Implementation

6.1.2 Pricing Knowledge Base Interaction - Nefolog

This part of the implementation deals with building queries to fetch data from Nefolog using
HTTP requests in an iterative way. First we need to fetch the requirements by analyzing
the XML received from Winery. Then we query Nefolog with the requirements given by the
application developer and when we get the data, we need to convert the HTTP content to
string and analyze it to build the queries for the next step and this is to be repeated till we get
the required services.

The analysis of the XML received from Winery is done using XPath query and the require-
ments are put in a map with the element type as key and the element as value. This can be
seen in the Listing 6.4.

1 HashMap <String , ArrayList <String >> reqSet = new HashMap <String ,

ArrayList <String >>();

2 Requirement <String , ArrayList <String >> req1 = new Requirement <

String , ArrayList <String >>();

3 InputSource xml = new InputSource("MediaWiki1.xml");

4 NodeList requirementNodes = (NodeList) XPathFactory.newInstance ()

.newXPath ()

5 .compile("//*[local -name()=’Requirements ’]/*[local -name()

=’Requirement ’]")

6 .evaluate(xml , XPathConstants.NODESET);

7

8 for (int i = 0; i < requirementNodes.getLength (); i++) {

9 System.out.println("Inside␣Loop" + i);

10 String nodeName = requirementNodes.item(i).getChildNodes ().item

(1).getChildNodes ().item (1)

11 .getChildNodes ().item (1).getNodeName ();

12 String textContent = requirementNodes.item(i).getChildNodes ().

item (1).getChildNodes ().item (1)

13 .getChildNodes ().item (1).getTextContent ();

ArrayList <String > list;

14 if (reqSet.containsKey(nodeName)) {

15 list = reqSet.get(nodeName);

16 list.add(textContent);

17 }

18 else {

19 list = new ArrayList <String >();

20 list.add(textContent);

21 reqSet.put(nodeName , list);

22 }

23 }

24 Iterator <HashMap.Entry <String , ArrayList <String >>> entries =

reqSet.entrySet ().iterator ();

77

6 Implementation and Validation

25 while (entries.hasNext ()) {

26 HashMap.Entry <String , ArrayList <String >> entry = entries.next()

; req1.getRequireMap ().put(entry.getKey

(), entry.getValue ());

27 }

Listing 6.4: Analyze XML

After the map is created, it is sent to the server as a part of an HTTP request which is stored
in the server and the server returns an id to the client which can be used for accessing the
specific requirements for further steps. We will be using a REST client to send this map to our
server which will be shown in details in the validation section.

When we have the requirements map in the server, we get the key and values which are
used for building queries for Nefolog. The building of queries for Nefolog can be seen in the
Listing 6.5. Once the query is built, an HTTP request is done which can be seen in the Listing
6.6 and after we get the response, it is converted to a String and returned for further analysis.
The string we receive as a result of querying on Nefolog and converting the HTTP response is
then analyzed using XPath to find the data required to build the URL for the next query to
Nefolog.

1 Iterator <HashMap.Entry <String , ArrayList <String >>> entries =

requirements.entrySet ().iterator ();

2 String value = "";

3 String key = "";

4 HashMap.Entry <String , ArrayList <String >> entry = entries.next();

5 value = entry.getValue ().get(0);

6 key = entry.getKey ();

7 String nefologHost = prop.getProperty("nefologHost");

8 String url = nefologHost + "/" + key + "/" + value;

9 String response = httpRequest(url);

Listing 6.5: Query Nefolog

1 CloseableHttpClient httpclient = HttpClientBuilder.create ()

2 .setSSLHostnameVerifier(new NoopHostnameVerifier ()).build

();

3 HttpGet get = new HttpGet(url);

4 CloseableHttpResponse response1 = httpclient.execute(get);

5 HttpEntity ht1 = response1.getEntity ();

6 BufferedHttpEntity buf1 = new BufferedHttpEntity(ht1);

7 String responseContent1 = EntityUtils.toString(buf1 , "UTF -8");

8 return responseContent1;

Listing 6.6: HTTP Request

78

6.1 Implementation

6.1.3 Cache Mechanism

The cache mechanism, we are using to store the intermediate data is Ehcache which is an
open source standards based cache which is widely used in Java projects. For using, it first
we have to write a class to instantiate the cache by creating the Cache manager and the cache
and return an instance of the cache. The class should also have the methods to put and get
resources. The implementation of it can be seen in the Listing 6.7

1 private static GlobalCache instance = null;

2 private static CacheManager cacheManager;

3 private static Cache <Integer , Resource > serviceCache;

4

5 public synchronized static GlobalCache getInstance () {

6 cacheManager = CacheManagerBuilder.newCacheManagerBuilder ().

with(new CacheManagerPersistenceConfiguration

(new File("resources/","myData"))).

7 withCache("persistent",

8 CacheConfigurationBuilder.newCacheConfigurationBuilder ()

9 .withResourcePools(

10 ResourcePoolsBuilder.newResourcePoolsBuilder ().heap (10L,

EntryUnit.ENTRIES).disk (10L,

11 MemoryUnit.MB, true))

12 .buildConfig(Integer.class , Resource.class))

13 .build(true);

14

15 serviceCache = cacheManager.createCache("serviceCache",

CacheConfigurationBuilder.

newCacheConfigurationBuilder ().

16 buildConfig(Integer.class , Resource.class));

17 return instance;

18 }

19 public void put(Resource res) {

20 serviceCache.put(res.getConfigId (), res);

21 }

22

23 public List <Resource > getAllResources () {

24

25 List <Resource > resources = new ArrayList <Resource >();

26 Iterator iterator = serviceCache.iterator ();

27 while (iterator.hasNext ()) {

28 Cache.Entry <Integer , Resource > c = (org.ehcache.Cache.Entry <

Integer , Resource >) iterator.next();

29 resources.add(c.getValue ());

30 }

79

6 Implementation and Validation

31 return resources;

32 }

Listing 6.7: Cache Management

When we have the cache ready and we get the required resources from Nefolog as HTTP
response, then response then needs to be converted to an object and then put into the cache.
This has been done as shown in Listing 6.8

1 GlobalCache cache = GlobalCache.getInstance ();

2 JAXBContext jxb = JAXBContext.newInstance(Resource.class);

3 Resource r = (Resource) jxb.createUnmarshaller ().unmarshal(ht1.

getContent ());

4 cache.put(r);

Listing 6.8: Put Resources in Cache

6.1.4 Optimization Algorithm

The genetic algorithm used by us for finding out the optimal services is NSGAII and we use
the jmetal framework for implementing the same.

JMetal Framework

JMetal[DN11] stands for Metaheuristic Algorithms in Java and is an object-oriented Java-
based framework for multi-objective optimization with meta-heuristics. It has the imple-
mentations included for solving most of the common numerical optimization problems. The
features and object-oriented architecture of the framework allows to experiment with the
provided classic and state-of-the-art techniques, develop own algorithms, solve optimization
problems and integrate jmetal in other tools. [ND14] We have used jMetal 4.5 and would
like to explain a bit about its architecture using the class diagram. The class diagram can
be seen in the Figure 6.1. The classes that we have extended are outlined in grey and the
classes created by us are presented as grey boxes. As per [ND14], the basic architecture of
jmetal relies in that an Algorithm solves a Problem using one (and possibly more) SolutionSet
and a set of Operator objects.A generic terminology has been used to name the classes in
order to make them general enough to be used in any meta-heuristic. In the context of
evolutionary algorithms, populations and individuals correspond to SolutionSet and Solution
jMetal objects, respectively.The main decisions to be taken while using the framework is to
design the Solution and the problem. [ND14]

Solution Design The representation of the solution strongly depends on the problem and
selecting a specific representation has a great impact on the behavior of meta-heuristics and,
hence, in the obtained. results. Figure 6.2 depicts the basic components that are used for

80

6.1 Implementation

Figure 6.1: Class Diagram for jMetal4.5 [ND14]

81

6 Implementation and Validation

Figure 6.2: Solution Representation in jMetal4.5 [ND14]

representing solutions into the framework. Solution basically comprises of set of Variable
objects and an array to store the fitness values. Each Solution is associated with a solution
type which allows to define the variable types of the Solution and creating them. [ND14]

Problem Definition In jMetal, all the problems inherits from class Problem. This class
contains two basic methods: evaluate() and evaluateConstraints(). Both methods receive a
Solution representing a candidate solution to the problem; the first one evaluates it, and the
second one determines the overall constraint violation of this solution. All the problems have
to define the evaluate() method, while only problems having side constraints need to define
evaluateConstraints(). A key design feature in jmetal is that the problem defines the allowed
solutions types that are suitable to solve it. [ND14]

Extensions and Adaptations in JMetal Framework

As we know, the jmetal framework has implementations for solving only numerical problems
so we need to make some modifications to use it for our purpose. Mainly, we need to create
the problem and solution for our purpose. For using the jmetal framework, we have made

82

6.1 Implementation

necessary changes in it and exported it as a jar and then we have imported it in our main
project and are doing further required modifications mainly in the algorithm i.e. NSGAII
class. We also have written a helper class in our project to help us run the algorithm and
copied the implementation of the algorithm in our project to be able to pass the instance of
the cache.

The helper class has been created within our main project and has been extended from the
NSGAII_main.java in the jMetal framework[DN11]. Listing 6.9 shows the helper class created
by us

1 public class NSGA2Helper {

2

3 public static void execute(GlobalCache cache) throws

ClassNotFoundException , InstantiationException ,

IllegalAccessException , MalformedURLException , SAXException ,

IOException {

4 try{

5 Problem problem ; // The problem to solve

6 Algorithm algorithm ; // The algorithm to use

7 Operator crossover ; // Crossover operator

8 Operator mutation ; // Mutation operator

9 Operator selection ; // Selection operator

10 HashMap parameters ; // Operator parameters

11 QualityIndicator indicators ; // Object to get quality

indicators

12 Logger logger_ = Configuration.logger_ ;

13 FileHandler fileHandler_ = new FileHandler("NSGAII_main.log")

;

14 logger_.addHandler(fileHandler_) ;

15 indicators = null ;

16 problem = new genetic.ServicesProblem("Chromosome");

17 algorithm = new genetic.NSGAII(problem ,cache);

18 // Algorithm parameters

19 algorithm.setInputParameter("populationSize" ,4);

20 algorithm.setInputParameter("maxEvaluations" ,100);

21 // Mutation and Crossover for Real codification

22 parameters = new HashMap () ;

23 parameters.put("probability", 0.9) ;

24 parameters.put("distributionIndex", 20.0) ;

25 crossover = CrossoverFactory.getCrossoverOperator("

SBXCrossover", parameters);

26 parameters = new HashMap () ;

27 parameters.put("probability", 1.0/ problem.

getNumberOfVariables ()) ;

28 parameters.put("distributionIndex", 20.0) ;

83

6 Implementation and Validation

29 mutation = MutationFactory.getMutationOperator("

PolynomialMutation", parameters); //

Selection Operator

30 parameters = null ;

31 selection = SelectionFactory.getSelectionOperator("

BinaryTournament2", parameters) ;

32 // Add the operators to the algorithm

33 algorithm.addOperator("crossover",crossover);

34 algorithm.addOperator("mutation",mutation);

35 algorithm.addOperator("selection",selection);

36 // Add the indicator object to the algorithm

37 algorithm.setInputParameter("indicators", indicators) ;

38 // Execute the Algorithm

39 long initTime = System.currentTimeMillis ();

40 SolutionSet population1 = algorithm.execute ();

41 SolutionSet population = algorithm.execute(cache);

42 long estimatedTime = System.currentTimeMillis () - initTime;

43 // Result messages

44 logger_.info("Total␣execution␣time:␣"+estimatedTime + "ms");

45 logger_.info("Variables␣values␣have␣been␣writen␣to␣file␣VAR")

;

46 population.printVariablesToFile("VAR");

47 logger_.info("Objectives␣values␣have␣been␣writen␣to␣file␣FUN"

);

48 population.printObjectivesToFile("FUN");

49 }

50 catch(JMException e){e.printStackTrace ();}

51 }

52 }

Listing 6.9: Put Resources in Cache

Creating the Problem We have created our problem called ServicesProblem as per the given
guidelines in the framework. The problem created by us can be seen in Listing 6.10. As we can
observe, it extends class Problem and a constructor method is defined for creating instances of
this problem, which has two parameters: a string containing a solution type identifier and the
number of decision variables of the problem. As a general rule, all the problems should have
as first parameter the string indicating the solution type. After the constructor, the evaluate()
method is redefined; in this method, after computing the two objective function values, they
are stored into the solution by using the setObjective method of Solution.

1 public class ServicesProblem extends Problem {

2

3 public ServicesProblem(String solutionType , GlobalCache cache)

84

6.1 Implementation

{

4 numberOfVariables_ = 4 ;

5 numberOfObjectives_ = 2 ;

6 numberOfConstraints_ = 2 ;

7 problemName_ = "Services";

8 serviceTypes_ = new HashSet <String >();

9 instanceTypes_ = new HashSet <String >();

10 operatingSystems_ = new HashSet <String >();

11 chrList_ = new ArrayList <Chromosome >();

12 instanceNumbers_ = new int[] {1};

13 List <Resource > allResource = cache.getAllResources ();

14 Iterator <Resource > iterator = allResource.iterator ();

15 while(iterator.hasNext ())

16 {

17 Chromosome chr = new Chromosome ();

18 Resource temp = iterator.next();

19 serviceTypes_.add(temp.getProvider ());

20 instanceTypes_.add(temp.getName ());

21 chr.setServiceType(temp.getProvider ());

22 chr.setInstanceType(temp.getName ());

23 chr.setInstanceNumber("1");

24 if (temp.getContent () !=null)

25 {

26 if(temp.getContent ().getPerformance ()!=null)

27 {

28 String temp1 = temp.getContent ().getPerformance ()[0].

getName ();

29 if(temp1.equals("os"))

30 {

31 operatingSystems_.add((String)(temp.getContent ().

getPerformance ()[0]. getValue ()));

32 chr.setOS((temp.getContent ().getPerformance ()[0].

getValue ()));

33 }

34 }

35 }

36 chrList_.add(chr);

37 }

38 if (solutionType.compareTo("Chromosome") == 0)

39 solutionType_ = new ChromosomeSolutionType(this) ;

40 else {

41 System.out.println("Error:␣solution␣type␣" + solutionType +

"␣invalid") ;

42 System.exit(-1) ;

85

6 Implementation and Validation

43 }

44 }

45 public void evaluate(Solution solution) throws JMException {}

46 public void evaluate(Solution solution , GlobalCache cache)

throws JMException {

47 String [] x = new String [4] ; // 4 decision variables

48 double [] fx = new double [2] ; // 2 functions

49 String temp1 = new String ();

50 boolean bool= false;

51 x = getRandom(solution ,cache);

52 for (int i = 0; i < (tempRes.getContent ().getPerformance ()).

length; i++) {

53 System.out.println("hahaha␣"+tempRes.getProvider ()+"---"+

tempRes.getName ());

54 System.out.println("Looking␣for␣SLA");

55 System.out.println(tempRes.getContent ().getPerformance ()[i

]. getName ());

56 if(tempRes.getContent ().getPerformance ()[i]. getName ().trim

().equalsIgnoreCase("sla")){

57 temp1=(tempRes.getContent ().getPerformance ()[i]. getValue

());

58 bool=true;

59 break;

60 }

61 }

62 if (bool)

63 fx[0] = Double.parseDouble(temp1);

64 else

65 fx[0] = 0.99; // Default

66 try {

67 fx[1] = getCost(cache);

68 } catch (Exception e) {

69 e.printStackTrace ();

70 }

71 System.out.println("SLA␣is␣---"+fx[0]+"Cost␣is␣---"+fx[1]);

72

73 }

74

75 solution.setOverallConstraintViolation(total);

76 solution.setNumberOfViolatedConstraint(number);

77 }

78

79 public String [] getRandom(Solution solution , GlobalCache cache)

throws JMException

86

6.1 Implementation

80 {

81 counter=counter +1;

82 String [] x = new String [4] ;

83 double [] fx = new double [2] ;

84

85 for (int i = 0; i < x.length; i++) {

86 x[i] = solution.getDecisionVariables ()[i]. getValues ();

87 }

88 Chromosome chr = new Chromosome ();

89 chr.setServiceType(x[0]);

90 chr.setInstanceType(x[1]);

91 chr.setOS(x[2]);

92 chr.setInstanceNumber(x[3]);

93 List <Resource > allResource = cache.getAllResources ();

94 Iterator <Resource > iterator = allResource.iterator ();

95 int k= 0;

96 Resource temp = new Resource ();

97 while(iterator.hasNext ())

98 {

99 temp = iterator.next();

100 if ((x[0]== temp.getProvider ())&&(x[1]== temp.getName ())&&(

temp.getContent () !=null)

101 &&(temp.getContent ().getPerformance ()!=null)&&(x[2]==

temp.getContent ().getPerformance ()[0]. getValue ()))

102 {

103 System.out.println("Inside␣ifs"+x[0]+"␣---␣"+x[1]+"␣---␣"

+x[2]+"␣---␣"+x[3]);

104 k=k+1;

105 tempRes=temp;

106 }

107 }

108 if(k==0)

109 {

110 x =getRandom(solution , cache);

111

112 }

113 return x;

114 }

115

116 public double getCost(GlobalCache cache) throws

ClientProtocolException , IOException ,

XPathExpressionException

117 {

118 int cId= tempRes.getConfigId ();

87

6 Implementation and Validation

119 int Hour= tempRes.getHour ();

120 int month= tempRes.getMonth ();;

121 int io= tempRes.getIO();;

122 int storage= tempRes.getStorage ();;

123 int ExtNetEgress= tempRes.getExtNet ();;

124 String loc_zone= tempRes.getLocZone ();;

125 double cost= 0;

126 costCalculator = prop.getProperty("costCalculator");

127 String url = costCalculator + "configid=" + cId + "&Hour=" +

Hour+ "&month=" +month+

128 "&i/oOperation=" + io + "&GBStorage=" + storage + "&

GBExternalNetworkEgress=" +

129 ExtNetEgress + "&location_zone=" + loc_zone;

130 CloseableHttpClient httpclient = HttpClientBuilder.create ()

131 .setSSLHostnameVerifier(new NoopHostnameVerifier ()).build

();

132 HttpGet get = new HttpGet(url);

133 CloseableHttpResponse response1 = httpclient.execute(get);

134 HttpEntity ht1 = response1.getEntity ();

135 BufferedHttpEntity buf1 = new BufferedHttpEntity(ht1);

136 String response = EntityUtils.toString(buf1 , "UTF -8");

137 XPath xPath = XPathFactory.newInstance ().newXPath ();

138 String path1 = "/resource/content/result/cost";

139 InputSource i1 = new InputSource(new StringReader(response));

140 NodeList uriNode = (NodeList) xPath.compile(path1).evaluate(

i1, XPathConstants.NODESET);

141 if((uriNode).item (0)!=null){

142 cost = Double.parseDouble(uriNode.item (0).getTextContent ().

substring(1, 8));

143 }

144 else

145 cost = 50000; // Default

146 return cost;

147 }

148

149 }

Listing 6.10: Problem class for our project.

Designing the Solution In the Listing 6.10 , we can see that we don’t use any of the generic
solution types given by jmetal like integer,binary,real,etc. Rather we use a solution type called
ChromosomeSolutionType which we have defined in the package jmetal.encodings.SolutionType
which can be seen in the Listing 6.11

88

6.1 Implementation

1 public class ChromosomeSolutionType extends SolutionType {

2 public ChromosomeSolutionType(Problem problem) {

3 super(problem) ;

4 } // Constructor

5

6 public Variable [] createVariables () {

7 try{

8 Variable [] variables = new Variable [4];

9 variables [0] = new ServiceTypes(problem_.getServiceTypes ())

;

10 variables [1] = new InstanceTypes(problem_.getInstanceTypes

());

11 variables [2] = new OperatingSystems(problem_.

getOperatingSystems ());

12 variables [3] = new NumberOfInstances(problem_.

getInstanceNumbers ());

13 return variables ;

14 }

15 catch(Exception E){return null ;}

16 }

17 }

Listing 6.11: Defining the Chromosome Solution Type.

In the Listing 6.11, we can see the solution type consists variables of four types called
ServiceTypes, InstanceTypes,OperatingSystems and NumberOfInstances so we had to define
all these types in the package jmetal.encodings.variable. As an example, the definition of
ServiceTypes has been shown in the Listing 6.12. The other types have also been defined in
the same way.

1 public class ServiceTypes extends Variable{

2 private Set <String > serviceTypes_;

3 private String value_;

4 public ServiceTypes () {

5 }

6 public ServiceTypes(Set <String > st){

7 serviceTypes_ = st;

8 }

9 public Set <String > getServiceTypes_ () {

10 return serviceTypes_;

11 }

12 public void setServiceTypes_(Set <String > serviceTypes_) {

13 this.serviceTypes_ = serviceTypes_;

14 }

89

6 Implementation and Validation

15 public ServiceTypes(Variable variable) throws JMException{

16 serviceTypes_ = variable.getServiceTypes ();

17 }

18 @Override

19 public Variable deepCopy () {

20 try {

21 return new ServiceTypes(this);

22 } catch (JMException e) {

23 Configuration.logger_.severe("Chromosome.deepCopy.execute:␣

JMException");

24 return null ;

25 }

26 }

27 public String getValues () {

28 Random generator = new Random ();

29 int randomIndex = generator.nextInt(serviceTypes_.size());

30 String [] setArray = (String []) serviceTypes_.toArray(new

String[serviceTypes_.size()]);

31 value_=setArray[randomIndex];

32 return value_;

33 }

34 }

Listing 6.12: Service Types as an example of the added Variables.

We have also defined a class called Chromosome which defines the decision encoding re-
quired to solve our problem and can be seen in the Listing 6.13. In order to make the copy
constructor work, we had to include the serviceType, instanceType, operatingSystem and
numberOfInstances in the variable class.

1 public class Chromosome extends Variable{

2 private String serviceType_;

3 private String instanceType_;

4 private String os_;

5 private int instanceNumber_;

6 public Chromosome () {

7 }

8 public Chromosome(String st, String it, String os, int ni){

9 serviceType_ = st;

10 instanceType_ = it;

11 os_ = os ;

12 instanceNumber_ = ni;

13 }

14 public Chromosome(Variable variable) throws JMException{

90

6.1 Implementation

15 serviceType_ = variable.getServiceType ();

16 instanceType_ = variable.getInstanceType ();

17 os_ = variable.getOperatingSystem ();

18 instanceNumber_ = variable.getNumberOfInstance ();

19 }

20 public String getServiceType () {

21 return serviceType_;

22 }

23 public void setServiceType(String st) {

24 serviceType_ = st;

25 }

26 public String getInstanceType () {

27 return instanceType_;

28 }

29 public void setInstanceType(String it) {

30 instanceType_ = it;

31 }

32 public String getOS() {

33 return os_;

34 }

35 public void setOS(String os) {

36 os_ = os;

37 }

38 public String getInstanceNumber () {

39 return instanceNumber_;

40 }

41 public void setInstanceNumber(String ni) {

42 instanceNumber_ = ni;

43 }

44 public Variable deepCopy (){

45 try {

46 return new Chromosome(this);

47 } catch (JMException e) {

48 Configuration.logger_.severe("Chromosome.deepCopy.execute:␣

JMException");

49 return null ;

50 }

51 }

52 }

Listing 6.13: Definition of encoding Variable Chromosome.

91

6 Implementation and Validation

6.2 Validation

In this section, we will be validating the prototype of our system for the Mediawiki appli-
cation which runs wiki-based projects. We will be validating the scenarios for storing the
requirements given by the user, finding out the compatible services and using the genetic
algorithm to get the set of optimal services. We will be using the Postman1 API Client for the
validation purposes.

6.2.1 Store Requirements

The system stores the requirements given by the client and returns an Requirement ID which
can be used by the developer later in order to fetch services as per the requirements. Here a
Post request is done on the URL /topologies/subtopologies/storeRequirements. The HTTP Post
request for this operation can be seen in the Listing 6.14. The request and response from
Postman for this can be seen in the figure 6.3.

1 POST /rest -genetic -algo/topologies/subtopologies/

storeRequirements

2 HTTP /1.1

3 Host: localhost :8080

4 Content -Type: application/xml

5 Cache -Control: no-cache

6 Postman -Token: d24142c0 -6858-f82d -0e0a -0893 e507555d

7

8 <?xml version ="1.0" encoding="UTF -8" standalone ="yes"?><

requirement ><requireMap ><item ><key >OS </key ><value >Mac </value

></item ><item ><key >serviceTypes </key ><value >infrastructures </

value ><value >applications </value ></item ></requireMap ></

requirement >

Listing 6.14: Post Request for Store Requirements

6.2.2 Get Compatible Services

Once the requirements are stored by the system, the application developer can pass the
requirement id for the further operations. In this case a Get request is done using the URL
http://localhost:8080/rest-genetic-algo/topologies/subtopologies/getCompatibleServices?requirementsID=7.
When the application developer hits this URL, the server fetches the requirements saved for
the requirement id 7 and fetches all the services feasible for the given requirements from
Nefolog and returns it to the client. The HTTP Get request for this operation can be seen in

1http://www.getpostman.com/

92

6.2 Validation

Figure 6.3: Request and Response for Store Requirements using Postman API Client

the Listing 6.15. The request and response from Postman for this can be seen in the figure
6.4.

1 GET /rest -genetic -algo/topologies/subtopologies/

getCompatibleServices?requirementsID =7 HTTP /1.1

2 Host: localhost :8080

3 Content -Type: application/xml

4 Cache -Control: no-cache

5 Postman -Token: ee9ac8a8 -69d4-a84c -35c5 -26 f33d35d57d

Listing 6.15: Get Request for Compatible Services

6.2.3 Discover Optimal Services

A HTTP Get request is done in order to get all theusing the URL http://localhost:8080/rest-genetic-
algo/topologies/subtopologies/discoverOptimalServices?requirementsID=7. When the application
developer hits this URL, the server fetches the requirements saved for the requirement id 7
and fetches all the services feasible for the given requirements from Nefolog and returns it
to the client. The HTTP Get request for this operation can be seen in the Listing 6.16. The
request and response from Postman for this can be seen in the figure 6.5.

93

6 Implementation and Validation

Figure 6.4: Request and Response for Get Compatible Services using Postman API Client

1 GET /rest -genetic -algo/topologies/subtopologies/

discoverOptimalServices?requirementsID =7 HTTP/1.1

2 Host: localhost :8080

3 Content -Type: application/xml

4 Cache -Control: no-cache

5 Postman -Token: 0c680200 -df6a -fc18 -1fc6 -106 f7270d0a5

Listing 6.16: Get Request for Optimal Services

94

6.2 Validation

Figure 6.5: Request and Response for Discover Optimal Services using Postman API Client

95

6 Implementation and Validation

96

7 Outcome and Future Work

Deployment of applications in the cloud environment is done to reduce the cost required for
the building and maintenance of IT infrastructure as well as reap the benefits of the cloud
infrastructure. The components of an application can be distributed partially or fully on
cloud services which may belong to the same or different vendors. Application topologies are
built for this which also provide an opportunity to deploy parts of application on physical
servers. However there exists lack of support for building application topologies taking
into consideration the possibility of deployment on physical servers and finding the optimal
deployment options taking into consideration multiple objectives. This thesis focuses to
provide the support for building topologies for deploying applications while optimized
services or deployment options to be used in the topology for each tier is selected basing on
the requirements and objectives provided by the application developer.

We begin the work by listing down the relevant research challenges within the motivation
for this work, list of abbreviations and outlines of this thesis which are presented in the
first chapter. In Chapter 2, we discuss about the basic concepts of topics and technologies
which are relevant to this thesis. Here, we give an introduction about cloud computing, cloud
application topology and different topology specification languages such as TOSCA and
GENTL, RESTful services and REST API design. We also talk about the various optimization
algorithms we have taken into consideration and other techniques like case based reasoning
and feature diagrams. Chapter 3 deals with other works which are closely related to this
masters thesis like [FFH13], [SBB+15], [MR12] and [OGW+14]. In this chapter, we also discuss
about how this works lack in fulfilling the objective of this thesis.

After discussing all the fundamental and related works, we lay down the concept in Chapter
4. We begin this chapter by putting forward a comparison among the discussed optimization
algorithms and justifying why we have selected the one we are using. Then we give an
overview about the steps to be followed to complete the objective of discovering cloud
services and topologies for an application. We go on to describe how we would implement
the genetic algorithm with a detailed step by step explanation using an example. The
functional and non functional requirements of the system and the use cases are also detailed
in this chapter at the end of which we have an overview of the whole system.

Once the concepts are ready, we go on to design the system, which is explained in chapter 5.
It presents the architectural solution taken into account to build the system which fulfills the
requirements specified in Chapter 4. We discuss the architecture of the whole system and then
go on to design the resource models and RESful APIs for the system. The implementation
and validation of the system as per the concepts and design of chapter 4 and 5 is shown in
chapter 6. Here we show, how we have used and extended the existing tools and frameworks
for the implementation of our system.

97

7 Outcome and Future Work

Further future works involve the possibility to include statistical analysis for verification of
the provided optimized topologies which would require the use of utility functions to validate
the same. Similarity analysis can also be used to compare two requirements and return the
optimal topology used earlier if the requirements are similar. There is also a possibility to
use graph based databases in order to accelerate the process of executing the algorithms and
searching for topologies.

98

Bibliography

[All08] J. Allspaw. The Art of Capacity Planning: Scaling Web Resources. " O’Reilly Media,
Inc.", 2008.

[ARSL14] V. Andrikopoulos, A. Reuter, S. G. Sáez, and F. Leymann. A GENTL Approach
for Cloud Application Topologies. In Service-Oriented and Cloud Computing,
pages 148–159. Springer, 2014.

[ASLW14] V. Andrikopoulos, S. G. Sáez, F. Leymann, and J. Wettinger. Optimal distribu-
tion of applications in the cloud. In Advanced Information Systems Engineering,
pages 75–90. Springer, 2014.

[Bat05] D. Batory. Feature models, grammars, and propositional formulas. Springer, 2005.

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and
S. Wagner. OpenTOSCA–a runtime for TOSCA-based cloud applications. In
Service-Oriented Computing, pages 692–695. Springer, 2013.

[BBLS12] T. Binz, G. Breiter, F. Leyman, and T. Spatzier. Portable cloud services using
tosca. IEEE Internet Computing, (3):80–85, 2012.

[BFH03] F. Berman, G. Fox, and A. J. Hey. Grid computing: making the global infrastructure
a reality, volume 2. John Wiley and sons, 2003.

[BGPCV11] L. Badger, T. Grance, R. Patt-Corner, and J. Voas. Draft cloud computing
synopsis and recommendations. NIST special publication, 800:146, 2011.

[Bis11] J. Bishop. Cloud or Not: 4 Cloud Deployment Models, 2011.

[Bro11] J. Brownlee. Clever algorithms: nature-inspired programming recipes. Jason Brown-
lee, 2011.

[BS12] S. Binitha and S. S. Sathya. A survey of bio inspired optimization algorithms.
International Journal of Soft Computing and Engineering, 2(2):137–151, 2012.

[BVB08] J. Broberg, S. Venugopal, and R. Buyya. Market-oriented grids and utility
computing: The state-of-the-art and future directions. Journal of Grid Computing,
6(3):255–276, 2008.

[dev10] dev2ops. What Is DevOps, 2010.

[DN11] J. J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-objective
optimization. Advances in Engineering Software, 42(10):760–771, 2011.

[DPAM02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions
on, 6(2):182–197, 2002.

99

Bibliography

[FFH13] S. Frey, F. Fittkau, and W. Hasselbring. Search-based genetic optimization for
deployment and reconfiguration of software in the cloud. In Proceedings of the
2013 International Conference on Software Engineering, pages 512–521. IEEE Press,
2013.

[Fie00] R. T. Fielding. Architectural styles and the design of network-based software architec-
tures. PhD thesis, University of California, Irvine, 2000.

[Gan] K. Ganguly. Performance Aware Cloud Application Topology Enrichment.
Master’s thesis, University of Stuttgart.

[GGQ+13] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu. A multi-objective ant colony
system algorithm for virtual machine placement in cloud computing. Journal of
Computer and System Sciences, 79(8):1230–1242, 2013.

[HCDWV05] R. Hassan, B. Cohanim, O. De Weck, and G. Venter. A comparison of particle
swarm optimization and the genetic algorithm. In Proceedings of the 1st AIAA
multidisciplinary design optimization specialist conference, pages 1–13, 2005.

[Htt12] M. Httermann. DevOps for developers. Apress, 2012.

[Inc] A. E. Inc. What Is REST.

[Inc15] A. E. Inc. What Is Cloud, 2015.

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery–a modeling tool
for TOSCA-based cloud applications. In Service-Oriented Computing, pages
700–704. Springer, 2013.

[KP13] N. Kumbharana and G. M. Pandey. A Comparative Study of ACO, GA and
SA for Solving Travelling Salesman Problem. International Journal of Societal
Applications of Computer Science, 2(2):224–228, 2013.

[LFM+11] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar. Moving
applications to the cloud: an approach based on application model enrichment.
International Journal of Cooperative Information Systems, 20(03):307–356, 2011.

[Mas11] M. Masse. REST API design rulebook. " O’Reilly Media, Inc.", 2011.

[MG11] P. Mell and T. Grance. The NIST definition of cloud computing. 2011.

[Mit96] M. Mitchell. Genetic Algorithms, 1996.

[MR12] M. Menzel and R. Ranjan. CloudGenius: decision support for web server cloud
migration. In Proceedings of the 21st international conference on World Wide Web,
pages 979–988. ACM, 2012.

[MTS13] B. Moltkau, Y. Thoß, and A. Schill. Managing the Cloud Service Lifecycle from
the User’s View. In CLOSER, pages 215–219, 2013.

[ND14] A. J. Nebro and J. J. Durillo. jMetal 4.5 User Manual. 2014.

100

Bibliography

[OGW+14] P.-O. Ostberg, H. Groenda, S. Wesner, J. Byrne, D. S. Nikolopoulos, C. Sheridan,
J. Krzywda, A. Ali-Eldin, J. Tordsson, E. Elmroth, et al. The CACTOS Vision of
Context-Aware Cloud Topology Optimization and Simulation. In Cloud Com-
puting Technology and Science (CloudCom), 2014 IEEE 6th International Conference
on, pages 26–31. IEEE, 2014.

[SALS15] S. G. Saez, V. Andrikopoulos, F. Leymann, and S. Strauch. Design Support
for Performance Aware Dynamic Application (Re-) Distribution in the Cloud.
Services Computing, IEEE Transactions on, 8(2):225–239, 2015.

[San15] G. Santiago. Performance and Cost Evaluation for the Migration of a Scientific
Workflow Infrastructure to the Cloud. 2015.

[SBB+15] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, and A. Brogi. TOSCA-MART:
A Method for Adapting and Reusing Cloud Applications. 2015.

[SGGB] S. Singhal, S. Goyal, S. Goyal, and D. Bhatt. A Comparative, Study of a Class of
Nature Inspired Algorithm. In Proc. of the 5th National Conference; INDIACom-
2011.

[SHT06] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature diagrams: A survey
and a formal semantics. In Requirements Engineering, 14th IEEE international
conference, pages 139–148. IEEE, 2006.

[Sta13] O. Standard. Topology and Orchestration Specification for Cloud Applications
Version 1.0. 25, 2013.

[Ste02] T. L. Sterling. Beowulf cluster computing with Linux. MIT press, 2002.

[TBRC+08] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. Fama
framework. In Software Product Line Conference, 2008. SPLC’08. 12th International,
pages 359–359. IEEE, 2008.

[WAL] J. Wettinger, V. Andrikopoulos, and F. Leymann. Automated Capturing and
Systematic Usage of DevOps Knowledge for Cloud Applications.

[WBL14] J. Wettinger, U. Breitenbücher, and F. Leymann. DevOpSlang–bridging the gap
between development and operations. In Service-Oriented and Cloud Computing,
pages 108–122. Springer, 2014.

[Wik15] Wikipedia. Case-based reasoning — Wikipedia, The Free Encyclopedia, 2015.
[Online; accessed 7-September-2015].

[XA+13] M. Xiu, V. Andrikopoulos, et al. The Nefolog & MiDSuS Systems for Cloud
Migration Support. Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, Germany, Technical Report, 8, 2013.

[YJB08] S. Yunxing, G. Junen, and G. Bo. An ant colony optimization algorithm based
on the nearest neighbor node choosing rules and the crossover operator. In Com-
puter Science and Software Engineering, 2008 International Conference on, volume 1,
pages 110–114. IEEE, 2008.

101

Bibliography

[ZCB10] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18, 2010.

[ZSL+11] K. Zhu, H. Song, L. Liu, J. Gao, and G. Cheng. Hybrid genetic algorithm for
cloud computing applications. In Services Computing Conference (APSCC), 2011
IEEE Asia-Pacific, pages 182–187. IEEE, 2011.

[ZZZ06] P. Zhao, P. Zhao, and X. Zhang. A new ant colony optimization for the knap-
sack problem. In Computer-Aided Industrial Design and Conceptual Design, 2006.
CAIDCD’06. 7th International Conference on, pages 1–3. IEEE, 2006.

All links were last followed on December 7, 2015

102

Acknowledgement

I am sincerely thankful to my mentor and supervisor Santiago
Gómez Sáez from the University of Stuttgart for his help, guidance,
motivation and support during all the phases of my master thesis.
I would also like to thank Dr. Vasilios Andrikopoulos for his
advices and Prof. Frank Leymann for giving me this wonderful
opportunity to do my master thesis at the Institute of Architecture
of Application Systems. I am also thankful to my family and
friends for their help and moral support during the tenure of my
thesis.

Abhilash Mishra

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

Stuttgart, December 7, 2015 ——————————–
(Abhilash Mishra)

	Leere Seite

 HistoryItem_V1
 TrimAndShift

 Bereich: alle Seiten
 Beschneiden: keine
 Versatz: links um 4.25 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20151116120628
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 669
 295
 Fixed
 Left
 4.2520
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 None
 419.5276
 Bottom

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 118
 117
 118

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: rechts um 11.34 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20151116120628
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 669
 295

 Fixed
 Right
 11.3386
 0.0000

 Odd
 1
 CurrentPage
 1

 CurrentAVDoc

 None
 419.5276
 Bottom

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 118
 0
 1

 1

 HistoryList_V1
 qi2base

