
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diploma Thesis No. 3734

Extension of the Nefolog Decision
Support System for the Cloud

Jinhui Huang

Course of Study: Informatik

Examiner: Prof. Dr. Frank Leymann
Supervisor: Dr. Vasilios Andrikopoulos, Santiago Gómez Sáez
Commenced: 01.12.2015
Completed: 01.06.2016

CR-Classification: D.2.1, D.2.9, H.3.3, H.5.2





Abstract

For the purpose to help users to make cloud migration choices more conveniently, this thesis
extends a decision support system called Nefolog with better performance and more complex
functionalities, which are exposed as RESTful web services. Based on these web services, a
web application is created, during its implementation, a modern MVC framework AngularJS
and a data visualization library D3 is used to produce a dynamic, interactive user interface.





Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Background & Related Work 3
2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2. Nefolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Cloud Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1. Amazon Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2. Microsoft Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3. Google Cloud Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Design 17
3.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1. Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2. Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3. Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Design for Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1. Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2. Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4. Design for User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1. Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2. Design Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. Implementation & Evaluation 33
4.1. Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1. JDBC Connection Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2. AngularJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3. Data-Driven Documents(D3.js) . . . . . . . . . . . . . . . . . . . . . . . 38

4.2. Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1. Accessing JDBC Connection Pool . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2. Content-Viewing Web Services . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3. Decision Support Web Services . . . . . . . . . . . . . . . . . . . . . . . 42

4.3. User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1. Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2. Navigator View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



Contents

4.3.3. Parameter View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4. Result View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.5. Report View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Conclusion 55
5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A. Bower Dependency 57

Bibliography 59

iv



List of Figures

1.1. Overview of Nefolog and MiDSuS [Xiu13] . . . . . . . . . . . . . . . . . . . . . 1

2.1. Architecture of Nefolog [ARXL14] . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Data Model of Nefolog’s Knowledge Base [ARXL14] . . . . . . . . . . . . . . . 6
2.3. Amazon Web Services products menu view [awsb] . . . . . . . . . . . . . . . 8
2.4. Amazon Web Services products matrix view [awsc] . . . . . . . . . . . . . . . 9
2.5. Amazon Web Services Simple Monthly Calculator [awsa] . . . . . . . . . . . . 10
2.6. Amazon Web Services TCO Calculator [awsd] . . . . . . . . . . . . . . . . . . 11
2.7. Amazon Web Services TCO Calculator Report [awsd] . . . . . . . . . . . . . . 11
2.8. Microsoft Azure products menu view [mica] . . . . . . . . . . . . . . . . . . . 12
2.9. Microsoft Azure products menu view [micb] . . . . . . . . . . . . . . . . . . . 13
2.10. Google Cloud Platform products matrix view [gooa] . . . . . . . . . . . . . . . 14
2.11. Google Cloud Platform TCO Pricing Calculator [goob] . . . . . . . . . . . . . 14
2.12. Google Cloud Platform pricing calculator [gooc] . . . . . . . . . . . . . . . . . 15

3.1. Microsoft Azure Web & Mobile products [mica] . . . . . . . . . . . . . . . . . 18
3.2. Envisioned Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Entity-Relation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. Envisioned User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5. A typical collaboration of the MVC components [mvca] . . . . . . . . . . . . . 30

4.1. Data Binding in Angular Templates [angb] . . . . . . . . . . . . . . . . . . . . 36
4.2. $broadcast and $emit in AngulaJS . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3. D3.js svg example [Pow] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4. Java Class Diagram for Web Service ~/categories/{category} . . . . . . . . . . . . 41
4.5. Java Class Diagram for ~/cheapestCOnfig/{query} . . . . . . . . . . . . . . . . . . 43
4.6. Layout for User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7. Navigator View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8. Parameter View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9. Result View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.10. Performance of /cheapestConfig?query . . . . . . . . . . . . . . . . . . . . . . 53

v

~/categories/{category}
~/cheapestCOnfig/{query}


List of Figures

vi



List of Tables

3.1. Service Category for current offerings . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Description of Use Case Find Cheapest Configuration . . . . . . . . . . . . . . 21
3.3. Description of Use Case Find Configurations in Budget . . . . . . . . . . . . . 22

vii



List of Tables

viii



List of Listings

2.1. Example result for url ~/candidateSearch?{query} [ARXL14] . . . . . . . . . . . 7
2.2. Example result for url ~/costCalculator?{query} [ARXL14] . . . . . . . . . . . . . 7

3.1. Example result for uri ~/categories . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2. Example result for uri ~/categories/{category} . . . . . . . . . . . . . . . . . . . . 23
3.3. Example result for uri ~/serviceTypess/{serviceType} . . . . . . . . . . . . . . . . 24
3.4. Example result for uri ~/offerings/{offering} . . . . . . . . . . . . . . . . . . . . . 25
3.5. Example result for uri ~/parameters/{serviceType} . . . . . . . . . . . . . . . . . . 26
3.6. Example result for uri ~/cheapestConfig?{query} . . . . . . . . . . . . . . . . . . 27
3.7. Example result for uri ~/inBudgetConfigs?{query} . . . . . . . . . . . . . . . . . . 28

4.1. Configure file for JDBC Connection Pool ~/WebContent/META-INF/context.xml . 34
4.2. Configure file for JDBC Connection Pool ~/WebContent/WEB-INF/web.xml . . . 34
4.3. DBUtil.class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4. Method queryAllPerformances() in ParamsServerResource.class . . . . . . 42
4.5. Method get() in CheapestConfigurationServerResource.class . . . . . . . 44
4.6. HTML template for layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7. Initial Model object of root node . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8. Method loadChildren() in Navigator directive . . . . . . . . . . . . . . . . . 48
4.9. MenuItem findCheapestConfig in Navigator directive . . . . . . . . . . . . . 49
4.10. Simplified result of candidateSearch . . . . . . . . . . . . . . . . . . . . . . . 52

A.1. bower.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix

~/candidateSearch?{query}
~/costCalculator?{query}
~/categories
~/categories/{category}
~/serviceTypess/{serviceType}
~/offerings/{offering}
~/parameters/{serviceType}
~/cheapestConfig?{query}
~/inBudgetConfigs?{query}
~/WebContent/META-INF/context.xml
~/WebContent/WEB-INF/web.xml




1. Introduction

1.1. Motivation

As a part of her diploma thesis [Xiu13] [ARXL14], Xiu has developed a decision support
system for helping to make decisions when we migrate the applications to the Cloud. As
in Figure 1.1 shown, the JSP-based decision support system MiDSuS relies on a set of back-
end RESTful Decision Support Web Services(Nefolog), these Web Services are generated by
accessing the underlying Knowledge Base.

Figure 1.1.: Overview of Nefolog and MiDSuS [Xiu13]

The MiDSuS was designed for certain migration types [ABLS13], which are categorized by
whether the application is partially or completely migrated to the Cloud. So the Nefolog are
specified for these migration types, e.g. cost calculating, and they don’t support more complex
request such as finding cheapest configuration, i.e. when user has a certain configuration in
mind, for example, she wants a Cloud virtual machine with certain number of CPU cores,
certain amount of memory and so on, the Nefolog can only list all the possible offerings
provided by different providers with the cost that may incur, this list can be very long, so its
not easy for the users to choose the cheapest one. Furthermore, The User Interface of MiDSuS
lacks also some functionalities, e.g. there is no way for the user to conveniently browse the
offerings.

In this thesis, based on the existing Knowledge Base, we extend the Nefolog Decision Support
System in both back-end and front-end, so that the system can provide more complex Web
Services and also more convenient to use.

1.2. Outline

This thesis is structured in following chapters.

1



1. Introduction

• Chapter 2: Background & Related Work introduces relevant fundamentals of this
diploma thesis: the Nefolog system. This chapter also gives a brief State-of-the-Art
about the UI provided by the main Cloud providers.

• Chapter 3: Design summarizes the requirements for both the new complex Web Ser-
vices and UI, and the use cases build from these requirements. It also discusses the
design of the new artifacts developed in this work.

• Chapter 4: Implementation & Evaluation introduces the technologies used during the
implementation, and describes the implementation in detail. a brief evaluation is given
in the end of this chapter.

• Chapter 5: Conclusion summarizes the entire thesis, lists the limitations of the work
and some improvement possibilities.

2



2. Background & Related Work

2.1. Background

2.1.1. Fundamentals

Cloud computing meets the demands that people always want from IT: it is a way to increase
capacity or add capabilities on the fly, and more important, without investing in new infras-
tructure, training new personnel, or licensing new software. According to the widely accepted
definition of National Institute of Standards and Technology(NIST), it is a model for enabling
convenient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction[MG11]. The
rest of this section will introduce five essential characteristics, three service models, and four
deployment models that are proposed in the NIST cloud model.

Essential characteristics:

1. On-demand self-service. When needed, a consumer consumes the Cloud provider’s
computing capabilities, such as server time and network storage, automatically without
human interaction.

2. Broad network access. Computing capabilities are available via the network and can be
accessed using standard mechanisms, so that both thin and thick client platforms can
access the capabilities.

3. Resource pooling. Computing resources of provider are pooled using a multi-tenant
model in order to serve multiple consumers. Generally, the consumer doesn’t have
control and knowledge over the exact location of provided resources but may specify
location at a higher level of abstraction.

4. Rapid elasticity. To the consumer, computing and storage resources appear to be un-
limited, for they can be elastically provisioned and released at any time(in some cases
automatically).

5. Measured service. The usage of resources is controlled and optimized automatically,
furthermore, it can be monitored, controlled, and reported, so that transparency is
provided both for the provider and consumer of the resources.

Service Models: NIST’s definition proposed three service models, they define different access
control level that the consumer has on the computer resources provided by a provider.

3



2. Background & Related Work

1. Software as a Service (SaaS). Consumer only has access of the provider’s applications
running on the cloud infrastructure. For all the three models, the underlying cloud in-
frastructure including network, servers, operating systems, storage can not be managed
or controlled by consumer.

2. Platform as a Service (PaaS). Consumer can deploy consumer-created or acquired ap-
plications onto the cloud infrastructure. The consumer has control over the deployed
applications and possibly configurations for the application-hosting environment.

3. Infrastructure as a Service (IaaS). Consumer has the access to provision processing, storage,
networks, and other fundamental computing resources of the provider, the consumer
can deploy and run arbitrary software, which can include operating systems and
applications.

Deployment models: describes how the cloud infrastructure can be deployed.

1. Private cloud. The cloud infrastructure is provisioned exclusively by a single organiza-
tion, the organization may own, manage and operate the infrastructure.

2. Community cloud. The cloud infrastructure is shared by a specific community of con-
sumers that have same concerns.

3. Public cloud. The cloud infrastructure is provisioned for open use by the public.

4. Hybrid cloud. It combines two or more distinct cloud infrastructures(private, community
and public), they remain unique entities, but are bound together by technology that
enables data and application portability.

2.1.2. Nefolog

Figure 2.1.: Architecture of Nefolog [ARXL14]

The Nefolog Decision Support System is a significant extension of MDSS [Son13] [ASL13],
Nefolog not only supports more Cloud providers(6 in Nefolog to 2 in MDSS) in the Cloud
Provider Knowledge Base(Figure 2.2), but also provides a set of more general APIs, which are

4



2.1. Background

implemented as a set of RESTful Web Services, the architecture of Nefolog is shown in the
Figure 2.1. All the Web Services are exposed as a set of URIs, users can access the Knowledge
Base through these URIs, the result can be in the form of JSON or XML.

Knowledge Base

The Data Model of Nefolog’s Knowledge Base is shown in Figure 2.2. The basic information
of all the offerings like Amazon EC2 1 are abstracted into table performance (right top), whose
columns contains all the possible performance characteristics. Table configuration(middle)
connects all these basic informations like performance, provider, offering, servicetype.

Table cost, along with its relation with other tables like coefficient, variable, location,
zone and so on, plays the most important role when serving the costCalculator Web Service.
For a given performance, e.g. a virtual machine with 8 CPU cores, 1.2GHz CPU speed, 10 Gb
memory and Windows operating system, the pricing policy from different Cloud providers
are different, it differs from how and where the user want to deploy this virtual machine,
along with the discount that the providers offer. The formulas used to calculate a certain
cost for a given configuration with a certain performance, a given location and given usage
information are stored in table coefficient. The cost table consists of 21856 rows which are
combinations of 3686 upfront costs, 185 data transfer cost formulas, and 4733 service cost
formulas.

Web Services

The Web Services in Nefolog are implemented by using Restlet 2 framework. The Web Services
can be divided into two types, one is for simply accessing the content of the Knowledge Base,
for example:

• ~/serviceTypes 3 will return all the service types declared in Knowledge Base, i.e. in table
servicetype. The returned information contains the URI that leads to the Web Service
for viewing each certain service type.

• ~/serviceTypes/{serviceTypeName}s will return a certain service type that the user demands.
The returned information contains the URI that leads to the Web Service for viewing
the provider that provides the service type.

• ~/offerings/{offeringName} returns all the configuration that belong to the offering user
inputted.

• ~/offerings/{offeringName}/configuration_{configId} returns the performance information of
the configuration that the user demands.

1https://aws.amazon.com/ec2/
2https://restlet.com/
3~ means the absolute path of the deployed Web Services, e.g. localhost:8080/nefolog-webapp

5

~/serviceTypes
~/serviceTypes/{serviceTypeName}s
~/offerings/{offeringName}
~/offerings/{offeringName}/configuration_{configId}
https://aws.amazon.com/ec2/
https://restlet.com/
~
localhost:8080/nefolog-webapp


2. Background & Related Work

Figure 2.2.: Data Model of Nefolog’s Knowledge Base [ARXL14]6



2.1. Background

This kind of Web Service are implemented by accessing table configuration, performance,
provider, offering, servicetype.

The other type of Web Services are called decision support services [Xiu13], for example:

• ~/candidateSearch returns all the performance names that are stored in table performance
with three more string "servicetype", "offering" and "provider".

• ~/candidateSearch?{query} will return candidate configurations which satisfy the user de-
mands. For example, users can input the following URL: ~/candidateSearch?servicetype=
infrastructure&cpuCores=8&cpuSpeed=1.2&memory=10&os=Windows to indicate the perfor-
mance the user want, part of the result in form of XML is listed in the following Listing.

1 ...
2 <configuration >
3 <name>
4 30GB(Windows)
5 </name>
6 <uri>
7 /offerings/cloudServers/configuration_487
8 </uri>
9 </configuration >

10

11 <configuration >
12 <name>
13 m2.2 xlarge Light Utillization High-Memory On-Demand

Instances
14

15 ...
16

Listing 2.1: Example result for url ~/candidateSearch?{query} [ARXL14]

• ~/costCalculator?{query} returns all the cost information that the user demands, for exam-
ple, ~/costCalculator?configid=316&Hour=240&GBStorage=500&usage_pattern=(Hour,start=
1,end=12,rate=10) has the following result:

1 ...
2 <querycollection >
3 <staticquery >Hour =240</staticquery >
4 <staticquery >configid =316</staticquery >
5 <staticquery >GBExternalNetworkEgress =5000</staticquery >
6 ...
7 </querycollection >
8 <result >
9 <location_zone >Northern Virginia </location_zone >

10 <cost>
11 $5258.11

7

~/candidateSearch
~/candidateSearch?{query}
~/candidateSearch?servicetype=infrastructure&cpuCores=8&cpuSpeed=1.2&memory=10&os=Windows
~/candidateSearch?servicetype=infrastructure&cpuCores=8&cpuSpeed=1.2&memory=10&os=Windows
~/candidateSearch?{query}
~/costCalculator?{query}
~/costCalculator?configid=316&Hour=240&GBStorage=500&usage_pattern=(Hour,start=1,end=12,rate=10)
~/costCalculator?configid=316&Hour=240&GBStorage=500&usage_pattern=(Hour,start=1,end=12,rate=10)


2. Background & Related Work

12 <upfront >$1450.0 </upfront >
13 <service >
14 $3808.11
15 <Month_Service >1st Month =$178.08 </Month_Service >
16 <Month_Service >2nd Month =$195.89 </Month_Service >
17

18 ...
19

Listing 2.2: Example result for url ~/costCalculator?{query} [ARXL14]

2.2. Cloud Providers

This section surveys the User Interface provided by the leading Cloud Computing Service
providers like Amazon Web Services(AWS) [awsb], Windows Azure [mica], Google Cloud
Platform [gooa]. The focus is on how they let the users browse their products and how their
cost calculator look like.

2.2.1. Amazon Web Services

Figure 2.3.: Amazon Web Services products menu view [awsb]

8

~/costCalculator?{query}


2.2. Cloud Providers

As in Figure 2.3 shows, The HTML header element of the AWS’s web page contains a drop
down menu bar which can help the users to quickly navigate all the products and services that
the AWS provides, for example, the users can navigate the product Amazon EC2 through the
path: Products -> Compute -> Amazon EC2, this looks also like a collapsable tree structure.

AWS also provides matrix view for their products, right at their home page, or any time when
the users click the Products link in the header element, the users can view the products as the
following Figure 2.4 shows, The products are categorized, and displayed grouped by row
and column header fields.

Figure 2.4.: Amazon Web Services products matrix view [awsc]

After the users browsed the products they are interested in, they can choose the individual
product, view the product information and the pricing information. Then the users can get
the monthly cost for the product by using the cost calculator that AWS provides. As shown
in Figure 2.5, the users need to choose the product they want, e.g. Amazon EC2, in the left

9



2. Background & Related Work

navigation bar, then choose the region that the instance will be deployed, the instance type,
for example t1.micro with Linux operating system, the instance number and the time usage
amount in a month.

Figure 2.5.: Amazon Web Services Simple Monthly Calculator [awsa]

The users can also indicate more options that during the utilization of the instance they chose,
for example the storage amount, the data transfer amount, and network related options like
elastic IP and elastic load balancing.

AWS also provides another cost calculator called AWS Total Cost of Ownership (TCO) Cal-
culator (as shown in Figure 2.6), which helps the users to compare the estimated cost when
using AWS and on-premises hardware/software, The result is generated in form as a report,
which contains a lot of diagrams and tables as in Figure 2.7, which can help the users to get
more intuitive impression about the result.

Figure 2.7 shows a bar chart to show the difference, in the rest of the report, there are more

10



2.2. Cloud Providers

Figure 2.6.: Amazon Web Services TCO Calculator [awsd]

Figure 2.7.: Amazon Web Services TCO Calculator Report [awsd]

11



2. Background & Related Work

pie charts that illustrate the numerical proportion of different costs.

2.2.2. Microsoft Azure

Microsoft Azure also provides a drop down menu navigator in their web page’s header
element, as in Figure 2.8 shown.

Figure 2.8.: Microsoft Azure products menu view [mica]

Unlike AWS, Azure only provides a products matrix view on their home page, which is
not categorized, but listed by the products’ popularity. But the pricing information for each
product is shown in categorized matrix view 4.

The cost calculator provided by Azure is the most easy-to-use one in the 3 providers that are
surveyed in this section. As in Figure 2.9 shown, the users can navigate to the product they
want in the top half of the page(part 1.), after the users clicked one of the product, e.g. Virtual
Machines, a new div element 5 will be dynamically added to the page(part 2.), the users can
configure the detail of the instance they chose, and the users can repeatedly add and remove
more product dynamically. The users can also configure support options(part 3.), the final
result of the cost will be shown in part 4.

4https://azure.microsoft.com/en-us/pricing/
5https://www.w3.org/TR/html5/grouping-content.html#the-div-element

12

https://azure.microsoft.com/en-us/pricing/
https://www.w3.org/TR/html5/grouping-content.html#the-div-element


2.2. Cloud Providers

Figure 2.9.: Microsoft Azure products menu view [micb]

13



2. Background & Related Work

2.2.3. Google Cloud Platform

Google Cloud Platform provides a categorized products matrix view on their home page, as
in Figure 2.10 shown.

Figure 2.10.: Google Cloud Platform products matrix view [gooa]

Figure 2.11.: Google Cloud Platform TCO Pricing Calculator [goob]

Google Cloud Platform also provides a TCO calculator (Figure 2.11) to compare the estimate
cost with AWS, because it is difficult to correctly anticipate which instance type, size, location,
and software configuration will be used by the user, the parameters (left side) here are

14



2.2. Cloud Providers

abstracted performance like how many CPU cores will be needed when the traffic hit the
peak.

Figure 2.12.: Google Cloud Platform pricing calculator [gooc]

GCP provides a Pricing Calculator (Figure 2.12) as well, the layout is approximately the same
with the calculator provided by Microsoft Azure (Figure 2.9), products navigator in part 1,
required parameter form in part 2, optional parameter form in part 3, and the result in part
4.

15



2. Background & Related Work

16



3. Design

3.1. Requirements

Nefolog has provided two decision support services: candidateSearch and costCalculator,
both of them support multiple types of parameters, the main shortcoming of service costCal-
culator is that it can only calculate the cost for one configuration at one time, but the result
of candidateSearch for a given set of performance requirement can be quite a long list, so it
is not convenient for the users to check the cost for each candidate manually. Starting from
this, this thesis intended to extend the existing Nefolog with more complex Web Services, and
a more user-friendly User Interface that can help users make their decisions more easily.

3.1.1. Functional Requirements

The functionalities that the extended Nefolog should provide contains:

• For a given set of performance and usage parameters, the system can search and return
the cheapest configuration that is contained by the Knowledge Base.

• For a given service type, a provider, budget and usage information, the system can
search and return all possible configurations.

The functionalities that the UI should provide:

• The user can browse the content of the Knowledge Base through a hierarchical structure
for quick navigation.

• A search interface that accesses candidateSearch, the users can express their require-
ments more efficiently.

• A search interface that accesses costCalculator, the users can express their require-
ments more efficiently, and the result should be represented in both text and graphic
format.

• A search interface that accesses new Web Service cheapestConfig, the users can express
their requirements about the performance and usage, and the result should be the
cheapest configuration that is possible.

• A search interface that accesses new Web Service searchInBudget, the users can express
their requirements about the service type, usage and budget, and the result should be
all the possible configurations.

17



3. Design

3.1.2. Non-functional Requirements

• Performance. The Web Services should be able to return result in a acceptable period of
time.

• Efficiency. The users should be able to access the Web Services with minimal effort.

3.1.3. Design Constraints

The work in [Xiu13] has been done in early 2013. Since that time, the way how the Cloud
Computing providers provide their services has changed radically. For example, the HP
Helion Public Cloud, was "sunset" on Jan. 31, 2016, as announced by a blog post 1 by senior
vice president of HP Cloud.

For the other providers, their products and services are still continuously evolving, take
Windows Azure as example, in the Knowledge Base from [Xiu13], there is an offering called
web site, but in the current offerings provided by Microsoft Azure, this offering no longer
exists (Figure 3.1).

Figure 3.1.: Microsoft Azure Web & Mobile products [mica]

Table 3.1 summarizes part of the current offerings. In this table, I have surveyed the current
offerings from three leading Cloud Computing providers: Amazon, Microsoft and Google, cat-
egorized the products which all three of them provide. Because of the tremendous evolution
of the Cloud Computing market, It becomes more and more difficult to abstract a common
model for the offerings from different providers, so updating the existing database is out of

1http://community.hpe.com/t5/Grounded-in-the-Cloud/A-new-model-to-deliver-public-cloud/ba-p/6804409#
.V0XE4mF9603

18

http://community.hpe.com/t5/Grounded-in-the-Cloud/A-new-model-to-deliver-public-cloud/ba-p/6804409#.V0XE4mF9603
http://community.hpe.com/t5/Grounded-in-the-Cloud/A-new-model-to-deliver-public-cloud/ba-p/6804409#.V0XE4mF9603


3.1. Requirements

the scope of this work, this thesis only uses the out-of-date Knowledge Base in [Xiu13], which
is quite a challenge to dealing with the entries that no longer exist. The functionalities are
therefore somehow constrained both in design and implementation phase, these constraints
will be explained in the following when necessary.

Service
Catagory Service Type AWS Offering Azure Offering GCP Offering

Compute
Virtual Machine Amazon EC2 Virtual Machines Google Compute

Engine

Container Amazon EC2
Container Service

Azure Container
Service (Azure

Resource
Manager)

Google Container
Engine

Web Application AWS Elastic
Beanstalk

App Service/
Cloud Services

Google App
Engine

Networking

Virtual Network Amazon VPC Azure Virtual
Network

Google Compute
Engine Network

Load Balancing Amazon Elastic
Load Balancing

Azure Load
Balancer

Google Compute
Engine Load

Balancing

Direct Connection AWS Direct
Connect

Azure
ExpressRoute

Google Cloud
Interconnect

DNS Amazon Route 53 Azure DNS Google Cloud
DNS

Storage

Object Storage Amazon S3 Azure Blob
Storage

Google Cloud
Storage

Block Storage
Amazon Elastic
Block Storage

(EBS)

Azure Premium
Storage

Google Compute
Engine

Archive Storage Amazon Glacier Azure Backup Google Cloud
Storage Nearline

CDN Amazon
CloudFront Azure CDN Google Cloud

CDN

Database
RDMBS Amazon RDS Azure SQL

Database
Google Cloud

SQL

NoSQL Amazon
DynamoDB

Azure
DocumentDB

Google Cloud
Datastore

Cache Amazon
ElasticCache

Azure Redis
Cache

Google App
Engine

Memcache

Monitoring
Resource

Monitoring
Amazon

CloudWatch

Azure
Application

Insights

Google Cloud
Monitoring

API Monitoring Amazon
CloudTrail

Azure
Operational

Insights

Google Cloud
Monitoring

Table 3.1.: Service Category for current offerings

19



3. Design

3.2. Specifications

Figure 3.2.: Envisioned Use Cases

The envisioned functionalities are illustrated in Figure 3.2, which is also an extension of the
work in [Xiu13], the newly added use cases are drawn in gray eclipses, they all rely on the
existing use cases or database, the detailed description is listed in the following.

Use Case: Find Cheapest Configuration

Goal: The user wants to get the cheapest possible configuration for a given
set of performance and usage information

Actor: User

Precondition: The possible parameters for a given service type, i.e. performances
and variables are initialized in user interface for the user to input the
value she desires.

Postcondition: The cheapest possible configuration is shown in the user interface.

20



3.2. Specifications

Normal Case: 1. The user initializes the input form by interaction with the navi-
gator.

2. The user inputs the performances, variables and optionally the
usage patterns in the form, and clicks the submit button.

3. The System shows the possible result in user interface.

4. The System shows the possible report with diagram in user
interface.

Special Case: 2a. The user has inputted invalid parameter value.

a) The system shows an error message and waits the user to
correct.

Table 3.2.: Description of Use Case Find Cheapest Configuration

Use Case: Find Configurations in Budget

Goal: The user wants to get all the possible configurations for a given budget
and usage information, under the scope of a service type of a provider

Actor: User

Precondition: The possible variable parameters for a given service type are initialized
in user interface for the user to input the value she desires.

Postcondition: All the possible configurations are shown in the user interface.

Normal Case: 1. The user initializes the input form by interaction with the navi-
gator.

2. The user inputs the variables and optionally the usage patterns
in the form, and clicks the submit button.

3. The System shows the possible result in user interface.

4. The System shows the possible report with diagram in user
interface.

Special Case: 2a. The user has inputted invalid parameter value.

a) The system shows an error message and waits the user to
correct.

21



3. Design

Table 3.3.: Description of Use Case Find Configurations in Budget

The remaining of the use cases are discussed in the following sections.

3.3. Design for Back-end

3.3.1. Knowledge Base

To provide a more hierarchical view for the content of the Knowledge Base, all the existing
service types are categorized into certain categories This approach is used by all the Cloud
providers that are surveyed in chapter 2. As shown in Figure 3.3, a new entity called Category
has been added to the existing Entity-Relation Diagram, each category can have multiple
service types and each service type can only belong to one category.

Figure 3.3.: Entity-Relation Diagram

The Knowledge Base should be updated following Table 3.1.

3.3.2. Web Services

Based on the design and implementation approach in [Xiu13], many Web Services are newly
added or modified.

~/categories

For the purpose to view the content of Knowledge Base more hierarchically, a new Web Service
with URI ~/categories should be able to return all the categories existing in the Knowledge
Base, the result in form JSON should be like Listing 3.1:

22

~/categories
~/categories


3.3. Design for Back-end

1 {
2 "name": "categories",
3 "content": [
4 {
5 "name": "compute",
6 "link": "/ categories/compute"
7 },
8 {
9 "name": "networking",

10 "link": "/ categories/networking"
11 },
12 {
13 "name": "storage",
14 "link": "/ categories/storage"
15 },
16 {
17 "name": "database",
18 "link": "/ categories/database"
19 },
20 {
21 "name": "monitoring",
22 "link": "/ categories/monitoring"
23 }
24 ]
25 }

Listing 3.1: Example result for uri ~/categories

The "link" element in each category object represents the relative URI of the Web Service
~/categories/{category}, which contains the corresponding information for each category.

~/categories/{category}

This new created Web Service should return all the service types that belong to the given
category, for example, the result of ~/categories/compute should be like:

1 {
2 "name": "compute",
3 "content": [
4 {
5 "name": "infrastructure",
6 "link": "/ serviceTypes/infrastructure",
7 "deliveryModel": "IaaS"
8 },

23

~/categories
~/categories/{category}
~/categories/{category}
~/categories/compute


3. Design

9 {
10 "name": "webSite",
11 "link": "/ serviceTypes/webSite",
12 "deliveryModel": "IaaS"
13 },
14 {
15 "name": "application",
16 "link": "/ serviceTypes/application",
17 "deliveryModel": "IaaS"
18 }
19 ]
20 }

Listing 3.2: Example result for uri ~/categories/{category}

~/serviceTypes/{serviceType}

This modified Web Service should return all the offerings that belong to the given service
type, for example, the result of ~/serviceTypes/infrastructure (partially) should be like:

1 {
2 "content": [
3 {
4 "name": "elasticComputeCloud",
5 "provider": "AmazonWebServices",
6 "category": "compute",
7 "link": "/ offerings/elasticComputeCloud"
8 },
9 {

10 "name": "VM",
11 "provider": "WindowsAzure",
12 "category": "compute",
13 "link": "/ offerings/VM"
14 },
15

16 ......
17

18 ]
19 }

Listing 3.3: Example result for uri ~/serviceTypess/{serviceType}

24

~/categories/{category}
~/serviceTypes/{serviceType}
~/serviceTypes/infrastructure
~/serviceTypess/{serviceType}


3.3. Design for Back-end

~/offerings/{offering}

This modified Web Service should return all the configurations with performance information
belong to the given offering, for example, the result of ~/serviceTypes/infrastructure (partially)
should be like:

1 {
2 "offering": {
3 "name": "elasticComputeCloud",
4 "provider": "AmazonWebServices",
5 "link": "/ offerings/elasticComputeCloud"
6 },
7 "configurations": [
8 {
9 "name": "m1.medium Light Utillization Standard Reserved

Instances",
10 "performance": {
11 "cpuCores": 2,
12 "cpuSpeed": 1.2,
13 "memory": 3.75,
14 "pio": "moderate",
15 "platform": 3264,
16 "storage": "410",
17 "sla": 0.9995,
18 "os": "Windows"
19 }
20 },
21

22 ......
23

24 ]
25 }

Listing 3.4: Example result for uri ~/offerings/{offering}

By accessing these 4 Web Services sequentially, i.e. ~/categories, ~/categories/{category}, ~/
serviceTypes/{serviceType} and ~/offerings/{offering}, the users should be able to view the content
of the Knowledge Base in a tree structure, when the users reach the leafs of the tree, they
can get the all the configurations with performance information that each offering provides.
These 4 Web Services are used by the use case View Knoledge Base (Figure 3.2).

~/parameters/{serviceType}

This URI should return all the possible parameters, e.g. performances and variables for the
given service type, for example, the result of ~/parameters/infrastructure could be like:

25

~/offerings/{offering}
~/serviceTypes/infrastructure
~/offerings/{offering}
~/categories
~/categories/{category}
~/serviceTypes/{serviceType}
~/serviceTypes/{serviceType}
~/offerings/{offering}
~/parameters/{serviceType}
~/parameters/infrastructure


3. Design

1 {
2 "performances": [
3 "cpuCores",
4 "cpuSpeed",
5 "memory",
6 "io",
7 "platform",
8 "bandwidth",
9 "storage",

10 "sla",
11 "licence",
12 "os"
13 ],
14 "variables": [
15 "Hour"
16 ],
17 "locations": [
18 "location_zone"
19 ]
20 }

Listing 3.5: Example result for uri ~/parameters/{serviceType}

This Web Service is used by use case Collect Possible Parameters (Figure 3.2), there are 16
possible performances, 49 possible variables defined in the database from [Xiu13], when the
users input these parameters, it is more convenient for the users to only input the relevant
parameters, or only have the possible parameter input field in their view.

~/parameters/{offering}

This URI should return all the possible parameters, e.g. performances and variables for the
given offering, this Web Service is also used by use case Collect Possible Parameters, and the
result should also look like Listing 3.5.

~/cheapestConfig?{query}

This URI should return the cheapest possible configuration for the given query, the query
should contain 2 part of parameters:

• The first part of the parameter should indicate the required information for how to find
the configurations that meet the users’ demand. This part of parameters can also be
divided into two part:

26

~/parameters/{serviceType}
~/parameters/{offering}
~/cheapestConfig?{query}


3.3. Design for Back-end

– Which group of configurations, e.g. the group of configurations that belong to the
same provider, or the same service type, should be queried. If this information is
not given by the user, the query should be performed on all configurations. This
part should look like: servicetype=infrastructure.

– The minimal performances the user demands. This part should look like: cpuCore=
32&cpuSpeed=1.2&memory=60&io=very high&platform=64&storage=240&sla=0.9995&os=
Linux.

• The second part of the parameter should indicate the user desired usage information,
including where the product should be deployed, the variable and the related usage
pattern. This part should look like: location_zone=Oregon&Hour=240&usage_pattern=(Hour,
start=1,end=12,rate=10).

A separator between the first and the second part of parameters is put into the entire URI
for the purpose of easier implementation, for example, the entire URI that combines all the
parts above should be like: ~/cheapestConfig?servicetype=infrastructure&cpuCore=32&cpuSpeed=1.
2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&location_
zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10). The result should look
like the following Listing 3.6.

1 {
2 "variables": [
3 {"Hour": 240}
4 ],
5 "usagePatterns": [
6 {"HourPattern": "start=1, end=12, rate=10"}
7 ],
8 "location_zone": "Oregeon",
9 "result": {

10 "configuration": {
11 "name": "hi1.4xlarge Medium Utillization High -I/O On-Demand

Instances",
12 "performance": {
13 "cpuCores": 35,
14 "cpuSpeed": 1.2,
15 "memory": 60.5,
16 "pio": "very high",
17 "platform": 64,
18 "sla": 0.9995,
19 "os": "Linux"
20 }
21 },
22 "cost": 10638.20
23 }
24 }

27

servicetype=infrastructure
cpuCore=32&cpuSpeed=1.2&memory=60&io=very high&platform=64&storage=240&sla=0.9995&os=Linux
cpuCore=32&cpuSpeed=1.2&memory=60&io=very high&platform=64&storage=240&sla=0.9995&os=Linux
cpuCore=32&cpuSpeed=1.2&memory=60&io=very high&platform=64&storage=240&sla=0.9995&os=Linux
location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)
location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)
~/cheapestConfig?servicetype=infrastructure&cpuCore=32&cpuSpeed=1.2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)
~/cheapestConfig?servicetype=infrastructure&cpuCore=32&cpuSpeed=1.2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)
~/cheapestConfig?servicetype=infrastructure&cpuCore=32&cpuSpeed=1.2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)


3. Design

Listing 3.6: Example result for uri ~/cheapestConfig?{query}

Considering that for a given performance demand, there might be multiple candidate config-
urations that can meet the demand, to achieve a shorter query time, concurrency should be
used when the cost for each configuration is calculated.

~/inBudgetConfigs?{query}

This URI should return all the possible configurations of a specific service type of a provider
that satisfy a given budget and a given usage information. So the query should contain
parameters that contains:

• The service type, e.g. servicetype=infrastructure.

• The provider, e.g. provider=AmazonWebServices.

• The usage information, e.g. location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,
end=12,rate=10).

The result should look like the following List 3.7.

1 {
2 "serviceType": "infrastructure",
3 "provider": "AmazonWebServices",
4 "location_zone": "Oregon",
5 "variables": [
6 {"Hour": 240}
7 ],
8 "usagePatterns": [
9 {"HourPattern": "start=1, end=12, rate=10"}

10 ],
11 "result": [
12 {
13 "configuration": {
14 "name": "hi1.4xlarge Medium Utillization High -I/O On-

Demand Instances",
15 "performance": {
16 "cpuCores": 35,
17 "cpuSpeed": 1.2,
18 "memory": 60.5,
19 "pio": "very high",
20 "platform": 64,
21 "sla": 0.9995,
22 "os": "Linux"
23 },

28

~/cheapestConfig?{query}
~/inBudgetConfigs?{query}
servicetype=infrastructure
provider=AmazonWebServices
location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)
location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)


3.4. Design for User Interface

24 "cost": 10638.20
25 }
26 ......
27

28 }

Listing 3.7: Example result for uri ~/inBudgetConfigs?{query}

This Web Service should also be implemented using concurrency.

3.4. Design for User Interface

3.4.1. Layout

Inspired by the cost calculator provided by Microsoft Azure [micb] and Google Cloud Plat-
form [gooc], the envisioned layout of the User Interface is illustrated in the following Figure
3.4.

Figure 3.4.: Envisioned User Interface

29

~/inBudgetConfigs?{query}


3. Design

The user should be able to view the content of the Knowledge Base in Navigator(part 1), the
Navigator should provide two kinds of view, i.e. the category view and the provider view.
Further more, the navigator should be able to give users the opportunity to acquire the access
to Web Services like ~/cheapestConfig?{query} through certain user action. Then the user can
input the desired parameters in the Parameter Collector(part 2). After certain user action like
clicking the find button, the returned information should be shown in Result(part 3), and an
autogenerated report containing explanatory diagrams should be shown in Report(part 4).

3.4.2. Design Pattern

The design of the User Interface follows the well known design pattern MVC(Model View
Controller). MVC is a software structure that separates the system into three components:
Model, View and Controller [Bur92], as in Figure 3.5 shown.

Figure 3.5.: A typical collaboration of the MVC components [mvca]

• The Model is responsible for managing the data in the system, it can respond to requests
for information or user action. The model doesn’t have to be aware of the existence of
the other two components [mvcb].

• The View presents the content of the Model to the users and provides users the possibil-
ity to interact with the system, to further change the Model or the View.

30

~/cheapestConfig?{query}


3.4. Design for User Interface

• The Controller is the glue between the Model and View, it is in charge of changing the
View when the Model changes, or the other way around.

This pattern decouples the Model from the View, i.e. how the data are manipulated from
how they are displayed, this helps us for organizing the code more clean and makes the
maintainability more possible.

Model

Most of the data that are needed to be shown to the user come from the database, i.e. from
the Web Services described in Section 3.3.2, for the purpose of simplicity, this work follows
design pattern Single Source of Truth 2, there is no cache designed for storing the data that
are retrieved from the Web Services, in most cases, if a user action accessed the Web Services,
the stored data will be repopulated with the result returned from the Web Service.

View

For the purpose to provide a user experience with homogeneous content, so that the user can
expect the same content at the same position, all the components in Figure 3.4 should be able
to dynamically change its content when the model changes.

Controller

Controller mainly takes the responsibility to handle the user actions, some user action might
change more than one component in the Layout (Figure 3.4), e.g. the Result component and
the Report component might change their content at the same time when the user clicked the
find button, so the interaction between these components should also be the responsibility of
the controller.

2https://en.wikipedia.org/wiki/Single_source_of_truth

31

https://en.wikipedia.org/wiki/Single_source_of_truth


3. Design

32



4. Implementation & Evaluation

4.1. Technologies

The main technologies that are used during the implementation of this thesis are JDBC
Connection Pool(Section 4.1.1), AngularJS(Section 4.1.2), Data-Driven Documents(D3) li-
brary(Section 4.1.3), I also used Restlet Framework to implement the Web Services, in a little
different way than in [Xiu13] (Section 4.2.2).

4.1.1. JDBC Connection Pool

Introduction

To ensure the performance of the queries that are performed on the database during the
implementation of the Web Services, JDBC Connection Pool was introduced. Each time a
query through JDBC is performed on the database, there is a database connection [jdb] related
to this task, and these connections are finite and scarce resource for the system [Hor13],
therefore, it is a very costly way to obtain a connection for each query and close it after the
query is done. The solution is to use Connection Pool, which is a mechanism that manages
physical database connections in a queue, so that these connections can be reused without
dragging down the performance of the system. However, the JDK and database vendors
don’t usually provide such a Connection Pool, the commonly used Connection Pool products
are: JDBC Connection Pool 1, c3p0 2, BoneCP 3 and so on. For the purpose of simplifying the
dependency, JDBC Connection Pool was selected because the web application is deployed in
Apache Tomcat.

Configuration

There are many ways to use the JDBC Connection Pool [toma], in this work, The JDBC
Connection Pool is configured as a JNDI resource [jnd], and this resource is attached to a
certain web application.

1https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
2http://www.mchange.com/projects/c3p0/
3http://www.jolbox.com/

33

https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
http://www.mchange.com/projects/c3p0/
http://www.jolbox.com/


4. Implementation & Evaluation

The developing environment is a Dynamic Web Project in Eclipse 4, the Web Application is
deployed on Tomcat 7 5. The following Listing 4.1 contained configure file context.xml should
be put into the folder Project_Root/WebContent/META-INF/.

1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <Context >
3 <Resource
4 name="jdbc/CloudKB"
5 auth="Container"
6 type="javax.sql.DataSource"
7 factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"
8 username="postgres"
9 password="123456789"

10 driverClassName="org.postgresql.Driver"
11 url="jdbc:postgresql :// localhost :5432/ PGCloudmigration"
12 initialSize="10"
13 maxActive="55"
14 maxIdle="21"
15 minIdle="13"
16 timeBetweenEvictionRunsMillis="33000"
17 minEvictableIdleTimeMillis="55000"
18 validationQuery="SELECT 1"
19 validationInterval="33000"
20 testOnBorrow="true"
21 removeAbandoned="true"
22 removeAbandonedTimeout="233"
23 />
24 </Context >

Listing 4.1: Configure file for JDBC Connection Pool ~/WebContent/META-INF/context.xml

Essential settings are listed in the first 8 lines(line 4 - line 11), the following settings are
responsible for [tomb]:

• Sizing the Connection Pool(line 12 - line 17).

• Validating connections(line 18 - line 20).

• Dealing with connection leaks(line 21 - line 22).

The following configuration file(Listing 4.2) should be put in the web application’s web.xml.

1 <resource-ref >
2 <description >Datasource for CloudKB </description >
3 <res-ref-name >jdbc/CloudKB </res-ref-name >
4 <res-type >javax.sql.DataSource </res-type >

4https://eclipse.org/
5http://tomcat.apache.org/

34

Project_Root/WebContent/META-INF/
~/WebContent/META-INF/context.xml
https://eclipse.org/
http://tomcat.apache.org/


4.1. Technologies

5 <res-auth >Container </res-auth >
6 </resource-ref >

Listing 4.2: Configure file for JDBC Connection Pool ~/WebContent/WEB-INF/web.xml

This registers the JNDI resource with name "jdbc/CloudKB" to the web application.

A JDBC Driver, e.g. postgresql-9.3-1104.jdbc41.jar, should be put into TOMCAT_ROOT_DIR/
lib/.

After these configurations are done, a JDBC Connection Pool can be accessed by Servlets 6 or
JSPs. As all the Web Services in this work are implemented by Restlet framework 7, and the
Restlet application can be exposed as a Servlet [res], so we can implement the Web Services
using the JDBC Connection Pool.

4.1.2. AngularJS

To implement the MVC design pattern described in Section 3.4.2, a brief survey has been
made to choose a proper framework. There are a lot of choices, such as:

• .NET based ASP.NET MVC framework 8.

• Java based Apache Struts MVC framework 9.

• Javascript based MVC frameworks like backbone.js 10, sencha 11, AngularJS 12 and so
on.

The popular Javascript MVC framework AngularJS is chosen, not only because the number of
the documents available online for it, but also for the reason that the cost calculator provided
by Google Cloud Platform in Figure 2.12 has used AngularJS.

Introduction

AngularJS framework is an open-sourced project that comes from Google, it offers the possibil-
ity to extend HTML vocabulary, i.e. new HTML tags for dynamic views in web-applications.
Strictly speaking, it is called a Model-View-Whatever [anga] framework, the concepts that
are essential to understanding the framework are [Gre13] :

• Client-Side Templates, the HTML template and the data are assembled by the browser,
the server takes the responsibility to properly serve the data required by the templates.

6http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html
7https://restlet.com/projects/restlet-framework/
8http://www.asp.net/mvc
9https://struts.apache.org/

10http://backbonejs.org/
11https://www.sencha.com/
12https://angularjs.org/

35

~/WebContent/WEB-INF/web.xml
TOMCAT_ROOT_DIR/lib/
TOMCAT_ROOT_DIR/lib/
http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html
https://restlet.com/projects/restlet-framework/
http://www.asp.net/mvc
https://struts.apache.org/
http://backbonejs.org/
https://www.sencha.com/
https://angularjs.org/


4. Implementation & Evaluation

• MVC, in AngularJS applications, the View is the Document Object Model(DOM), the
Controller is JavaScript objects, and the Model is stored in object properties.

• Data Binding, AngularJS’ famous two-way data binding automatically synchronizes
the data between the Model and View components.

Figure 4.1.: Data Binding in Angular Templates [angb]

• Dependency Injection, the Angular injector subsystem is in charge of creating com-
ponents, resolving their dependencies, and providing them to other components as
requested [angb], we can add other components very easily, for example, in the follow-
ing code:

var app = angular.module("app", ["ngMaterial"]);

I used an angular factory method angular.module() to add the libraries like "ngMate-
rial" 13 as dependency into the application "app".

• Directives, directives can be transformed into DOM, AngularJS provides many power-
ful built-in directives that can help us to define the View, other than that, we can also
write our own directives to do almost anything.

• Scope, when creating directives, we can choose to create a scope, which normally
prototypically inherits from its parent scope, scopes are in hierarchical structure which
mimic the DOM structure of the application. Scope refers to the Model of the application,
which glues Controller and View. To make directive-to-directive communication, we
can use $broadcast and $emit to dispatch events from directive to directive. As in
Fiugre 4.2, all scopes are hierarchically children of the $rootScope, there is only one
$rootScope in each AngularJS application, the events can be emitted from bottom to
the top, or broadcasted from top to the bottom.

13https://material.angularjs.org/latest/

36

https://material.angularjs.org/latest/


4.1. Technologies

Figure 4.2.: $broadcast and $emit in AngulaJS

Denpendency

Our Web Application is implemented as a single-page application 14, the following li-
braries(dependencies) are needed by the AngularJS framework during the implementation of
this thesis:

• CSS:

<link rel="stylesheet" href="bower_components/bootstrap/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="bower_components/angular-material/angular-material.css" />

• JS:

14https://en.wikipedia.org/wiki/Single-page_application

37

https://en.wikipedia.org/wiki/Single-page_application


4. Implementation & Evaluation

<script src="bower_components/angular/angular.js">
<script src="bower_components/angular-material/angular-material.js">
<script src="bower_components/angular-messages/angular-messages.js">
<script src="bower_components/angular-animate/angular-animate.js">
<script src="bower_components/angular-aria/angular-aria.js">
<script src="bower_components/angular-material/ngmaterial-svg-assets-cache.js">
<script src="bower_components/angular-smart-table/dist/smart-table.js"></script>

<!-- <script src="http://ngmaterial.assets.s3.amazonaws.com/svg-assets-cache.js"> -->

Note that the svg-assets-cache.js is needed for material-design icons but is not
included in the original package, so I downloaded it and added it here locally.

The bower 15 library was used to manage the dependency in the implementation of Web
Application. more detailed description is in appendix A.

4.1.3. Data-Driven Documents(D3.js)

D3.js was created for data visualization, there are plenty of libraries that are used for data
visualization, such as:

• Java based JFreeChart 16, OpenChart2 17 and so on.

• Javascipt based Highcharts 18, ECharts 19 and so on.

Although they are all very powerful and easy to use, yet D3.js is more powerful. D3.js
provides us the ability to create rich interactive and animated content based on data and tie
that content to existing web page elements(DOM) [Mee15]. Despite its steep learning curve,
D3.js offers a very powerful tool for visualization of data.

Introduction

The core characteristics and functionalities of D3.js are:

• SVG D3.js allows us to create vector graphics 20 for charting and geospatial visualiza-
tions. The following Figure 4.3 shows a scenario that illustrates fluctuations since 2010
in California’s 30-largest reservoirs 21.

The blue circles represent the fluctuating storage levels for each reservoir, e.g. Lake
Shasta, they will change their size automatically along with the time line in the top, and

15http://bower.io/
16http://www.jfree.org/jfreechart/
17http://approximatrix.com/products/openchart2/
18http://www.highcharts.com/
19https://ecomfe.github.io/echarts/index-en.html
20https://www.w3.org/Graphics/SVG/
21http://ww2.kqed.org/lowdown/2014/03/18/into-the-drought-californias-shrinking-reservoirs/

38

http://bower.io/
http://www.jfree.org/jfreechart/
http://approximatrix.com/products/openchart2/
http://www.highcharts.com/
https://ecomfe.github.io/echarts/index-en.html
https://www.w3.org/Graphics/SVG/
http://ww2.kqed.org/lowdown/2014/03/18/into-the-drought-californias-shrinking-reservoirs/


4.1. Technologies

Figure 4.3.: D3.js svg example [Pow]

the multi-series line chart shows the trend for each year, which also changes along with
the time line.

• Selecting and Binding, the real power of D3.js comes from these two functionalities,
we can use selecting and binding to combine data and the web page elements. For
example in the following code:

d3.selectAll("div.market").data([1, 4, 5, 2]);

We bind the elements in the array [1, 4, 5, 2] to div elements with the class of
"market". There are sometimes more DOM elements than data elements, or vice versa,
D3.js has provided functions like enter() or exit() to create or remove DOM elements
that are short or excess, so that the differences in the data can be reflected by the
appearance of web page elements.

39



4. Implementation & Evaluation

Dependency

D3 requires UTF-8 characters, so one way to ensure there’s no strange error is to set:

<!DOCTYPE html> <meta charset="utf-8">

The dependencies used by D3 in this thesis are:

<link rel="stylesheet" href="bower_components/d3-context-menu/css/d3-context-menu.css" />

<script src="bower_components/d3/d3.js">
<script src="bower_components/d3-context-menu/js/d3-context-menu.js">

4.2. Web Services

4.2.1. Accessing JDBC Connection Pool

In order to use the JDBC Connection Pool we configured in Section 4.1.1, a singleton class
DBUtil is created, as shown in Listing 4.3:

1 public class DBUtil {
2

3 public static Connection getConnection () {
4 Connection con = null;
5 try {
6 Context initContext = new InitialContext ();
7 Context envContext = (Context) initContext.lookup("java:/

comp/env");
8 DataSource datasource = (DataSource) envContext.lookup("

jdbc/CloudKB");
9 con = datasource.getConnection ();

10 }
11 catch (NamingException ex) {
12

13 ......
14

15 }
16 return con;
17 }
18 }

Listing 4.3: DBUtil.class

The Connections used by ServerResources are all managed by JDBC Connection Pool.

40



4.2. Web Services

4.2.2. Content-Viewing Web Services

The implementation of Web Services is a little different than in [Xiu13], take ~/categories/
{category} as an example,

Figure 4.4.: Java Class Diagram for Web Service ~/categories/{category}

As in Figure 4.4 shows, a CategoryRepresentation class is used to generate the Representa-
tion of the result, which in this example, is a List of ServiceTypes, ServiceType is only a
plain old Java object(POJO) 22 that will be created and populated during the life cycle of a
ServerResource object .

Gson 23 is used to convert the objects like categoryRepresentation to JSON, the method
toJSON() in CategoryServerResource only contains two lines of code:

Gson gson = new GsonBuilder().setPrettyPrinting().create();
22https://en.wikipedia.org/wiki/Plain_Old_Java_Object
23https://github.com/google/gson

41

~/categories/{category}
~/categories/{category}
~/categories/{category}
https://en.wikipedia.org/wiki/Plain_Old_Java_Object
https://github.com/google/gson


4. Implementation & Evaluation

return new JsonRepresentation(gson.toJson(this.categoryRepresentation));

I only need the result in JSON format, so the default result returned by all the Web Services
are in JSON.

4.2.3. Decision Support Web Services

~/parameters/{serviceType}

To return the possible parameters for a given service type, we need to query all possible per-
formances, variables and locations that are related to the service type, take the performances
as an example, we can get the performance names from java.sql.ResultSetMetaData(line
21 - line 24), and iterate all the result from query string(line 11 - line 16) to check which
performance name has value in at least one result row(line 25 - line 31), in the end, all possible
performance names is passed to the paramsRepresentation(line 33 - line 35).

1 private void queryAllPerformances(String nodeName) {
2 Connection conn = DBUtil.getConnection ();
3

4 boolean [] existFlags = new boolean [16];
5 for(int i=0; i<existFlags.length; i++) {
6 existFlags[i] = false;
7 }
8

9 String [] performanceNames = new String [16];
10

11 String query = "SELECT configuration.configid , performance .* "
12 + "FROM servicetype , offering , configuration , performance "
13 + "WHERE offering.typeid = servicetype.typeid "
14 + "AND offering.offeringid = configuration.offeringid "
15 + "AND configuration.performanceid = performance.

performanceid "
16 + "AND servicetype.type = ’" + nodeName + "’;";
17

18 try {
19 Statement stmt = conn.createStatement ();
20 ResultSet rs = stmt.executeQuery(query);
21 ResultSetMetaData rsmd = rs.getMetaData ();
22 for(int i=0; i<performanceNames.length; i++) {
23 performanceNames[i] = rsmd.getColumnName(i+3);
24 }
25 while(rs.next()) {
26 for (int i=0; i<16; i++) {
27 if(rs.getString(i+3) != null) {
28 existFlags[i] = true;

42

~/parameters/{serviceType}


4.2. Web Services

29 }
30 }
31 }
32

33 for( int i=0; i<existFlags.length; i++) {
34 if(existFlags[i]) {
35 this.paramsRepresentation.addPerformance(performanceNames

[i]);
36 }
37 }
38

39 } catch (SQLException e) {
40 e.printStackTrace ();
41 } finally {
42 if(rs!=null) try { rs.close(); } catch (Exception ignore){}
43 if(stmt!=null) try { st.close(); } catch (Exception ignore){}
44 if(conn!=null) try { con.close();} catch (Exception ignore){}
45 }
46 }

Listing 4.4: Method queryAllPerformances() in ParamsServerResource.class

~/cheapestConfig?{query}

The implementation of this Web Service relies on three modified classes from Xiu’s work
in [Xiu13], as shown in Figure 4.5, they are ConfigurationCandidate from Xiu’s Candi-
dateParams, CallableCostCalculator from CostResource, and Cost.

Figure 4.5.: Java Class Diagram for ~/cheapestCOnfig/{query}

As in Section 3.3.2 introduced, the user’s input: ~/cheapestConfig?servicetype=infrastructure&
cpuCore=32&cpuSpeed=1.2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=
Linux&separator&location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10) will

43

~/cheapestConfig?{query}
~/cheapestCOnfig/{query}
~/cheapestConfig?servicetype=infrastructure&cpuCore=32&cpuSpeed=1.2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)
~/cheapestConfig?servicetype=infrastructure&cpuCore=32&cpuSpeed=1.2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)
~/cheapestConfig?servicetype=infrastructure&cpuCore=32&cpuSpeed=1.2&memory=62&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&location_zone=Oregon&Hour=240&usage_pattern=(Hour,start=1,end=12,rate=10)


4. Implementation & Evaluation

first be divided into two part, the first part is used to find all the possible configuration
candidates, the result is stored in ConfigurationCandidate object. The second part of
the user input is used to instantiate a List of CallableCostCalculator that implements
java.util.concurrent.Callable, concurrently, these instances will be used to calculate the
cost for each configuration.

1 @Override
2 protected Representation get(Variant variant) {
3 ......
4

5 if (MediaType.APPLICATION_JSON.isCompatible(variant.
getMediaType ())) {

6

7 try {
8 Map <String , String > candidatesMap = candidateSearch ();
9 Set <String > configidSet = candidatesMap.keySet ();

10

11 List <FutureTask <Double >> futureTaskCalculatorList = new
ArrayList <FutureTask <Double >>();

12

13 Iterator <String > configItr = configidSet.iterator ();
14

15 while (configItr.hasNext ()) {
16 Form costFormWithConfigid = new Form();
17 costFormWithConfigid.add("configid", configItr.next());
18 costFormWithConfigid.addAll(costParamForm);
19

20 CallableCostCalculator calculator = new
CallableCostCalculator(costFormWithConfigid);

21

22 FutureTask <Double > futureTask = new FutureTask <Double >(
calculator);

23 futureTaskCalculatorList.add(futureTask);
24 }
25

26 ExecutorService executor = Executors.newFixedThreadPool (16)
;

27

28 for (FutureTask <Double > futureTask :
futureTaskCalculatorList) {

29 executor.execute(futureTask);
30 }
31

32 boolean allDone = false;
33 int iAllTasks = configidSet.size();

44



4.2. Web Services

34

35 while (! allDone) {
36 int iDoneTasks = 0;
37

38 try {
39 for (FutureTask <Double > futureTask :

futureTaskCalculatorList) {
40 if (futureTask.isDone ()) {
41 iDoneTasks ++;
42 }
43 }
44

45 if (iDoneTasks == iAllTasks) {
46 executor.shutdown ();
47 allDone = true;
48 getCheapest ();
49 }
50

51 } catch (InterruptedException | ExecutionException e) {
52 e.printStackTrace ();
53 }
54 }
55 } catch (SQLException e) {
56 e.printStackTrace ();
57 }
58 }
59

60 ......
61 }

Listing 4.5: Method get() in CheapestConfigurationServerResource.class

The CallableCostCalculator has a constructor that takes a org.restlet.data.Form as ar-
gument, which contains the second part of user input(line 16 - line 20),
a List of java.util.concurrent.FutureTask<Double> objects is created, each of them wraps
an instance of CallableCostCalculator and are executed concurrently, until all of them are
done, we can get the cheapest configuration(line 22 - line 48).

45



4. Implementation & Evaluation

4.3. User Interface

4.3.1. Layout

As mentioned in Section 4.1.2, Angular Material(ngMaterial) is used as UI Component
framework that implements Google’s Material Design Specification 24. The following Listing
4.6 creates the layout shown in Figure 4.6.

1 <div ng-app="nefolog-app">
2 <entire-dir>
3

4 <md-content layout="column" layout-padding="">
5 <md-card class="md-default-theme">
6

7 <!-- Title card --> ...
8

9 </md-card>
10

11 <div ng-cloak="" >
12 <md-content class="md-padding" layout-xs="column" layout="row">
13 <div flex-xs="" flex-gt-xs="50" layout="column">
14 <md-card>
15 <md-card-title>
16 <md-card-title-text>
17 <span class="md-title">Navigator</span>
18 </md-card-title-text>
19 </md-card-title>
20 <navigator></navigator>
21 </md-card>
22

23 ......
24 </md-content>
25 </div>
26

27 </md-content>
28 </entire-dir>
29 </div>

Listing 4.6: HTML template for layout

The entire Web Application lives inside <div ng-app="nefolog-app">, each html element
start with md is a directive defined by ngMaterial, such as md-content, our directives such as
Navigator(line 20) is put in the corresponding md-card with the corresponding title.

24https://www.google.com/design/spec/material-design/introduction.html

46

https://www.google.com/design/spec/material-design/introduction.html


4.3. User Interface

Figure 4.6.: Layout for User Interface

4.3.2. Navigator View

The Navigator is implemented as an AngularJS directive, which mainly contains a tree-layout
D3 diagram , originated from the author of D3.js [Bos]. At initial state, it only contains one
root node, i.e. categories in Figure 4.7, the related Model object is:

1 root = {
2 "name": "categories",

47



4. Implementation & Evaluation

3 "link": "/categories",
4 "linkFetched": false ,
5 "children": []
6 };

Listing 4.7: Initial Model object of root node

Figure 4.7.: Navigator View

When the user left-clicks any node in the tree, if the node that is being clicked is not a leaf
node, a URI is generated by the link’s value, and method d3.json() will fetch the result
from the corresponding Web Service(line 3), as shown in Listing 4.8. The returned data is
used to populate the tree data, and refresh the View with the new Model object(line 6 - line
14).

1 function loadChildren(d) {
2

3 d3.json(’http:// localhost:8080/nefolog_webapp/api’ + d.link ,
function (error , data) {

4 if (error) throw error;
5

6 var content = data.content;

48



4.3. User Interface

7

8 d.children = [];
9 content.map(function (obj) {

10 d.children.push(obj);
11 });
12 d.linkFetched = true;
13

14 update(d);
15 });
16 }

Listing 4.8: Method loadChildren() in Navigator directive

Note that the URI is generated starting with http://localhost:8080/nefolog_webapp/api,
this is because the Web Services that are implemented in this work don’t support Cross-Origin
Resource Sharing 25, so both the Web Services and the Web Application are deployed on the
same server, but in different folders, as in Figure 4.6 shows, the URI of the Web Application is
http://localhost:8080/nefolog_webapp/app/nefolog-app.html.

As the number of offerings(leaf nodes) is 51, it will take too much space if the tree is entirely
uncollapsed, a scrollbar is dynamically added when the height of the tree exceed 400 pixels.

The user can right-click the service type nodes and offering nodes, a corresponding context
menu 26 will be popped out accordingly(Figure 4.7). For service type nodes, the context
menu contains the entry points for Web Service candidateSearch [Xiu13], cheapestConfig
and inBudgetConfigs. For offering nodes, the context menu contains the entry points for
Web Service candidateSearch and cheapestConfig. When an item in context menu is clicked,
e.g. "findCheapestConfig", the event along with the data that is contained in the node is
emitted to top most directive, as in Listing 4.9 shows.

1 {
2 title: ’findCheapeastConfig ’,
3 action: function(elm , d, i) {
4 scope.$emit(’menuItemSelectedEvent ’, {node: d});
5 },
6 }

Listing 4.9: MenuItem findCheapestConfig in Navigator directive

The directive entire-dir(Listing 4.6) is in charge of making response to all the events that
come from its children scope, it broadcasts the corresponding event back down to the di-
rectives that live inside it, the directive with corresponding listener will then react to the
broadcast.

25https://www.w3.org/TR/cors/
26https://github.com/patorjk/d3-context-menu

49

https://www.w3.org/TR/cors/
https://github.com/patorjk/d3-context-menu


4. Implementation & Evaluation

4.3.3. Parameter View

The Parameter View is also a directive, it will respond to broadcast
broadcastSelectedServiceType, that is when the user left-clicked a service type node,
or broadcastSelectedOffering, when user left-clicked a offerig node. Accordingly, the
content of Parameter View will change its content after its listener accessed the corresponding
Web Service, ~/parameters/{serviceType}(Section 3.3.2) or ~/parameters/{offering}(Section 3.3.2),
and populate the Model object with the returned data.

The user can then input the parameters in the input fields that are listed in two columns,
the input fields on the left side are performances and location(Figure 4.8), on the right are
variables. For variables, the user can input the usage pattern if necessary, for example, if user
inputted 240,start=1,end=12,rate=10 in the blue input field, a query contains
usage_pattern=(Hour,start=1,end=12,rate=10) will be generated for further accessing.

Figure 4.8.: Parameter View

It would be more convenient for the user, if each input field for performance can be changed
to a <md-select>, and if the input field for variable can be changed to a set of <md-select>s,
so that the user can pick the possible value from the drop-down list.

50

~/parameters/{serviceType}
~/parameters/{offering}


4.3. User Interface

4.3.4. Result View

After the user finished the input and clicked the SUBMIT button, the corresponding Web
Service is accessed and the result is shown in the Result View. Smart table 27 is used to
generate tables. Currently, the users can click the table title to sort, for example in Figure
4.9, the result is sorted descending by the number of CPU cores, click one more time, it
will become ascending. The search field for each column can be used to filter the result, for
example, if Google is inputted in the search field under provider, only the configurations
from Google will be listed.

Figure 4.9.: Result View

27http://lorenzofox3.github.io/smart-table-website/

51

http://lorenzofox3.github.io/smart-table-website/


4. Implementation & Evaluation

4.3.5. Report View

Till the submission of this thesis, the Report View is still under development.

4.4. Evaluation

Performance of ~/cheapestConfig?{query}

To evaluate the performance, a simple approach for calculating the time difference is used. To
be tested URL is: http://localhost:8080/nefolog_webapp/api/cheapestConfig?servicetype=infrastructure&
cpuCore=8&cpuSpeed=1.2&memory=32&io=very high&platform=64&storage=240&sla=0.9995&os=
Linux&separator&Hour=240&GBStorage=500&location_zone=Oregon&usage_pattern=(Hour,start=1,end=
12,rate=10).

The first part of the query has the following result(simplified):

1 {
2 hi1.4xlarge Medium Utillization High -I/O On-Demand Instances,

cr1.8xlarge(high -memory),
3 hs1.8xlarge Medium Utillization High -Storage On-Demand

Instances,
4 n1-highmem -8-d,
5 cr1.8xlarge Light Utillization High -Memory Cluster On-Demand

instances,
6 hi1.4xlarge(high -I/O),
7 cc2.8xlarge Light Utillization Cluster Compute Instances,
8 hs1.8xlarge(high -storage),
9 cr1.8xlarge Medium Utillization High -Memory Cluster On-Demand

Instances,
10 hi1.4xlarge Light Utillization High -I/O On-Demand Instances,
11 double extra large,
12 hs1.8xlarge Light Utillization High -Storage On-Demand Instances

,
13 cc2.8xlarge Medium Utillization Cluster Computer Instances,
14 cc2.8xlarge Heavy Utillization Cluster Compute Instances,
15 cr1.8xlarge Heavy Utillization High -Memory Cluster On-Demand

Instances,
16 hs1.8xlarge Heavy Utillization High -Storage On-Demand Instances

,
17 hi1.4xlarge Heavy Utillization High -I/O On-Demand Instances,
18 cc2.8xlarge(cluster computer)
19 }

Listing 4.10: Simplified result of candidateSearch

52

~/cheapestConfig?{query}
http://localhost:8080/nefolog_webapp/api/cheapestConfig?servicetype=infrastructure&cpuCore=8&cpuSpeed=1.2&memory=32&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&Hour=240&GBStorage=500&location_zone=Oregon&usage_pattern=(Hour,start=1,end=12,rate=10)
http://localhost:8080/nefolog_webapp/api/cheapestConfig?servicetype=infrastructure&cpuCore=8&cpuSpeed=1.2&memory=32&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&Hour=240&GBStorage=500&location_zone=Oregon&usage_pattern=(Hour,start=1,end=12,rate=10)
http://localhost:8080/nefolog_webapp/api/cheapestConfig?servicetype=infrastructure&cpuCore=8&cpuSpeed=1.2&memory=32&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&Hour=240&GBStorage=500&location_zone=Oregon&usage_pattern=(Hour,start=1,end=12,rate=10)
http://localhost:8080/nefolog_webapp/api/cheapestConfig?servicetype=infrastructure&cpuCore=8&cpuSpeed=1.2&memory=32&io=very high&platform=64&storage=240&sla=0.9995&os=Linux&separator&Hour=240&GBStorage=500&location_zone=Oregon&usage_pattern=(Hour,start=1,end=12,rate=10)


4.4. Evaluation

As shown in Listing 4.10, there are 18 configurations, the configid of each one of them will be
passed to a callableCostCalculator, then a List of futureTasks will concurrently execute
the query for each configuration in the database(Listing 4.5).

The start time long lStartTime = System.currentTimeMillis(); is counted right after the
executor instance of java.util.concurrent.ExecutorService executes all the futureTasks
(line 31 in Listing 4.5), the end time long lEndTime = System.currentTimeMillis(); is
counted when all futureTasks are done (line 59 in Listing 4.5). the following console output
shows the result of one test run(Figure 4.10):

Figure 4.10.: Performance of /cheapestConfig?query

All the futureTasks are done in less than 1/3 second, the test was on my laptop(Intel R©
CoreTM i5-2520M processor (dual-core, 2.50GHz, 3MB Cache)).

53



4. Implementation & Evaluation

54



5. Conclusion

5.1. Summary

There should be no doubt that Cloud Computing, especially the public Cloud services
becomes more and more important across all industry sectors. For the purpose of helping
customers to make their cloud migration choices, a system called Nefolog was created by Xiu.
Based on a Cloud provider knowledge base, Nefolog exposes RESTful web services that are
used by a JSP-based user interface MidSuS.

In order to provide more functionalities and more user-friendly experience to customers,
after studied the Cloud provider knowledge base and the Nefolog, the current state of
Cloud Computing services is surveyed. The web applications provided by 3 leading Cloud
Computing providers are studied.

Some of the web services in Nefolog are refactored in a more object-oriented way, new
web service for calculating multiple costs for different candidate configurations is created.
To ensure that the customer won’t wait too lang for a result, JDBC connection pool and
concurrency is used during the implementation.

Based on MVC design pattern, a modern front-end framework AngularJS is used to implement
the new single page web application that is inspired from the cost calculator of Google
and Microsoft. Now the user can first interact with a navigator that is created by D3.js,
the dynamically generated parameter view then gathers more requirements from the user,
and finally, the result is represented to the user with more opportunities to make further
decision.

5.2. Future work

The Cloud provider knowledge base needs a thorough update.

During the implementation of this work, there are many limitations need to be improved:

• The ~/inBudgetConfigs?{query} web service is not yet implemented. The idea is basically
similar with the ~/cheapestConig?{query}, which is to concurrently calculate multiple
configurations that fulfill certain demand, but it can help users to deal with the common
scenario: budget.

55

~/inBudgetConfigs?{query}
~/cheapestConig?{query}


5. Conclusion

• The Report View which is designed to show the result graphically, is not yet finished.
Considering the result of costCalculator contains geographical information, monthly
cost for data transfer and so on, these data would be more intuitive with graphical
expression by using D3.

• The Navigator View should provide a provider tree, or a products matrix view, which
can help users to browse the knowledge base more flexible.

• The Parameter View need more refinement, for example, when the user inputted an
invalid parameter, there should be a error message, and the submit button should be
disabled, until the user has inputted all the necessary parameters. The usage pattern
should be gathered more user friendly, not just in plain text.

• There are also more improvements can be done in Result View, for example, when a
user selected two configurations in the result table, a report is generated in the Report
View, which shows the comparison between the two configurations in detail.

56



Appendix A.

Bower Dependency

bower.json:

1 {
2 "name": "nefolog -webapp",
3 "authors": [
4 "huangjinhui <whocodeworld@gmail.com >"
5 ],
6 "description": "diplomarbeit",
7 "main": "",
8 "moduleType": [],
9 "license": "MIT",

10 "homepage": "",
11 "ignore": [
12 "**/.*",
13 "node_modules",
14 "bower_components",
15 "test",
16 "tests"
17 ],
18 "dependencies": {
19 "angular -material": "1.0.6",
20 "d3-context -menu": "*",
21 "angular -smart -table": "^2.1.8",
22 "angular -bootstrap": "^1.3.3"
23 }
24 }

Listing A.1: bower.json

angular-material relies on angular, angular-animate, angular-aria, angular-messages,
d3-context-menu relies on d3, bower will automatically install the proper version of them.

57



Appendix A. Bower Dependency

58



Bibliography

[ABLS13] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch. How to adapt applications
for the Cloud environment. Computing, 95(6):493–535, 2013.

[anga] AngularJS : MVW framework - Model-View-Whatever. https://plus.google.com/
+AngularJS/posts/aZNVhj355G2. Accessed: 2016-05-30.

[angb] Guide to AngularJS Documentation. https://docs.angularjs.org/guide. Accessed:
2016-05-30.

[ARXL14] V. Andrikopoulos, A. Reuter, M. Xiu, and F. Leymann. Design Support for Cost-
efficient Application Distribution in the Cloud. In Cloud Computing (CLOUD), 2014
IEEE 7th International Conference on, pages 697–704. IEEE, 2014.

[ASL13] V. Andrikopoulos, Z. Song, and F. Leymann. Supporting the migration of ap-
plications to the cloud through a decision support system. In 2013 IEEE Sixth
International Conference on Cloud Computing, pages 565–572. IEEE, 2013.

[awsa] Amazon Web Services Simple Monthly Calculator. https://calculator.s3.amazonaws.
com/index.html. Accessed: 2016-05-30.

[awsb] Amazon Web Services(AWS) - Cloud Computing Services. https://aws.amazon.com.
Accessed: 2016-05-30.

[awsc] Cloud Products & Services Amazon Web Services. https://aws.amazon.com/products/.
Accessed: 2016-05-30.

[awsd] TCO Calculator. https://awstcocalculator.com/. Accessed: 2016-05-30.

[Bos] M. Bostock. Collapsible Tree. https://bl.ocks.org/mbostock/4339083. Accessed: 2016-
05-30.

[Bur92] S. Burbeck. Applications programming in smalltalk-80 (tm): How to use model-
view-controller (mvc). Smalltalk-80 v2, 5, 1992.

[gooa] Google Cloud Computing, Hosting Services & APIs. https://cloud.google.com. Ac-
cessed: 2016-05-30.

[goob] Google Cloud Computing TCO Pricing Calculator. https://cloud.google.com/pricing/
tco/. Accessed: 2016-05-30.

[gooc] Google Cloud Platform Pricing Calculator. https://cloud.google.com/products/
calculator/. Accessed: 2016-05-30.

[Gre13] B. Green. Angularjs. O’Reilly Media, Sebastopol, CA, 2013.

59

https://plus.google.com/+AngularJS/posts/aZNVhj355G2
https://plus.google.com/+AngularJS/posts/aZNVhj355G2
https://docs.angularjs.org/guide
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com
https://aws.amazon.com/products/
https://awstcocalculator.com/
https://bl.ocks.org/mbostock/4339083
https://cloud.google.com
https://cloud.google.com/pricing/tco/
https://cloud.google.com/pricing/tco/
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/


Bibliography

[Hor13] C. Horstmann. Core Java. Prentice Hall, Upper Saddle River, NJ, 2013.

[jdb] The JavaTM Tutorials - JDBC Basics. https://docs.oracle.com/javase/tutorial/jdbc/basics/
connecting.html. Accessed: 2016-05-30.

[jnd] The JavaTM Tutorials - Java Naming and Directory Interface. https://docs.oracle.com/
javase/tutorial/jndi/. Accessed: 2016-05-30.

[Mee15] E. Meeks. D3.js in action. Manning Publications, Shelter Island, NY, 2015.

[MG11] P. Mell and T. Grance. The NIST definition of cloud computing. 2011.

[mica] Microsoft Azure: Cloud Computing Platforms & Services. https://azure.microsoft.
com. Accessed: 2016-05-30.

[micb] Pricing Calculator | Microsoft Azure. https://azure.microsoft.com/en-us/pricing/
calculator/. Accessed: 2016-05-30.

[mvca] Model–view–controller. https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%
93controller. Accessed: 2016-05-30.

[mvcb] MVC Architecture. https://developer.chrome.com/apps/app_frameworks. Accessed:
2016-05-30.

[Pow] V. Powell. How the Drought is Shrinking California’s Reser-
voirs [Visualization]. http://ww2.kqed.org/lowdown/2014/03/18/
into-the-drought-californias-shrinking-reservoirs/. Accessed: 2016-05-30.

[res] Restlet Framework - User Guide. https://restlet.com/technical-resources/
restlet-framework/guide/2.3/introduction/overview. Accessed: 2016-05-30.

[Son13] Z. Song. A decision support system for application migration to the
Cloud. http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=
DIP-3381&engl=0, 2013. Diplomarbeit, Universität Stuttgart, Fakultät Informatik,
Elektrotechnik und Informationstechnik, Germany.

[toma] The Tomcat JDBC Connection Pool. https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.
html. Accessed: 2016-05-30.

[tomb] Tomcat JDBC Connection Pool configuration for pro-
duction and development. http://www.codingpedia.org/ama/
tomcat-jdbc-connection-pool-configuration-for-production-and-development/. Ac-
cessed: 2016-05-30.

[Xiu13] M. Xiu. Decision support for different migration types of applications to the
Cloud. http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=
DIP-3472&engl=0, 2013. Diplomarbeit, Universität Stuttgart, Fakultät Informatik,
Elektrotechnik und Informationstechnik, Germany.

All links were last followed on June 1, 2016

60

https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html
https://docs.oracle.com/javase/tutorial/jndi/
https://docs.oracle.com/javase/tutorial/jndi/
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://developer.chrome.com/apps/app_frameworks
http://ww2.kqed.org/lowdown/2014/03/18/into-the-drought-californias-shrinking-reservoirs/
http://ww2.kqed.org/lowdown/2014/03/18/into-the-drought-californias-shrinking-reservoirs/
https://restlet.com/technical-resources/restlet-framework/guide/2.3/introduction/overview
https://restlet.com/technical-resources/restlet-framework/guide/2.3/introduction/overview
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3381&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3381&engl=0
https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
http://www.codingpedia.org/ama/tomcat-jdbc-connection-pool-configuration-for-production-and-development/
http://www.codingpedia.org/ama/tomcat-jdbc-connection-pool-configuration-for-production-and-development/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3472&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3472&engl=0


Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

Stuttgart, June 1, 2016 ——————————–
(Name)


	Introduction
	Motivation
	Outline

	Background & Related Work
	Background
	Fundamentals
	Nefolog

	Cloud Providers
	Amazon Web Services
	Microsoft Azure
	Google Cloud Platform


	Design
	Requirements
	Functional Requirements
	Non-functional Requirements
	Design Constraints

	Specifications
	Design for Back-end
	Knowledge Base
	Web Services

	Design for User Interface
	Layout
	Design Pattern


	Implementation & Evaluation
	Technologies
	JDBC Connection Pool
	AngularJS
	Data-Driven Documents(D3.js)

	Web Services
	Accessing JDBC Connection Pool
	Content-Viewing Web Services
	Decision Support Web Services

	User Interface
	Layout
	Navigator View
	Parameter View
	Result View
	Report View

	Evaluation

	Conclusion
	Summary
	Future work

	Bower Dependency
	Bibliography

