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cv – at constant volume [J kg−1 K−1]
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e Specific total energy [J kg−1]
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f Free Helmholtz energy [J kg−1]
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~G Inviscid numerical flux in the reference element
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~H Viscid numerical flux in the reference element
J Jacobian of the mapping
K Gas law deviation coefficient
M Mass [kg]
ṁ Mass flow rate [kg s−1]
p Pressure [N2 m−1],[Pa]
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Kurzfassung

Numerische Simulationen von Mehrphasenströmungen für industrielle Anwendungen
werden immer komplexer. Die benötigten Auflösungen für die zeitlichen und räum-
lichen Skalen sind stark gestiegen und komplexere und numerisch anspruchsvollere ther-
modynamische Eigenschaften von Fluiden müssen berücksichtigt werden. Das Ziel
dieser Arbeit ist es die Anwendungen von Methoden höherer Ordnung, der diskon-
tinuierlichen Galerkin Spektral Element Methode, und einer genauen Zustandsgleichung
für einen weiten Bereich von Druck und Temperatur, die freie Helmholtz-Energie, zu
demonstrieren. Bislang wurden beide Aspekte oftmals voneinander getrennt unter-
sucht, allerdings bleibt die Kombination aus beiden weiterhin sehr herausfordernd, bei-
spielsweise für Strömungen mit Kavitation oder Freistrahlen mit Realgaseigenschaf-
ten. Die vorliegende Arbeit beschreibt den Einsatz einer diskontinuierlichen Galerkin
Methode mit einer tabellierten Zustandsgleichung. Diese Zustandsgleichung beinhaltet
die Gas-, Flüssigkeits- und deren Mischungsphase. Dieser Ansatz erlaubt eine detail-
lierte Untersuchung von Strömungsvorgängen, welche eine genaue Zustandsgleichung
benötigen und bisher nicht durchführbar wurden. Die hier untersuchten Fälle beinhalten
Überschallfreistrahlen mit Realgaseingenschaften und kavitierende Strömungen.

Es wurden Riemann-Probleme untersucht, bei welchen der Unterschied zwischen
idealer und realer Zustandsgleichung erörtert wurde. Die Ergebnisse zeigen zum
einen, dass bei höheren Drucken die ideale Zustandsgleichung deutliche abweicht.
Zum anderen wurde eine sehr gute Übereinstimmung mit der analytischen Lösung
erzielt. Die Ergebnisse für Überschallfreistrahlen deuten auf große Unterschiede zwis-
chen Real- und Idealgasappoximationen für wichtige Kenngrößen wie Massenströme
hin. Ein weiterer Unterschied ergibt sich bei Stoßstrukturen, welche zur Beeinflus-
sung von Akustik und dem Mischungsverhalten führen können. Für die kavitierenden
Strömungen wurde eine detaillierte Parameterstudie für den Kollaps einzelner Dampf-
blasen in einer Flüssigkeit durchgeführt. Durch die durchgeführten Simulationen kon-
nten verschiedene Einflussgrößen auf den Kollaps gezeigt werden, beispielsweise den
Einfluss der Gitterauflösung auf den maximalen Kollapsdruck. Weiter wurde eine Kanal-
strömung mit Wasser untersucht, dabei konnten eine Vielzahl von Effekten abgebildet
werden. Ein Beispiel hierbei ist die langsame und stromaufwärts verlaufene Ausbre-
itung von Stoßwellen innerhalb des Naßdampfgebietes, welche auch in Experimenten
zu beobachten ist. Generell zeigten die Ergebnisse in dieser Arbeit mit dem diskon-
tinuierlichen Galerkin Ansatz bessere Ergebnisse als mit einem Finite Volumen Ver-
fahren zweiter Ordnung.

xvii



Kurzfassung

Der hier verwendete Ansatz zeigt großes Potenzial für Strömungen, welche eine hohe
Auflösung von Skalen benötigen. Es wurden erste Ergebnisse für industriell relevante
Fälle für Ein- und Mehrphasenströmungen gezeigt. Dennoch sind weitere Verbesserun-
gen des Ansatzes nötig, um das volle Potenzial der Methode ausschöpfen zu können.

xviii



Abstract

Numerical simulations of multiphase flows for industrial applications have become in-
creasingly complex. The demand on the resolution of temporal and spatial scales has
increased and more complex and numerically demanding thermodynamic states of the
fluid are required. The aim of this study is to demonstrate the applicability of a high or-
der method, i.e., the discontinuous Galerkin spectral element method, with an accurate
equation of state, valid for a wide range of pressures and temperatures, e.g., the Helm-
holtz energy formulation. Although these two aspects have been intensely investigated
separately, a combination of both in an efficient manner remains challenging for com-
plex applications, e.g., cavitational flows or real gas jets. The present work presents the
application of a novel approach, which uses a dense gas approach with a discontinuous
Galerkin method with a tabulated equation of state including the gaseous, liquid and two-
phase states of the fluid. This new approach allows for detailed investigations of flow
phenomena, which require accurate fluid properties and have been unfeasible to simulate
in the past. The investigated cases include supersonic real gas jets and cavitational flows.

Riemann-problems are investigated to demonstrate the differences between ideal and
real equation of state approximations. The results show on one hand that at high pres-
sures the ideal approximation of the equation of state shows large differences. On the
other hand, a very good agreement of the applied method compared to analytical results
is shown. The simulation results for the supersonic real gas jet suggest large differences
for the applied cases between the real gas and ideal gas approximation. A difference are
the shock structures which might lead to differences in acoustics and mixing. Further,
the mass flow rates show significant differences. For the cavitational flow a detailed pa-
rameter study for single vapor bubble collapses in a liquid is executed. The presented
results demonstrate difference influence quantities for such collapses, e.g., the influence
of the grid resolution to the maximum collapse pressure. Subsequently, a micro channel
flow simulation is conducted for water for many known effects could be reproduced by
the simulation. An example is the shock propagation within the wet steam area, which
is very slow compared to the mean flow velocities and is traveling in the upstream direc-
tion.

For both the real gas and cavitating flow, using the low dissipation discontinuous
Galerkin scheme shows superior results compared to a second order finite volume
scheme used in this work. The proposed framework shows great potential for the sim-
ulation of flows, that require an accurate representation of small spatial and temporal
scales and multiparameter equation of states. First simulation results of industrially rel-
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Abstract

evant flows are presented for both single and multiphase application. However, to fully
exploit the potential of the combination high order methods with accurate equation of
states further development is necessary, e.g., stability and sub-grid scale models.
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1. Introduction

1.1. Motivation

Numerical simulations of fluid dynamics have become an indispensable tool in product
development. With their help properties, which are hard or impossible to obtain in ex-
periments are available for interpretation. It has provided the opportunity to model the
interaction between components. This allows for a better understanding of complex pro-
cesses and can be used to solve problems more efficiently. Hence, the direct connection
of parameters can be unfolded. Therefore, the environmental sustainability, profitability,
durability and safety of new innovative products can be further improved.

Many of today’s engineering tasks within an industrial context are of large scale and
very complex. One example of the demanding type of simulation is multiphase flow
within an injection system for internal combustion engines. During the injection of
the fuel high pressure drop can occur, which might lead to cavitation. Cavitation causes
strong pressure amplitudes, which can potentially harm components. Consequently, such
effects need to be predicted by the simulation. Another example is the gas injection at
high pressure. Here, the gas behaves differently than at low pressures and the model-
ing of the fluid properties is far more complicated. Therefore, much research has been
done to improve Computational Fluid Dynamic (CFD) solvers to cater to the needs of
component developers.

Here, a number of advances have been made in the last decades, however, many chal-
lenges remain for the coming decades. Two of the challenges, which are addressed in
the present work, are the accurate representation of the fluid properties, e.g., Equation
of State (EOS), and the usage of highly accurate schemes for the simulation, e.g., a
Discontinuous Galerkin (DG) method.

1.2. Previous research

In the following, a brief overview of research done in the field of gas dynamics of super-
sonic flows, cavitation and thermodynamic properties of fluids is given.

1.2.1. Gas Dynamics of Supersonic Flows

Gas dynamics play an important role in industrial applications. In recent years, Natural
Gas Injection (NGI) of automotive vehicles has moved into the research focus [28, 68].

1



1. Introduction

With advances in NGI technology pollutions emission and operation costs can be re-
duced. A trend in the mobilities sector is to move towards lower carbon-to-hydrogen
ratios [32]. Therefore, it is desirable to strive towards better designs for NGI systems.
For this purpose, simulations are required to accurately predict NGI systems in the most
efficient manner.

Research has been done in many different areas for compressible supersonic jets, e.g.,
noise emission [99, 117, 118, 120, 121], hazardous effects of gas leaks [64] or differ-
ent transient stages of jet development [51, 54, 129]. Observations and investigations
of supersonic jets date back to the nineteenth century during the Franco-Prussian War.
For an artillery fire a new phenomena was observed, firing at high speeds resulted in
two separate noises, i.e., the jet shock noise and the explosion of the gunpowder, and
only a single sound pf the gunpowder explosion at low speeds [87]. From this starting
point a number of studies were carried out; for both experiments and in recent years an
increasing number of simulations.

Despite the increases in available computational resources Direct Numerical Simula-
tions (DNS) are out of reach for high Reynolds number jet. However, Large-Eddy sim-
ulations (LES) have become feasible in recent years. An example of the advances was
given by Yu et al. [139]. They investigated the transient behavior of a natural gas (NG)
jet both experimentally and numerically in the ideal gas regime. The simulation results
agreed well with the experimental data. Vuorinen et al. [129] conducted a study with
variation in the ratio of inlet to outlet pressure. The resulting underexpanded jets ranged
from pressure ratio 4.5 to 8.5 at Reynolds numbers (Re) of the order from 7.5× 104

to 1.4× 105. Their discussion included the transient stages of the jets and identified
coherent structures downstream of the Mach disk.

Most of the studies have focused on jets at low pressures. At low pressure real gas
effects only have a minor contribution to the jet behavior and its properties. There-
fore, real gas effects are less frequently taken into account. However, Direct Gas In-
jection (DGI) for natural-gas-powered internal combustion engines operate at high pres-
sures [79, 80], e.g., to increase the mass flow. Here the ideal gas approximation is no
longer valid. Real gas effects such as pressure-dependent compressibility need to be
considered. For the modeling of these effects cubic EOS are most commonly used in
CFD [40]. The most prominent examples are Redlich-Kwong [101], Soave-Redlich-
Kwong [110], Peng-Robinson [91], Beattie-Bridgeman [70] and Abel-Noble [27] EOS.

An example of the usage of such an EOS for CFD was given by Bonelli et al. [19]
and Hamzehloo and Aleuferus [51]. Both demonstrated the necessity of a proper real
gas EOS for a hydrogen jet at a high injection pressure p0 > 1× 107 Pa. Their re-
sults underlined the necessity of a proper fluid property approximation for their cases.
Similarly, Khaksarfard et al. [64] studied the high pressure release of a hydrogen stor-
age tank. They used the Beattie-Brideman equation and the Abel-Noble equation and
discussed the differences to the ideal gas formulation. Again, large differences were

2



1.2. Previous research

observed in terms of accuracy, but also in stability of the simulation. This empasizes
the importance, but also the challenges with incorporation of a nonlinear EOS. Pini et
al. [94] used a look-up table to represent the real gas approximation. Their investigation
comprised an accuracy analysis of the EOS and demonstrated the usability for CFD of
turbine cascades.

1.2.2. Cavitation

The process of cavitation, i.e., volume filled with vapor in a local low pressure region
in a liquid flow, can be observed in natural and many industrial applications. In nature
the snapping shrimps use cavitational shock waves to stun or kill prey animals [75,126].
Cavitation can also occur in trees [30], at the fins of dolphins [71] or in cracking joints
[125]. In the industry cavitation is present in many application with liquids, e.g., ship
propellers [26], diesel injection [90], turbines [69], and has been observed and studied
intensively.

Early observations date as far back as to Sir Isaac Newton in 1704, however, he
did not provide an explanation for the observation [124]. In 1754 Leonard Euler ex-
plained the physical background of cavitation and concluded that it might occur in
turbines [116], this assumption was proven true. First publications of cavitation were
published for the generation of vapor bubble at ship propellers and the resulting de-
crease in efficiency [138]. One of the first Finite Volume (FV) applications for cavita-
tion was published by Iben et al. [62]. Since these first approaches, a vast number of
different instigations have been done. Some examples of the investigated areas are an-
alytical assessment of the collapse bubbles [47, 96, 97, 106], the analysis of cavitation
erosion [82, 86, 93, 108] and highly resolved LES simulation of turbulent cavitational
flows [37, 48, 49, 59, 113, 133].

A number of studies have been dedicated to accurately predict the collapse behavior
of single bubbles and clouds of bubbles. Philipp and Lauterborn [93] investigated the
movement of a bubble during the collapse for different wall distances. One of their key
findings was that for certain distances of the initial wall distance the first collapse or with
greater distance the second collapse, i.e., rebound, occur directly at the wall. Hence, the
damage potential of such collapses is high.

Koch et al. [66] used a FV with a Volume Of Fluid (VOF) method to simulate the col-
lapse behavior of a single bubble. The investigation included bubble collapses without
a wall and close to a wall. Their findings were in good agreement with experimental
data. Schmidt et al. [105] focused on the grid convergence of bubble cloud collapses.
The findings demonstrated that for the used thermodynamic equilibrium model no grid
convergences for the maximum pressure is present. On the other hand, the maximum
wall pressure reaches a point of convergence. These findings show that with this type of
model erosion prediction is feasible.

Different methods have been proposed in the literature to solve cavitational flows for

3



1. Introduction

larger systems or components. Berg et al. [16] presented a model to predict homo-
geneous cavitation in a 1D gas-liquid pipe flow. In a number of test cases the model
showed good agreement with analytical and experimental results. For the proposed cav-
itation model the compressible Euler equation was solved with the Lax-Friedrich (LF)
Riemann method. The thermodynamic model for the evaporation assumes constant en-
tropy during the process.

Dittakavi et al. [33] simulated a cavitating venturi throat with a sixth order compact
Finite Difference (FD) scheme. The authors treated the stiffness problem of the simu-
lation with an artificial increase of the Mach number (Ma). The test case of the water
hammer displayed recognizable differences. Due to a vast decrease in computation time
and focus on the cavitation-turbulence interaction the error was neglected. The authors
further pointed out, that the vapor production suppresses the turbulence production at
the throat and the collapse of the vapor contributes to the vorticity production. Salvador
et al. [104] investigated a diesel injection with a Large Eddy Simulation (LES) solver.
The authors used a Homogeneous Equilibrium Model (HEM) with a bartriopic EOS to
model the cavitation. The differences of the mass flow, momentum flux and effective
velocity compared to experimental data were about 10% for different operating points.
The investigation showed a choking effect due to cavitation. The highest values of vor-
ticies occurred at the liquid vapor interphase, therefore the authors concluded that the
cavitation increases the turbulence level. Gnanaskandan and Mahesh [49] performed
simulations of a flow over a wedge for which sheet cavitation is generated. The simula-
tions were compared to experimental results of Ganesh [43,44]. The results were in good
agreement with each other. Further, they showed that overall LES had better agreement
to the experiment than Unsteady Reynolds-Averaged Navier-Stokes (URANS) calcula-
tions.

1.2.3. Thermodynamic Properties of Fluids

In most applications where some sort of fluid is involved, its thermodynamic properties
are needed, e.g., to close governing equations and the representation of its attributes.
The required accuracy, range of availability, e.g., pressure and temperature range, and
accessibility, i.e., efficiency to obtain the properties, vary greatly with the application.
In the past often simple look-up tables were sufficient, e.g., VID-Wärmeatlas. With
the increasing popularity of simulations and especially CFD, which require to evaluate
multiple data points, analytical equations and EOS libraries have been used more often.
A number of different classes are available in the literature: ideal gas equation, cubic
equations, Tait equations and relations based on thermodynamic potentials. Depending
on the application and available computational resources either of those is sensible. The
most accurate, however, computationally most expensive EOS approximations are based
on the thermodynamic potentials. From this class, the Helmholtz free energy based for-
mulations are the most widely used. The Helmholtz free energy formulation is valid over
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a wide range of the fluid and is the state-of-the-art approximation of the fluid properties
for many fluids. One of the most prominent examples is the approximation for water,
which is defined in the International Association for the Properties of Water and Steam
(IAPWS) standard [131]. For this the error margin of uncertainties is very low compared
to other formulations, e.g., for specific volume the highest uncertainty is 0.3%. Several
EOS evaluation programs are available which are based on the Helmholtz energy, e.g,
RefProp [74], CoolProp [15], FPROPS [1] and FLUIDCAL [130].

1.3. Objective

The objective of this work is to demonstrate the capabilities of a high order scheme,
DGSEM, and the usage of a highly accurate multiparameter EOS. A number of test
cases are presented, including 1D shock tube experiments with real and ideal gas ap-
proximation, supersonic real gas jet simulation, single bubble cavitation collapses and
micro channel flows with cavitation. These cases demonstrate on the one hand the ca-
pabilities of the proposed framework, i.e., low dissipation scheme coupled with accurate
accurate EOS in a efficient manner, and give further insides and advice of the simulation
with real gas properties on the other hand.

1.4. Outline

In this work, the application of a high order DG scheme with a tabulated EOS is pre-
sented. In Chapter 2 the fundamentals and background of the fluid flow are briefly
summarized. Based on the compressible Navier-Stokes Equations (NSE) different EOS
and the concept of the two-phase region are introduced. The fundamentals of supersonic
flows and cavitation are assessed in Section 2.5 and Section 2.6, respectively. Chapter 3
addresses the background of the applied numerics. First, the applied numerical schemes,
e.g., DG and FV, are briefly introduced. Section 3.2 to Section 3.4 cover the shock cap-
turing, the applied Riemann solver and the de-aliasing in this work, respectively. The
usage of the tabulated EOS is explained in Section 3.5 and the efficiency is evaluated.
In the last subsection of this chapter, Section 3.6, the modeling of the multiphase flow is
briefly discussed and the limitations of the used methods are summarized.

The results are divided into two chapters, gaseous flow and cavitation, Chapter 4 and
Chapter 5, respectively. In Section 4.1 a shock tube experiment is carried out and the
differences between ideal and real gas approximations for methane are discussed in de-
tail. Section 4.2 first validates a simulation of a subsonic real gas jet and then analyzes
the real gas effects of a supersonic jet in detail. In Section 5.1 a detailed parameter study
for a bubble collapse is carried out, e.g., grid convergence and the influence of wall dis-
tance and vapor fraction. A micro channel flow is assessed in Section 5.2 to underline

5



1. Introduction

the potential of the coupling of the DG with the tabulated EOS. In Chapter 6 the results
of the present work are summarized and an outlook on research strategies is given.

In the present work, the standard notation for thermodynamic processes is used, e.g.,
subscripts of gradients or thermodynamics paths denote the constant property. For spa-
cial coordinates ~x or velocity ~w an over-set with an arrow is used. Vectors of the govern-
ing equations are denoted with bolt letters, e.g., U. For matrix with the dimensions of
the spatial and the governing equations bolt letter with an over-set arrow are used. 3× 3
- matrices quantities such as the stress tensor τ are underlined. To distinquishe between
the physical and the reference space for the DGSEM, the reference space quantities are
written in calligraphy, e.g., ~F for the flux in the physical space and ~F in the reference
space.

1.4.1. Contributions of other authors

In Section 4.2 part of the results were published to the ”Journal Computers and Fluids”
under the title ”Simulation of real gas effects in supersonic methane jets using a tab-
ulated equation of state with a discontinuous Galerkin spectral element method” [52]
and in the ”High Performance Computing in Science and Engineering ’16” under the
title ”Real-Gas Jet and Throttle Flows at High Pressure as Simplified Gas Injector Mod-
els with a Discontinuous Galerkin Method” [53]. The corresponding figures and tables
have been cited accordingly (Figures 4.10, 4.12 to 4.17 and 4.19 to 4.22, Section 4.2.2,
and Tables 4.3 and 4.4). For this content the co-authors have contributed to the published
work and hence, to the results presented in the present thesis. While all co-authors have
contributed with comments and helped with fruitful discussion, namely two have con-
tributed in form and content to the results reproduced in this thesis. First, Dipl.-Ing.
Malte Hoffmann contributed with further improvements to the applied numerical frame-
work and separately published his findings in [57]. Second, Dr. rer. nat. Sebastian
Boblest contributed to post-processing of the results, an example can be found in [17].
Further, part of the results in Section 5.1 have been published in similar form in [81].
This Master thesis was supervised and supported by the author of the present work.

6



2. Fundamentals

In the present work, the fundamentals and methodology are separated into two main
chapter. This chapter provides the basis for the theoretical framework of this work.
The governing compressible NSEs and a fundamental discussion of the approximation
of fluid properties are presented. Further, supersonic gaseous flows and cavitation are
briefly introduced. In the methodology chapter numerical methods used to describe
the phenomena in the fundamentals chapter are presented and reasoning for the made
choices are given.

2.1. Compressible Navier-Stokes Equations

The NSEs describe the motion for a compressible, viscous, heat-conducting fluid [109].
In this thesis the expression NSE is used as done commonly in numerical fluid mechan-
ics. This was that the continuity equation of the energy equation are included when we
speak of NSE. For spacial coordinates an over-set with an arrow is used and the vectors
of the NSEs are denoted with bolt letters. A matrix consisting of the NSEs in all spatial
dimensions are in bolt letter over-set with an arrow. In their conservative formulation
they consist of the conservation of mass, momentum and energy and can be written as:

Ut + ~∇x · ~F(U, ~∇U) = 0, (2.1)

where U denotes the vector of conservative quantities

U =


ρ

ρw1

ρw2

ρw3

ρe

 , (2.2)

where the first, second to fourth and fifth entry denote the mass, momentum and energy
term, respectively. ~∇U is a tensor for which the divergence is applied line by line. The
flux ~F(U, ~∇U) = ~FA(U) − ~FD(U, ~∇U) consists of the advection flux ~FA(U) and
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2. Fundamentals

the diffusive flux ~FD(U, ~∇U). The advection flux is given as

FA
i (U) =


ρwi

ρw1wi + δ1ip

ρw2wi + δ2ip

ρw3wi + δ3ip

ρewi + wip

 (2.3)

and the diffusive flux as

FD
i (U, ~∇U) =


0

τ1i
τ2i
τ3i

τijuj − qi

 , (2.4)

with the indices i, j = 1, 2, 3 denoting the spatial orientation. The physical quantities are
ρ, ~w = (w1, w2, w3)T , p and e representing the density, the velocity vector, the pressure
and the specific total energy, respectively. Density, pressure and the static temperature
colligate by an EOS. EOSs are discussed in further detail in Section 2.2.
The shear-stress tensor τ for a Newtonian fluid, which is assumed to be correct for the
applied fluids in the present work, can be written as:

τ := η

(
~∇x ~w +

(
~∇x ~w

)T
− 2

3

(
~∇x · ~w

)
I

)
, (2.5)

where η is the dynamic viscosity. The dynamic viscosity is the momentum exchange
between the molecules with a different bulk velocity. For a number of ideal gas sim-
ulations the change in dynamic viscosity is neglected or a function of the temperature
(Sutherland’s law). For the present work, this assumption is not valid for the investigated
flows.

In the diffusive flux (Equation (2.4)) ~q denotes the conductive heat flux leaving the
fluid element. By assuming the Fourier heat conduction relationship the heat conduction
may be written as:

~q = −λ~∇xT, (2.6)

where the thermal conductivity λ varies with pressure and temperature.
To close the NSE and obtain fluid properties, i.e., dynamic viscosity and heat conductiv-
ity, the fluid needs to be represented adequately. For example, an air flow with low Ma,
i.e., dimensionless ratio of flow velocity ~w to the local speed of sound a, and at mod-
erate temperatures and pressures, i.e., around the Standard Ambient Temperature and
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Pressure (SATP), the ideal gas approximation with constant transport properties leads
for most cases to very accurate results. However, for a similar scenario with Ma > 1
the change of transport properties with temperature might be important to approximate.
Considering a fluid flow with phase changes, e.g., cavitation of a liquid, the EOS and
transport properties should be approximated by complex multiparameter equations. The
different levels of simplification are discussed in the following sections.

2.2. Equation of states

To close the NSEs, i.e., to connect the density and temperature to the pressure, an EOS is
needed. For viscous flows additionally the transport properties are required, i.e., dynamic
viscosity and thermal conductivity (see Section 2.4). The fluid properties of gases are
often categorized. To categorize the fluid properties the compressibility factor Z

Z =
p

ρRT
, (2.7)

the specific heat capacity at constant pressure

cp =

(
∂h

∂T

)
p

(2.8)

and the specific heat capacity at constant volume

cv =

(
∂u

∂T

)
v

(2.9)

are used.
For a perfect gas or a calorically perfect the compressibility factor is always Z = 1

and cp and cv only depend on the fluid type and not on the pressure or temperature.
For an ideal gas or thermally perfect gas all fluid properties are independent of pressure,
but vary with temperature and the fluids, i.e., Z = 1, cp (T, fluid) and cv (T, fluid).
Consequently, for a real gas the fluid properties depend on pressure, temperature and is
different for different fluids, i.e., Z (p, T, fluid), cp (p, T, fluid) and cv (p, T, fluid). A
summary is given in Table 2.1. Note that in the two-phase region p and T do not clearly
determine the state of the fluid. Hence, here an additional parameter is required.

Whilst this gives a brief classification of the fluid type, each class could be approxi-
mated with different levels of accuracy. In the following, a brief overview of different
approximations is given. The given examples are not a complete list, but aim to give
a basic understanding of the most commonly used ones. The interested reader is refer-
eed to Baehr and Kabelac [10] amongst other fundamental literature for a more detailed
discussion.
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2. Fundamentals

Table 2.1.: Distinction between perfect, semi-perfect, ideal and real gas.

perfect ideal imperfect
calorically perfect thermally perfect real

Z 1 1 Z(p, T )

cp const. cp(T ) cp(p, T )

cv const. cv(T ) cv(p, T )

κ =
cp
cv

const. κ(T ) κ(p, T )

ideal gas laws yes yes no

2.2.1. Ideal gas law

Here, the idea is that the distance of the gas molecules is large enough so that forces of
attraction and repulsion can be neglected. The pressure can be derived from T and ρ

p =
RT

v
= ρRT = (κ− 1) ρcvT. (2.10)

Further, for an ideal gas the specific thermal capacities, c, and the specific gas constant,
R, have a direct relation.

R = cp − cv (2.11)

The isentropic coefficient, κ, for an ideal gas is directly related to the ratio of the
specific thermal capacities

κ =
cp
cv

(2.12)

and is often used to characterize changes of thermodynamic properties in shocks or ex-
pansions. An example for the expansion wave is given in Section 4.1 in further detail.

Further, due to the simplicity of the ideal gas law, temperature is only a function of
the specific inner energy u. For constant cv one obtains:

T =
κ− 1

R
u. (2.13)

Similarly, the speed of sound, a, can directly be derived from the temperature and can
be expressed as

a = (κRT )
1
2 . (2.14)

These equations are all relatively simple and are not complex to implement into a
fluid dynamics solver. Therefore, where appropriate ideal gas EOS approximation is
desirable. However, the range of validity is very limited, e.g, it is not applicable for the
liquid state or at high pressures.
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2.2.2. Tait equation

For the representation of the liquid state of a fluid a relatively simple expression is the
Tait equation. The Tait equation is widely used to represent the equation of state of a
compressible liquid [35, 63] in the compressible regime. It reads

v (p) = ρ−1
0

[
1 + C ln

(
p+B

p0 +B

)]
, (2.15)

where ρ0, B and C can be chosen as constants. The constants can be replaced with
temperature dependent functions, i.e.,

ρ0 (T ) =

3∑
i=0

aiT
i, (2.16)

B (T ) =

2∑
i=0

biT
i and (2.17)

C (T ) =

1∑
i=0

ciT
i, (2.18)

where the constants ai, bi and ci are derived from fits to experimental data.
The Tait equation can be fitted to a number of fluids, e.g., water, normafluid ISO 4113

[29] or others and yields good results. However, it is only applicable to the liquid phase.
In applications where only the liquid phase is relevant it is widely used [35].

2.2.3. Cubic equations of states

Another class of EOS are the cubic formulations. With this class of EOS the com-
plete fluid range can be approximated in an efficient manner. Here, only a few exper-
imental data points are necessary to fit the coefficients [10]. These equations account
for the forces of attraction and repulsion and were first proposed by van der Waals in
1873 [115]. Current state of the art cubic EOS are the Redlich-Kwong [101], Soave-
Redlich-Kwong [110], and the Peng-Robinson [91] equations of state. In the present
work, only the Peng-Robinson equation of state is presented in more detail. The inter-
ested reader is referred to Baehr and Kabelac [10] for a detailed analysis of a general
cubic EOS [9].

A common expression for the Peng-Robinson equation is

p =
RT

Vm − b
− aα

V 2
m + 2bVm − b2

(2.19)

with

a =
0.4572R2T 2

c

pc
(2.20)
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and

b =
0.07780RTc

pc
, (2.21)

where Vm denotes the molar volume, Tc the critical temperature and pc the critical
pressure of the fluid. The expressions for a and b account for the attraction between
particles and their volume, respectively. The correction term α can be expressed as

α =
(
1 +

(
0.3746 + 1.542ω − 0.2699ω2) (1− T 0.5

r

))2
, (2.22)

where Tr = T/Tc is the reduced temperature and ω is an acentric factor. The acentric
factor accounts for the non-sphericity of molecules [95].

2.2.4. Helmholtz free energy formulation

Further, many of the most accurate multiparameter EOS are expressed with a thermody-
namic potential. Some examples of such potentials are inner energy, enthalpy, Helmholtz
energy or Gibbs energy [103]. Span [114] showed that a formulation from the specific
Helmholtz free energy, f , is the most practical, i.e., the fundamental variables ρ and T
are easy to obtain and allow for a thermodynamically defined state for all fluid phases.

In the present work, the fluid data for the multiparameter real fluids are obtained from
CoolProp, an OpenSource fluid library [15]. Fluid data from this library is also based on
the specific Helmholtz free energy formulation. The coupling with the used numerical
framework is later discussed in section 3.5.

The Helmholtz free energy in its dimensionless form, φ = f/(RT ), can be expressed
as

f (ρ, T )

RT
= φ (δ, τ) = φ0 (δ, τ) + φr (δ, τ) , (2.23)

where φ0 and φr are an ideal-gas and a residual part, respectively. The split of the
equation in ideal-gas and residual part is done to reduce the complexity of the used
terms. By slitting them up it is possible to fit the different parts individually. Without
the split very complex functional forms, as used today, would be unfeasible for practical
use [114]. With the use of reference constants, here the critical values of density ρc and
temperature Tc and the specific gas constant R, δ = ρ/ρc and τ = T/Tc are given. The
expressions of the ideal-gas part of the Helmholtz energy and especially the residual part
can be very complex. To illustrate this the expressions of φ0 and φr for water without the
constants are shown in the following. The complete definitions can be found in Wagner
and Pruß [131].

The reference constants for water are Tc = 647.1 K, ρc = 322 kg m−3 and R =
0.4615 kJ kg−1 K−1. The ideal-part of the Helmholtz free energy was developed by
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Cooper [31] and can be written as

φ0 = ln δ + n0
1 + n0

nτ + n0
3 ln τ +

8∑
i=4

n0
i ln

[
1− e−γ

0
i τ
]
, (2.24)

where n0
i are adjustable coefficients, γ0

i are precorrelation factors, which are given in
[131].

The residual part φr can be expressed as

φr =

7∑
i=1

niδ
diτ ti +

51∑
i=8

niδ
diτ tie−δ

ci

+

54∑
i=52

niδ
diτ tie−αi(δ−εi−)2−βi(τ−γi)2 +

56∑
i=55

ni∆
biδΨ (2.25a)

with

∆ = Θ2 +Bi
[
(δ − 1)2

]ai , (2.25b)

Θ = (1− τ) +Ai
[
(δ − 1)2

] 1
2βi , (2.25c)

Ψ = e−Ci(δ−1)2−Di(τ−1)2 . (2.25d)

where ci and di are density exponents, ti are temperature exponents, ai, bi, Ai, Bi, Ci,
ni, αi, βi and εi are adjustable coefficients and γi are pre-correlation factors, which are
given in [131].

Other thermodynamic properties can be derived from Equation (2.23) with combina-
tion of φ0, φr and their derivatives. Table 2.2 summarizes the thermodynamic properties,
which are most relevant for the present work. A complete list can be found in [114].

2.2.5. Equation of state comparison

Having introduced a number of commonly used EOS, a brief comparison for two fluids
is carried out, i.e., water and methane. For water the comparison is limited to the Tait
equation, the ideal gas formulation and the Helmholtz free energy formulation. The
density over pressure for water is presented in Figure 2.1a. At high pressures the Tait and
the Helmholtz formulations have a similar trend, however show observable differences.
The focus is here not on the difference at high pressure, which could result from the fits to
different experiment data (fit from [39] for Tait and [131] for the Helmholtz formulation),
but on the usability at low pressures. Here, the Tait equation is not representing the phase
change and cannot be used for the gaseous phase. To use the Tait equation for the whole
fluid regime it can be blended at low pressures to the ideal gas approximation, which has
been done by Reboud et al. [100] for a barotropic model.
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Table 2.2.: Relation of the thermodynamic properties to the dimensionless Helmholtz
free energy (ideal and residual part) Equation (2.23) and their derivatives
[114]. Here ρ and v are interchanged to remain a compact representation.

Property Relation

p (ρ, T ) = −
(
∂f
∂v

)
T

p(δ,τ)
ρRT

= 1 + δφr
δ

u (ρ, T ) = f − T
(
∂f
∂T

)
ρ

u(δ,τ)
RT

= τ
(
φ0
τ + φr

τ

)
h (ρ, T ) = u+ pv h(δ,τ)

RT
= 1 + τ

(
φ0
τ + φr

τ

)
+ δφr

δ

cp (ρ, T ) =
(
∂h
∂T

)
p

cp(δ,τ)

RT
= −τ2

(
φ0
ττ + φr

ττ

)
+

(1+δφr
δ−δτφ

r
δτ )2

1+2δφr
δ
+δ2φr

δδ

a (ρ, T ) =
(
∂p
∂ρ

) 1
2

s

a2(δ,τ)
RT

= 1 + 2δφr
δ + δ2φr

δδ −
(1+δφr

δ−δτφ
r
δτ )2

τ2(φ0
ττ+φ

r
ττ )

φr
δ =

[
∂φr

∂δ

]
τ

, φr
δδ =

[
∂2φr

∂δ2

]
τ

, φr
τ =

[
∂φr

∂τ

]
δ

, φr
ττ =

[
∂2φr

∂τ2

]
δ

,

φ0
δ =

[
∂φ0

∂δ

]
τ

, φ0
δδ =

[
∂2φ0

∂δ2

]
τ

, φ0
τ =

[
∂φ0

∂τ

]
δ

, φ0
ττ =

[
∂2φ0

∂τ2

]
δ

Similarly, in Figure 2.1b the approximation of density over pressure in the gaseous
phase is shown for methane. At low pressures the ideal gas approximation is relatively
accurate, however at higher pressure the neglect of compressibility effects leads to strong
derivations. The Peng-Robinson equation on the other hand is capable to represent the
real gas effects adequately, despite some differences to the Helmholtz formulation. Once
the two-phase region is reached, the Peng-Robinson equation becomes invalid. Hence,
from the proposed EOS the Helmholtz formulation is the only one, which represents the
fluid for all phases with a high accuracy.
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Figure 2.1.: Comparison of different EOS approximations for water and methane at con-
stant temperature T = 300 K.

2.3. Liquid vapor mixture region

In the present work, the liquid vapor mixture, or wet steam, region is discussed. There-
fore, a few key aspects and considerations are given to the reader with a brief intro-
duction of the topic and the arising challenges. A more details can be found in the
literature [10, 115].

The thermodynamic process of phase change in the two-phase region for boiling is
presented in Figure 2.2. A liquid (1) is heated at constant pressure. The temperature
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increases until it reaches its boiling temperature (2) and a first steam bubble is generated.
By adding additional heat more steam is generated at constant temperature and pressure.
This process occurs in the wet steam region (3), until the last liquid droplet evaporates
(4) and the steam is saturated. If the system is heated further, the temperature increases
again and the steam is superheated and fully gaseous (5).

Similarly, Figure 2.3 illustrates the thermodynamic process of cavitation. A liquid (1)
is expanded and constant temperature is assumed. When the vapor pressure is reached, a
first steam bubble (2) is generated. By expanding the fluid further more and more steam
is created (3), until the last liquid droplet evaporates (4). Afterwards only the gaseous
phase is expanded (5).

In the present work, the liquid vapor mixture is assumed to be always in equilibrium.
Hence, in a process as described above, both phases are assumed to be in a mixture state
and in equilibrium. The fluid properties are obtained for the mixture. To give the reader
more details on the properties of specific fluids, different fluid diagrams are presented in
Chapter B.

2.3.1. Maxwell line reconstruction

As above, for an isothermal path through the two phase region in equilibrium the pressure
remains constant. For a van der Waals type gas the theoretical isothermal path, however,
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5
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Figure 2.2.: Schematic of the thermodynamic path of boiling (cf. [10]).
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Figure 2.3.: Schematic of the thermodynamic path of cavitation.

is not isobar. Within the spinodale this would violate the stability criteria(
∂p

∂v

)
T

< 0, (2.26)

see [10] for a derivation and results in a none homogeneous mixture. While a stable
state outside the spinodale line would be possible in the present work the Maxwell line
reconstruction is applied. Therefore, the states within the two phase region are always
limited to an equilibrium state.

2.3.2. Vapor mass and vapor volume fraction

For fluids generally two variables are used to characterize the position on such a line
within the two phase region, the vapor mass x and the vapor volume fraction α. Both
values range from 0 to 1, from liquid to vapor, respectively. The vapor mass fraction x
can be written as

x :=
m′′

m′ +m′′
, (2.27)

where m′ denotes the liquid mass and m′′ the vapor mass of mixture. The vapor mass
fraction is often used to scale fluid properties inside the two phase region with a lever
principle, e.g., enthalpy or entropy.
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The vapor volume fraction

α :=
V ′′

V ′ + V ′′
=

ρ′′(T )− ρ
ρ′′(T )− ρ′(T )

, (2.28)

with V ′ as the liquid mass and V ′′ as the vapor mass of mixture and ρ′ and ρ′′ denote the
density at saturated gas and liquid line, respectively. It is proportional to the density and
therefore, straight forward obtainable from experiments, e.g., x-ray measurements [44].

Both of these values can be found in the literature and are used in the present work.
Consequently, it is important to interpret these values correctly, since they can have
significant differences. For example, a very high value of α = 0.999 might result in a
low value in x = 0.1 for water at 330 K.

2.3.3. Speed of Sound

The definition of the speed of sound for different EOS approximations has been dis-
cussed prior. However, the behavior of the speed of sound, a, in the two phase regions
is of great importance and discussed in more detail in the following. While for an ideal
gas the definition is rather simple Equation (2.14), the definition for the Helmholtz for-
mulation becomes more complex. Generally, a sound wave is a periodic pressure and
density fluctuation with a small amplitude. By assuming that the process is isentropic
this propagation speed can be written as [10]

a (ρ, T ) =

(
∂p

∂ρ

) 1
2

s

. (2.29)

It can further be transformed into isothermal and isochoric expressions

a2 = −v2
(
∂p

∂v

)
s

= v2
[
T

cv

(
∂p

∂T

)2

v

−
(
∂p

∂v

)
T

]
(2.30)

= −v2
(
∂p

∂v

)
T

cp
cv

=

(
∂p

∂ρ

)
T

cp
cv
. (2.31)

And for an ideal gas this expression be used to derive the speed of sound in Equa-
tion (2.14):

p = ρRT (2.32)(
∂p

∂ρ

)
T

= RT (2.33)

a2 = RT
cp
cv

= κRT (2.34)
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In a mixture a decreases, dependent on the pressure, below the speed of sound of the
mixture components [65], e.g., liquid-gas or air-water mixture. The time scales of the
pressure waves within this region are orders of magnitudes lower than in the liquid and
even in the pure gaseous region.

2.4. Transport properties

To solve the diffusive part of the NSEs the transport properties µ and λ are needed. For
those a number of different approximations are possible and used. For the present work,
a brief summary is given.

2.4.1. Viscosity

In the present work, the viscosity is limited to Newton fluids, i.e., the viscose stresses
are linear functions of the strain rates. For an ideal gas the dynamic viscosity is consider
as constant

µ = const. (2.35)

If the fluid needs to consider the change of viscosity with temperature, which might be
appropriate for shocks, the Sutherland formulation is often used

µ = µS
TS + S

T + S

(
T

TS

) 3
2

, (2.36)

where the index S indicates the reference states and S is the Sutherland temperature.
With this expression the variation due to a change in temperature can be well approx-
imated. However, this is only the case at lower pressures. For example, methane are
at pressures higher than 100 bar the viscosity is inversely proportional to the change in
temperature and strongly depends on pressure, see Figure 4.12.

More complex dynamic viscosity approximations can also be described with the Helm-
holtz free energy formulation. Again, water is used to illustrate this kind of formulation
as stated by Huber et al. [61]. For the dynamic viscosity the approximation consists
of three parts: temperature dependent µ0, temperature and density dependent µr and a
correction term close to the critical point µc:

µ = µ0(τ)µr(τ, δ)µc(τ, δ) (2.37)

However, it is recommended for industrial applications to neglect µc to increase compu-
tation speed.
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2.4.2. Thermal Conductivity

For an ideal gas the thermal conductivity can be expressed as

λ =
Rµ

1− 1
κ

Pr
, (2.38)

where Pr =
µcp
λ

is the dimensionless Prandtl number. It is a dimensionless number,
which denotes the ratio of momentum to the thermal diffusivity. For most fluids Pr is
known in the ideal gas regime, e.g., at T = 273.15 K and p = 1 bar: Prair = 0.7108
and PrCH4 = 0.7365.

An expression based on Equation (2.23) was described in [60]

λ = λ0(τ)λr(τ, δ) + λc(τ, δ), (2.39)

where similar to Equation (2.37), the superscript denotes different terms, i.e., the ideal,
the residual and the critical point correction terms. In contrary to the viscosity, the critical
enhancement cannot be neglected, even well away from the critical point and needs to
be considered. Therefore, Huber et al. [60] suggest for industrial purposes to replace λc

with a simpler expression without significant increases in the approximation error.

2.5. Supersonic gas dynamics

Having introduced the general properties of a moving fluid and its properties, an im-
portant and also challenging flow regime - the supersonic flow - is introduced in the
following. Supersonic flows, i.e., Ma > 1, are of great importance for many gas dynam-
ics applications. In aerospace, gas turbines, automotive gas injection and many other
areas an understanding of supersonic flow is essential to develop proper components and
products. To continue the above discussion about ideal and real gas, in many applications
it is sufficient to consider the gas as ideal. However, for a DGI of an internal combustion
engine the pressures are high enough, so real gas effects need to be taken into account.

2.5.1. Shock waves for ideal and real gases

A supersonic flow is often associated with the presence of shocks. Large pressure gradi-
ents steepen into shock waves. Shock waves, in contrast to sound waves, are nonlinear
waves and change the state of the medium. First, the difference between a sound wave
and a shock wave is shown. Figure 2.4 illustrates the difference of shock and sound
waves in terms of a change in pressure p, specific volume v and entropy s. From its ini-
tial state (1), the gas oscillates during a sound wave along the constant entropy line S1.
For a normal shock wave the pressure, density and entropy increase from (1) to (4). The
connecting curve is called Hugoniot curve. After the shock the pressure decreases on an
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2.5. Supersonic gas dynamics

adiabatic passage to its initial pressure (5). Temperature and entropy are higher than be-
fore and consequently the specific volume has increased. A shock front is non-adiabatic
and irreversible.

For a better understanding the change of thermodynamic properties across a normal
shock is discussed for a perfect and real gas as proposed by Rist [102]. The indexes 1
and 2 denote the states before and after the shock, respectively. The total enthalpy ht
is assumed to be unchanged across the shock for both perfect and real gas, because the
shock thickness is assumed to be negligible. For a perfect gas the total temperature Tt
remains constant, too. However, a real gas experiences a drop in Tt across the shock.
The temperature and pressure rise across the shock is higher for the real gas than for a
prefect gas. Further, the drop in total pressure pt and velocityw is greater for the real gas
than for the ideal gas. A summary for the changes in thermodynamic properties across a
normal shock is given in Table 2.3.

2.5.2. Supersonic jet

In the present work, a supersonic underexpanded jet is analyzed under real gas condi-
tions. Therefore, to keep this work self-contained a brief introduction is given. A circular
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v4 v1 v5

H
ugoniot
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4i
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2
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Figure 2.4.: Passage of a sound and shock wave (adapted from Norman et al. [87]).
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Table 2.3.: Change of the thermodynamic properties across a normal shock for a perfect
and real gas.

perfect gas real gas

ht1 = ht2 = ht2
Tt1 = Tt2 > Tt2
T1 < T2 < T2

pt1 > pt2 > pt2
p1 < p2 < p2
w1 > w2 > w2

supersonic jet can be characterized by its state of expansion. The pressure ratio of pres-
sure at the nozzle orifice pn and the ambient pressure pa indicates the different states;
pressure matched pn/pa = 1, underexpanded pn/pa > 1 or overexpanded pn/pa < 1.
The features of a supersonic jet are explained by means of a highly underexpanded jet
(see Figure 2.5). The interested reader is referred to Norman and Winkler [87] for a more
detailed description of other expansions states.

For an underexpanded jet the boundaries oscillate due to the attempt of the gas to
reach ambient pressure. For a higher pressure ratio an incident shock forms instead of
crisscrossed shock waves. A so-called shock triple point is present, at which incident
shock, reflected shock and Mach disk meet. In Figures 2.4 and 2.6 for path (1) to (4)
the gas is expanded more than for path (1) to (2) and (3) to (4i). As a result a slip dis-
continuity forms. Further, the local Ma number fluctuates between super- and subsonic

nozzle
incident shock

jet boundary
reflected shock

normal shock slip linesexpansion fan

Ma > 1 Ma < 1 Ma > 1 Ma < 1

(Mach disk)

Figure 2.5.: Schematic of a highly underexpanded nozzle jet (cf. [88]).
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conditions within the jet. In front of a shock the fluid accelerates gradually due to the
lower ambient pressure and across the shock the Ma number drops abruptly to subsonic
conditions.

incident shock reflected shock

Mach disk

slip line

1

1 4

4i2 3

Figure 2.6.: Path through a normal and incident shock with slip discontinuity.

2.5.3. Noise sources in supersonic jets

Noise emitted by supersonic jets is important for many applications. The noise emit-
ted by a supersonic jet has three major contributors: turbulent mixing noise, broadband
shock-associated noise and screech tones [117]. Turbulent mixing noise is most domi-
nant downstream of the jet. Large and small scale turbulent structures are responsible for
the noise generation [118]. In a more upstream position the broadband shock-associated
noise is the dominant noise source and further upstream screech is the most dominant
source and it is a very disturbing sound. Detailed discussions on supersonic jet noise for
fully- and underexpanded jets can be found in Tanna [120, 121] and Tam [117].

While acoustics are an important topic of supersonic jets, the present work does only
briefly discuss possible implications of acoustics. Nonetheless, the CFD solver of the
present work has been assessed for supersonic jet noise with very good agreement to
experimental data [54].

2.6. Cavitation

In the prior section, supersonic gas dynamics with the focus on supersonic flows have
been introduced. In the following, multiphase flow with the focus on cavitation are
assessed. Cavitation is a complex phenomena which occurs in nature [30, 126, 138],
medicine [23, 73] and industrial application [16, 108]. A fluid flow with cavitation is
always highly transient, i.e., the generation and collapse of vapor regions is in the order
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of nano and micro seconds and within very small spatial scale. Further, the difference
in density or speed of sound (cf. Section 2.3.3) can also be orders of magnitude across
a very small spatial scales. Pressure waves with a strong amplitude are emitted, due
to the compressibility of the liquid during the rapid collapse process. These waves or
shocks can be very strong and lead to high wall loadings which can potentially damage
components.

To gain a fundamental understanding of cavitation a brief overview of a single cav-
itation bubble throughout its ”life cycle” is given. For a more detailed discussion on
cavitation the reader is refereed to Brennen [21], Brujan [23], Franc and Michel [41] and
Young [138].

2.6.1. Nucleation

A pure liquid is capable of sustaining a certain amount of tension. This can be a sta-
ble state, as long as no vapor or small particles are present. However, homogeneous
nucleation can occur at which small temporary gaps form due to the movement of the
molecules. An other type of nucleation is caused by the interface between the liquid and
solids, e.g. small particles or a surface in contact with the liquid. This is commonly
referred to as heterogeneous nucleation. Other roots of ”weaknesses” in the fluid can be
small bubbles or radiation from the outside.

Due to the weaknesses the tension at which the formation of vapor bubbles occurs
decreases. Here, two different types of phase changes are considered as illustrated in
Figure 2.7. Heating the liquid at constant pressure is referred to as boiling if the vapor
temperature is reached. The term cavitation is used when the local pressure decreases
below the vapor pressure at the given temperature.

2.6.2. Inception

A common characterization of the likeliness of caviation to occur in a flow is the cavita-
tion number

σ =
2 (p∞ − pv)

ρlw2
∞

, (2.40)

where p∞ is the reference pressure, pv is the vapor pressure at a reference temperature,
ρl is the liquid density and w∞ is a reference velocity. If σ is reduced to the point at
which cavitation is present, then it is denoted as inception cavitation number σi. When
cavitation actually occurs depends on a number of factors. Some of which are listed
below [22]:

• ability of the liquid to sustain tension

• residence time
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Figure 2.7.: Phase diagram for water (fluid data from [132]).

• local state of the liquid, since cavitation is highly transient phenomena and such
correlations usually assume an averaged flow

• thermodynamic path, because of cavitation hysteresis, i.e., increase and decrease
of throttle pressure ratios to the same operating point might lead to different
flows [58]

A more detailed discussion of cavitation inception can be found in [21].

2.6.3. Growth and collapse

The Rayleigh-Plesset equation is often used to describe the bubble growth in a liquid.
A spherical bubble with radius r(t) as a function of time is considered in an infinite
domain. The pressure and temperature in the far field are p∞(t) and T∞, respectively.
In this context, ρl, T∞ are assumed to be constant and uniform. Further, the pressure
pB(t) and the temperature TB(t) inside the bubble are assumed to be homogeneous and
uniform. With these assumptions a generalized Rayleigh-Plesset equation in the absence
of thermal effects for the dynamics of a single bubble can be derived [97]

pV(T∞)− p∞(t)

ρl
+ pg,0

(
R0

r

)3k

= r
∂2r

∂t2
+

3

2

(
∂r

∂t

)2

+
4µl

ρlr

∂r

∂t
+

2γ

ρlr
, (2.41)
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where γ is the surface tension and k a constant that represents the polytropic behavior.
With k = 1 the bubble temperature remains constant and k = κ represents an adiabatic
behavior. A more detailed derivation and discussion can be found in the literature [21,
41, 97].

Based on Equation (2.41) the influence of the different terms, e.g, gas inside the bub-
ble, viscosity effects and surface tension, for a collapse can be assessed. For the initial
states of T∞ = 330 K, p∞ = 1× 106 Pa the gas in the bubble has the most dominant
effects. The collapse time and the minimum radius depend strongly on the gas inside
the bubble, while the surface tension and the viscosity have only marginal influence.
However, 3D collapses can not be described with the 1D approximation of the Rayleigh-
Plesset expression, i.e., jet and shock wave are not included in the expression. A number
of studies have been carried out concerning single bubble collapse experimentally and
numerically [3, 47, 66, 72, 84, 93].
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3.1. Numerical schemes

The present work focuses on the Discontinuous Galerkin Spectral Elements Method
(DGSEM). The DGSEM is a specific form of the Disontiuous Galerkin (DG) method.

3.1.1. Discontinuous Galerkin Spectral Elements Method

The DGSEM discretizes the compressible Navier-Stokes Equation (2.1)

Ut + ~∇x · ~F(U, ~∇U) = 0, (3.1)

which was introduced in Section 2.1. For the DGSEM the equation has to be transformed
from the physical into a reference space. The notation used in Hoffmann et al. [57] is
applied. In the physical space the cartesian coordinates x1, x2, x3 and in the reference
space (ξ1, ξ2, ξ3)T are used. Therefore, the solution is mapped to a reference element
E ∈ [−1, 1]3 and back with a polynomial mapping function ~x(~ξ). Based on this, a
Jacobian is calculated J(~ξ) = det( ∂~x

∂~ξ
).

From this definition of the transformation, the transformed NSE can be written as

Ut +
1

J(~ξ)
~∇ξ · ~F(U, ~∇xU) = 0, (3.2)

where ~∇ξ = (∂ξ1 , ∂ξ2 , ∂ξ3)T is the divergence operator in the reference space. Further
the flux from the physical space ~F is transformed into the reference space ~F and can
be split into its inviscid and viscous parts ~F = ~G(U) − ~H(U, ~∇xU). The solution
U is approximated by a tensor product of 1D Lagrange polynomials `N with a nodal
interpolation ansatz

U(~ξ, t) ≈
N∑

i,j,k=0

Ûijk(t)ψNijk(~ξ) (3.3)

with

ψNijk(~ξ) = `Ni (ξ1)`Nj (ξ2)`Nk (ξ3), (3.4)
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Ûijk(t) denotes the time dependent nodal Degrees Of Freedom (DOF) and `Ni (ξ) the
standard Lagrange polynomial with degree N . The Lagrange polynomial is described
by a set of nodal points Ûijk(t), e.g., Gauss or Gauss-Lobatto [56]. Here, the Gauss-
Legendre points are applied for the interpolation, which consist of N + 1 points per 1D
Lagrange polynomials. This leads to (N + 1)3 DOF for each DG element. For the flux
~F a nodal interpolation ansatz can equally be chosen.

Continuing the brief derivation of the DGSEM, a test function φ(~ξ) is multiplied to
Section 3.1.1. The test function is integrated over the reference element E and the vari-
ational formulation for the reference element can be written as∫

E

(
JUt + ~∇ξ · ~F(U, ~∇xU)

)
φ(~ξ) d~ξ = 0. (3.5)

By further transformation the weak formulation is obtained∫
E

JUtφd~ξ +

∮
∂E

(G∗n −H∗n)︸ ︷︷ ︸
F∗
n

φds−
∫
E

~F(U, ~∇xU) · ~∇ξ φd~ξ = 0, (3.6)

where ~G∗n := ~G∗n(U+,U−) denotes the inviscid numerical flux function. Here, across
the element interfaces discontinuities are allowed and the corresponding flux is solved
with a classical Riemann solver. The superscripts ± are used to indicate both sides of
the element interface.

Again, following the derivation from Hoffmann et al. [57], the viscous flux term is
derived. For this purpose, the variable ~S is introduced. With the additional variable
Equation (3.1) is rewritten

~S− ~∇xU = 0,

Ut + ~∇x · ~F(U, ~S) = 0.
(3.7)

With this, the weak formulation is derived as∫
E

JUtφd~ξ +

∮
∂E

(G∗n −H∗n)φds−
∫
E

~F(U, ~S) · ~∇ξφd~ξ = 0. (3.8)

The numerical flux of the viscous term H∗n = H∗n(U+,U−,S+,S−) is therefore ex-
pressed with the additional variable. Based on Bassi and Rebay (BR) [12], the numerical
viscous flux can be written as

H∗n = αvisc Hn(U+,S+) + (1− αvisc)Hn(U−,S−), (3.9)

where ~n is the surface normal and αvisc is a weighting factor for the lifting. According
to [12] this factor can be chosen as 0.5, which is referred to as BR1 lifting. This type of
lifting is also applied to the calculation of the temperature gradient ∆T .
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3.2. Stabilization for shocks and aliasing

3.1.2. Finite-Volume-Method

To keep this work self-contained, the FV method is briefly summarized. The FV method
is a widely used approach for discretization in CFD [5]. The Equation (3.1) in the inte-
gral form for a sub-domain or element E can be written as:

δ

δt

∫
E

U dV = −
∮
δE

~F(U) · ~n ds, (3.10)

where ~n is the outward facing normal vector and S is the surface. Un
i and Un+1

i denote
the conserved quantities at tn and tn+1, respectively.

The method is based on the integral form of the continuity equations. The solution is
approximated with the integral average, which allows discontinuities between the com-
putational cells. A key element is the calculation of the flux between the neighboring
cells. Riemann solvers calculate generally these numerical fluxes [85].

3.2. Stabilization for shocks and aliasing

The DG scheme and any high order projection based methods can suffer from instabili-
ties due to high gradients in the solution. These instabilities, i.e., Gibbs type oscillations,
can be caused by shocks or ailising. To counter these instabilities two classes of stabi-
lization are common: introduction of artificial viscosity [4] or a local reduction of the
polynomial degree in the vicinity of shocks or strong gradients [13, 25]. Latter has been
chosen for the present work. However, a reduction of the polynomial degree, without
further measures, leads to resolution reduction and consequently a lower accuracy. To
counteract the reduced polynomial degree local mesh refinement is often applied in the
affected areas.

Here, a shock capturing method is applied based on the idea of Sonntag and Munz [111,
112] and further developed as described by Hoffmann et al. [57]. Within a ’troubled’ DG
reference element (Figure 3.1a) sub-cells are superinduced. The ’split’ element consists
of (N + 1)3 equally distributed sub-cells, as shown in Figure 3.1b. For these sub-cells a
second-order Total Variation Diminishing (TVD) FV scheme is applied. In that way the
number of DOF and the resolution inside are kept constant; the reduction in accuracy
is therefore limited to the influence of the order reduction. Gassner and Kopriva [46]
showed that for a given dissipation error less DOF are required for higher order than
for lower order schemes. Additionally, the memory layout remains unchanged, which
avoids major interventions in the code structure and general performance. Notably a
reference element is computationally more expensive with shock capturing than a DG
element. This leads to load imbalances. The treatment of these load imbalances are
acknowledge, however, is beyond the scope of this thesis.
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The detection of shocks is achieved by an indicator. Here, the indicator proposed
by Persson and Peraire [92], which can also detect oscillating polynomials due under-
resolved scales is applied and can be written as

SP =

(
Ui − Ûi, Ui − Ûi

)
e

(Ui, Ui)e
, (3.11)

where Ui denotes an arbitrary conservative or primitive variable, commonly pressure or
density are used, and (., .)e is the standard inner product in L2(Ωe). For the applied
cases of this work, density has been proven to obtain satisfactory results.

(a) 4th order DG element (b) FV-subcell approach

Figure 3.1.: Schematic of the shock capturing with the Finite-Volume subcell approach
for a 4th order DG element (cf. [57, 111, 112]).

3.3. Riemann solvers

The previously introduced DG and FV methods require numerical fluxes. These fluxes
can be calculated with a Riemann solver. At each DG element and FV subcell surface at
each side two states are present, U+ and U−. The Riemann solver provides the inter-
mediate state of those two. More details on Riemann solvers can be found in Toro [123].
In the present work, two Riemann solvers are used, the Local Lax Friedrich (LF) and
the Harten-Lax-van Leer-Contact (HLLC) and therefore are introduced in the following.
The different states are illustrated in Figure 3.2.

3.3.1. Local Lax-Friedrich (LF) solver

One of the simplest Riemann solvers is the local Lax-Friedrich (LF). Here, the signal
speed of the rarefaction wave and the shock are assumed to be the same. In reality the
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x

t

shock

contact
discontinuity

rarefaction
wave

U− U+

U−∗ U+
∗

Figure 3.2.: Notation for the states of Riemann scheme.

rarefaction wave is a fan, however, in the LF it is approximated as a single wave. The
contact discontinuity is neglected. This leads to an additional smearing in the two-phase
region, since two states in this region are separated by their difference in entropy and can
be viewed as a sort of contact discontinuity. Nonetheless, since the governing equations
contain a contact discontinuity, they can be represented even with a LF, however they are
smeared. The maximum shock speed and consequently the rarefaction wave propagation
velocities are guessed as

s = max(|w−|, |w+|) + max(a−, a+), (3.12)

wherew± and a± are velocities normal to the element interface and sound speeds at both
sides of the element interface, respectively. Since the sound speed can vary strongly be-
tween the liquid and the two-phase region, the approximation of a single propagation
speed for both sides can lead to large errors at the interface to the two-phase region. Fig-
ure 3.3 illustrates the local LF scheme. With this propagation speed guess the numerical
flux for the local Lax-Friedrich is expressed as

G∗n =
1

2

(
FA−n + FA+

n

)
− s

(
U+
n −U−n

)
. (3.13)

Since the approximation of the flux uses only a small number of operations this Riemann
solver demands only little computational time. In the present work, it is the most sta-
ble, but also most dissipative Riemann solver, i.e., introduces the largest approximation
errors.

3.3.2. Harten-Lax-van Leer-Contact (HLLC) solver

The Harten-Lax-van Leer-Contact (HLLC) Riemann solver is more complex than LF.
The complexity results in higher computational costs and also, HLLC tends to be not
as stable as the LF Riemann solver. However, the numerical dissipation is less due to
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Figure 3.3.: Scheme of the local Lax-Friedrich.

a better approximation of the contact discontinuity. In contrast to the LF, the HLLC
approximates two different propagation speeds, s+ and s−, which are written as

s− = min(w−, w− − a−, w− + a−, w+, w+ − a+, w+ + a+), (3.14)

s+ = max(w−, w− − a−, w− + a−, w+, w+ − a+, w+ + a+). (3.15)

Further, the propagation speed of the contact discontinuity is calculated by

s∗ =
p+ − p− + ρ−w−(s− − w−)− ρ+u+(s+ − w+)

ρ−(s− − w−)− ρ+(s+ − w+)
. (3.16)

However, this approximation is incorrect for the two-phase region. The numerical flux
depends on these approximations

G∗n =


Fa− if 0 ≤ s−

Fa−∗ if s− ≤ 0 ≤ s∗
Fa+∗ if s∗ ≤ 0 ≤ s+

Fa+ if 0 ≥ s+
, (3.17)

where the ∗ indicates the states in the star region, i.e., states between the rarefaction
wave and shock, which are split by the contact discontinuity. The flux in the star region
is

Fa±∗ = Fa± + s±(F±∗ −U±). (3.18)

The states in this region can be expressed as

U±∗ = ρ±
(
s± − w±

s± − s∗

)


1

s∗
w±y
w±z

E±

ρ± + (s∗ − w±)
[
s∗ + p±

ρ±(s±−w±)

]

 , (3.19)
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wherew±y,z denote the velocity components parallel to the element interface at both sides
of the element interface.

3.4. De-aliasing

The DGSEM is a high-order method with low inherent numerical dissipation. For these
type of methods aliasing issues can result in oscillation and instabilities of simulations.
DNSs are out of reach for the high-Re flows in the present work, therefore the under-
resolution leads to potential aliasing. Further, the non-linearity of the real gas approxi-
mation might increase the tendency to aliasing issues. In the majority of DGSEM simu-
lations linear EOSs are used, e.g., ideal gas approximations. However, a detailed analysis
of the different aliasing potential due to EOS approximation is beyond the scope of this
work.

To realize the stable simulation de-aliasing needs to be applied in some form. Here,
in regions with relatively low aliasing the dissipation of the DGSEM is sufficient to sup-
press an escalation of the approximation errors. However, in areas with high aliasing
potential and possible instability due to the aliasing the FV sub-cell scheme is applied.
The sub-cells have TVD properties and therefore stabilize aliasing and the applied Pers-
son indicator is capable of also detecting oscillation due to aliasing. This procedure is
similar to the Monotonically Integrated Large Eddy Simulation (MILES) approach in-
troduced by Boris et al. [20] and Grinstein et al. [50]. It is important to emphasize that
explicit de-aliasing schemes, e.g., over-integration [14,18,45] or others [11,136], would
very likely be able to further improve the simulation results. A drawback of such a ex-
plicit de-aliasing scheme are the additional computational costs. Further, the focus of
this work was on the evaluation of new physical insides of very complex and demanding
flows, hence the here proposed very stable solution was chosen.

3.5. Efficient usage of multi-parameter equation of state

Previously several different EOS approximations have been introduced in Section 2.2.
Whilst the simple ideal gas equation is very fast to analyze in a simulation program,
it is very limited to a small range of pressures and temperatures. Consequently, other
approximations are needed for real gas flows or cavitation, which are more computa-
tionally demanding. Without further measures a direct evaluation of, for example, the
Helmholtz free energy formulation would be infeasible for a CFD simulation of reason-
able size. The evaluation is orders of magnitude slower than for an ideal gas. It is needed
several times per time step and DOF in CFD simulations; this adds up to many millions
evaluations even for small simulations.

Therefore, in the present work the EOS data is tabulated. The data is tabulated in the
pre-processing and only read in the actual simulation. The idea is based on Dumbser
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3. Methodology

et al. [34] and further improved as presented by Hoffmann et al. [57]. A detailed de-
scription is provided by the latter [57], however, to keep this work self-contained a brief
description is given in the following.

3.5.1. Choice of Equation of state approximation

For every type of modeling and approximation it is relevant to find the correct balance
between computational costs and accuracy. Hence, the choice of EOS approximation is
discussed in the following. A brief summery of different EOS approximations is given
in Section 2.2.

First, it is important to analyze what type of fluid is used and under which conditions
it occurs within the simulations. In the present work, two different fluids are assessed,
e.g., methane at high pressures and water in different states of matter. For both cases an
ideal gas approximation is unfeasible and a more complex EOS is required. Whilst cubic
equations offer satisfactory accuracy for the gaseous phase, their approximation within
the two-phase region is incorrect and cannot be used for cavitational simulations. Hence,
it is desirable to use the Helmholtz formulations. The evaluation of such a high-accuracy
multiparameter EOS, however is computationally very expensive and cannot be applied
directly for CFD simulations in its analytical form. Therefore, EOS data is tabulated as
part of the pre-processing.

Here, the evaluation time is very important. The evaluation times of a ideal gas law,
a cubic equation, i.e., the Peng-Robinson was chosen as an example, and a Helmholtz
equations formulation are compared with each other. The Helmholtz equations are both
assessed as direct evaluation and in the proposed tabulated form. For the Helmholtz
equations the Open Source library CoolProp version 4.2.6 is used. Later the imple-
mentation of the tabulated EOS is discussed in further detail. For the table evaluation
different depths or levels of the table are evaluated, i.e., depending on the fluid proper-
ties different table levels are required to reach a certain accuracy. The evaluation is in all
cases from the variables density ρ and inner energy e to pressure. To obtain the pressure,
in the context of a density based solver, the temperature needs be calculated iteratively,
i.e, e is guessed, for both the cubic equations and the Helmholtz formulation. Table 3.1
summarizes the evaluation times of each approach. The computational cost for the direct
evaluation for ideal gas, Peng-Robinson and the Helmholtz equation increases with their
complexity. It is interesting to notice, that with the table approach the computational
costs can be reduced significantly even compared to the cubic equation. These findings
allow it to use the higher accuracy EOS and reduce the simulation costs compared to
cubic real gas approximation. Of course, the computational costs are increased to the
direct evaluation of ideal gas, which is unavoidable.
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3.5. Efficient usage of multi-parameter equation of state

Table 3.1.: Evaluation times for the different EOS approaches. Data for ideal gas and
Helmholtz (direct) are take from Hoffmann et al. [57].

EOS type Time [1× 10−6 s]

Ideal gas 0.01712

Peng-Robinson 3.200

Helmholtz (direct) 232.0

Helmholtz (tabulated with level 6) 0.1953

Helmholtz (tabulated with level 15) 0.2868

3.5.2. Implementation of tabulated Equation of State

Having motivated the choice of tabulated Helmholtz equation as an EOS approximation,
the used implementation is introduced. The interested reader is referred to Hoffmann et
al. [57] for a more detailed discussion. The provided EOS from CoolProp is coupled with
the currently used CFD code, which is based on the conservative form (Equation (2.1)).
From density and inner energy the other variables are calculated, i.e., pressure, tempera-
ture, speed of sound, viscosity and thermal conductivity and from pressure and tempera-
ture the density and inner energy. These variables are needed for the flux calculation. In
the implementation, CoolProp is evaluated prior to the simulation and the calculated val-
ues are stored in a table. In the present work depending on the application, three or four
different conversion tables are required. For fluids with high gradients at small densities,
e.g., water, it was found beneficial to split the conversion from density and inner energy
to temperature into two tables, ρ ≥ 1 kg m−3 and ρ < 1 kg m−3. The conversion from
the conservative to the primitive variables is split into two steps. First, the temperature
is evaluated from ρ and e, afterwards ρ and T are used to evaluate the other primitive
variables. The main reason for this split is in the pre-processing and the total table size,
the evaluation of T is very expensive. Therefore, the table refinement is done separately,
which increases the pre-processing speed significantly and reduces the overall memory
requirement of the tables in the simulation. An overview of the different tables is given
in Table 3.2.

The table approach is based on a quad-tree domain decomposition strategy. The prim-
itive variables are represented by polynomials within each cell. The solution is discon-
tinuous across the cell interfaces. For each cell for the thermodynamic variable, Φ, the
approximation error

ε =

∣∣∣∣Φtable − ΦCoolProp

Φtable

∣∣∣∣ , (3.20)

to the CoolProp solution is calculated. Based on the error the table is locally refined.
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Table 3.2.: Conversion tables for the EOS approximation.

Input varibles Output varibles Usage criteria

ρ e T ρ ≥ 1 kg m−3

v e T ρ < 1 kg m−3

ρ T p a λ µ

T p ρ e

The process is illustrated in Figure 3.4. In the domain, e.g., (ρ, e), the approximation
error is compared to the error threshold εth (Figure 3.4a). For ε > εth a sub quad-tree
is generated, i.e., the domain is refined, and the approximation error is again compared
in the sub quad-tree to the threshold (Figure 3.4b). This process is repeated until the
criteria is satisfied in the whole table or the maximum level is reached.

The error threshold, εth for the table strongly depends on the application. For real gas
approximation an ε < 10−4 is sufficient, however when phase changes are involved it
might be necessary to decrease the threshold further. For the present study, this level of
accuracy for the entire variable range was achieved with a maximal refinement-cell level
of 19. Of course, the accuracy of the tabulated EOS is always limited by the accuracy of
the original formulation, here the Helmholtz formulation.

The construction process of the table is completely parallelized and can run on an
arbitrary number of processors. For the tables used in Chapter 4, methane is tabulated for

ε > εth

(a)

ε > εth ε < εth

ε > εthε < εth

(b)

ε>εth ε<εth

ε<εth ε>εth

ε>εth ε<εth

ε<εth ε>εth

(c)

Figure 3.4.: Schematic of the building process of an EOS table with the quad-tree ap-
proach (hatched box: no further action), a) initial domain b) check after
refinement, c) check the refined sub quad-tree.
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3.6. Modeling of multiphase flows for cavitation

densities in the interval 1× 10−4 kg m−3 to 1200 kg m−3 and for temperatures ranging
from 91 K to 624 K, respectively. This kind of table can be built within a few minutes
on 2400 cores. It is vital that the table can be evaluated efficiently during the calculation.
With this approach the evaluation of the EOS is decoupled from the actual simulation
and allows to efficiently use any EOS. Compared to analytical ideal gas implementation
the required computational costs of a simulation increase roughly by a factor of 3 to 4
for the present implementation.

For methane the different tables for (ρ, e)→ (T ), (ρ, T )→ (p, a, λ, µ) and (T, p)→
(ρ, e) have a size of 116MB, 49MB and 2.9MB, respectively. For water the used table
sizes were (ρ, e)→ (T ): 302MB, (v, e)→ (T ): 1.4GB, (ρ, T )→ (p, a, λ, µ): 3.9GB
and (T, p)→ (ρ, e): 325M. Each core stores each table, a node with 24 cores has a total
of 128GB of storage on the used system of the Hazel Hen supercomputer of the High
Performance Computing Center Stuttgart (HLRS). Therefore, the available memory is
sufficient, however, cache effects [119] are out of reach with this implementation.

3.6. Modeling of multiphase flows for cavitation

The modeling of multiphase flows is very challenging and depending on the purpose
of the simulation different methods need to be considered. In the following, a brief
overview of different types of models are given.

3.6.1. Thermodynamic state model

Kolev [67] uses three different classes of approximations, i.e., barotropic, homogeneous
equilibrium and inhomogeneous non-equilibrium. In Table 3.3 the three classes are sum-
marized.

The barotropic and homogeneous equilibrium approximations are both based on an
averaged state within a reference cell. Barotropic models are the most simple of the three
classes. For the barotropic EOS the density is only a function of pressure ρ = ρ(p).
Further effects such as dissolved air in the liquid can be incorporated into the EOS.
Despite the simplifications of the model good results can be achieved and have been
published [36, 100].

However, with large pressure differences the fluid can experience changes in temper-
ature. This can influence the behavior of the EOS and other fluid properties and might
lead to not negligible effects. From the conservative variables ρ and e, p and T can be
derived. Here, the velocities, the pressure and the temperature are assumed to be the
same in both phases. Therefore, both phases have no slip with each other, which is a
simplification. Nonetheless, the homogeneous equilibrium model is well suited for the
present work and is applied in Chapters 4 and 5.
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The last of the three classes is the inhomogeneous non-equilibrium model. It is the
most complex and numerically most demanding, i.e., computational resources and com-
plexity. Once slip between the phase becomes important this class should be applied.
Both phases need to be considered separately and are coupled with each other.

3.6.2. Evaporation and condensation models

In the following, a brief summery is given of the mass transfer at phase boundaries.
There are a number of different evaporation models in the literature [83]. Here, these are
categorized in three different classes, e.g., thermodynamic equilibrium model discon-
tinuous, thermodynamic equilibrium continuous and thermodynamic non-equilibrium
model. These are briefly summarized in Table 3.4.

The current work is based on the thermodynamic equilibrium discontinuous model.
The terminology discontinuous refers to the fact that here the phase boundary is assumed
to be plain. Consequently, the surface boundary is in this assumption discontinuous. In

Table 3.3.: Modelling of two-phase flows.

model varible assumptions

barotrop ρ, p, ~w
homogen ρg , ρl, ~wg = ~wl, Tg = Tl, p
inhomogen ρg , ρl, ~wg , ~wl, Tg , Tl, pg , pl

Table 3.4.: Comparison of evaporation models.

model therm. equilibrium therm. non-equilibrium

discontinuous flat phase boundary
model pg = pl = p

Tg = Tl = T

continuous model curved phase boundary
pg − pl = 2σ/rB pg − pl = 2σ/rB
Tg = Tl = T Tg 6= Tl

no kinematic kinematic
of heat transfer of heat transfer
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3.6. Modeling of multiphase flows for cavitation

the thermodynamic equilibrium model it is assumed that all thermodynamic process are
instantaneous and hence always in equilibrium.

3.6.3. Limitations of the applied method

The HEM introduces a number of limitations, which are briefly discussed for cavitation.
The discussion is limited to effects most relevant for the present work. Most of the
discussed limitations could be appointed by specific numerical methods. However, the
computational costs and the complexity of the models are out of range for the present
work.

Surface tension

The surface tension and the curvature of the interface between liquid and gas are ne-
glected. In reality, the curvature of an interface introduces a pressure difference across
the interface.

∆p = 2γH, (3.21)

where H denotes the curvature of the interface. For a spherical bubble the curvature
corresponds to 1/R. Hence, the pressure difference due to surface tension and curvature
becomes important for very small radii. Comparing Equation (2.41) with and without
the surface tension part shows only little difference for the collapse time and minimum
radius of a bubble. Therefore, the influence on the simulation in the current work are
acceptable. However, to overcome this limitation the interface between the liquid and
gas needs to be traced and modeled. In the literature, different approaches are presented,
e.g., sharp interface representation [38].

Superheating or boiling delay

In most cases the energy required for a phase change from liquid to gaseous state can
be influenced by a so called superheating or boiling delay. Here, the required energy is
extracted from the liquid phase and the local temperature drops. Therefore, the temper-
ature at which a phase change occurs changes; this ∆T = Tf − T ′f is called the boiling
delay, where Tf denotes the fluid temperature and T ′f the local temperature of the fluid
of the boiling delay. The effect is most dominant close to the critical point [41]. The
effect of boiling delay is neglected in the current work.

Dissolved air and diffusion

All technically relevant liquids contain a certain content of dissolved air. Over a long
period of time it is possible to reduce this air, however, it is impossible to reduce it to 0.
During the growth of a cavitation bubble the dissolved air diffuses into the vapor. From
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Equation (2.41) it is apparent that the term with the dissolved air has a major impact
on the bubble behavior. First, it limits the minimum radius of the bubble and acts as a
damper for the collapse [134]. Consequently, neglecting it makes the collapse faster and
more rapid. Further, it reduces the ability of the fluid to sustain tension and cavitation
could occur at earlier stages.
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4. Influence of fluid properties on gas dynamics

Many simulations of gas dynamics problems found in the literature treat the gas as ideal
or at least use strong simplifications of the fluid properties, e.g., the equation of state
or the transport values. To determine where an ideal gas expression is valid often ball
park values for pressure and temperature are used. These values can vary significantly
depending on both the problem to solve and the fluid. For example, the point at which
the compressibility effect cannot be neglected changes for different fluids. The com-
pressibility factor Z is shown in Figure 4.1 for different pure and pseudo-pure gases.
All gases behave differently, however, at a certain pressure the ideal gas approximation
becomes invalid for all gases. It can be further noted, that generally the decrease in Z is
more dominant at lower temperatures.

A simple example of the possible implications of an incorrect approximation of Z is
a high pressure storage tank for methane: with a storage tank of a volume of V = 1 m3

and assuming a constant temperature T = 290 K, the storable mass strongly depends
on the compressibility of the real gas: mp=1bar = 0.6666 kg, mp=10 bar = 6.783 kg,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1  1  10  100

Z

p [MPa]

Air CH4 CO2 Xe

Figure 4.1.: Compressibility factor Z over pressure at a constant temperature T =
290 K (solid) and T = 250 K (dashed) for air, carbon dioxide (CO2),
methane (CH4) and xenon (Xe).
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4. Influence of fluid properties on gas dynamics

mp=100 bar = 79.89 kg and mp=1000 bar = 347.4 kg. Hence, an ideal gas approxi-
mation of the available gas stored in the tank based on the pressure, would lead to an
overestimation of almost a factor of two at p = 1000 bar.

In the following, the importance of real gas modeling is demonstrated on the basis
of 1D and 3D test cases. It is shown that at low pressures the real gas approximation
with the Helmholtz free energy formulation blends into the ideal gas approximation. It
is also pointed out that the fitting of the Helmholtz free energy formulation in the region
of low pressures are still dependent on temperature, which prevented a perfect blend to
the ideal gas approximation. Further, a fully turbulent 3D free stream jet is examined for
its real gas behavior. It is demonstrated that significant differences are between real gas
and ideal gas approximations.

4.1. Riemann problem with perfect and real gases

For many everyday flows considering the gas as ideal or perfect is sufficient. However, in
nature and industry many applications do not allow for a perfect gas assumption and the
fluid needs to be treated with its real gas properties, i.e., an appropriate approximation
of the fluid.

A Riemann problem simulation is carried out with perfect and real EOS approxima-
tions to gain a better understanding of their differences. Here, the aim is to underline the
necessity of a proper real gas modelling where necessary.

For the 1D Riemann problem test case three different cases are considered, i.e., vari-
ation in pressure while the pressure ratio remains constant. The domain has a length of
1 m. The fluid is methane and remains gaseous throughout all cases. For the modeling of
perfect gas the ideal gas laws Equations (2.10), (2.13), (2.14), (2.35) and (2.38) are used
to generate the EOS tables. Here, the specific gas constant is R = 518.3 J kg−1 K−1,
κ = 1.303 and Pr = 0.7305. The thermodynamic properties for the perfect gas table
are taken from COOLPROP V6 at 10 Pa and 300 K.

The EOS and the transport properties of the real gas simulation are based on the Helm-
holtz energy formulation as implemented in COOLPROP V4. For methane CoolProp fits
the parameter of the Helmholtz equation to the experimental data from Setzmann and
Wagner [107] for the EOS and data from Friend et al. [42] and from Quinones-Cisneros
and Deiters [98] for the thermal conductivity and the viscosity, respectively.

The EOS tables are generated with an accuracy of 1× 10−8 for both perfect and real
gas. The threshold is chosen very low to avoid errors introduced by the table in this
very detailed study. For the simulations the HLLC Riemann solver is applied. The mesh
consists of 800 elements and N = 5, which leads to 4800 DOF in x-direction. Since a
part of the purpose of these simulations is the validation of the 3D FLEXI code, the 3D
framework is used and the momentum in y- and z-direction are set to 0 (U2 = U3 = 0).
The initial conditions for the different cases are summarized in Table 4.1. The initial
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4.1. Riemann problem with perfect and real gases

velocity is set to w1 = 0 m s−1.
The notation for the different states is summarized in Figure 4.2 with the typical wave

pattern of the Riemann scheme. In the star region two intermediate states exist separated
by a contact discontinuity.

The different simulation results for the real gas table are shown in Figure 4.3 at
t = 1× 10−4 s. The pressure and density graphs are normalized with the correspond-
ing initial state ΦL. Only little differences in pressure are observed for Case 3 for the
star region and the propagation velocity of the shock front. Since the speed of sound
decreases with pressure, the shock propagates slower at higher pressures. For the tem-
perature the differences are more significant for Case 3 compared to the other cases.
The temperature decreases more with increasing pressure and the position of the contact
discontinuity varies, due to the slower velocity. The expansion wave shows observable
differences for the density for Case 3. Here, at lower pressures the difference is only
marginal.

Table 4.1.: Initial conditions for the Riemann problem cases.

Case Case 1 Case 2 Case 3

EOS modeling PG RG PG RG PG RG

pL 1 1 10 10 100 100
pR 0.1 0.1 1 1 10 10
TL 300 300 300 300 300 300
TR 300 300 300 300 300 300
ρL 0.6431 0.6443 6.431 6.542 64.31 75.18
ρR 0.06431 0.06432 0.6431 0.6443 6.431 6.542

x

t

shock

contact
discontinuity

rarefaction
wave

ΦL ΦR

ΦL* ΦR*

Figure 4.2.: Notation for the states of the Riemann problem.
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Figure 4.3.: Riemann problem Cases 1 to 3 for real gas at t = 1× 10−4 s.

Figure 4.4 shows a comparison between the perfect gas and the real gas approxima-
tion for Case 1. For most values there is no noticeable difference, with the exception
of TL,R*. Even though the pressure is in a range which is appropriate for the perfect gas
approximation the real fluid approximation is depended on temperature at very low pres-
sures, too. This is due to the temperature dependence of the inner degrees of freedom of
a methane molecule and is discussed in further detail in Section 4.1.1. The difference in
shock propagation is due to the difference in TR*. The expansion wave speeds are almost
identical, since the difference for TL* is small. At lower temperatures the speed of sound
is less temperature dependent than for higher temperatures.

Case 2 is shown in Fig. 4.5. Similar to Case 1 the change in temperature can be
observed clearly. However, since the pressure is higher, differences for all values are
visible. For example, ρL varies a little due to the change of compressibility. The speed
of sound is almost the same at the shock. The velocity varies and consequently the
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Figure 4.4.: Riemann problem case 1 at t = 1× 10−4 s.

propagation of the contact discontinuity.
For Case 3 pL is well in the real gas regime. Strong real gas effects are shown in

Figure 4.6. For all values within the star region ΦL,R* strong differences are observed,
e.g., velocity, sound speed, pressure. Due to the strong influence of compressibility,
the density varies strongly. Overall, especially for Case 3 a real gas approximation is
necessary to predict the flow properties. Important values for industrial applications,
e.g., mass flow and jet penetration, would be inaccurate given the strong deviation.

4.1.1. Isentropic expansion

Following the above discussion, the expansion process of Cases 1 to 3 is analyzed in fur-
ther detail. Here, a comparison between three different expressions is carried out, perfect
gas formulation, an approximation for real gases from the literature [102] and an exact
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Figure 4.5.: Riemann problem case 2 at t = 1× 10−4 s.

expression for the isentropic relation. The general expression with the states 1 and 2 are
presented in Equations (4.1) to (4.3). For the comparison with the 1D Riemann problem
the states ΦL and ΦL* replace the notation for the conditions 1 and 2, respectively.

For a perfect gas the isentropic relation between temperature and pressure can be
expressed as [115]

T2

T1
=

(
p2
p1

)κ−1
κ

. (4.1)

To account for real gas effects Rist [102] introduced an approximation of the isentropic
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Figure 4.6.: Riemann problem case 3 at t = 1× 10−4 s.

relation. It can be written asI

T2

T1
=

(
p2
p1

)(κ−1
κ )

1,2
(
Z1

Z2

)2

, (4.2)

where 1, 2 denotes the average state of conditions 1 and 2. Since the values at the state
2 are unknown, a Newton iteration is applied.

Further, from the fundamental equation for enthalpy and the Maxwell relations the

I [102] uses K = Z/ZN the gas law deviation coefficient in its formulations. ZN is the compressibility factor
at standard conditions. In the current work, only Z is used, which is interchangeable with K for the applied
cases.
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isentropic relation can be expressed as derived in Jungemann [63](
∂T

∂p

)
s

=

(
∂v

∂T

)
p

T

cp
. (4.3)

For both Equations (4.2) and (4.3) the fluid properties from COOLPROP V6 are used. For
Equation (4.3) MATLAB is used and coupled to COOLPROP V6 to solve the differential
equation.

In Table 4.2 the simulation results for the isentropic expansion for the Riemann prob-
lem are summarized and compared to Equations (4.1) to (4.3). The temperature ratio
TL/TL* for the perfect gas approximation is constant throughout the cases and matches
Equation (4.1). Compared to the real gas approximation the difference increases with pL,
which is expected due to real gas effects. The simulation results fit the direct evaluation
from Equation (4.3) perfectly. Therefore, the obtained results are able to represent this
thermodynamic process very well. The approximation from Equation (4.2) accounts for
the real gas effects. However, the effects are overestimated.

From the Riemann problem analysis for Case 1 at low pressures, which is often con-
sidered as perfect gas regime, a difference between the perfect and real gas approxima-
tion is found. By further analyzing the temperature ratio TL/TL* with a fixed pressure
ratio of pL/pL* = 3.487, which corresponded to pL/pL* for Case 1 with real gas, the
temperature dependence of the used Helmholtz free energy formulation at lower pres-
sure is apparent. Figure 4.7 shows T/Tisentropic over pressure for different temperatures.
Even at very low pressures the flow is temperature dependent. At higher pressure a

Table 4.2.: Isentropic expansion for the Riemann problem.

Case 1 2 3
EOS modeling IG RG IG RG IG RG

pL 1 1 10 10 100 100
pL* 0.2889 0.2868 2.889 2.856 28.89 26.99
pL/pL* 3.461 3.487 3.461 3.501 3.461 3.705
TL 300 300 300 300 300 300
TL* 224.8 222.0 224.8 220.9 224.8 211.5
TL/TL* 1.335 1.351 1.335 1.358 1.335 1.418

from Equation (4.1) 1.335 1.335 1.335
from Equation (4.2) 1.352 1.379 1.503
from Equation (4.3) 1.351 1.358 1.418
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4.1. Riemann problem with perfect and real gases

strong increase in temperature ratio is observed. The ratio reached an abrupt peak due to
phase change.

Figure 4.8 shows cp as a function of pressure for different temperatures for methane.
cp is directly connected to the isentropic relation and the responsible value for the tem-
perature dependency at low pressures. For the present study data from Setzmann and
Wagner [107] are used. They fitted the data for the ideal gas part of the isobaric specific
heat capacities to McDowell and Kruse [78], which can be expressed as

c0p
R

= n0 +

5∑
i=1

ni
(Ai/T )2 eAi/T

(Ai/T − 1)2
. (4.4)

Hence, cp is temperature dependent for methane. However, for the noble gas argon
Tegeler et al. [122] showed that it depends only little on temperature, i.e., the contri-
bution of electronic excitation is only 0.01 % at 10 000 K. Consequently, treating non-
noble gases as caloric perfect gases introduces a derivation even for very low densities.
However, the differences are only marginal and are most likely only observable for sim-
ple 1D test cases.

Further, the compressibility factor Z is at very low pressure independent of the tem-
perature and remains 1, since a derivations are due to intermolecular forces. This is also
represented in the relation to the Helmholtz free energy, which has no ideal gas part (see
Table 2.2). Figure 4.9 shows the compressibility over pressure for different temperatures.
Z remains independent of temperature up to about 1× 105 Pa.
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Figure 4.7.: Temperature ratio for the isentropic relation from Equation (4.3) for a fixed
pressure ratio of p1/p2 = 3.487.
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Figure 4.8.: Specific heat capacity at constant pressure cp as a function of pressure for
different temperatures of methane.
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A more detailed discussion on isentropic (Section A.1) and isenthalp (Section A.2) ex-
pansions is in Chapter A. In this chapter expansions at different pressures, temperatures
and pressure ratios are assessed for different fluids, e.g., methane, air and water.

4.2. Micro channel flow of a simplified direct gas injector

In this section, a 3D simulation with real gas approximation is carried out. As a test
case a micro channel flow is chosen. The simulation represents a simplified DGI, i.e.,
the dimensions of the micro channel and the operating pressures are in the order of a
modern DGI. However, before examining a supersonic jet, a subsonic jet at high pressure
is analyzed and compared to commonly used self-similar jet results.

4.2.1. Numerical setup

The simulation framework is used for two different scenarios: a subsonic jet flow and
a developing supersonic jet. The subsonic jet flow is used as a validation case. To
verify the results, self-similar velocity profiles are evaluated and compared to literature
values. The main focus, however, is on the simulation of a developing supersonic under-
expanded jet. Here, the influence of real gas effects are investigated and compared to the
properties of the supersonic jet for different temperatures and pressure levels.

Similar setups are used for both the subsonic and supersonic jet. The flow passes
through a throttle, with diameter D = 5× 10−4 m and a throttle length Lthrottle = 4D
and expands into a reservoir. For the subsonic jet, the domain length is set to Ldomain =
100D and for the supersonic jet to Ldomain = 40D. A sketch of the used geometry is
given in Fig. 4.10a.

For the simulation an unstructured hexahedral grid is used. For the subsonic jet the
grid is only refined at the boundaries of the throttle, see Figure 4.10b, whereas for the
supersonic jet the flow area with shocks is simulated with a higher resolution, see Fig-
ure 4.10c. The distance from the inlet to the throttle is 6D.

The used meshes have 4.670× 104 and 4.733× 105 elements for the subsonic and
supersonic jet, respectively, corresponding to 2.989× 106 and 3.029× 107 DOF. For
the supersonic jet the throttle exit has 34 elements in radial direction with refinement at
the wall and for the subsonic jet 14 elements.

For the inlet and outlets weakly imposed Dirichlet type boundaries are applied, which
have been used successfully for this kind of flow [54]. At the throttle wall and at the lip
of the throttle a no-slip condition is used, while the lateral walls upstream of the throttle
are defined to be inviscid. Damping layers for the subsonic jet are used to avoid non-
physical reflections at the outflow boundaries. Within the damping layer the solution is
relaxed towards the outflow condition. Larger scale eddies are resolved, however, under-
resolved turbulence scales lead to instabilities of the scheme. These instabilities are
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(a)

(b) (c)

Figure 4.10.: Geometry of the simulation domain. The domain length is Ldomain = 40D
for the supersonic jet and Ldomain = 100D for the subsonic jet (a). Mesh
refinement for the subsonic jet (b) and the supersonic jet (c). Reproduced
from [52] with permission.

detected with the Persson indicator and FV-subcells are applied at the affected elements,
see Section 3.4 for a more detailed discussion.

4.2.2. Subsonic jet

To verify the methodology and numerical setup a subsonic jet is used and compared
to experimental data of self-similar turbulent jets [89, 137]. The inlet pressure is set
to pin = 100 bar, the outlet pressure to pout = 75 bar and the temperature in the en-
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4.2. Micro channel flow of a simplified direct gas injector

tire domain to T = 300 K. Hence, the pressures are much higher than common for
self-similar jets. The results, however, suggest nonetheless a good agreement with the
general theory. The initial parameters lead to average throttle exit conditions for the
velocity of ua = 227.5 m s−1, a density of ρa = 60.40 kg m−3 and a Reynolds num-
ber based on the diameter of ReD = 5× 105. Therefore, the flow is considered as
fully turbulent within the throttle and further downstream. However, the boundary layer
within the throttle is far from being fully developed, since the throttle is relatively short.
The focus is on the decay rate of the velocity at the centerline and also on the radial
profiles and their comparison with experimental values. As EOS the tabulated real gas
data of methane is used. The simulation results are averaged over time until the profiles
converged (3× 10−3 s).

Figure 4.11a shows the self-similar radial velocity profile, where w is the axial veloc-
ity, w0 is axial velocity at the centerline, r is the radius and r0.5 is the half width of the
jet. The profile is averaged in axial direction (from 35 to 45D) and additionally in radial
direction. The results show good agreement to the experimental data from Panchapake-
san and Lumley [89].

The inverse of the mean axial velocity is presented in Figure 4.11b, together with ex-
perimental data [89, 137], where wJ denotes the centerline velocity at the throttle exit.
Again, good agreement is found between our numerical results and the experiment. The
gradient of the inverse of the velocity matches the experimental data [137], but the po-
tential core length of the jet differs. Babu and Mahesh [7, 8] concluded that by allowing
for entrainment in the simulation the potential core length becomes shorter, which is ob-
servable in our results. The absence of a distinct boundary layer [6] and potential real
gas effects may also contribute to a change in potential core length. Additionally, for the
given ReD an increase in DOF might lead to even better results, due to the long aver-
age time this is out of reach for the present study. To the author’s knowledge, there are
only little investigations self-similar jets at high pressures available. Hence, the possible
influence of real gas effects to the self-similar jet is unknown.

4.2.3. Supersonic throttle flow and underexpanded jet

In the following, the real gas effects of an underexpanded supersonic jet with a pres-
sure ratio pin/pout = 5 are investigated. Table 4.3 summarizes the different cases that
are studied. Here, the following notation is used: RG or IG denote the type of EOS
modelling. Either the tabulated Helmholtz formulation for real gas (RG) is used or the
ideal gas law (IG). The numbers 500, 100, 50 denote the inlet pressure and the suffix
either the viscosity model (A,B or C) or the temperature difference to the reference case
RG500 (- or +). The viscosity models used are constant viscosity at 100 bar, Sutherland
formulation with a reference viscosity at≈ 0 bar and Sutherland formulation with a ref-
erence viscosity at 100 bar for A, B and C, respectively. For all cases tabulated values
are used with a sufficient accuracy. The influence of the EOS and of the different ther-
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Figure 4.11.: Profiles for mean axial velocity in radial (a) and axial (b) direction. Re-
produced from [52] with permission.

modynamic states are studied, i.e., variation of pressure and temperature for inlet and
outlet. The simulations were run on 2400 processors and require on average approxi-
mately 1.76× 10−5 s per time step for one DOF. The chosen thermodynamic states of
the inlet and outlet are similar to modern gas injection systems. Further, at these states
the thermodynamic properties of methane are particularly interesting. The compress-
ibility factor Z for the different cases is shown in Figure 4.12a. Clearly, an accurate
description of real gas properties of the fluid is required for all cases. The dynamic
viscosity (Figure 4.12b) is almost pressure-independent for low pressures as for ideal
gases. However, it shows a strong pressure dependence for p & 200 bar. These two fig-
ures clearly show that the real thermodynamic properties differ strongly from ideal gas
and Sutherland formulation and need to be taken into account for a realistic simulation.

Grid convergence

To ensure that all scales which are represented, relevant to the investigation of the su-
personic jet, a grid convergence study is made. A fully grid independent solution for all
scales is beyond reach for this type of scale resolving simulation. Therefore, the focus
is on the representation of key features. For this purpose four different resolutions are
investigated, a coarse, medium, fine and very fine grid. The coarse grid is the one used
for the subsonic jet validation (cf. Fig. 4.10b), which achieved good agreement with ex-
perimental data. The medium grid is refined in the area of the shocks by a factor of two
in each spatial direction in respect to the coarse grid. The fine grid is again refined by the

54



4.2. Micro channel flow of a simplified direct gas injector

Table 4.3.: Investigated cases for the simulation of supersonic methane jet. Reproduced
from [52] with permission.

Case pin [bar] pout [bar] T0 [K] EOS

RG500 500 100 300 tabulated real gas (RG)

IG500A 500 100 300 ideal gas (IG); κ = 1.234

µ0 = 1.381× 10−5 Pa s

IG500B 500 100 300 IG (Suth.); κ = 1.234,
µS = 1.236× 10−5 Pa s

IG500C 500 100 300 IG (Suth.); κ = 1.234,
µS = 1.381× 10−5 Pa s

RG50 50 10 300 RG
RG100 100 20 300 RG

RG500- 500 100 275 RG
RG500+ 500 100 350 RG
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Figure 4.12.: Compressibility factor Z (a) and dynamic viscosity µ (b) of methane as
functions of pressure p at different temperatures. Points and arrows in-
dicate the conditions of the different cases. Reproduced from [52] with
permission.
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same factor from the medium grid and is the grid used in the following for the parame-
ter study of the supersonic jet (cf. Figure 4.10c). Again, for the very fine grid the area
of the shocks is refined. The different grid convergence simulations have 2.142× 106,
5.358× 106, 3.029× 107 and 1.342× 108 DOF, respectively.

Figure 4.13 shows the simulation results of the developing jet on different grids. At
t = 1.0× 10−5 s for all grids the key features are identified, e.g., Mach disk, bow shock
and tip vortex. Moving towards finer grids the structures become more clear, however,
from the fine to the very fine mesh only marginal differences are present. For the next
time frame the instabilities within the shear layer and the slip lines are clearly present,
whilst these features become only slightly more dominant on the finest grid. It is worth
noting that for the two finest grids a second tip vortex is present. Therefore, no new
features are identified from the fine to the very fine grid. Similar at t = 2.5× 10−5 s for
the two finest meshes the key features agree well with each other.

Further, 3D iso surfaces of the density are compared for the different grid resolutions.
Figure 4.14 shows the iso surfaces for density ρ < 55 kg m−3 and ρ > 90 kg m−3 at
1.5× 10−5 s for the different grids. With the coarse grid only the shock, i.e., regions
with very low and very high density, are visible in the simulation results. With the middle
resolution grid very large turbulent structures in the area of the second high density zone
are present. The structures are less axis symmetric than for the coarser grid. The fine grid
shows far more turbulent structures compared with the coarser meshes. Further, these
structures are most dominant around the first shock location, i.e., between the first low
density and second high density zone. For this grid resolution, two important features
are represented by the simulation, e.g., the second shock and a second tip vortex, c.f.,
the discussion for Figure 4.13. The simulation results for the finest grid show higher
resolution for the turbulent scales and structures of the first tip vortex. However, the
location remains unchanged compared to the fine grid. Consequently, the fine gird is
capable of representing all important effects and therefore it is used for the parameter
study.

Flow development

Here, the transient flow development of the supersonic under-expanded jet is analyzed.
The reference case RG500 is used to demonstrate the core features of such a jet. The
initial pressure in the domain is set to the outlet pressure. Consequently, the high pres-
sure propagates through the throttle. Figure 4.15 illustrates the density downstream of
the throttle at different times t. At the early stages of the jet development a bow shock
propagates downstream, as shown in Figure 4.15a. It is caused by the pressure pulse
through the throttle. At this stage a tip vortex forms. First shock structures develop:
a Mach disk, an expansion wave and oblique shocks. At this stage the jet propagates
approximately two diameters downstream of the throttle exit.

In Figure 4.15b, at t = 1.5× 10−5 s, the jet propagated to 5D downstream of the
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(a) Coarse grid

(b) Middle grid

(c) Fine grid

(d) Very fine grid

Figure 4.13.: Density for different grid resolutions at different times, t =1.0× 10−5 s,
1.5× 10−5 s and 2.5× 10−5 s from left to right. Figures for
t =1.5× 10−5 s, reproduced from [52] with permission.
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(a) Coarse grid

(b) Middle grid

(c) Fine grid

(d) Very fine grid

Figure 4.14.: Grid convergence study iso surfaces for density smaller than 55 kg m−3

and larger than 90 kg m−3 at 1.5× 10−5 s. Reproduced from [52] with
permission.
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throttle exit. The width of the first shock shrinks and two very close slip lines are gen-
erated at these Mach reflection triple points. Further, a typical diamond shape with two
shock fronts develops, and turbulent instabilities are generated at the shear layer. The tip
vortex spreads in radial direction in addition to its propagation downstream and has also
induced a second smaller ring vortex.

From t = 2.5× 10−5 s to 3.0× 10−5 s (Figures 4.15d and 4.15e) two normal shocks
are generated. There, slip discontinuities can be observed. With a decreasing pressure at
the throttle exit, the normal shock shrinks and is no longer present at t = 3.5× 10−5 s.
Additionally, the density increases within the jet.

Later (Figure 4.15g) the under expansion of the jet at the throttle exit is only marginal.
The jet becomes narrower than at the earlier stages. Two oblique shocks are present,
which move further upstream. At t = 6.0× 10−5 s these shocks move from the throttle
exit into the throttle. Hence, the simulation predicts a pressure decrease at the throttle
exit at a certain stage in the jet development and the jet is no longer under-expanded and
free of normal shocks.

Figure 4.16 shows the transient behavior of the ratio of the pressure at a given po-
sition compared to the pressure at the outlet within the throttle. At t = 1.0× 10−5 s
(Figure 4.16a) a small pressure drop occurs downstream of the throttle inlet. In Fig-
ure 4.16b a shock begins to form at the throttle inlet. Consequently, the pressure within
the throttle drops and influences the flow field downstream of the throttle.

Later, at t = 3.0× 10−5 s in Figure 4.16c, oblique shocks form at the throttle inlet.
Here, the pressure drop signal travels through the throttle, as shown in the figure at
approximately the middle of the throttle. At t = 6.0× 10−5 s four oblique shocks and
their reflections contribute to a strong pressure drop within the throttle. This caused the
throttle exit pressure to be almost equal to the outlet pressure. At the exit two shocks
are very close to each other. The first is a shock reflection from within the nozzle.
Consequently, only weak under-expanded jet phenomena are present downstream of the
exit (cf. Figure 4.15h).

An important parameter for the gas injection is the mass flow. The mass flow rate
at the throttle exit is shown in Figure 4.17. Until about t = 1.1× 10−5 s the critical
cross section is at the throttle exit, due to the expansion of the jet. Afterwards, a critical
cross section develops at the throttle inlet, which is the limiting factor for the mass flow
rate. This change causes a slight dent of the mass flow curve. From t = 1.5× 10−5 s
to 8.0× 10−5 s mass flow increases at an almost constant rate. The simulation results
suggest that this is caused by the development of a converging flow at the throttle in-
let. First, the flow from the inlet propagates almost homogeneously towards the throttle.
However, parts of the flow stagnate at the wall and increase the temperature. Later, the
flow adjusts and the temperature and Z at the throttle inlet decrease, due to the afore-
mentioned converging flow. At t = 8.0× 10−5 s the flow within the throttle reaches a
quasi-steady state and the mass flow remains almost constant.
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Figure 4.15.: Density [kg m−3] contours during the development of the supersonic jet.
Reproduced from [52] with permission.
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(a) t = 1.0 × 10−5 s (b) t = 2.0 × 10−5 s

(c) t = 3.0 × 10−5 s (d) t = 6.0 × 10−5 s

Figure 4.16.: Pressure ratio (p/pout) within the throttle for RG500 at different times t.
Reproduced from [52] with permission.
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ṁ
[g

s−
1 ]

t [µs]

RG500
IG500C

Figure 4.17.: Mass flow at the throttle exit for RG500. Reproduced from [52] with
permission.

Further, the velocity and temperature field is presented in Figure 4.18. From the ve-
locity the shocks are clearly visible and the turbulence generation in the shear layers
is represented. Downstream of the shocks the velocity field resembles a subsonic jet.
The temperature varies strongly from the initial temperature of T0 = 300 K. Especially
before the first shock the temperature drops strongly and rises across the shock. In the
shear layer the temperature increases from the initial condition.

61



4. Influence of fluid properties on gas dynamics

Figure 4.18.: Velocity [m s−1] (top) and temperature [K] (bottom) for the RG500 at
t = 3.0× 10−5 s.

It is worth noting, that the methane jet enters the two-phase region, where liquid and
gas coexist in an equilibrium state, during two different times at two different locations:
From t = 2.4× 10−5 s to 4.0× 10−5 s before the first shock and for t > 7.3× 10−5 s
within the throttle upstream of the shock position. The thermodynamic path into the
two-phase region is from the gaseous phase and remains in a region with a high mass
vapor fraction. In the early stages, the phase change is responsible for a limitation of
the temperature before the shock, i.e., Tmin, which is discussed in greater detail in Sec-
tion 4.2.3.

Influence of real gas and viscosity effects

As aforementioned, commonly used real gas EOS representations are, e.g., the Peng-
Robinson model [91] and similar approaches. However, with the use of a tabulated
EOS the evaluation is done as part of the pre-processing. Therefore, computationally
expensive, but highly accurate EOS become feasible, i.e., the Helmholtz formulation.
The proposed framework is compared to the fastest available EOS, e.g., ideal gas in
tabulated form and commonly used viscosity models. For the ideal gas case IG500A a
constant viscosity µ0 = 1.381× 10−5 Pa s is used and for the temperature-dependent
viscosity models (IG500B/C), the Sutherland formulation Equation (2.36) is applied;
here, TS = 300 K and S = 190 K. Two different µS are used; 1.125× 10−5 Pa s
(p ≈ 0 Pa) and 1.381× 10−5 Pa s (pout) for IG500B and IG500C, respectively. The
flow at t = 3.0× 10−5 s is compared for a detailed evaluation of different initial con-
ditions or EOS modelings, because at this stage the throttle exit conditions generate an
under-expanded supersonic jet, which allows a comparison of the shock positions and
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the corresponding flow structures. Additionally, the mass flow rate over time and the jet
development of the IG500C case with the real gas case is analyzed.

The focus is on the flow regime downstream of the throttle exit. In Figure 4.19 the
pressure ratio (p/pout) is shown. First, the location and width of the first shock are
examined, see Table 4.4. The most distinct feature is the difference in shock width.
Whilst for RG500 only a very small shock front is present, the shocks for an ideal gas
are wider. The normal shock for RG500 is 2 to 3 times smaller than for IG500A and
IG500B/C, respectively. It is also located closer to the throttle exit than for the ideal gas
cases in the simulation. For IG500A the normal shock is wider than for IG500B/C. For
RG500 a second, very narrow, normal shock is present, whilst for the ideal gas cases
only oblique shocks with a low intensity can be observed.

The ideal gas cases emit pressure waves, which originated from the throttle exit and
the generated shear layer. For RG500 these pressure waves are less intense. This is due
to the different throttle exit pressures and consequently, a more under-expanded jet for
the ideal gas [120].

Figure 4.20 shows the density for the development of the supersonic jet for the ideal
gas case IG500C. During the early stage, t < 3.5× 10−5 s, the jet shows similar fea-
tures as with the real gas EOS. A difference is the more distinct normal shock front of
the first shock. This is discussed for Figure 4.19c and is due to the larger expansion in
the throttle inlet. The most dominant differences occur for t > 3.5× 10−5 s. For the
real gas EOS the under-expansion of the jet vanishes, however, for the ideal gas cases
the under-expansion remains throughout the analyzed time steps. Within the throttle no
shocks are present for the IG500C and consequently the pressure drop within the throttle

Table 4.4.: First shock width W and height H compared to the throttle diameter D.
Reproduced from [52] with permission.

Case W/D H/D

RG500 0.1098 1.169

IG500A 0.3218 1.279
IG500B 0.2392 1.289
IG500C 0.2358 1.286

RG50 0.2255 1.264
RG100 0.1082 1.375

RG500- II 1.074
RG500+ II 1.291
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Figure 4.19.: Pressure ratio (p/pout) at t = 3× 10−5 s for different EOS models. Re-
produced from [52] with permission.
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is far less.
Table 4.5 gives an overview of the mass flow, the maximum and minimum T , p and ρ

and the maximum velocity u at t = 3.0× 10−5 s and x > 0. The mass flow for RG500
amounts to 13.36 g s−1 and to 12.9 g s−1, 12.06 g s−1 and 12.63 g s−1 for IG500A/B/C,
respectively. This is a deviation of 3.2 % to 9.7 % with the Sutherland formulations
showing the largest differences. The more the dynamic viscosity differs from RG500
upstream of the throttle, the greater is the difference in the mass flow. This suggests a
strong influence of the viscosity for the mass flow. Clearly, real gas effects influence the
flow behavior, whilst the influence of the viscosity modeling for ideal gas is only notable
within the throttle. In Figure 4.17 the mass flow over time for IG500C is compared to
RG500. The general trend is similar, however, at later stages the difference in mass flow
increases due to the compressibility.

Influence of pressure ratio to mass flow rate

A key value for the design of components is the mass flow rate. Therefore, the influence
of different pressure differences between the inlet and outlet is examined and the mass
flow rate over time are discussed. Here, the mesh from the subsonic jet was used to
reduce the computational costs, because the simulation time needed to be relatively long
to ensure converged mass flow rate. The investigated pressure ratios PR = pin/pout were
1.25, 1.67, 2.50, 2.86, 3.33 and 5.00 at a constant pin = 500 bar. Figure 4.21a shows
the mass flow rate over time for the different PR. At a PR = 1.25 the flow is fully sub-
sonic and the mass flow rate reaches a quasi-constant value at around t > 2.3× 10−5 s.
Similarly, at PR = 1.67 the mass flow rate converges to an almost constant value very
early compared to the higher pressure ratios. However, here the mass flow has increased
from about 10.5 g s−1 to 14.0 g s−1 for PR = 1.25 and PR = 1.67, respectively. For a
PR = 2.50 the mass flow rate rises very rapidly at first. After this first increase, the mass
flow rate continues to rise slowly until approximately t = 12.0× 10−5 s. At this time
the flow is not fully chocked, however, the limitation of the mass flow rate, i.e., the crit-
ical cross section, has moved from the throttle outlet to the throttle inlet. By increasing
the pressure ratio to PR = 2.86 and higher the mass flow rate becomes chocked and the
mass flow is not further increased with a higher pressure ratio. Similarly, Figure 4.21b
shows the average mass flow rate for the different operating points.

Influence of inlet pressure with constant pressure ratio

The influence of varying inlet pressures on the jet is studied, while maintaining a con-
stant pressure ratio between inlet and outlet, pin/pout. Figures 4.19d to 4.19f show the
pressure ratio for RG50, RG100 and RG500, respectively. The shock width of RG50

IINo normal shock present (W/D < 0.05).
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Figure 4.20.: Density [kg m−3] contours during the development of the supersonic jet
for IG500C. Reproduced from [52] with permission.
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Table 4.5.: Summary of the simulation results for the investigated cases
(t = 3.0× 10−5 s, x1 > 0).

T [K] p [MPa] ρ [kgm−3] w [ms−1]

Case ṁ [g s−1] max min max min max min max

RG500 13.36 353.5 164.6 19.14 1.905 160.7 34.22 865.1

IG500A 12.93 382.9 167.8 22.52 1.588 157.0 18.26 915.0
IG500B 12.06 339.7 165.4 20.71 1.554 147.3 18.00 917.8
IG500C 12.63 340.5 166.1 20.63 1.567 147.0 18.12 916.9

RG50 1.294 344.0 132.7 2.114 0.1436 16.27 2.128 864.7
RG100 2.690 353.1 124.3 4.028 0.2420 33.48 3.997 856.9

RG500- 15.15 298.7 179.1 16.52 2.717 182.6 38.92 812.6
RG500+ 11.85 399.3 163.5 22.75 1.798 144.7 26.88 913.4

is closest to the ideal gas cases. RG100 has the smallest normal shock, but it is fur-
thest downstream. A possible reason could be the low compressibility and the absence
of a phase change. RG500 shows the highest pressure increase across the shock. The
shock location starts to vary for the different cases, see Table 4.4. For many properties,
e.g., temperature or mass flow the trend from RG50 to RG100 cannot be extrapolated to
RG500. Since there is no phase change for RG50 and RG100 no latent heat of evapo-
ration is required. Additionally, viscosity and compressibility are significantly different
at pressures higher than 100 bar. The change in compressibility causes the mass flow
to be no longer proportional to the pressure (see Table 4.5). For RG100 and RG500 the
mass flow compared to RG50 is over- and under-proportional to pressure, respectively.
Further, Tmin is significantly lower for RG100 and RG50 than for RG500. The cases
with lower pressure experience no phase transition and therefore the temperature drops
further before the first shock.

Influence of temperature

The compressibility factor depends weakly on temperature at 500 bar. However, at
100 bar the influence is significant (see Figure 4.12a). Within the flow the gas in the
jet experiences a phase change in the RG500- and RG500 cases. The equation of state
must cover this two-phase region even though this occurs only in a small region.

Figures 4.19f to 4.19h show the pressure ratio (p/pout) at t = 3× 10−5 s for RG500,
RG500- and RG500+, respectively. The jet with the lower temperatures has a shorter
tip penetration, but an increased mass flow. For RG500+ the rarefraction wave, which
crosses the jet centerline before the first shock, is clearly present. At the position, where
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Figure 4.21.: Mass flow rate for different pressure ratios with a fixed pin = 500 bar.
Reproduced from [53] with permission.

the oblique shocks meet, no normal shock occurs for RG500-/+.
The higher Tmin for RG500 and RG500- compared to RG500+ is due to the phase

change. During the phase change the temperature change is limited. To illustrate the
thermodynamic path during the phase change, the RG500- at the location of the first
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4.2. Micro channel flow of a simplified direct gas injector

shock was analyzed. Fig. 4.22 shows temperature T , pressure p, speed of sound a,
Mach number Ma and vapor mass fraction x along the center line downstream of the
throttle exit. There the jet entered the two-phase region the most out of all cases and
therefore the effects are the clearest. For RG500- the slope, at which the temperature
decreases before the shock becomes shallow as soon as the medium is in the two-phase
region, i.e., with a vapor mass fraction x < 1. For the pressure the influence is less clear.
Further, the phase change limits the decrease of the speed of sound. Hence, the local
Mach number increases only marginally shortly before the shock position.

Case RG500- enters the two-phase region at a higher temperature; therefore, the heat
of evaporation is higher. Consequently, the temperature drop is limited most significantly
and Tmin is higher than for the other cases. Further, the simulation results suggest that the
phase change has a strong influence on the local Mach number and other flow properties.

4.2.4. Shock capturing and treatment of under resolved scales

In the present work, the discontinuous Galerkin method is used. To avoid Gibbs type
oscillations a FV subcell technique is applied [111]. To detect the affected DG elements a
indicator proposed by Persson and Peraire [92] is applied. This detection is independent
of the EOS approximation. Therefore, the shock capturing is only analyzed for the
RG500 case.

Figure 4.23 shows the indicator values and the FV elements for the developing RG500
jet (cf. Figure 4.15). At t = 1.0× 10−5 s (in Figure 4.23a) downstream of the bow shock
the values of the indicator are very low. The fluid is at rest and therefore no oscillations
are detected. The indicator is able to detect the instabilities nicely. Only occasionally
elements without shocks or strong gradients are detected. However, the tip vortex also
needs stabilization due to the lack of an explicit Subgrid Scale (SGS) model. Here,
the FV subcells increase the dissipation and represent a very simple implicit SGS model.
With this technique good agreement for similar flows of the supersonic jet with acoustics
was achieved [54]. For Figure 4.23b and Figure 4.23c the shocks and other instabilities
are detected. The flow becomes more turbulent and more FV elements are present to
stabilize under-resolved turbulent scales. At t = 1.0× 10−5 s (in Figure 4.23d) only
very weak shocks are present downstream of the throttle exit and therefore the majority
of the FV subcells are present in the shear layers of the jet.
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Figure 4.22.: Thermodynamic variables along the centerline at the first shock location
at t = 3× 10−5 s for RG500-. Reproduced from [52] with permission.
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0 x1/D 5

(a) t = 1.0 × 10−5 s

0 x1/D 5

(b) t = 1.5 × 10−5 s
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Figure 4.23.: Shock indicator value (top, with label) and FV elements (bottom, FV ele-
ments in black) for the developing real gas jet RG500.
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4. Influence of fluid properties on gas dynamics

4.3. Conclusion of the gas dynamics simulation

In this section the influence of real gas effects was assessed for 1D shock tube exper-
iments and 3D high Reynolds number supersonic jets. The simulations show a strong
derivation to the ideal gas implementation for high pressures and even small differences
at low pressures for non-noble gases.

From the shock tube experiment it was found that the simulations were thermody-
namically consistent with the analytical results for the isentropic relation. Further, for
the real gas approximation the results converged at low pressures and showed very little
difference. However, even at very low pressures differences between the ideal and real
gas approximation was observed.

In the present chapter, the effects of the used real gas modeling for the simulation
of methane jets were examined, e.g., on temperature, pressure and viscosity. Code val-
idation was carried out for a subsonic jet with a tabulated equation of state and good
agreement was found with the experimental data [89, 137].

Further, the development of the high pressure supersonic jet showed well-resolved
results and similar features could be identified as described in the literature [129]. The
position of the critical cross section, which limits the mass flow, changed during the
transient jet development. The mass flow rate increase occurred at different stages over
time: first a rapid increase due to initial flow and second a moderate increase as a result of
the adjusting to a quasi-steady state with constant mass flow. The Helmholtz free energy
EOS was compared with the ideal gas formulation. It has been shown that the flow
structure, e.g., shock locations, were very sensitive to the modeling of the viscosity in
the present simulation. Therefore, for high pressure jets, the dependence of pressure on
the viscosity cannot be neglected, i.e., the standard Sutherland formulation is inadequate
here. At flow regions with higher pressures real gas modeling was required. The mass
flow and other fluid properties showed significant differences for the different EOS and
the dynamic viscosity modeling. The importance of the modeling of real gas properties
was demonstrated, e.g., Z and µ(p, T ). Additionally, the pressure level of the inlet and
outlet were examined, while the pressure ratio was kept constant for all supersonic jets.
A strong influence was found for a number of flow features, e.g., the shock location and
width. Further, the influence of the inlet and outlet temperature was analyzed. It was
found that for cases with temperatures 250 K and 300 K a phase change occurred, while
for 350 K the fluid remained slightly above the evaporation line. The transition of phases
before the first shock had a strong influence on the thermodynamic properties, e.g., Tmin.

To summarize the key findings of the present chapter:

• The proposed tabulated EOS representation is a flexible and efficient alternative
for an analytical real gas EOS and allows for multi-phase EOS

• The simulation results suggest that real gas effects strongly influence flow fea-
tures, e.g. mass flow, shock location and pressure ratio
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4.3. Conclusion of the gas dynamics simulation

• The position of the two-phase region changed during the stages of the jet devel-
opment
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5. Cavitation

The following chapter gives further insights into the behavior of the applied method, i.e.,
dense gas approach with the thermodynamic equilibrium model. First, bubble collapses
are investigated in a detailed parameter study. The focus is here to validate and verify
the used framework and gain a better understanding of the implication towards more
complex flows. Such complex flows, e.g., micro channel flow, are investigated in the
second part of the chapter. Here, the high potential of the high-order DG scheme for
cavitational flows is shown.

5.1. Single bubble collapse

The thermodynamic process, which occurs during cavitation can be very complex. To
get a better understanding on the phenomena itself and its representation by the applied
methodology a detailed analysis of its fundamentals is necessary. Therefore, a single
bubble collapse is analyzed in detail both in 2D and 3D. The investigations included
without limitation: a comparison of vapor bubbles and bubble cloudsI, validation to
analytical and experimental data for collapses with and without wall interactions, grid
dependency study and comparison of different cross flow velocities.

5.1.1. Numerical setup

The computational domain is large enough so no reflection of the rarefaction wave inter-
acts with the bubble. For both 2D and 3D cases the far field boundary condition is set to
weakly imposed Dirichlet, so entrainment is possible. However, the computational do-
main is chosen large enough so only very little entrainment occurs within the simulation.
The viscose effects are neglected at the wall. The computational meshes surrounding the
bubble event are uniform and grid stretching is only applied in the far-field. For the 3D
case, hanging nodes are introduced in the far field to reduce the computational costs. The
different meshes are characterized by then number of DOF which discretize the initial
bubble in one axis, i.e., lengthcell edge = Dbubble/DOF.

Figure 5.1 summarizes the notation of the numerical setup. The simulation is initial-
ized with the maximum bubble radius R0 = 1× 10−3 m and r(t) denotes the bubble

IThe term bubble cloud is used when the fluid is in a vapor mixture state, i.e, 0 < x < 1. Due to the averaging
of the homogeneous state model the single small vapor bubbles are approximated as a vapor mixture region,
here called bubble cloud.
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5. Cavitation

radius which is a function of time. For a collapse without a wall the initial wall distance
H and collapse distance h are meaningless. The cross flow velocity is denoted as u0 and
is set to 0 unless otherwise mentioned.

5.1.2. Spherical vapor bubble versus spherical bubble cloud collapses

As discussed in Section 3.6.1, pure gas in a liquid flow due to cavitation rarely occurs
with the HEM. Averaging the states over a finite volume can result in a corresponding
state within the two phase region. In the literature values for the vapor volume fraction
range over a wide spectrum, e.g., in Egerer et al. [36] α = 1× 10−4, Hickel et al. [55]
α = 1× 10−5, Mihatsch et al. [82] α = 1× 10−1 and Wei et al. [135] α = 0.9. Sim-
ilarly, Ganesh et al. [44] showed experimentally that the volume fraction, α, can range
over a wide spectrum. Since all these states within the two phase region are mixtures or
cloud cavitation, a comparison of a vapor bubble collapse and bubble cloud collapse is
carried out.

First, a 2D simulation of a collapsing bubble without a wall is performed. Here only
two different initial states are chosen, i.e., a vapor bubble and a bubble cloud with x =
1× 10−5 respectively α = 0.0798. The initial states are summarized in Table 5.1.

To avoid unintentional interactions between DG and FV only the FV scheme is used
for this case. The LF Riemann solverII is used in a combination with a low CFL number,
CFL = 0.1, to maintain a stable simulationIII.

The time t is non-dimensionalized by the collapse time tcol

t∗ =
t

tcol
(5.1)

The time of the 2D collapse for the vapor bubble is tcol,VB = 6.593× 10−5 s and for
the bubble cloud is tcol,BC = 1.618× 10−5 s. This is a difference for the collapse time
of a factor of more than 4. By neglecting the surface tension and gas inside the bubble
Equation (2.41) can be written as

pB(t)− p∞(t)

ρl
= r

∂2r

∂t2
+

3

2

(
∂r

∂t

)2

+
4µl

ρlr

∂r

∂t
. (5.2)

In Figure 5.2 a collapse for a 2D simulation is presented. The purpose is here to
verify the results achieved with a 2D setup. Here, three different cases, Bubble Cloud
(BC), Vapor Bubble (VB) and a VB at T = 293 K are compared to Equation (5.2). The
time at the abscissa is normalized with the collapse time of each case. The general trend
matches the analytical Equation (5.2). The difference between the different temperatures

IIFor the bubble cloud case only the LF is able to remain stable.
IIIFor the bubble cloud case a CFL = 0.9 would have been possible. However, it is set to the same as for the

vapor bubble to remain consistent.
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5.1. Single bubble collapse

wall

initial bubble
w0

R0r(t)

H
h

collapse

Figure 5.1.: Schematic of a initialization of the bubble collapse simulation, where r(t)
denotes the bubble radius over time, R0 = r(t = 0) the initial bubble
radius, H the distance of the initial bubble center to the wall, h the collapse
distance to the wall and w0 the cross flow velocity.

Table 5.1.: Initial states of spherical vapor bubble and spherical bubble cloud collapses.

far field∞ vapor bubble (VB) bubble cloud (BC)

ρ(t = 0) [kg m−3] 985.2 0.0989 906.2
T (t = 0) [K] 330.0 330.0 330.0
p(t = 0) [Pa] 1.000× 106 1.500× 104 1.721× 104

is only marginal. Compared to the analytical equation the curve is slightly lower and
consequently not as steep shortly before the final collapse. For the bubble cloud, i.e.,
the initial state is in the two-phase region, the curve is lower than for the vapor bubble.
Concluding for the comparison of the 2D simulation, the results compare well with the
analytical equation. However, the observed difference is might partly be due to the
reduction in dimension.

Figure 5.2 shows the collapse of a 3D vapor bubble in comparison with different
Rayleigh-Plesset equations. The initial states correspond to VB in Table 5.2. The ab-
scissa is time in micro seconds and the ordinate is the dimensionless bubble radius. The
constant k in Equation (2.41) denotes the thermal effects of the air within the bubble, i.e.,
k = 1.4 is adiabatic and k = 0 is for no thermal effects. The simulation results agree
well with both versions of Equation (2.41). Due to the lack of desolved gas the bubble
collapses in the simulation until it completely vanishes. Compared to Equation (5.2)
the duration of the collapse in the simulation takes longer. Equation (5.2) represents the
simplification of the HEM best. However, in the simulation thermal effects of the liquid
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Figure 5.2.: Radius for the 2D collapse of a bubble cloud, a vapor bubble and Rayleigh-
Plesset Equation (5.2).

and the gaseous phase are considered. This and the general derivation of the Rayleigh-
Plesset equation therefore might lead to different results. Generally, the agreement of
the simulation is very good and is able to represent the collapse dynamics.

In the following, the change in density, temperature, pressure, velocity and sound
speed, from r = 0 to 2 R0 are discussed for the bubble cloud and the vapor bubble
simulation in 2D. Figure 5.4 shows the results for the bubble cloud at different times.
The density, ρ, at t∗ = 0.0 the initial jump across the bubble cloud interface is present.
During the collapse of the interface, i.e., the position where the ρ reaches the initial
outside state, moves towards the center. The density at the center also remains almost
constant during the collapse before the interface reaches the center. Further, the jump
between the inner and the outside condition remains very steep, only across a few DOF.
At the collapse time t∗ = 1.0 the density increase is clearly observable.

For the temperature only three different stages are present, before, at and after the
collapse. Before the collapse the temperature remains almost unchanged until the col-
lapse. At the moment of collapse the temperature rises by about 2 K. After the shock the
temperature in the plotted area has risen slightly compared to the initial state. Overall,
the effects in temperature are relatively small; for a collapse with non-condensable gas
the thermal effects would be expected to be significant.

Due to the initial states a rarefaction wave travels from the interface in outward di-
rection and results in a rapid decreases in pressure. The interface pressure has dropped
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Figure 5.3.: Radius for the 3D collapse of the spherical vapor bubble, for the simula-
tion the HLLC Riemann solver was used and compared to Rayleigh-Plesset
equations.

by about an order of magnitude at t∗ = 0.4. During the collapse a shock front steepens
and the pressure rises as a consequence. The pressure information, however, can only
travel in outward direction and adjusts to almost the initial pressure at t∗ = 0.9. At the
collapse the pressure increases significantly. The inward impulses are being transformed
into pressure at their stagnation point in the collapse center. After the collapse the pres-
sure shock wave travels outwards and results in a generally higher pressure compared to
the initial state.

For the velocity positive values denote an outward and negative value an inward di-
rected velocity. The velocity at the interface is always highest and increases during the
collapse. At the collapse time the velocity decreases, until the flow reaches the stagna-
tion point. After the shock a small outwards velocity is observed.

The speed of sound has the biggest jump across the interface. The general trend is
very similar to the density with the difference that it decreases even a bit further at the
interface on the two-phase side. Since the speed of sound is much smaller than the
velocity of the phase interface, the states inside and outside of the interface are almost
hydraulically decoupled. This is observable for all investigated properties.

In Figure 5.5 the initial state of the bubble is fully in the gaseous state. Compared to
the previous simulation, the jump of the density becomes steeper during the collapse after
an initial drop. Contrary to the bubble cloud the density at the bubble center increases
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Figure 5.4.: Collapse of the spherical bubble cloud along x-axis for different times.

before the interface reaches the center. The temperature in the center increase before
the actual collapse. At the collapse the temperature rises far more than for the bubble
cloud and afterwards a thermal wave is observed in the results. The pressure is similar in
its general trend, but the center is influenced before the collapse occurs. The velocities
towards the center are about an order of magnitude higher. The speed of sound shows
that for the initial state both phases are not fully hydraulically decoupled. However, due
to the inwards traveling shock wave, the saturation pressure is reached. This leads to a
rapid decrease in speed of sound and then a hydraulic decoupling of the inner and outer
side of the interface occurs.

With the here assessed collapse of the bubble cloud and vapor bubble, which are essen-
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Figure 5.5.: Collapse of the spherical vapor bubble along x-axis for different times.

tially a 2D multi-phase numerical shock experiment, different effects are identified and
need to be considered. First, in an experiment of a bubble collapse an initial condition in
the two-phase state is very hard to obtain. To the author’s knowledge no experiment with
a isolated single spherical bubble cloud has ever been performed. Therefore, the bubble
cloud state is an artificial numerical experiment for a single bubble collapse. However,
within a complex simulation a collapse of a bubble cloud is fairly common and the re-
sults help to gain a better understanding of the process. The main finding is here that the
inner state of the collapsing bubble is almost fully decoupled from the outside during the
collapse.
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5.1.3. Grid dependency and pressure variation

For the 3D case a grid independence study is performed. The coarsest mesh has 16
DOF in one axis of the initial bubble cloud. The mesh is then refined by a factor of two
for each dimension. The finest mesh has 256 DOF across the initial bubble cloud with
1.510× 108 DOF in total.

Figure 5.6 shows the maximum pressure pmax for different far field pressures p∞ =
2 bar, 20 bar, 50 bar and 100 bar. For the far field pressure p∞ = 2 bar and 20 bar
the grid dependency study is carried out up to 256 DOF across the initial bubble radius
and for p∞ = 50 bar and 100 bar up to 128 DOF. For the latter, the maximum pressure
would have exceeded the fluid data and extrapolation with an uncertain error would
have been needed. Therefore, only the extrapolated pmax is shown without a simulation
point. The mass fraction is x = 1× 10−6. The simulation results for the maximum
pressure for all far field pressures suggest a linear correlation with DOF per axis. A
higher far field pressure results in a higher maximum pressure compared to the same
resolution. The here preformed mesh resolution study shows that no grid independent
can be achieved. Schmidt et al. [105] found that for a vapor bubble cloud the maximum
pressure correlates linearly with the DOF per axis, which coincides with the present
findings.

The resolutions for a single bubble collapse are very high and therefore are out of
scope for more complex simulations, e.g., micro channel flow in Section 5.2. For a
specific numerical scheme a correlation could be developed to normalize the maximum
pressure to compare different designs. This way different designs could be compared
qualitatively even on different meshes, i.e., resolution of the smallest cell for a collapse.

5.1.4. Bubble collapse in the proximity of a wall

The impact of a cavitation collapse of a single bubble has been studied for many years,
theoretically, experimentally and numerically. As discussed in Section 3.6.3 the applied
numerical scheme introduces a number of limitations. Therefore, it is important to verify
the results with experiments or analytical solutions. For a collapse close to a wall, the
analytical results of Plesset and Chapman [96] and the experimental results of Lauterborn
and Bolle [72] are used.

A schematic of the results obtained by Plesset and Chapman [96], which are in great
agreement with experiments is shown in Figure 5.7. This schematic is used to verify
the general behavior of the bubble collapse close to a wall. It has to be noted, that for
the simulation setup the bubble is moved closer to the wall than in the schematic. The
key features of the bubble dynamics, which are of interest are the movement towards
the wall, the narrowing of the bubble sides, the flattening of the bubble top and the
generation of a jet.
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Figure 5.6.: Mesh resolution study with different far field pressures with a line of best
fit. The results for p∞ = 50 bar and 100 bar are extrapolated from the best
fit and not simulated for 256 DOF.

wall

initial bubble

Figure 5.7.: Schematic of a bubble collapse close to a wall, cf. [96].

Grid convergence

For a bubble collapse without wall effects no independence of the grid resolution for the
used method is present, i.e., the pressure increases with finer resolutions. A collapse of
a bubble close to a wall is now investigated on different grids. Here, a far field pressure
of 10 bar is used. The other initial conditions are the same as for the grid convergence
without a wall, cf. Section 5.1.3. The initial bubble position is at a distance slightly more
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than one radius to align the initial bubble center with a grid element center.
In Figure 5.8 the maximum collapse pressure for four different grid resolutions are

shown. Similar to before, pmax increases significantly with an increase of DOF per bub-
ble. Compared to the collapse without a wall the slope might decrease with larger DOF.
The general trend remains and grid independence of the maximum pressure is not found.

To asses the possible damage of a component the corresponding pressure shock wave
at the wall tends to be a measure to predict the damage potential. Therefore, the results
for the maximum wall pressures are presented in Figure 5.9. Similar to the maximum
collapse pressure the maximum wall pressure increases at first with an increase in res-
olution. However, the two finest grid show almost identical pressures. These findings
agree with data from the literature [105] and therefore simulations on even finer grids
are not carried out. Nonetheless, in simulations of components collapses of cavitation
are commonly simulated with less local resolutions compared to the current simulation.
Consequently, a grid independence is unfeasible for most cases within such simulations.

Pressure evolution during collapses

Figure 5.10 shows the wall pressure at the center of the bubble during the collapse. The
most coarse grid shows a relatively flat plateau of the peak pressure. The grid with 32
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Figure 5.8.: Maximum pressure over the DOF across the initial bubble in each spatial
direction for different grid refinements at T = 330 K and p = 10 bar,
cf. [81].
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Figure 5.9.: Maximum wall pressure over the DOF across the initial bubble in each spa-
tial direction for different grid refinements at T = 330 K and p = 10 bar,
cf. [81].

DOF already shows a sharp peak and a second smaller collapse afterwards. The time of
the maximum peak is later than for the coarser grid. The two finest grids almost align
around the peak and are only slightly later than for the 32 DOF grid. The peak values
increase and the peak shape is even sharper. The only distinct difference for the two
finest grids is the second smaller peak. In the simulation on the finest grid it occurs
slightly earlier and is stronger than for the other one. Nonetheless, even for the pressure
evolution at the wall the results almost converge for the two finest resolutions.

Mass fraction variation for collapses close to a wall

As aforementioned, in a simulation with the HEM the collapse of cavities can occur at
different vapor states. It can range from only very low vapor mass fractions up to fully
gaseous bubbles at very low pressures. The different initial states are summarized for the
Vapor Fraction Study (VFS) in Table 5.2. Note that vapor mass fraction is used as vari-
ation value, however, the vapor volume fraction is also used for comparison. Therefore,
in the notation those two fractions are not distinguished. This case study is performed in
2D and the initial bubble is discretized with 72 DOF for each axis. For the 2D case only
one element is used in z-axis and the impulses are set to 0 kg m s−1. The resolution is
chosen based on the results on a grid study for the 2D case. With this mesh all relevant
effects are present and grid refinement only let to an increase in maximum pressure.

First, bubble shapes for the different cases are compared to Figure 5.7. The results
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Figure 5.10.: Wall pressure over time for different grid refinements at T = 330 K and
p = 10 bar, cf. [81].

Table 5.2.: Initial states for vapor fraction parameter study in 2D.

ρ [kg m−3] T [K] p [Pa] x α

far field 985.2 330.0 1× 106

VFS 1 906.2 330.0 1.721× 104 1× 10−5 0.07979
VFS 2 527.5 330.0 1.721× 104 1× 10−4 0.4644
VFS 3 101.8 330.0 1.721× 104 1× 10−3 0.8967
VFS 4 11.23 330.0 1.721× 104 1× 10−2 0.9887
VFS 5 1.135 330.0 1.721× 104 1× 10−1 0.9990
VFS 6 0.1136 330.0 1.721× 104 1 1.000
VFS 7 0.09891 330.0 1.500× 104

VFS 8 0.06584 330.0 1.000× 104

are shown in Figure 5.11. Note that for the different cases different times for the density
snapshot are chosen. Due to the different inertia forces the collapse times vary strongly
between the cases. Therefore, the bubble shape is illustrated shortly before the collapse,
whilst the shape is still adequately represented on the chosen mesh. The initial bubble
shape is represented by the dashed lines and the thick gray line at the bottom represents
the wall. The density ranges from the initial state inside the bubble to the density in the
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5.1. Single bubble collapse

far field and is colored from black to white, respectively.
In Figure 5.11a the bubble becomes very narrow. The top is flatter than the bottom,

however, an inward curvature at the top is not present. The collapse duration is shorter
than for higher x. For this state the initial speed of sound a is the lowest of all initial
cases. From Figures 5.11b to 5.11d the collapse duration increased and the top flattened
until an inward curvature is created. In Figure 5.11d a jet formation similar to Figure 5.7
is observed. For the cases VFS 5 to VFS 7 in Figures 5.11d to 5.11g, respectively,
the inward curvature becomes more dominant. Additionally, the bubble seems to split.
This is a non-physical effect which does not occur in experiments. As shown later, this
is due to the LF Riemann solver and is not present with the HLLC Riemann solver.
In Figure 5.11h no bubble separation is observed. However, the inward curvature is
less than for the former cases. For this vapor fraction study the bubbles move more
downwards with increasing x or a reduction in bubble pressure.

Further, the position and the intensity of the final collapse is analyzed. Figure 5.12
illustrates the position and the value of the maximum pressure for different initial con-
ditions. Table 5.3 summarizes these results. The simulation results suggest that with in-
creasing proportion of the vapor in the mixture region the maximum pressure increases
and the collapse moves closer to the wall. However, for an initial condition of the bubble
outside of the wet steam region and fully in the gaseous regime the maximum pressure
decreases. The collapse continues to move towards the wall with the decreased density
of the initial condition. Generally, the results indicate that the collapse pressure and
movement of the bubble strongly correlate with the vapor volume fraction.

Table 5.3.: Result summary for vapor fraction parameter study in 2D.

α pmax [bar] tcol [s] h [m]

VF 1 0.07979 0.4423× 103 ≈ 2.2× 10−5 3.955× 10−4

VF 2 0.4644 1.195× 103 ≈ 6.0× 10−5 3.820× 10−4

VF 3 0.8967 1.456× 103 ≈ 8.8× 10−5 2.845× 10−4

VF 4 0.9887 1.455× 103 ≈ 9.3× 10−5 2.570× 10−4

VF 5 0.9990 1.463× 103 ≈ 9.4× 10−5 2.570× 10−4

VF 6 1.000 1.486× 103 ≈ 9.4× 10−5 2.570× 10−4

VF 7 1.399× 103 ≈ 9.4× 10−5 2.155× 10−4

VF 8 1.443× 103 ≈ 9.4× 10−5 2.155× 10−4

Figure 5.13 compares the collapse with the LF and the HLLC Riemann solver for
the VFS7. The simulation results for the LF Riemann solver indicate a separation of
the bubble. As discussed prior, this effect has not been published in the literature and
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(a) VFS 1 at t = 2.1 × 10−5 s (b) VFS 2 at t = 5.8 × 10−5 s

(c) VFS 3 at t = 8.5 × 10−5 s (d) VFS 4 at t = 9.0 × 10−5 s

(e) VFS 5 at t = 9.0 × 10−5 s (f) [VFS 6 at t = 9.0 × 10−5 s

(g) VFS 7 at t = 9.0 × 10−5 s (h) VFS 8 at t = 9.0 × 10−5 s

Figure 5.11.: Cavitation bubble deformation for different initial states shortly before the
final collapse; the initial bubble location is indicated by the dashed line
and the wall as solid line on the bottom.
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Figure 5.12.: Maximum pressure and collapse distance from the wall for the vapor frac-
tion study in 2D.

therefore the representation of the collapse with the LF is inadequate. Nonetheless, an
inward movement of the top of the bubble is observed. On the other hand, the HLLC
does not show a bubble separation. The interface is smoother than for the LF and a
stronger inward movement is present. The simulation results are similar to [2] which
used a sharp interface technique. The bubble shape in the present work is slightly wider
than for Plesset and Chapman [96]. The experimental results from Vogel et al. [127]
suggested a wider bubble shape than from Plesset and Chapman [96]. Therefore, the
results with the HLLC Riemann solver are within the range of the results of the former.

Influence of wall distance on collapse behavior

In Figure 5.14 the maximum collapse pressure for distances wall differences is shown.
For H/R0 = 0.7 the bubble is partly ”inside” the wall, hence the initial volume is
smaller. This and the strong wall interaction cause the lowest collapse pressure. Moving
the initial bubble away from the wall the maximum pressure increases and reaches a
peak at H/R0 = 1.5. Further away from the wall the peak pressure decreases and
a minimal value for the peak is reached at about H/R0 = 2.2. After this point the
pressure increases again.Brujan and Matsumoto [24] found that the shock wave pressure
with a fixed distance to their focus experiences a minimum value for a finite distance
of the initial bubble. In the present work, such a minimal value is present, however,
the initial wall distance is different. This might be due to the initial condition of the
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5. Cavitation

(a) LF at t = 7.0 × 10−5 s (b) HLLC at t = 7.0 × 10−5 s

(c) LF at t = 8.5 × 10−5 s (d) HLLC at t = 8.5 × 10−5 s

(e) LF at t = 9.0 × 10−5 s (f) HLLC at t = 9.0 × 10−5 s

Figure 5.13.: Comparison of LF and HLLC Riemann solver for a bubble collapse close
to a wall. The initial bubble interface is dashed.
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5.1. Single bubble collapse

simulation, e.g., starting the simulation with the maximum bubble radius and the initial
state causing a rarefaction wave.

Figure 5.15 shows the maximum wall pressure in the simulation for different initial
wall distances at a far field pressure of 1 bar for the 3D case. In this simulation the
FV elements are triggered with the Persson sensor. Therefore, the pressure waves are
transported with the higher-order scheme. For a wall distance of H/R0 = 0.7 the
collapse occurs directly at the wall. Hence, the corresponding pressure is highest. With
increasing distance the pressure signal at the wall is reduced. It has to be noted that
the initial state corresponds to VFS1 and therefore, no impinging jet could form for the
smaller wall distances.

Further, the collapse time is strongly influenced by wall distance. Figure 5.16 shows
the collapse time for different wall distances. For the initial bubble position H/R0 =
0.7 the collapse occurs in the simulation at t = 10.6× 10−6 s. With increasing wall
distance the collapse time decreases and approaches the duration time without a wall
t = 8.5× 10−6 s. The longer collapse time close to the wall is due to inwards flowing
fluid. The wall reduces volume from which fluid can flow into the ”gap”, i.e., the volume
of the bubble, and therefore the inertia of the system is higher.

Influence of fluid pressure on the maximum pressure

Figure 5.17 shows the maximum pressure at the wall for different far field pressures.
The initial wall distance is set to H/R0 = 1. Similar to the maximum pressure without
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Figure 5.14.: Maximum pressure in the simulation for different initial wall distances at
a far field pressure of 10 bar for the 3D case, cf. [81].
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Figure 5.15.: Maximum wall pressure in the simulation for different initial wall dis-
tances at a far field pressure of 10 bar for the 3D case, cf. [81].
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Figure 5.16.: Collapse duration for different initial wall distances at a far field pressure
of 10 bar for the 3D case, cf. [81].

a wall (cf. Figure 5.6), the maximum pressure at the wall strongly correlates with the far
field pressure. With the increasing pressure outside of the wall, the driving forces of the
collapse increase and with it the corresponding impulses of the collapse.
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Figure 5.17.: Maximum wall pressure for different far field pressures at a wall distance
of H/R0 = 1 for the 3D case, cf. [81].

Influence of cross flow velocity on the bubble collapse

Whilst the previous simulations allow for further insights into the behavior of the applied
simulation scheme and bubble dynamics, in a component the fluid is rarely motionless.
Therefore, the influence of a cross flow is investigated. The 2D setup for a spherical
vapor bubble, cf. VFS 7 in Table 5.2, close to a wall is used. The initial bubble position
is moved on the x-axis two bubble radii upstream of the cross flow. The cross flow
velocity is varied to w0 = 0 m s−1, 1 m s−1 and 10 m s−1.

In Figure 5.18 the maximum pressures during the simulation at each mesh element for
the different cross flow velocities are presented. For the case with 0 m s−1 a maximum
pressure of 1261 bar is achieved in the simulation, see Figure 5.18a. Due to the afore-
mentioned movement of the initial bubble position an asymmetric collapse in the very
late stages occurs. This asymmetry results in an asymmetric maximum pressure distribu-
tion. For a symmetric case a lower maximum pressure would be expected. Nonetheless,
two separate collapse regions were identified in the simulation.

By introducing only a slight cross flow velocity ofw0 = 1 m s−1 the collapse behavior
changes completely in the simulation (see Figure 5.18b). Hence, the symmetry is broken
and only a single collapse location is identified. Further, the maximum pressure increases
significantly to 2162 bar. This suggests, that only a slight disturbance due to a cross flow
velocity influences the collapse significantly and the potential loads on a surface.

By increasing the cross flow velocity even further to w0 = 10 m s−1 the maximum
pressure distribution changes as presented in Figure 5.18c. The location of the high
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5. Cavitation

pressure region moves further downstream of the cross flow due to the increased cross
flow velocity. The simulation results suggest, that two locations with high pressure are
present and the maximum pressure increases to 5512 bar.

In Figure 5.19 the density is presented for the cross flow velocity of w0 = 1 m s−1.
A difference compared to w0 = 0 m s−1 is the collapse time. With a cross flow the
collapse occurs faster in the simulation. Further, the shape changes drastically. At t =
67× 10−6 s in Figure 5.19a the top of the bubble seems to move slower than the cross
flow and the top right side moves inwards. In Figure 5.19b an even stronger inward
movement is observable. The collapse introduces a spin on the bubble, which becomes
more clear in Figure 5.19c. Here, a tail of the bubble forms. The dynamics of the bubble
collapse are very fast at that time and the tail becomes thinner until the resolution of
the simulation is not able to represent it. At t = 80× 10−6 s in Figure 5.19d the tail
vanishes and the shape resembles a half circle. The spin of the collapse results in a
narrow ellipsoid shape shortly before the collapse as presented in Figure 5.19e. Hence,
the whole process of the collapse is very dynamic and a representation of these dynamics
might be very challenging for other simulations, e.g., micro channel flow.

The effects described prior for the cross flow velocity of w0 = 1 m s−1are more dom-
inant with a velocity of w0 = 10 m s−1. Figure 5.20 shows the density during the
collapse. The tail of the bubble is stronger than for the slower cross flow. The spin of the
bubble is also stronger and leads to a kidney shaped bubble shortly before the collapse.
The collapse duration is shortest and the corresponding shock wave is strongest. There-
fore, the results indicate that with an increasing cross flow velocity the damage potential
of cavitation might increase.

Figure 5.21 shows the wall normal velocity shortly after the collapse for the different
cross flow velocities. For w0 = 0 m s−1 the classical impinging jet is present. The cross
flow introduces a spin, which increases the maximum velocity towards the wall. With
w = 10 m s−1 the collapse center moves notably downstream and spinning movement
becomes very strong. Due to the spinning the velocity field varies from the classical
impinging jet.

Voß investigated bubble collapses inside a cross flow numerically and experimen-
tally [128]. A quantitative comparison shows a tilt of the bubble and variation from the
classical jet directly towards the wall. This is similar to the findings of the present work.
However, for the experiment the bubble growth is also in the cross flow and the bubble
deformed before the maximum radius R0. Therefore, a quantitative comparison is not
possible.

Multiple bubbles

In the following, the collapse of multiple bubbles is assessed. Here, two bubbles of
the same size and the same distance to the wall are investigated. Figure 5.22 shows a
schematic of the initial state of the simulation. The distance to the wall isH/R0 = 2 and
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Figure 5.18.: The maximum pressure in bar for each DOF for bubble collapses with a
cross flow.
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Figure 5.19.: Density for a cross flow velocity of 1 m s−1.
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Figure 5.20.: Density for a cross flow velocity of 10 m s−1.
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Figure 5.21.: Velocity vertical to the wall, w2 [m s−1], for different cross flow veloci-
ties.
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the initial bubble radius R0 = 1× 10−3 m. The distance of the two bubbles is denoted
with D and varies from D/R0 = 1 to D/R0 = 5 in the following.

wall

initial bubbles

R0

H

D

Figure 5.22.: Schematic of a initialization of the simulation with two vapor bubbles.

Figure 5.23 shows the maximum wall pressure, which occurs for two vapor cloud
bubbles for different distances between them. The pressure ranges from 2.6× 106 Pa to
3.04× 106 Pa for the different distances. Therefore, the influence on the maximum wall
pressure is rather small. The bubble influence each other strongly at closer distances,
e.g., deformation or horizontal movement. However, this has only little influence to
the wall pressure. Therefore, the simulation results suggest, that the interaction of the
bubbles of this isolated case has therefore negligible influence for a potential surface
damage.
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Figure 5.23.: Maximum wall pressure with two vapor bubbles for different distances
between them and a fixed distance to the wall H = 2, cf. [81].

5.2. Micro channel

The micro channel flow is a widely used test case to validate simulation results with
cavitation involved [108]. For the flow through the micro channel experiences many
different temporal and spatial scales. For example, the pressure wave velocity, i.e, local
speed of sound, within a two phase region is very slow, i.e., less than 1 m s−1, and
reaches values up to 1400 m s−1 in the liquid phase. Further, the turbulent vortexes
generated at the channel exit are orders of magnitudes larger than in bubble collapses.
From this complexity arise many challenges, one is the representation of EOS.

5.2.1. Numerical setup

For the simulation of the micro channel with water a computation domain with an inlet
and an outlet with sufficient distance to the narrowing is used, see Figure 5.24. The
narrowing has a height of 0.3× 10−3 m, a depth of 0.3× 10−3 m and a length of
1× 10−3 m. At the outlet a damping sponge is used to avoid non-physical reflections.
All walls are defined with slip.

For the simulation two different grids are used (Figure 5.25). Both grids have the
same baseline grid and are refined in the narrowing of the micro channel. The coarse
grid is refined by one in the area around and in the narrowing and by a factor of two at
the upper and lower walls of the narrowing. The refined area of the coarse grid is shown
in Figure 5.25a. The coarse grid has 1.070× 105 elements and with the applied order
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inlet
outlet

refinement area
narrowing

Figure 5.24.: Computational domain of the micro channel, color scales denote the re-
finement levels for the medium grid.

6.845× 106 DOF. The fine grid is further refined as is shown in Figure 5.25b. It has
6.304× 105 elements and with the applied order 7.881× 107 DOF. A spatial order of
4 for the coarse grid and 5 for the fine grid is used. For this grid the leading and trailing
edge of the narrowing are shown in Figure 5.25c. The complete area close to the wall is
refined so that the cavitational areas are well resolved in the simulation. Due to curvature
of the leading edge and the importance of this area the mesh quality in this area is very
important for the simulation. As illustrated in Figure 5.25c the quality of the mesh is
very good.

The inlet conditions are pin = 3× 107 Pa and Tin = 330 K and the outlet conditions
are pout = 1× 107 Pa and Tout = 330 K. The computational domain is initialized
with the outlet conditions. This leads to a non-chocked operating point with moderate
cavitation.

Stabilization with equation of state evaluation

So far either a fully turbulent flow (Section 4.2) or rapid phase transitions (Section 5.1)
have been discussed in the present work. In the micro channel both challenges occur at
the same time. As a consequence the simulation with the introduced setup is more unsta-
ble and leads to unphysical states, e.g., negative density. These instabilities occur even
within the TVD FV sub-cell scheme. Therefore, additional stabilization is necessary to
allow for the simulation of the micro channel flow.

In the current work, density and temperature are limited. These two thermodynamic
variables are also the basis of the used Helmholtz free energy formulation, hence the
limitation is consistent for the equations of state and hysteresis for the EOS calculation
in reduced. It has to be noted, that due to the limitation of density the conservation of
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(a) Coarse grid (b) Fine grid

(c) Boundary layer resolution for the fine grid at the leading and the trailing edge

Figure 5.25.: Different simulation grids for the micro channel flow and detailed illustra-
tion of the boundary resolution of the fine grid (not the same scale).

mass is violated. However, the limitation values are set in a way that it is only activated
sparsely and the violation is kept to a minimum. Density and temperature are evaluated
prior to each access of the table, additionally the density is checked at the beginning of
each time step. If the values exceed limiting values, they are set to these limiting values,
i.e., isochoric or isotherm process. A T − ρ diagram helps to illustrate the changes
in pressure, see Figure B.2. In the current simulation, these values are set to ρmin =
1× 10−3 kg m−3, ρmax = 1300 kg m−3, Tmin = 290.0 K and Tmax = 1000 K. To
ensure that this limitation only changes the results as little as possible, the minimum and
maximum values for a number of simulation results in the complete computation domain
are checked. The maximum and minimal values are always lower and higher with a
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certain margin than the limitation values, respectively. This indicates that this limitation
is mostly a stabilization mechanism and only sparsely manipulates the computational
results.

5.2.2. Numerical results

In the following, the simulation results for two different Riemann solvers, i.e., LF and
HLLC, are compared with each other and their difference to the experimental results of
Mauger et al. [77] are discussed. The focus is here on the vapor structures resolved in the
simulation and the experiment. Figure 5.26 shows the density at different time intervals.
Focusing first on the flow with the LF Riemann solver, the vapor region remains attached
during the entire simulation. Within the vapor region shocks travel upstream. This
upstream movement is very slow, i.e., approximately 2 m s−1, compared to the liquid
flow velocity. The liquid velocity ranges approximately from 200 m s−1 to 300 m s−1.
Such shock waves are illustrated in Figures 5.26a, 5.26c and 5.26e. The general dynamic
is observed as following: the vapor region travels downstream with a constant thickness,
after a certain point either shock waves move upstream or the complete vapor region
shrinks upstream. This pumping effect is also observed in the literature for cavitational
flows [76]. This process repeats itself, whilst the upper and lower side have similar but
independent dynamic. Beyond the trailing edge cavitation areas are only sparsely.

For the simulation with the HLLC Riemann solver this effect is also observed, how-
ever, due to additional instabilities the upwards traveling shock waves are disturbed.
Consequently, it cannot be illustrated as clearly as for the LF Riemann simulation. More
structures are present for the less dissipative Riemann solver and the vapor region width
is no longer constant. Larger structures detach from the wall and lead to very strong
collapses. The corresponding shock waves then travel upstream and disturb vapor areas.
This process is approximately an order of magnitude faster than the upwards traveling
shock waves within the vapor region. Hence, this is the dominating effect, which can be
observed from simulation results. Beyond the trailing edge far more vapor regions are
present than for the LF case. In the experiment of Mauger et al. [77] the vapor region is
also very dynamic and detaches from the wall. The general effects are captured by the
present simulation with the HLLC.

These results confirm the findings from the single bubble collapse, that the results with
the HLLC solver resemble experimental observations better. Therefore, for the finest
applied mesh the HLLC Riemann solver is applied. Due to the higher resolution most
turbulent scales can be represented by the DG scheme within the channel. Consequently,
the FV scheme is used only sparsely for the stabilization of under-resolved scales and is
mostly used in cavitation areas.

Figure 5.27 illustrates the shock capturing for the micro channel flow at high resolu-
tion. Figure 5.27a shows the density within the channel. In Figure 5.27b the zoomed in
view of the lower inlet edge is presented. Small and complex shaped cavitation zones
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shock wave

(a) LF at t = 1.26 × 10−4 s (b) HLLC at t = 1.29 × 10−4 s

shock wave

(c) LF at t = 1.37 × 10−4 s (d) HLLC at t = 1.30 × 10−4 s

shock wave

(e) LF at t = 1.42 × 10−4 s (f) HLLC at t = 1.31 × 10−4 s

(g) LF at t = 1.64 × 10−4 s (h) HLLC at t = 1.59 × 10−4 s

Figure 5.26.: Qualitative comparison of density [kg m−3] for the LF and the HLLC
Riemann solver for the micro channel flow with cavitation.

form close to the wall. Figure 5.27c shows the Persson indicator values. The colors are
from blue to white to red, where blue indicates a low value, white the FV trigger value
above which sub-cells are applied and red a high value of the indicator. The indicator
values reflect the cavitation zone very well, which results in a good usage of FV elements
(see Figure 5.27d).
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zoom

(a) Density

(b) Density (zoom)

(c) Presson sensor values (zoom)

(d) FV elements (zoom)

Figure 5.27.: Example of shock capturing for the micro channel flow with cavitation.
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In the following, a simulation with only FV elements and a simulation with DG are
compared. Note that for the calculation with DG the FV shock capturing is sparsely
applied where necessary. The DOF are 7.881× 107. The HLLC Riemann solver is
used for the flux calculation of both DG and FV elements. As shown in Hoffmann et
al. [57] and Sonntag and Munz [112] the used FV is theoretical 2nd order. For the DG
in combination with FV it is important to notice that for this case the DG is 5th order,
however, for FV dominated areas the discretization becomes 2nd order. Therefore, it is
important to use the FV shock-capturing as little as possible.

Figure 5.28 shows the pressure for a full FV simulation (Figure 5.28a) and a DG
simulation with only sparsely used FV shock-capturing (Figure 5.28b). Here, the reso-
lution within the micro channel is increased by a factor of two in each spatial direction
compared to Figure 5.26. Hence, the general structures are smaller even with a full FV
simulation, since the two-phase regions are always approximated with the FV scheme.
In Figure 5.28a small areas of low pressure are present, i.e., cavitation, which move
downstream and collapse at different locations. In this snapshot two shock waves are
observable at the lower part of the channel. The shock waves origin seems to correspond
to the cavitational area. A snapshot of the DG scheme is shown in Figure 5.28b. In com-
parison with the full FV simulation far more shock waves are represented and are more
clearly observable. Even small structures are resolved and shock wave reflections from
the wall are represented by the simulation. Overall, the DG scheme damps the waves far
less.

One of the parameters to asses potential surface or component damage in a simulation
is the maximum pressure at the surfaces. Therefore, the maximum wall pressure is
analyzed for the micro channel flow. Figure 5.29 shows the maximum wall pressure for a
time range from t =48× 10−6 s to 51× 10−6 s. The absolute maximum pressure value
at the surface is 15 139 bar. The maximum pressures at the leading edges are very small
and about one channel height downstream pressure peaks are observable. These peaks
range from several hundreds of bar up to a few thousand bar. The location corresponds
to the area around the collapses, i.e., the origin of the shock waves, from Figure 5.28b.
Due to the relatively short evaluation time of the maximum pressure single collapses can
be identified. By increasing the evaluation time it can be expected to obtain whole areas
of high maximum pressure.

In Figure 5.30 the cavitation zones are shown for the micro channel. The isosurfaces
for the vapor mass fraction x > 1× 10−7 are illustrated and the background surface
shows the pressure. Even though the geometry is only 2D, the structures in the simula-
tion are highly three dimensional. At the leading edges very thin cavitation zones span
over the complete depth of the channel in an almost 2D manner. More downstream the
cavitation zones or clouds grow and become less constant along the channel depth. At
the location of between 1 and 2 channel heights downstream of the leading edge struc-
tures become very chaotic and large. Downstream of these large clouds less cavitation
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5.2. Micro channel

(a) Full FV (2nd order)

(b) DG (5th order) with FV shock capturing (2nd order)

Figure 5.28.: Qualitative comparison of the pressure [bar] for a FV scheme and DG
scheme with FV shock capturing.

Figure 5.29.: Maximum pressure at the surfaces for t =48× 10−6 s to 51× 10−6 s in
bar; absolute maximum Pressure 15 139 bar.

107



5. Cavitation

zones are present. Consequently, most of them have collapsed at the location of the
maximum wall pressures cf. Figure 5.29.

Figure 5.30.: Iso surfaces for vapor mass fraction x > 1× 10−7 and background sur-
face with pressure.

5.3. Conclusion

In the current chapter simulations with DGSEM and the tabulated EOS for water have
been analyzed. In the first part single bubble collapses were investigated. The parameter
study involved: grid convergence, variation in initial vapor fraction, variation in wall
distance, different cross flow velocities and other parameters. The results of the bubble
collapse were compared to the Rayleigh-Plesset equation and showed good agreement.
In the literature even better agreement can be found, however, in the present study the
Helmholtz formulation was used. It takes thermodynamic properties into account, which
are neglected or simplified in the Rayleigh-Plesset equation; hence, the good agreement
is satisfactory. Further, the grid convergence study showed the same trend as state-of-the-
art simulations with other dense gas simulation codes [105], i.e., no grid convergence for
the maximum pressure in the domain. However, for the wall pressure a grid independent
solution was achieved.

In the second part, the proposed numerical simulation framework was applied to the
most the challenging case in the present work, a micro channel flow with cavitation.
With an additional stabilization method the stability of the simulation code was signif-
icantly improved for this type of flow. Two different Riemann solvers were compared,
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the LF and the HLLC. Both obtained stable results, however, the simulations with the
HLLC obtained more details of the flow. It has to be noted, that the HLLC in the used
formulation approximates the contact discontinuity wrong, however, the results were
still superior over the more dissipative LF.

Some of the key advantages of the applied methodology are:

• for good resolved simulation the Persson indicator works very efficiently,

• the pressure shocks are transported very well and

• the results were in good agreement with radius and deformations of bubbles close
to the wall during collapse.

The applied methodology aims to combine the advantages of both high-order schemes
and highly accurate EOS and to apply them to numerically very challenging flows.
Therefore, a few drawbacks were found with the current implementation:

• Problems at phase jumps even with pure FV

• Time steps became extremely small for micro channel flow

Whilst the first point remains to be investigated, the latter is due to the high speed of
sound in water and the very small grid cell.
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The present work demonstrated the efficient coupling of a high order numerical method,
DGSEM, and an accurate multiparameter EOS, based on the Helmholtz formulation.
The proposed framework was applied to gaseous and liquid flows with shocks and phase
changes. First, a 1D shock tube experiment was conducted and the results for ideal
and real gas approximations were compared. It was shown that for the chosen medium,
methane, great differences for most properties occur, e.g., propagation speed, tempera-
ture, density and pressure, at high pressures. At low pressures, which were commonly
regarded as ideal gas regime, the results for ideal and real gas almost coincide. However,
the temperature showed differences. Nonetheless, the differences would be negligible
in most cases at low pressures, but the real gas approximation was a necessity at high
pressures.

Based on these findings, the behavior of a supersonic jet with real gas approximation
was examined. First, the setup was validated with a subsonic real gas jet to the self-
similar jet theory. The simulation results agreed well with the data in the literature.
Following the validation a jet development at high pressure and supersonic conditions
were investigated and again compared to the ideal gas approximation. The development
of the jet showed a very dynamic flow behavior, for which slow adjustment processes
inside the narrowing are important. Further, the fluid experienced a phase change, due
to a temperature drop before the shock. Even though this phase change occured only in
a small area in the simulation, this effect should be represented by an appropriate EOS.
Comparing the real gas with ideal gas approximation it was clear that strong differences
were present. Lowering the pressure with a constant pressure ratio the real gas simulation
flow structures converged towards the ideal gas results, e.g., first shock width. It was
also demonstrated that the used Persson indicator was capable of detecting shocks and
instabilities due to aliasing.

In the second results chapter, the behavior of the used dense gas approach for cav-
itation was assessed. First, a detailed parameter study for a single bubble collapse in
water was conducted. The results were validated and verified to the bubble radius of the
Rayleigh-Plesset equation and the state-of-the-art findings of pressure grid convergence,
respectively. Both agreed with the reference data. For the bubble radius better agree-
ments can be found in the literature than in the present work. However, the here used
EOS took some additional fluid properties into account which are either neglected or
simplified in the Rayleigh-Plesset equation. The parameter study for the bubble collapse
included a variation of the initial state, e.g., vapor fraction inside the bubble, pressure
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inside the bubble and in the far field, wall distance and cross flow velocity. The findings
suggested that the used approach is capable of representing a number of physical effects.
However, for the isolated bubble collapse other methods might be more suitable, e.g.,
with sharp interface models at the phase boundary. These more advanced and computa-
tionally more expensive methods, would however be infeasible for more complex flows
at larger scales. Therefore, the conducted parameter study has contributed to a better
understanding of simulations of such more complex flows in the industrial context.

It was also demonstrated that the proposed framework is capable of handling micro
channel flows with cavitation. The results for the micro channel flow showed good
quantitative agreement to the literature. A comparison between a high order and a low
order simulation, i.e., 5th and 2nd order, respectively, showed the high potential of the
proposed simulation framework. For the simulation with the high order the shock wave
and pressure signals were represented much better than for the 2nd order FV with the
same DOF.

Despite the high potential of the combination of a high-order scheme with a tabulated
EOS, a number of challenges and unanswered questions remain. The lack of an appro-
priate sub-grid scale model lead to a loss in resolution due to FV sub-cell scheme as de-
aliasing method. However, the current state-of-the-art de-aliasing methods for DGSEM,
e.g., over-integration, increases the computational costs even further. Further, the cou-
pling of the DG with the FV sub-cell shock capturing for multiphase flows with very
strong gradients, e.g., cavitation, remains very challenging. The results suggest, espe-
cially from the single bubble collapse, that at the phase boundary non-physical pressure
waves are being generated in the simulation. The applied methods needs to be further
improved to avoid such a behavior at these extreme conditions.

Further, in the present work the indicator for the shock capturing has to be adjusted
manually for each simulation. Whilst a SGS or de-aliasing method would improve the
adjustment, the required indicator value might still change for different cases. Therefore,
an improvement or a more general indicator trigger could improve the usability of the
whole framework.

In terms of EOS representation the present work has contributed to underline the im-
portance of an appropriate EOS approximation. However, the influence of the differ-
ent fluid approximations needs to be investigated in further detail. The results in the
present work suggest a strong influence of the fluid property modeling, however, it is
still unknown when to apply which level of accurate for the EOS approximation, i.e.,
computational costs against accuracy.
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A. Expansion

The properties of a fluid have a significant influence on the expansion behavior. In
Section 4.1.1 the effects of an isentropic expansion for methane were already assessed.
However, other fluids behave differently and an isentropic expansion is also very differ-
ent to an isenthalpic expansion. Therefore, both expansion processes for different fluids
are briefly discussed to give the reader a general introduction on their properties.

A.1. Isentropic expansion

An isentropic expansion process is generally characterized by a temperature drop. In
Equation (4.3) the isentropic expansion is described for arbitrary fluids. For the illustra-
tion in the following diagrams, the expression

T1

T2
=
T1(p1, s1)

T2(p2, s1)
, (A.1)

is used, where the indexes 1 and 2 denote the states before and after the expansion,
respectively. Figure A.1 shows the temperature drop for methane, air and water. The
temperature drops for gases more rapidly than for liquids. The temperature drop for
water is only marginally compared with air and methane. For higher pressures air and
methane become liquid and consequently the temperature drops less.
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Figure A.1.: Temperature change T1/T2 for an isentropic expansion from p1 to ambient
pressure of 1 bar with an initial temperature of T1 = 300 K.

A.2. Isenthalpic expansion

The isenthalpic expansion is often referred to as a Joule-Thomson process. For an arbi-
trary fluid the Joule-Thomson coefficient can be written as [115](

∂T

∂p

)
h

= − 1

cp

[
v − T

(
∂v

∂T

)
p

]
. (A.2)

It is further worth noting that for an real gas commonly a temperature change occurs

(∆T )h := T1(p1, h1, )− T2(p2, h1), (A.3)

whilst for an ideal gas the temperature remains constant.

(∆T )h := T1(p1, h1, )− T2(p2, h1) = 0 (A.4)

Figure A.2 shows the temperature ratio T1/T2 for a pressure drop from p1 to ambient
pressure at p2 = 1 bar with the initial temperature T1 = 300 K. All fluids have a similar
trend, i.e., by increasing p1 the temperature drops more until it reaches a minimum. A
further increases in p1 leads to a reduction of the temperature drop and for high pressures
to a heating of the fluid.
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Figure A.2.: Temperature change T1/T2 for an isenthalpic expansion from p1 to ambi-
ent pressure of 1 bar with a initial temperature of T1 = 300 K.
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B. Fluid diagramms

To keep this work self-contained, the essential fluid diagrams of this work are presented
in this appendix. The graphs have been plotted with MATLAB and the COOLPROP li-
brary version 6 for MATLAB [15].

B.1. Temperature - Entropy
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Figure B.1.: T −s diagram for water; constant x (dashed), constant α (dotted), constant
density (blue) and constant pressure (red).
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B.2. Temperature - Density
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Figure B.2.: T −ρ diagram for water; constant x (dashed), constant α (dotted), constant
pressure (red) and constant entropy (green)
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B.3. Temperature - specific inner Energy
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B.4. Pressure - specific Enthalpy
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(green), constant temperature (orange) constant x (dashed) and constant
α (dotted).
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[117] C. K. W. Tam. Supersonic jet noise. Annual Review of Fluid Mechanics, 27(1):17–
43, 1995.

[118] Christopher K.W. Tam, Nikolai N. Pastouchenko, and Robert H. Schlinker. Noise
source distribution in supersonic jets. Journal of Sound and Vibration, 291(1):192
– 201, 2006.

[119] S. Tanaka, S. Bunya, J. J. Westerink, C. Dawson, and R. A. Luettich. Scalability
of an unstructured grid continuous galerkin based hurricane storm surge model.
Journal of Scientific Computing, 46(3):329–358, 2011.

[120] H. K. Tanna. An experimental study of jet noise part I: Turbulent mixing noise.
Journal of Sound and Vibration, 50(3):405 – 428, 1977.

[121] H. K. Tanna. An experimental study of jet noise part II: Shock associated noise.
Journal of Sound and Vibration, 50(3):429 – 444, 1977.

[122] C. Tegeler, R. Span, and W. Wagner. A new equation of state for argon covering
the fluid region for temperatures from the melting line to 700 k at pressures up
to 1000 mpa. Journal of Physical and Chemical Reference Data, 28(3):779–850,
1999.

[123] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer, 2009.

[124] D. H. Trevena. Cavitation and tension in liquids. Adam Hilger, 1987.

[125] A. Unsworth, D. Dowson, and V. Wright. Cracking joints. a bioengineering study
of cavitation in the metacrapophalangeal joint. Annals of the Rheumatic Diseases,
1971.

[126] M. Versluis, B. Schmitz, A. von der Heydt, and D. Lohse. How snapping shrimp
snap: Through cavitating bubbles. Science, 289(5487):2114–2117, 2000.

[127] A. Vogel, W. Lauterborn, and R. Timm. Optical and acoustic investigations of the
dynamics of laser-produced cavitation bubbles near a solid boundary. Journal of
Fluid Mechanics, 206:299–338, 1989.

[128] M. Voß. Numerische, theoretische und experimentelle Untersuchungen zur
Kavitationsblasendynamik. PhD thesis, Mathematisch-Naturwissenschaftlichen
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