
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 33

Model-driven Code Generation for
REST APIs

Markus Fischer

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Dipl.-Inf. Florian Haupt,
Dipl.-Inf. Dipl.-Wirt.Ing.(FH) Karolina Vukojevic-
Haupt

Commenced: 28. April 2015

Completed: 28. Oktober 2015

CR-Classification: D.2.2, D.2.6

Abstract

In recent years Representational State Transfer (REST) has become more and more popular
as an architecture style for web applications. An application must obey several constraints
to be considered fully REST compliant. Often these constraints are only partially fulfilled by
developers. These issue can be addressed by applying Model Driven Software Development to
the design and development of REST applications, a technique that uses formal models to
describe applications and to generate application code. The goal of this thesis is the generation
of application code for REST APIs. For this, a REST compliant application is developed
manually to identify good and practical source code templates that can be used for the code
generation. The manually developed application is also used to derive entities for the formal
model that provides the basis for code generation. The solution developed in this thesis defines
a platform specific meta model for the generation of REST APIS. The solution also provides a
transformation from an already existing meta model for REST APIs to the new platform specific
meta model, and the transformation to application code. The solution is integrated into the
existing modeling tool and thereby provides an fast and easy way to develop REST compliant
applications.

Kurzfassung

In den letzten Jahren ist Representational State Transfer (REST) als Architekturstil für Web-
Anwendungen immer populärer geworden. Eine Anwendung muss einige Einschränkungen
befolgen, um als REST-kompatibel zu gelten. Oft werden diese Einschränkungen nur teilweise
von Entwicklern erfüllt. Dieses Problem kann durch den Einsatz Modellgetriebener Softwa-
reentwicklung verbessert werden. Modellgetriebene Softwareentwicklung ist eine Technik, die
formale Modelle nutzt, um Anwendungen zu beschreiben und daraus Anwendungscode zu
erzeugen. Ziel dieser Arbeit ist die Generierung von Anwendungscode. Zu diesem Zweck wird
manuell eine REST-konforme Anwendung entwickelt, um gute und geeignete Codestrukturen
zu identifizieren, die für die Codegenerierung genutzt werden können. Die entwickelte Anwen-
dung wird auch dazu verwendet, Entitäten für das formale Modell abzuleiten. Die in dieser
Arbeit entwickelte Lösung definiert ein plattformspezifisches Modell zur Modellierung von
REST APIs. Zusätzlich wird auch noch eine Modelltransformation von einem existierenden
Metamodell für REST APIs in das neue plattformspezifische Modell entwickelt, sowie die
Generierung von Anwendungscode aus dem plattformspezifischen Modell. Die Lösung wird in
das bestehende Modellierungswerkzeug integriert und stellt damit eine schnelle und einfache
Möglichkeit bereit, REST-kompatible Anwendungen zu entwickeln.

3

Contents

1. Introduction 9

2. Background 13
2.1. REST - Representational State Transfer . 13
2.2. Service Orientated Architecture and REST . 19
2.3. Model Driven Software Development and Architecture 26
2.4. Modeling Tool . 30
2.5. Resource Metamodel . 32
2.6. Deployment Metamodel . 35

3. Solution Approach 37
3.1. Task Description . 37
3.2. Description . 38

4. Related Work 41
4.1. “Modeling RESTful applications” . 41
4.2. “Towards a Model-Driven Process for Designing ReSTful Web Services” 43
4.3. “Dealing with REST Services in Model-driven Web Engineering Methods” 46

5. Reference Application 49
5.1. Introducing Restbucks . 49
5.2. Model . 49
5.3. Design of the Restbucks Implementation . 51
5.4. Domain Logic Integration . 58

6. JAX-RS PSM Metamodel 59
6.1. JaxrsModel . 59
6.2. JaxrsResourceClass . 60
6.3. JaxrsModelClass . 60

7. Model Transformations 63
7.1. Transformation to PSM . 63
7.2. Transformation to Application Code . 65

8. Implementation 77
8.1. Technologies . 77

5

8.2. Architecture . 80
8.3. Integration . 80
8.4. Limitations . 81

9. Summary 85

A. Appendix 89
A.1. JAX-RS PSM Metamodel . 89
A.2. Model-To-Model Transformation Rules . 92

Bibliography 97

6

List of Figures

1.1. Development of API protocol distribution [Mus12] 10
1.2. Approximated development of API protocol distribution on programmableweb

since 2012 . 10

2.1. Example for a layered system. 17
2.2. a) Ingredients of WSDL and b) SOAP message structure based on [WCL+05] . . 20
2.3. Model Transformation Process . 28
2.4. Layered meta-model for REST applications in accordance to [HLP15] 30
2.5. Possible impedance mismatch [HKLS14] . 31
2.6. Resource meta model . 33
2.7. ResourceModel example . 34
2.8. Deployment meta model. 35
2.9. A deployment model. 36

3.1. Task of this thesis. 37
3.2. The structure of the Approach . 38

4.1. Proposed structural meta model from [Sch11] 41
4.2. Proposed behavioural model from [Sch11] . 42
4.3. Design gap between functional specification and corresponding REST API [LSS09] 43
4.4. Overview of the proposed approach [LSS09] . 46
4.5. Proposed REST Metamodel from [VP09] . 47

5.1. Depiction of the relationships, adapted from [WPR10, figure 5-9] 50
5.2. Restbucks as modeled in the modeling tool. 51
5.3. Ordering process in restbucks. 52
5.4. Design of Restbucks . 54
5.5. Processing of a HTTP Request with request payload and response payload . . . 57

6.1. UML diagram of the JAX-RS PSM meta model 61

7.1. The complete transformation sequence of this work. 63
7.2. JAX-RS PSM resulting in an address with multiple dynamic parts. 70

8.1. Architecture of the modeling tool. 81
8.2. User dialogs. 82

7

8.3. Context menu on deployment model (several items of the context menu were
omitted). 82

8.4. The result of the code generation. 83

9.1. Current (left) and suggested (right) model and transformation structure 87

List of Listings

2.1. The top level elements of a WSDL definition[wsd] 21
2.2. Java method declarations for the ToDo list service 25

5.1. Restbucks messages and answers . 53
5.2. Example for manually developed domain and hyperlink model classes 56

7.1. Generated OrderListDomain and OrderDomain from figure 5.2, (manual imple-
mentation in listing 5.2) . 66

7.2. Generated OrderListHyperlink from figure 5.2 67
7.3. Generated OrderHyperlink from figure 5.2 . 68
7.4. Example @Path annotations from Restbucks (see figure 5.2) 69
7.5. Generated domain model class with multiple identifiers. 70
7.6. DomainLogicProviderInterface generated for OrderResource of Restbucks (5.2). . . 71
7.7. Several generated methods from restbucks (figure 5.2) 73

8.1. Definition and usage of an Extension Method. 78
8.2. Example for a Template Expression . 79

8

1. Introduction

Representational State Transfer is an architectural style for distributed hypermedia applications
that was defined by Roy Fielding in his dissertation [Fie00] in the year 2000. The REST
architectural style is defined as a set of constraints and aims to improve on certain aspects of
quality for software systems, like loose coupling, interoperability, performance, and scalability.
ProgrammableWeb is a directory for “...discovering and searching for APIs to use in Web and
mobile applications”1. Figure 1.1 depicts the development of the distribution of different
protocols among the listed 5100 APIs in February 2012. The x-axis shows the years, the y-axis
shows the amount of APIs compliant with a protocol. In September 2015 there are more than
14000 APIs listed on ProgrammableWeb. For the search term REST more than 7600 APIs were
listed (Almost 2000 for SOAP). Figure 1.2 shows an approximation2 of the development over
the years 2012 - 2015. The axes have the same meaning as in figure 1.1. It can be seen that
there are a lot of APIs claiming to be compliant to REST. However many of those APIs do
not follow all mandatory constraints defined by REST. Especially constraints that have to be
followed explicitly by software developers are often violated. Common “mistakes” are ignoring
of the REST constraint Hypermedia as the Engine of Application State (HATEOAS, see 2.1),
ignoring of multiple MIME Types (described in [Vit10]), the tunneling of requests through
single HTTP methods (usually GET or POST) described by [Pau09], ignoring of caching, or
breaking self-descriptiveness as described by [Til08].
As described there are many ways to violate the constraints of REST, which results in the loss
of the before mentioned positive aspects introduced through the use of the REST architectural
style. When developing a RESTful API there is usually some kind of document that describes the
structure of the API in terms of resources and relationships. Once all resources are identified,
the developer often has to manually implement resource classes as well as their domain specific
logic. Since REST demands all resources to have a uniform interface there is a lot of repetitive
coding to be done. Assuming that this results in certain patterns that can be used in most of
the resources, such as answering a HTTP GET call (which every resource should do), there
is a lot of copy and paste work that could be omitted when using a piece of software, that
generates this repetitive code from the before mentioned design document.
Model Driven Software Development (MDSD) can achieve the latter by generating runnable
application code from well defined formal models. A precondition for model driven software
development is a formal model that fully describes certain aspects of a system. Since there

1http://www.programmableweb.com/about
2The annual increase was approximated since there was no data for the years in between available.

9

1. Introduction

Figure 1.1.: Development of API protocol distribution [Mus12]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2012 2013 2014 30.09.2015

API protocols and styles 2012 - 30.09.2015

REST

SOAP

JavaScript

XML-RPC

Figure 1.2.: Approximated development of API protocol distribution on programmableweb
since 2012

usually is a piece of documentation about resources and their relations it comes to the task of
defining a formal model that can be used as basis for code generation. This model can also be
abstract and then transformed to other models which then can be enhanced with information
about implementation details. Applications developed through MDSD are often a combination
of generated and manually implemented code with the advantage that repetitive code can be
generated each time the application changes (adding or removing resources for instance).

10

Motivation

This work aims to generate good and practical code for a specific runtime environment. An
existing meta model for REST applications already enforces or eases the fulfilment of certain
constraints of REST. The existing meta model is defined independently of any specific runtime
environment (it is a Platform Independent Model (PIM)). A Platform Specific Model (PSM) shall
be defined and used to generate application code. Also a model-to-model transformation from
the PIM to the PSM shall be developed. The generated code shall be integrable in a loosely
coupled fashion with manually developed code to fully benefit from the MDSD concept. Since
the existing meta model is defined as part of an existing tool for REST and MDSD, the solution
of this thesis shall also be integrated into the existing tool.

Outline

The thesis is structured as follows: Chapter 2 – Background provides information about REST,
Service Oriented Architecture, Model Driven Software Development, the existing modeling
tool and the existing meta models. Chapter 3 – Solution Approach describes the general
idea behind the solution and how it has been developed. Chapter 4 – Related Work gives an
overview of works that are related to this thesis. Chapter 5 – Reference Application intro-
duces the manually developed reference application. Chapter 6 – JAX-RS PSM Metamodel
provides details on the PSM meta model defined for code generation and Chapter 7 – Model
Transformations gives details about the model-to-model transformation and the model-to-text
transformation (code generation). Chapter 8 – Implementation describes the realization
of the existing tool and how the solution developed in this thesis was integrated. Finally
Chapter 9 – Summary gives a summary over the thesis and provides several suggestions for
further development of the tool.

11

2. Background

This chapter provides information about the REST architectural style, Service Oriented Archi-
tecture, and Model Driven Software Development. This chapter also introduces the existing
modeling tool and the already existing models provided by the tool that are used in this
thesis.

2.1. REST - Representational State Transfer

REST is an architecture style for distributed hypermedia systems. REST was defined by Roy
Fielding in his dissertation [Fie00]. The basic idea behind REST is that a server exposes
resources to clients through a uniform interface. To derive REST, Fielding starts with a null
style, basically an empty set of constraints so that there are no boundaries between components.
Fielding then adds the following constraints consecutively:

Client-Server: The basic principle of a client-server architecture is the separation of concerns
between the user interface and data storage. The user interface lies with the client while
data storage is handled by the server component. This separation improves the portability
of the user interface across platforms since there can be a distinct client for each platform
while the server component has no need to change. This also improves the scalability
of systems because the server components can be simplified. According to Fielding, the
most important impact of this constraint is, that the separation allows for independent
evolution of components.

Stateless: The second constraint added by Fielding restricts the interaction between client
and server to a stateless communication. This means that every request made by a client
has to contain all information necessary for the server to fully understand the request. So
the client component has to store and provide all information about the current state of
a session. This improves the reliability of the system because it becomes easy to recover
from partial failures. Assuming that there are several server components providing the
same functionality (for scalability reasons), it is much easier to recover from a partial
failure. If one of the server component fails, requests to the failed server can be routed
to the remaining components to be answered. Meanwhile the failed component can be
restarted without the need to recover any session information from previous interactions.
This also improves the scalability of the system, because server components do not have

13

2. Background

the need to store session state. Also the amount of incoming requests can be balanced
evenly among server components. Each message can be processed on its own, so there
is also no need to manage any resources across different requests, which simplifies the
implementation of server components further.
There is a to downside to the stateless constraint: Due to the fact that any session state is
kept on the client, all state information required by the server has to be included in each
request message sent to the server. This also means that the server loses control over the
overall system, so the server has to depend on the correct implementation of clients.

Cache: Caching is a constraint that Fielding adds to improve network efficiency. Caching is
the process of reusing already received response messages to future requests that are
equivalent to the original request. For example if a client wants to retrieve a certain
resource, and the response is cacheable, the client can use the cached answer to its
retrieval request later, if the client wants to retrieve the same resource again. This implies
that every response from a server has to be marked explicitly or implicitly as cacheable or
non-cacheable. A disadvantage of caching is, that clients may use stale data which differs
from data that would have been retrieved, if the request would have been processed
by a server. Usage of stale data results in decreased reliability of a system, but can be
addressed by developers, for example, by adjusting time frames for which messages are
cacheable.

Uniform Interface: The uniform interface constraint is the central feature of REST. Accord-
ing to Fielding the emphasis on a uniform interface between components is the main
difference that distinguishes REST from other network-based architecture styles. The
architecture of a system is simplified by using this principle. Also uniform interfaces
enables independent evolving of different system components since all components can
be developed and optimized to use the uniform interface. Changes to components do not
change the interface, so other components have no need to adapt every time a another
component is changed.
Since the uniform interface applies to all components the overall efficiency of a system
is decreased, because the information transfer between components has to be realized
using standardized information formats that all components understand, instead of using
efficient and specialized formats, tailored to specific components. According to Fielding
the REST interface is designed to be efficient for large-grain hypermedia data transfer.
The uniform interface constraint itself is again defined by four sub-constraints:

• identification of resources

• manipulation of resources through representations

• self-descriptive messages

• hypermedia as the engine of application state (HATEOAS)

14

2.1. REST - Representational State Transfer

To understand REST and the uniform interface constraints one has to understand the
concept of a resource in REST. A resource is the basic unit of abstraction REST. Within
REST a resource can be anything that can be named, like a document, a service, a process,
a grouping of other resources, or other things.
Each resource in a system must be uniquely identifiable so it can be referenced. This
property describes the identification of resources constraint. Fieldings definition of a
resource is as follows:

“A resource is a conceptual mapping to a set of entities, not the entity that corresponds to
the mapping at any particular point in time”.

So a resource is not a thing, but a mapping to one or more entities1. While the entities of
a certain resource can change over time, the resource itself stays the same. An example
for this would be a resource that provides the three most popular videos of the week. The
videos are the entities and are likely to change over time. The resource however stays the
same. Resources can be accessed and manipulated through representations of resources.
A resource can have any number of different representations. A process for example, that
is a resource in a system, may be represented through a textual representation that tells
its current state. The resource could also be represented as a description of its function,
or by its logo, or as a executable file to download, or other things. To interact with
a resource and to manipulate a resource a client has to manipulate resources through
their representations. So a resource is never interacted with directly but only through its
representations. A representation consists mainly of data and meta-data describing the
data e.g. describing the format of the data. What kind of data is contained in a message
is defined through a media type assigned to a message.
Especially textual resource representations can contain references to other resources. If
a customer browses through articles of a web shop all articles he views are most likely
resources. The representations received by the customers browser will most likely not
only contain information to the selected article but also to other resources, such as similar
articles or supplementary articles, a link to his cart, or a link to the checkout service. This
kind of references are hyperlinks that can be clicked by users, to retrieve the referenced
information. Hypermedia as the engine of application state (HATEOAS) is the guiding
principle for representations that contain references to other resources. The idea is that
the retriever of any resource is guided through references. To order an article of a web
shop a customer has to find an item he wants to buy, add this item to the cart, and then
go to the checkout. The HATEOAS way to do that could be as follows:
A customer uses his browser to navigate to the homepage of a web shop. On the front
page of the web shop are several hyperlinks to special offers. After clicking on one of

1The Hypertext Transfer Protocol (HTTP) [htt99] also knows entities, but entities in HTTP are the payloads of
messages

15

2. Background

the hyperlinks the customer receives information about the items and he decides to
buy that item. He can do this by clicking on a link titled add item to cart. This click
performs an update of his cart (which also is a resource) and retrieves a representation
of the cart (a list of his selected items). Embedded in his carts representation is another
hyperlink that says checkout. By clicking the checkout the cart resource is updated (now
empty again). The customer is then guided to give his address and payment information
and the purchase is completed. The fourth constraint of the definition of the uniform
interface are the self-descriptive messages. Self-descriptive messages mainly result from
the earlier discussed Stateless constraint in that a message must contain all information
that is needed for a receiving server to process the message. To be self-descriptive each
resource is able to understand a set of standard methods. Standard methods have a
standardized semantic meaning. Standard methods and media types are sufficient to
indicate the semantic and content of a request, thus forming the uniform interface for all
resources.

Layered System: The layered system constraint is another constraint that aims to improve the
system scalability. The idea is that there may not only be client and server components
but also intermediaries, ordered in a hierarchical manner. Layers can only see other layers
with which they interact, but may not see beyond that layer, e.g. a client requesting a
resource might interact with a load balancer and doesn’t know that its request is processed
in the layers after the load balancer. In a layered system, servers can themselves be clients
to other servers. An example for a system with five layers can be seen in figure 2.1. The
examples shows a system with caches at server-side and client-side and a load balancer
that tries to evenly distribute all incoming requests among the server components. The
usage of intermediaries such as load balancers can also improve the systems scalability.

Code-On-Demand: The final constraint of REST is the code-on-demand constraint. Clients
can extend their functionality by downloading applets or scripts. The goal is to simplify
clients and improve the extensibility of the system even after deployment. Fielding
defines this constraint as optional since it also makes the overall system more complex.

2.1.1. REST and the Web

REST is considered to be the architectural style of the World Wide Web. For simplification the
World Wide Web will be called WWW in the following chapter. The chapter describes, what
technologies the WWW uses to realize a system compliant to the REST architectural style. The
WWW obviously uses a client-server architecture since all resources on the WWW are offered
by servers and accessed by clients, mostly browsers. According to Fielding, the most significant
benefit of REST is, that components can evolve independently. The Code-on-demand aspect
is also fulfilled since browsers can extend their functionality easily through addons, or by
executing scripts. The WWW uses Hypertext Transfer Protocol (HTTP [htt99]), media types
(specified through Multi Purpose Mail Extension (MIME)[mim96], often called MIME-Types),

16

2.1. REST - Representational State Transfer

Figure 2.1.: Example for a layered system.

Uniform Resource Locators (URL [url94]) and hyperlinks, to realize a REST compliant system.
A central feature of REST is the uniform interface constraint. The WWW uses URLs to address
and identify resources. URLs are derived from Uniform Resource Identifiers (URI [uri05]).
URLs contain information about the address of a resource as well as a means to access the
resource. The generic syntax of a URL is the following:

<scheme>:<scheme-specific-part>

<scheme> determines how an address can be accessed while the <scheme-specific-part>
contains the address and scheme specific information that can vary from scheme to scheme. A
simple example for an URL is “http://www.iaas.uni-stuttgart.de”. The URL indicates that a
resource can be accessed via the HTTP protocol at the address www.iaas.uni-stuttgart.de. To
access and manipulate resources, HTTP defines a set of standard methods, including their
semantics and properties. Especially GET, PUT, POST, and DELETE are of interest for REST,
since they can be used to realize a CRUD-like interface (Create, Retrieve, Update, Delete). GET
is used to retrieve a resource, PUT replaces a resource with the transmitted message body,
DELETE deletes a resource and POST can be used to create new resources. The GET method is
defined by HTTP as a safe method, which means that a request using the GET method should
not cause side-effects on the server side. The idea is that users can use the GET method to
explore resources without causing side-effects. Another important property, shared by GET,

17

2. Background

PUT, and DELETE, is idempotency, which means that a request sent multiple times must result
in the same response each time.

To understand the content of requests and responses, HTTP uses meta-data in the form of
headers, to describe the content of a message. The Content-Type header is used to describe the
type of the content with a media type. A common media type for example is text/html. It
stands for a textual representation in the Hypertext Markup Language (HTML). It is the
common representation for resources as websites. HTML representations often contain
hyperlinks to other websites or resources. Hyperlinks are used to guide users through
processes or to provide additional information. Since GET is a safe method the user can follow
hyperlinks without the risk of causing negative side-effects. This is the concept of HATEOAS as
described in the previous chapter. Other media types are application/json, or application/xml
that are often used for machine-to-machine communication in the WWW. There are also media
types for pictures, audio files, video files, and many more. Since resources often have different
representations, servers need a means to determine which media type to send to requests.

There are two different kinds of content negotiation. Server-driven negotiation, where the
server decides which representation is most appropriate, and client-driven negotiation, where
the client picks its favoured media type out of an initial response from the server, that includes
all available media types. HTTP enables this through Accept headers that can be used by
clients to specify which media types, charsets, encodings, or languages they accept, so the
server can deliver the most appropriate. The accept headers also allow to prioritize certain
options e.g. clients can give the highest priority to text/html so they always receive text/html
unless the server is not able to respond with text/html in which case the server would try to
deliver the second highest prioritized media type. HTTP, URL and MIME-Types are used to
cover all aspects of self-descriptive messages and the uniform resource interface. More
technical aspects of REST are the layered system constraint and the caching constraint. The
layered system constraint enables hierarchical layering of a system in which each only knows
those other layers it is interacting with. This principle is used throughout the WWW. Clients
direct their resources to specific addresses and get responded to, but the clients are not aware
of how the request was processed after sending it to the known address. Often there are
caches as intermediaries that reduce the overall traffic.

Caching is another constraint of REST that is complied with by the WWW and is realized
through the use of HTTP headers. There are several different cache related headers defined in
HTTP, most notably the cache-control header. The cache-control header allows to provide
requests and responses withcache directives that must be obeyed by all caches along the
communication chain. Examples for directives are private/public to let caches know that a
message must not be cached (private), or may be cached (public). Other examples of cache
related headers are the ETag header, short for entity tag that is often used to compare versions
of a resource representation, and the Expires header that allows to set an expiration date to
representations. With the compliance to layered system and caching the WWW is compliant to

18

2.2. Service Orientated Architecture and REST

all of the constraints defined by Fielding and therefore to be considered a REST compliant
system.

2.2. Service Orientated Architecture and REST

The term Service Oriented Architecture is defined by The Open Group [ope] as follows:

“Service-Oriented Architecture (SOA) is an architectural style that supports service-orientation.
Service-orientation is a way of thinking in terms of services and service-based development
and the outcomes of services.
A service:
• Is a logical representation of a repeatable business activity that has a specified outcome
(e.g., check customer credit, provide weather data, consolidate drilling reports)
• Is self-contained
• May be composed of other services
• Is a black box to consumers of the service ”2

In an actual service oriented system, a service is a software component that offers a specific
functionality, at a specified address, that can be accessed through the network. The W3C
[w3c] defines a Web Service as

“...a software system designed to support interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description using
SOAP-messages, typically conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards”3.

This definition introduces several standards that are used to realize web services. The Web
Service technology stack consists of a set of standards that can be used to connect
heterogeneous web services over a network, and thereby encouraging loose coupling between
a service consumer(client) and a service provider (server), which is a basic design goal of SOA.
To consume a service the client needs information about where and how to access a service.
Consumers and producers communicate using self-contained documents that contain few
assumptions about technical aspects of the receiver of a message. SOAP4 is a message
architecture that specifies rules of processing, binding to a transport protocol, and the format
of SOAP messages. Usually HTTP is used to transport SOAP messages. The structure of a

2https://www.opengroup.org/soa/source-book/soa/soa.htm
3http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
4Originally Simple Object Access Protocol but now a name for itself

19

2. Background

SOAP message is shown in figure 2.2 b). A SOAP document has a root element called envelope,
which contains a header element and a body element. The header element contains an
arbitrary number of Header Blocks containing information for SOAP processors along the
message path and may be modified by intermediaries. The header elements can be used for
several purposes such as routing, or configuration of transactions, reliability, or security. The
body element is intended for the ultimate receiver of the message and contains the payload for
the service provider. The body can be composed of several Body Sub-elements. The structure of
SOAP messages are defined by XML Schema, which enables easy marshalling and
unmarshalling for SOAP processors.
WSDL (Web Service Description Language [wsd]) is an interface definition language based on

Figure 2.2.: a) Ingredients of WSDL and b) SOAP message structure based on [WCL+05]

XML used to describe web services. A WSDL document is comprised of several elements. The
ingredients for WSDL are shown in figure 2.2 a). Operations represent the actual functions that
can be performed at a specific port type and are grouped within a portType element. Messages
are used by abstract operations as input and output. The types element (omitted in the graphic)
contains definitions of data elements that can be used within Message elements to specify the
structure of specific messages. Binding elements are used to specify concrete protocol and data
format specifications for operations and messages defined by specific portType. Ports are used
to provide an endpoint, e.g. an address, for specific bindings. And lastly a service is a set of
related ports . Web services (as defined above) provide a way to realize services as described
by The Open Group. The top level elements of a WSDL definition are shown in listing 2.1. The
import element can be used to import other definitions to modularize WSDL definitions. The
documentation element is optional and can be used within any other WSDL element. It can be
used as a container for human readable content. The extensibility element can be used to
define technology specific bindings, but must use a different namespace as that of WSDL.

REST is based on resources and their identification, as well as a uniform interface for all

20

2.2. Service Orientated Architecture and REST

Listing 2.1 The top level elements of a WSDL definition[wsd]

1 <wsdl:definitions name="nmtoken"? targetNamespace="uri"?>

2 <import namespace="uri" location="uri"/>*
3 <wsdl:documentation /> ?

4 <wsdl:types> ?

5 <wsdl:message name="nmtoken"> *
6 <wsdl:portType name="nmtoken">*
7 <wsdl:binding name="nmtoken" type="qname">*
8 <wsdl:service name="nmtoken"> *
9 <-- extensibility element --> *

10 </wsdl:definitions>

?=0..1
*=0..n

resources, and stateless communication through self-descriptive messages. A service can also
be perceived as a resource, since a resource can be a logical representation of a repeatable
business activity with a specified outcome. The layered system constraint also provides a black
box condition for consumers of such a service (clients that access the resource) and a REST API
is usually self-contained as REST APIs are often realized as servlets and can be deployed to
HTTP servers without further knowledge. Service composition can also be achieved through a
resource implementation capable of invoking other resources or by the use of BPEL as
described in [HFK+14]. REST is fully capable to be used to provide services. As pointed out in
the introduction, REST is being used to realize a lot of APIs. The vast majority of APIs on
Programmableweb are REST APIs (see figure 1.2).

In [PZL08], Pautasso et.al. discuss the weaknesses and strengths of RESTful web services and
WSDL based web services and provide a means to objectify the decision between using WSDL
or REST. For the discussion of this paper, services compliant with the REST architectural style
may also be called RESTful. According to Pautasso et.al SOAP and WSDL have been adopted
widely as means to provide interoperability between heterogenous middleware systems.
Protocol transparency and independence is provided by SOAP, as messages may be transported
through various nodes via various protocols. Security aspects are declared specifically as SOAP
headers and are therefore independent from the means of transportation along the way. WSDL
provides a machine-processable description of syntax and structure of corresponding request
and response messages, independent of actual implementation, so the same interface can
easily be bound to different implementations without consumers of the interface noticing. Also
WSDL is capable of modeling synchronous behaviour as well as asynchronous behaviour.
Another strength of WSDL and SOAP is the existence of mature engines and tools that hide a
lot of complexity to developers [PZL08]. A downside to the current tools however is that they
can be misused such that interoperability problems can occur when the interface description

21

2. Background

contains structures, that are native to a implementation, when generating interface
descriptions from already existing software components. They suggest to enforce contract-first
development to mitigate that particular weakness. Other weaknesses of SOAP/WSDL are
stated in [PZL08] as misinterpretations partly due to the impedance mismatch between XML
and object-oriented programming languages, also XML Schema as a very rich language is not
supported completely by all SOAP/WSDL implementations. As a work around it is suggested
to use good enough constructs known to be interoperable.

Services compliant to the REST constraints are perceived to be simpler than the SOAP/WSDL
approach, because REST makes use of existing standards such as HTTP, XML, URL and MIME.
HTTP clients and servers are present in all major programming languages and platforms.
Developing clients to RESTful services requires less effort, because services can be tested using
a web browser and there is no need to develop customized clients. The HATEOAS principle
incorporated into the definition of REST allows service discovery without the need for a
central registry. It is also stated that RESTful Web services are doing very well to scale, to serve
large numbers of clients, due to the support for caching, clustering and load balancing built
into REST. REST is also more flexible in terms of data format. It is common for RESTful web
services to use JSON or even more simpler formats such as plain text. As a weakness it is
stated that there is quite some confusion with regards to accepted best practices in the
development of RESTful web services. So called Hi-REST recommends the use of the major
HTTP verbs (GET, PUT, POST, DELETE) and the use of XML, while Lo-REST only uses 2 verbs
(GET and POST) and thereby tunnels other requests through the use of special HTTP headers
such as X-HTTP-Method-Override, or through hidden form fields. Since [PZL08] was published
in 2008 the discussion might not be up to date. As it seems the majority of REST developers
use Hi-REST and the discussion of what is really RESTful has moved to the use of hypermedia
and HATEOAS.
The Richardson Maturity Model rewards the highest level of maturity, e.g. REST compliance, to
APIs using multiple HTTP verbs and most importantly, make use of HATEOAS [rmm]. But
there still might be cases where tunneling requests through one HTTP Verb is inevitable. This
can result in malformed URIs since GET is not allowed to have a body. Input data can then
only be encoded to the URI, which then can get too long (Status Code 414 Request-URI Too
Long [htt99]).

As a method of comparison between the two styles (REST and SOAP/WSDL aka. the Web
Service Stack WS-*) Pautasso et.al. use the notion of architectural decisions and architecture
alternatives. Architectural decisions represent the basic design issues and ideas behind a
technical solution and are seen as conscious decisions determining non-functional properties
of components or a system as a whole. Each architectural decision is associated with a certain
amount of alternative options.
The article describes 4 different levels of comparison:

22

2.2. Service Orientated Architecture and REST

Comparison of architectural principles: This level focusses on principles that actually
define the two integration styles. The first principle addresses how the web is used by
the two styles. REST uses HTTP as part of the application since it is encouraged to use
different verbs with different semantics while SOAP uses HTTP solely as a transport
protocol. SOAP is always transmitted using the HTTP POST method which has no clear
semantic meaning. What operation is to be invoked is determined at the ultimate
receiver through the payload (a SOAP envelope) of the HTTP request. Every SOAP
message is tunnelled through HTTP POST.
The second principle to be compared is the capability of dealing with heterogeneity. It is
argued that the web is a rather homogeneous client-server environment since all
participants use the same protocol, which is HTTP. Heterogeneity is derived from
different browsers that competed with each other and resulted in different renderings of
HTML or being incompatible to JavaScript libraries, but all browser support the same
HTTP standard and a large set of standard document types. The SOAP style comes from
more heterogeneous environments since it originated in enterprise computing. Many of
the involved systems have components that are implemented with different kinds of
technologies and are legacy software. So the WS-* standardizations provide the
plumbing for integrating different enterprise components.
The third aspect of the comparison of principles is Loose Coupling. Important aspects of
loose coupling are time and availability, location transparency, and service evolution. The
time and availability aspect addresses the issue if service consumers are still able to
interact with service providers even if they are permanently not available. This is
possible when using WS-* through the use of persistent reliable queues, while a RESTful
web service relies on synchronous communication that can not prevent, that requests
will fail when the receiver is not available. Dynamic late binding of services is supported
by most WS-* tools, while it is only possible to a degree for RESTful applications through
DNS address translation, but requires additional effort. Another important aspect of
loose coupling is the evolution of web services. This is supported especially by REST,
through the uniform interface constraint and the the basic extensibility of XML, which is
also shared by WS-*. In summary both styles support all three examined principles.

Comparison of conceptual decisions: Conceptual decisions are concerned with the
following decisions and their architectural alternatives: integration style (shared
database, file transfer, remote procedure call, or messaging), contract design (first, last,
or without contract, meaning if the well formed interface is defined before implementing
the service, or the other way round), resource identification (finding the abstractions),
URI-Design (with or without scheme), Resource Interaction Semantics (Lo-REST vs.
Hi-REST), Data Representation/Model (whether XML Schema can, or must be used, or if
a custom format is applicable), Message Exchange Patterns (capability to Request-Response
or One-Way communication), and Service Operations Enumeration (Ability to define
which set of operations is exposed by a service interface). REST requires eight
architectural decisions out of the above listed nine with only ten alternatives, leaving

23

2. Background

five decisions with only one option. The WS-* on the other hand only requires five
decisions, but yields more than ten alternatives for these decisions. It is argued that
REST offers a freedom of choice leading to substantial design and development efforts,
while the choices for WS-* are within strict conceptual boundaries, as well as easier to
implement, due to high degree of standardization.

Comparison of technology decisions: The comparison of technology is concerned with
possible Transport Protocols, Payload Formats, possibilities of Service Identification, Service
Description, Reliability, Security, Service Composition, Service Discovery, and
Implementation Technology. Substantial differences are in possibilities of transport
protocols, which is basically only HTTP for REST, and more than seven protocols for
WS-*. The opposite situation comes to play concerning the payload format where WS-*
is restricted to SOAP, while REST is rich in possibilities. All ten topics can be addressed
by WS-* and REST, but WS-* has significantly more architectural alternatives (REST 17,
WS-* 25).

Vendor asset-level comparison: In this section concrete tools are evaluated such as web
browsers and web servers implementation of HTTP and existing SOAP engines and
WSDL tools. This part however is not included in the paper.

It is concluded that REST as well as WS-* have similar quantitative characteristics. On the
architectural level the WS-* requires less decisions, but has more available alternatives. On the
technology level REST and WS-* require an equal number of decisions, with less alternatives
for REST to be considered. The WS-* stack requires a number of decisions related to different
layers of the stack that add additional complexity compared to REST. However advanced
functionality is delivered through WS-* standards that would require substantial effort to be
realized for RESTful services. It is also argued, that architectural decisions required for
RESTful services can lead to significant development efforts and technical risk, such as the
design of exact specification of resources and their URI addressing scheme. When using the
same technologies for both integration styles (XML/HTTP and SOAP/HTTP) the two seem
rather similar. Without a need for enterprise features of WS-*, it is concluded, key decision
drivers are degree of flexibility and control, in which REST scores better. Other important
aspects are development efforts and technical risk (implementation design, development, and
maintenance), degree of open source and vendor tool support, and programming interface
convenience. On the one hand, WS-* has a better tool support and programming interface
convenience, on the other hand, this also introduces dependencies to vendors and open source
projects. The main conclusion drawn is to use “RESTful services for tactical, ad hoc integration
over the Web (à la Mashup) and to prefer WS-* Web services in professional enterprise
application integration scenar- ios with a longer lifespan and advanced QoS requirements”.

24

2.2. Service Orientated Architecture and REST

2.2.1. Relevancy to code generation

Especially the before mentioned programming interface convenience of the WS-* comes to play
when using a contract first approach to implementing web services. The contract first
approach means that the interface is defined before a line of code is written. The development
strategy then focusses on the specification of interfaces. In the context of this thesis a WSDL
defined interface is a model that can be used to generate the required server and client stubs.
This generation of code is common and widely used in development of web services and
available for many platforms. The difference to REST is significant with respect to the concepts
and terms used in modeling. While WSDL is primarily about operations and their input and
output messages, REST is about resources, representations and links to other resources. For
most developers the notion of operations and input/output is natural, since there are similar
concepts in many programming languages such as methods and their parameters. This can be
shown with a simple ToDo list service as example. The service shall be capable to retrieve a
shortened list of upcoming ToDos, retrieve details for a specific ToDo and to add new ToDos to
the list. In the case of a web service this would result in the three operations shown in listing
2.2. The listing shows a method to retrieve all ToDos (line 2), one method to add a ToDo to
the list (line 5) and one method to retrieve the particular ToDo with the given todoId (line 8)

Listing 2.2 Java method declarations for the ToDo list service

1 //retrieves all ToDos

2 public ArrayList<ToDo> getToDos();

3

4 //adds a ToDo to the list

5 public void addToDo(ToDo toDo);

6

7 //retrieves the ToDo with todoId

8 public void getToDo(String todoId);

Of course one needs to define the data types and bindings, but these abstractions suffice to
realize the web service. The developer only has to implement the three functions after the
WSDL is defined.

To realize this service with REST, one first has to identify the resources in the system, and how
they interact. Most likely a developer adept with the REST principles would use two classes of
resources: A ListOfToDos resource class and a ToDo resource class. The second task is to
provide a URI scheme for the resources. ListOfTodo is a resource that exists only once in this
service so its URI would be static to the base URI of the server, such as
http://localhost:8080/listoftodos. There can be many ToDos in the system so each ToDo needs
its own URI, best achieved through the use of a dynamic URI part with an identifier, such as
http://localhost:8080/listoftodos/{todoId}. The ListOfToDos requires a representation that

25

2. Background

contains information on all ToDo resources, as well as a hyperlink to each resource. The
developer now has to implement all HTTP verbs for each resource separately. Also the
developer must decide whether the ListOfToDos supports the POST method with a ToDo
representation in the request body to create new ToDo resources, or if the ToDo resource
implementation allows the clients to create new ToDos by sending a HTTP PUT request to a
empty ToDo resource (the todoId is not assigned yet) with a new ToDo representation in the
request body.
On the client side those two implementations of essentially the same functionality behave
differently. When consuming the WSDL implementation the client would maybe call the
getToDos operation to view all upcoming ToDos. Then the client would have to extract the
identifier from a ToDo and send another request with this identifier to view the ToDo. The
REST scenario for this use-case begins similar, as the client sends a GET request to the
ListOfToDos to receive a representation of all ToDos. To examine a certain ToDo the client
simply has to follow the offered hyperlink, using another GET request to retrieve the desired
information. This small example gives an impression on the differences and similarities of the
WSDL and REST integration styles. The differences in REST require a different modeling
approach, which results in more complex code generation from a model since the terms and
concepts of REST are different from programming languages, unlike the terms and concepts of
WSDL.

2.3. Model Driven Software Development and Architecture

The book Modellgetriebene Softwareentwicklung: Techniken, Engineering, Management
[SVEH07] introduces Model Driven Software Development with a definition as follows:

“Modellgetriebene Softwareentwicklung (Model Driven Software Development, MDSD) ist ein
Oberbegriff für Techniken, die aus formalen Modellen automatisiert lauffähige Software
erzeugen.”[SVEH07]

Translated to english: “Model Driven Software Development (MDSD) is a genus for techniques
to automatically create runnable software from formal models.”

This definition introduces three aspects:

Formal Models: A formal model in the MDSD sense is a model, that completely covers a
certain aspect of a software. A formal model does not describe everything. But it has to
be clear what is described by a model and what isn’t.

Creation of Runnable Software: Models are often used for documentation purposes, to give
an overview to developers, or even as close-grained specifications for manual
implementation. This however is not MDSD. The ultimate goal of MDSD is to create

26

2.3. Model Driven Software Development and Architecture

runnable software. So the main purpose of models used in MDSD is to be used as a basis
for code generation. There are two possible concepts to create runnable software from
models. An interpreter is a piece of code that uses models as input at runtime and
performs actions based on the given models. For this thesis the relevant concept is that
of a generator. A generator is a piece of software that also uses models as input, but
unlike a interpreter generates source code in a particular programming language.

Automation: The transition from a formal model to runnable software should happen
automatically by a software, in this case a generator. The idea is, that models become
almost equivalent to source code, so that changes in the model ultimately result in
changed source code. In the previous chapter it was described that WSDL is often used
to generate server and client stubs. These stubs are generated once and then extended
through manual implementation. This is explicitly not the goal of MDSD. MDSD aims to
generate code, that also changes with changed models. So generated code is not
intended to be modified through other means than automatic code generation. The
overall system of course, contains generated and manually implemented code.

Model Driven Architecture Model Driven Architecture (MDA) is a software development
approach proposed and standardized by the Object Management Group (OMG) [omg].
According to [SVEH07] the MDA is a standardization initiative from OMG towards the topic of
MDSD. MDSD and MDA use the same basic terminology for their approach. The principle of
MDA and MDSD is the use of models and their transformation to other models. Key models
are Platform Independent Models (PIM) and Platform Specific Models (PSM).
A PIM is a model of a software that is completely independent from specific platforms and
doesn’t provide any implementational details. Although a PIM might represent a complete
system it is not sufficient to generate runnable application code. A good example for a PIM
would be a entity relationship diagram, that shows entities, their relationships to each other
and maybe even their capabilities. Still without further information it would not be possible to
generate running application code. For example if resources of a REST service were modeled
with an entity relationship diagram it would still not be possible to use that as a basis for code
generation since a lot of vital information is missing, for example how resources can be
implemented, since there is no information in the model about the platform.
A PSM however contains all information necessary to generate runnable software as it also has
information about the target platform and implementational details. An example for a PSM
would be a detailed class diagram, containing all necessary information to generate runnable
source code the model would have to contain all helper classes and their relationships as well.
A PSM can be created through model-to-model transformation by combining a platform model
(provides platform specific information) and a PIM and thereby transforming the PIM to a PSM.
A model-to-text transformation is a special kind of model transformation, where PSM is
transformed to source code. An illustration of this process is shown in figure 2.3. MDSD aims
to improve the quality of software, the reusability, and to increase the efficiency of software
development. MDSD tries to automate recurring software development tasks that are error
prone. There are several important reasons to use MDSD:

27

2. Background

Figure 2.3.: Model Transformation Process

Abstraction: An important reason to use MDSD is that MDSD enables software development
on a higher level of abstraction. Instead of developing in terms and concepts of a certain
programming language, the developers can model the system based on concepts of the
system (e.g. a developer models resources instead of writing Java classes). A lot of the
(technical) complexity is then hidden from the developer because it is weaved into the
transformation from model to code. The technical complexity has only to be dealt with
once, when developing the transformation instead of every time, a developer has to
extend the system.

Uniform Architecture: The transformation from models to code is realized by a set of rules
and mappings from elements of the model to the target language. So by definition of the
transformation all components of the models (which are of the same type) are
constructed the same way. This brings several advantages: The system resembles a
homogeneous collection of components all constructed by the same principles so the
system doesn’t contain components dealing with the same conceptual issue, but using
different solutions. Expert knowledge of developers can better be used, since they can be
assigned to different tasks. Some responsible for the development and improvement of
the model-to-text transformation and some to deal with specific issues, that can not be
automated.

Speed of development: MDSD does not necessarily result in the faster development of new
systems. Generators and transformations have to adapted and extended. Models have to
be developed and maintained. But the development speed increases when a system has
grown and has to be maintained. For if a large number of system components uses
constructs that become deprecated, in manually developed systems this would require to
search for these components, understand what they are doing, and then fix them. In
generated classes this becomes easier. The transformation from the model to code has to
be adapted once, and all affected classes can be generated with the next transformation
cycle.

28

2.3. Model Driven Software Development and Architecture

Reusability: Architectures, modeling languages and generators can be resused for the
development of other systems. Especially when the developed systems show a number of
similarities.

Interoperability and Platform Independence: The use of platform independent models
enables the reuse for other platforms. This is especially true when platform specific
models can be used to generate code for another platform, but the same programming
language. The problem however is that the models are seldom generic enough for
several platforms, because the target platform is often reflected in the models. But it is
certainly easier to convert a system to a completely different platform when there are
models present that describe the systems.

Quality of Software: The main reason for improved software quality is that uniform systems
can be tested easier. Also the specific transformation rules can be developed by experts
(developers and their skills are heterogeneous). The overall quality of software can
improve but is of course dependent on the quality of the generators and transformations
used.

Unfortunately there are also downsides to MDSD:

High Initial Effort: When starting with a blank slate, the initial effort to develop a system is
very high. Besides architectural decisions concerning the system, there are also
architectural decisions to be made that address issues of MDSD. Then there is a lot of
“meta development” to be done. Modeling languages and transformations have to be
defined and developed, before the actual system can be developed.

Possible Loss of Code: The generator is intended to overwrite generated classes with new
versions. So the generator needs to be adapted to recognize manually implemented code.
Otherwise it is possible that the code generator might overwrite manual code. A good
practice would be that developers comply with the rule that no generated files may be
touched. But it is understandable that a quick fix might have to be applied to a
generated class in case an angry customer calls.

Rigidity: Using code generators takes a lot of choices from programmers but also introduces
rigidity. Programmers in a MDSD environment have less freedoms regarding their style
of implementation. An issue is that problems in development are only solved, if they
have been thought of before they actually occur, so they can be taken into account for
the transformation rules. If not, situations can arise in which developers have to violate
the rule of not modifying generated files.

Increased technical complexity: Using MDSD often results not only in the development of a
system but also in the development of MDSD tools. This can multiply the number of
technologies that have to be dealt with since MDSD requires to define, process, and
transform models. Since MDSD tools also have to be maintained this introduces further
possible sources for errors and bugs.

29

2. Background

Figure 2.4.: Layered meta-model for REST applications in accordance to [HLP15]

The use of MDSD has to be considered for each project individually. A project to develop a
prototype or projects to test the feasibility of an architecture are better and faster done without
MDSD. However the development of a system that will be used for a long time and has to be
maintained may benefit greatly from MDSD.

2.4. Modeling Tool

In their paper A Model-Driven Approach for REST Compliant Services [HKLS14] Haupt et. al.
propose a multi layered model for REST APIs that partially enforces the generation of REST
compliant application code. A detailed view on the resource meta model is given in [HLP15].
Haupt et. al. provide a prototypical implementation of the approach which is also the basis for
this thesis. The complete stack of layered meta models can be seen in figure 2.4.
The Domain Model enables the modeling of an application independent from REST. The meta

model of the domain model can adapted to serve the needs of any specific application domain.
This enables domain experts to use their knowledge about the domain, to express their
knowledge in concepts they are already familiar with (e.g. entity relationship diagrams). The
next step is the transformation of the domain model to a resource model, either an Atomic
Resource Model or a Composite Resource Model. This step requires a non trivial effort because it
involves the definition of a mapping of concepts natural to the domain model towards the
resource model. This impedance mismatch (originally the mismatch between relational data
bases and object orientation) means that two concepts are not mutually compatible. In this
case the concept of an impedance mismatch becomes visible when mapping non resource
oriented meta models to resource oriented meta models. Figure 2.5 shows a Book entity that
has title and loanPeriod as attributes, and the method setLoanPeriod(...) to update the
loanPeriod. While in an object oriented environment, there is an obvious way to implement

30

2.4. Modeling Tool

Figure 2.5.: Possible impedance mismatch [HKLS14]

the Book entity as a class, in REST this issue needs further examination. There are two possible
strategies to update the loanPeriod attribute of a Book resource. One strategy is the use of the
POST method and only transmitting the part to be updated. The other strategy is via the use of
GET and PUT methods. A client retrieves a representation of the book resource, modifies it,
and uses a PUT request to update the current state of the resource. Using GET and PUT, both
idempotent methods, allows the requests to be resubmitted in case of network failures.
Disadvantages are, that this approach requires two messages, which can result in concurrency
issues such as lost updates: Two clients retrieve the resource simultaneously, perform a local
update, and both sent a PUT request to update the resource. The PUT request reaching the
resource first will be futile, as it is overwritten by the second request. The POST method
strategy requires only one message (with even less payload). The POST method, however, is
not defined as idempotent and therefore can’t be resubmitted. This issue is addressed by the
notion of marking the model to “prefer safe operations” through a separate model.
The Atomic Resource Model is the core model to specify a REST application. The meta model for
the atomic resource model provides constructs to model the application in terms of resources,
their relationships to each other, and their individual interfaces. The Composite Resource Model
is an extension of the atomic resource model allowing to group several atomic resources
together to form a composite resource. The atomic resource model and the composite resource
model are further refined in [HLP15] towards a more conversation centric approach. A
conversation is a number of communication activities between two or more participants. As

31

2. Background

defined by Haupt et.al there are two types of participants in RESTful Conversations: Clients
interacting with an API, and Resources interacting with clients. The communication primitives
are given by the uniform interface constraint. In case an API uses HTTP, which is common,
each communication is initiated by the client through a request, which is answered with a
response message (synchronous communication). Each message includes the HTTP verb, the
resource identifier and is stateless. The state of the conversation is kept entirely on the client.
There are four examples given for RESTful conversations: Redirecting, Accessing Collections of
Resources, Try-Confirm-Cancel, and Long running Requests. These four types of conversations
are explained in detail in [HLP15]. All of these conversation types have in common that they
have more than two participants respectively their participants consist of one client and
several resources.
The atomic resource model is described through the interaction centric meta model since
interactions only require single resources. The conversation centric meta model (based on the
composite resource model) extends the interaction centric meta model with new elements (for
the before mentioned conversation types) that are more specific than the generic elements in
the interaction centric meta model. The composite resource model is used to group resources
(and their relationships), participating in a particular conversation type.
So far, none of the introduced models contains a means to associate resources with their
identifier. This is addressed by the URL Model which can be used to define URL schemes for
each resource in the atomic resource model. The atomic resource model and the URL model
are then sufficient, to generate an application model. Application models are dependent on
the target platform. This thesis will provide a platform specific meta model for JAX-RS5 for the
existing prototype as well as the relevant transformation from the atomic resource model and
URL model to the JAX-RS model and the generation of application code from the JAX-RS
model. The versions of the atomic resource model and URL model used as basis for this thesis
are introduced in 2.5 and 2.6.

2.5. Resource Metamodel

This chapter introduces the metamodel of the atomic resource model that will be used for this
thesis. It is the primary source model for the model transformation and can be edited directly
with a graphical editor. Figure 2.6 shows an UML class diagram of the complete Resource
metamodel.

The basic modeling elements are Resource, Method, and Link:

Resource: The Resource element is the main modeling element since it is the direct
representation of a resource within a REST API. It can have a list of EntityAttributes to
model the information structure of the underlying REST Resource. So the ResourceModel

5see 5.3.1 for information about JAX-RS

32

2.5. Resource Metamodel

Figure 2.6.: Resource meta model

not only contains infrastructual information, but can also be used to define a domain
specific information model through the use of EntityAttributes, which define data fields
with a name and a type. This concept could be improved further by enabling the use of
schema information.
The Resource element also holds separate attributes for each of the four HTTP Methods:
GET, PUT, POST, and DELETE.

Method: The Method element is a supertype for the four HTTP methods (it is not depicted in
figure 2.6 because it has neither relations to other elements besides the four methods,
nor any attributes). On the one hand GetMethod, PutMethod, and DeleteMethod are very
similar, only differing in whether or not they have a list of media types for producing and
consuming. The PostMethod on the other hand has a list of Interaction elements, each
one having its own method name and separate lists of media types for producing and
consuming, since it is possible to have several different POST methods for a resource,
each with different semantics.

33

2. Background

Figure 2.7.: ResourceModel example

Link: The Link element defines the relationship between two resources and comes in two
different types, ResourceCreation and Navigation. They can originate from GetMethod,
PutMethod, DeleteMethod, and from each of the PostMethods Interactions. Links are
directed and always point towards a Resource. A ResourceCreation indicates that the
invocation of its source will create a new instance of the target Resource. The Navigation
element is the main modeling tool to realize HATEOAS. A Navigation from Method A to
Resource B means that a link to B will be embedded in the Response to a call of A.

Figure 2.7 is a visual representation of an exemplary ResourceModel. It depicts the ToDo
Service introduced in 2.2.1 extended in some points. The ListOfToDos resource uses the HTTP
GET and POST methods. GET is used to retrieve a representation of the resource. The POST
method has two interactions defined. createNewToDo can be used to create a new ToDo
resource, indicated through the green arrow, labeled new. The other interaction archiveToDos
starts a process that transfers finished ToDos to a permanent storage location. The arrow from
the GET method of ListOfToDos to the ToDo resource indicates that the representation
retrieved with this GET method contains links to particular ToDo resources. The ToDo resource
features the GET, PUT, and DELETE methods of HTTP to retrieve, update, and delete the ToDo
resource.

34

2.6. Deployment Metamodel

2.6. Deployment Metamodel

This chapter introduces the metamodel of the URL model that will be used for this thesis. The
Uniform Interface constraint of REST is partly defined through the identification of resources.
The ResourceModel allows to only specify links and relationships between resources. This
linking of resources allows to model how clients can navigate through the API and thereby
realizes the HATEOAS constraint of REST. HATEOAS is an important feature to reach the goal
of loose coupling between client and server in a RESTful environment. The ResourceModel is
sufficient to generate client documentation, but to generate an executable Java application
also the identification of resources has to be defined. The identification of resources is a vital
aspect of the uniform interface constraint. Unique identification of resources is a prerequisite
for HATEOAS since it is impossible to guide a client to certain resources if those resources can’t
be identified. Figure 2.8 shows an UML class diagram of the complete Resource metamodel.

Dark blue items are imported from the Resource meta model.

Figure 2.8.: Deployment meta model.

The deployment model enables the association of resources with URIs. An important feature is
that the deployment model allows to define the URI of a resource not only relative to the base
URI (of the service) but also relative to other resources. The deployment model contains a list
of Mapping elements:

Mapping: A Mapping contains a source and a target, both of which are Resource elements
from the resource model. Also the Mapping has a ordered list of URLFragments.

35

2. Background

URLFragment: A URLFragment can either be a StaticURLFragment or a DynamicURLFragment.
The StaticURLFragment contains a String indicating a static path element, while the
DynamicURLFragment contains a reference to an EntityAttribute of a resource model.
StaticURLFragments in figure 2.9 are for example domain, admin, and control.
DynamicURLFragments are {offerId}, {invoiceId}, and {processId}.

This design enables the creation of dynamic URL patterns with subresources. Figure 2.9
shows an exemplary deployment model. This deployment model resembles a tree. The tree
structure is in general not mandatory, but for this thesis it is assumed that a deployment model
always resembles a tree. This guarantees two properties: There are no cycles in the
deployment model and there is exactly one path in the resource model for each resource. So
each resource can be identified with one distinct URI scheme. The reasons for this are
discussed in chapter 8.4: Limitations.
The RootResource is the starting point from which all other resources are subresources.
Assuming the root is at “localhost:8080” the AdminResource would have its addres at
“localhost:8080/admin”. Since the URLFragments are ordered (from to right in this example)
the OfferResource could be accessed at “localhost:8080/domain/offers/{offerId}”. Curly
brackets indicate, that the URLFragment is a DynamicURLFragment referencing the
OfferResources identifying attribute offerId.

DomainResource ControlResource

RootResource

OfferResource InvoiceResource

AdminResource

ProcessResource

/offers /{offerId} /invoices /{invoiceId} /{processId}

/control/admin/domain

Legend:

Resource

URLFragment
Mapping

Figure 2.9.: A deployment model.

36

3. Solution Approach

This chapter describes the task of the thesis and how the solution was approached. It gives an
overview over the different stages and their associated tasks, goals, difficulties, and
motivations.

3.1. Task Description

The main task of this work is to design and realize the generation of application code from a
given metamodel for REST APIs. This includes the development of a platform specific
metamodel as well as the corresponding model-to-model and model-to-text transformations.
Figure 3.1 gives a short impression about the task. The generated application code shall
provide the complete HTTP and resource infrastructure. This means the generated code shall
realize all needed functionality to expose resources via HTTP, so the generators user only has
to add domain specific code. It is required that the domain specific code can be added to the
application in a loosely coupled manner without modifying any of the generated classes.
The developed solution has to be integrated in the existing modeling tool described in 2.4.

Figure 3.1.: Task of this thesis.

37

3. Solution Approach

Development of a
Reference API

Development of the
Platform Specific Model

Development of the
model-to-text

Transformation

Development of the
model-to-model
Transformation

Figure 3.2.: The structure of the Approach

3.2. Description

The approach is structured into three stages: The development of a reference API, the
development of a platform specific model and the development of transformations. As
depicted in figure 3.2, the third stage consists of the development of two distinct
transformations. The model-to-model transformation from ResourceModel and
DeploymentModel to the PSM, and the model-to-text transformation from the PSM to
application code. The following chapters give an overview over the described steps.

Development of a reference API

The first stage is the development of a reference API. The goal is to develop a typical REST
compliant API to later extract code templates for the model-to-text generation and derive
requirements for the platform specific model.
The first step was to find or develop a suitable REST API. This REST API is required to be a
typical REST API, compliant to the REST constraints with focus on the facilitation of HATEOAS.
The reference API shall also contain all concepts relevant to REST APIs, since the goal is to
generate code for all possible constellations. HATEOAS is part of the Uniform Interface
constraint and is often either realized in a wrong fashion or not at all. The book “Rest in

38

3.2. Description

Practice Hypermedia and Systems Architecture”[WPR10] uses an application called Restbucks
as the running example to show how a hypermedia system can be designed and implemented.
Restbucks was chosen as a reference application because it is an example that is not trivial, as
well as not too complex to be implemented as part of this thesis. Restbucks will be introduced
more detailed in chapter 5.
The second step in the development of the reference API was to manually implement the
application. A requirement for the implementation was the use of Dropwizard, a bundle of
Java libraries helping in the implementation of a REST API, see chapter 8.1. The challenge of
this stage was to implement code that can serve as a template for the generation of application
code. As a consequence, this code was allowed to have similar constructs in different classes
instead of using superclasses with complex methods. The code had to be structured and
consistent throughout all different types of implemented classes. Another important task was
the design of a loosely coupled way to integrate domain logic, so that none of the generated
classes have to be modified in order to integrate the domain specific code. This reduces the
complexity of the code generator since there is no need to scan already generated classes to
recognize manually implemented code. This constraint enables that all generated classes can
be overwritten safely, but also introduces some rigidity since the developer is no longer free to
modify every piece of code in the system.

Development of the Platform Specific Model

After the development of the reference application the second stage was the development of a
platform specific model as basis for later code generation. The platform specific model was
derived from the reference application to later provide the code generator with all information
needed to generate Java code. The platform specific model will be explained in chapter 6.
Since the solution has to be integrated into an existing application, first developed by
Benjamin Schroth [Sch13] and adapted by Jens Petersohn [Pet14] it was a requirement for
the new model to be provided as Ecore model, see 8.1.

Development of the model transformations

The last step to accomplish the task was to develop the model transformations from the
provided resource metamodel to the platform specific model, and from the platform specific
model to runnable Java code. The existing modeling tool uses the Epsilon Transformation
Language (see 8.1) to realize model-to-model transformations. Since this technology is well
integrated into the existing tool and there is sufficient integration with the development
environment (eclipse), such as highlighted syntax and static analysis, the modeling tool did not
have to be adapted for the model-to-model transformation. For model-to-text transformation
some new technology was introduced to the prototype, see 8.1. During this stage, the platform

39

3. Solution Approach

specific model also had to be adapted until the complete model generation was realized, due
to new requirements discovered during the development of the model-to-text transformation.

40

4. Related Work

This chapter introduces works related to this thesis. [VP09] proposes a general model to
describe REST APIs, while [Sch11] provides a model to not only model the structure, but also
the behaviour of a REST API. [LSS09] describes a model driven process to extract REST
service interfaces from functional specifications.

4.1. “Modeling RESTful applications”

In Modeling RESTful applications [Sch11] Silvia Schreier proposes a meta model to describe
REST applications. Schreier defines a structural meta model suited to describe resources and
their relations, as well as a behavioural model to describe how different ResourceTypes behave.
Schreier introduces several different ResourceTypes such as primary resource, list resource,and
paging resource. Figure 4.1 shows the proposed structural model that also contains Link

Figure 4.1.: Proposed structural meta model from [Sch11]

elements to model HATEOAS. The structural model also contains other elements like Method,

41

4. Related Work

MethodType and Parameter, to define the interface, as well as MediaTypes and Representation.
An important difference to the proposed meta model in 2.5 is the use of ResourceTypes. Figure

Figure 4.2.: Proposed behavioural model from [Sch11]

4.2 shows the behavioural model that enables the modeling of behaviour for ResourceTypes.
Each ResourceType defines a set of States with one of the states being the initial state. A state
can have several outgoing Transitions. Each of the transitions has exactly one target state. Each
Transition defines Triggers and optionally a Condition. The Trigger can be an InternalMessage
for example. There is not much information about Conditions, since they are not modeled yet,
but it can be assumed that a transition can only be executed if a specified condition is met.
States can also be associated with methods to define which method is supported while in a
certain state. To not only change states, but also add behaviour to the model, Schreier also
describes BehaviourSpecifications that can be associated with states to be enacted upon
entering or leaving a certain state. Also the BehaviourSpecification can be associated with a
transition, so a behaviour is triggered upon the execution of a certain transition.
The behaviour of Methods is also specified through BehaviourSpecifications. The
BehaviourSpecification is mainly specified through Actions and ActionSequences. The latter is
an ordered set of Actions.
The structual meta model is similar to the proposed meta model in chapter 2.5, however the
proposed structural meta model of Schreier proposes eight specific resource types, each with
its own set of States and Transitions from the behavioural model. Additionally, a behavioural
model is introduced to describe specific resource types. This enables the modeling of a REST
API including its intended behaviour. However Schreiers model is not yet finished and only
described in a coarse grained fashion. The model is suitable for modeling REST APIs, but the
introduced complexity makes it hard to use as a starting point for model driven development,
especially since the model isn’t fully specified.

42

4.2. “Towards a Model-Driven Process for Designing ReSTful Web Services”

4.2. “Towards a Model-Driven Process for Designing ReSTful Web
Services”

In their paper Towards a Model-Driven Process for Designing ReSTful Web Services [LSS09]
Laitkorpi et. al. describe a model driven process to transform functional specifications,
expressed as arbitrary actions, to a resource oriented API. Laitkorpi et. al. introduce REST in a
brief fashion highlighting benefits on architectural properties, like interoperability, evolvability,
and scalability, gained through compliance with the REST constraints. A focus lies on the
Uniform interface constraint that is described through three dimensions: resources and links,
uniform operations to manipulate resource state information, and data types to represent the
state information. It is stated that many existing services that are called “RESTful” don’t really
embrace the REST constraints. They claim that major deviations from the REST principles
occur during the service design when functionality is mapped to concrete API elements, like
resources. The design of RESTful APIs requires to identify resources and their interconnecting
links, their identification through URIs, the selection of suitable HTTP operations, and the
definition of data formats and corresponding MIME media types.To emphasize the difficulties
in this approach figure 4.3 shows the design gap between a functional specification and the
resulting REST API. The question is raised how to best add seats to a flight by using domain
specific concepts as resources. The left side shows a functional specification (as UML sequence
diagram), the right-hand shows a possible REST API to add seats to a flight and retrieve the
new price. In the following, the model driven process to refine functional specifications to a

Figure 4.3.: Design gap between functional specification and corresponding REST API [LSS09]

resource oriented API is described through five phases.

43

4. Related Work

1. Analysis: The Analysis phase uses textual use cases and other requirement specifications
to provide a UML sequence diagram. The resulting diagram is assumed to cover all
requirements of the API provided as functional specification consisting of top-level
interactions between a client and the API expressed as UML sequence diagram. The
specification also provides business states and high-level classes representing the domain
vocabulary. The Analysis phase aims to capture interactions between the service and to
identify side effects that are relevant to the client. It is reasoned that a high amount of
domain concepts embedded in the functional model leads to a process that is less
dependent on human effort.

2. Behavioural canonicalization: During this phase top-level interaction are analysed and
each instructive operation is generalized to a uniformly expressed state manipulation.
The idea is to use an approach based on speech to identify the intent of the specified
operations and other relevant information that is broken down to the following concepts:

Listeners are the target for an interaction and primary holders of state information that
is accessed or manipulated. Listeners are modeled as «addressee» classes.

Bystanders are secondary state holders that provide additional context for «addressee»
classes. Each «addressee» can have zero or more bystanders for each interaction.
They are modeled as «bystander».

Relationships between «addressee» and «bystander» are modeled as composite or
directed associations with multiplicity. Relationships are modeled as «owns» or
«knows».

Qualifiers for relationships between listeners are used to specify under which
conditions listeners are relevant for an interaction in terms of selected attributes.
Attributes identifying a concept (e.g. a listener) can be marked with «id», e.g. the id
attribute of an Itinerary.

Intention is used to define the purpose of a message. Intentions can be «stateInquiry»
(retrieval) or «stateChange

Effect of a message defines the result of an interaction. Effects are expressed as state
manipulation primitive on the «addressee». For example there is no effect for a
«stateInquiry». Effects are modeled as «inspect» (retrieval), «create» (creation of a
listener), «replace» (updating with the content), or «remove» (deleting).

Content of a message is modeled as attributes from «addressee» classes and can be
marked as «input» or «output» .

The result of the behavioural canonicalization is a information model that covers state
information. The transformation in this phase of the process is aided by supplementary
questionnaires.

44

4.2. “Towards a Model-Driven Process for Designing ReSTful Web Services”

3. Structural canonicalization: This phase transforms the information model to a
resource model that contains interconnected resource entities. Concepts of structural
canonicalization are:

Item , modeled as «item». Each «addressee» or «bystander» results in an item.

Container is a collection of «item» instances. It is modeled as «container».

Projection is an additional class that is neither «item» nor «container». A «container»
filtered with certain criteria is a «projection» of the «container».

Sub-resource associations reflect the hierarchy of state information. Derived from
«owns» relationships, modeled as «sub».

Reference associations reflect the «knows» relationships and are modeled as «ref».
Each «projection» has a «ref» association to the «item» contained by the projected
«container».

The result of this phase is a resource model that represents a layer on the information
model representing resources and their relationships.

4. Service translation: This phase uses the resource model as input and produces an
output that can be used by implementations tools. The outcome of the service
translation described in the paper includes an URI structure, links between resources,
HTTP methods for each URI and MIME types as representations. A Resource hierarchy is
identified through navigating the «sub» associations in the resource model. «id»
attributes are used as identifier segments in the URI. «sub» associations become
navigable links representing hierarchical relationships for example /itineraries/id/price:
itineraries and price are generated from «sub» relationships, while {id} is derived from
the «id» of the itinerary «item». The HTTP methods are derived from the modeled
effects: «inspect» maps to GET, «create» maps to POST, «replace» maps to PUT, and
«remove» maps to DELETE. MIME types are generated based on the selected resource
data content as attributes in the resource classes. The output of this phase is a complete
service specification.

5. Code generation: The last phase of the process is the transformation of the result of the
previous phase to software artifacts. It is assumed that the service specification is in a
machine processable format, but the actual code generation was omitted in the paper.

The paper uses an ongoing example and shows the results for each step based on the example
shown in figure 4.3. The proposed approach uses UML sequence diagrams as input and uses
several model-to-model transformations to refine a service specification that can be used for
implementation or source code generation. The complete approach is visualised in figure 4.4.
During the analysis the first formal model is defined as a high-level sequence diagram, which
is transformed to a information model that covers state information. The information model is
then transformed to a resource model that covers the structure of the REST API, which is then

45

4. Related Work

transformed to a complete service specification. In terms of the proposed approach this thesis
would start with the resource model. Although the proposed approach mentions the
generation of application code, the code generation is omitted in the paper.

Figure 4.4.: Overview of the proposed approach [LSS09]

4.3. “Dealing with REST Services in Model-driven Web Engineering
Methods”

In their article Dealing with REST Services in Model-driven Web Engineering Methods [VP09]
Valverde and Pastor propose a meta model to describe REST Services for use in model driven
development. Valverde and Pastor follow two goals with the definitions of a meta model for
REST applications. One is to provide abstraction from technical complexity for analysts, e.g.

46

4.3. “Dealing with REST Services in Model-driven Web Engineering Methods”

domain experts do not have to deal with technical issues. The second goal is to provide a
human readable notation to deal with REST Services within web application development.
According to them, previously proposed approaches to use model-driven engineering in
development of web services rely on the formal specification of those services through WSDL.
Figure 4.5 shows a graphical representation of the proposed meta model. As can be seen the
meta model provides a generic set of elements suited to describe RESTServices. An instance of
this meta model is basically a set of Resources associated with Methods and Representations and
a possibly empty set of global parameters. The meta model seems to be suitable to describe a
RESTService however it lacks the capabilities and expressiveness to show how resources are
interconnected and is therefore not suited to approach HATEOAS.

»

Figure 4.5.: Proposed REST Metamodel from [VP09]

47

5. Reference Application

This chapter introduces the reference application developed in this thesis. It gives an overview
over the design, modeling, and implementation of the reference application and shows the
concept for domain logic integration.

5.1. Introducing Restbucks

Restbucks is a small application used as a running example in Rest in Practice [WPR10] to show
best practices in the development of REST applications. Restbucks is a small coffee shop that
digitalizes the whole process of ordering, paying, and receiving a coffee. For this thesis,
Restbucks was expanded and adapted to capture additional REST style interactions such as a
long running task or the use of query parameters. The basic idea is to place an order, pay it,
and receive a receipt. So there are three different entities that must be linked through
hypermedia. Order, Payment, and Receipt. The hyperlink relationships are depicted in figure
5.1. CoffeeShop is the root resource and provides hyperlinks to OrderList, Payment, and Receipt.
Orderlist points via hyperlink to Order. Order points to Payment, which points to Receipt.

5.2. Model

Restbucks is composed of five distinct resources, three of which having their own data
structure, one serves as a starting point and root resource, and one serves as a list with sorting
and paging capabilities. Restbucks was adapted to show the capabilities of the modeling tool.
The exact model can be seen in figure 5.2. The three resources with domain entities are Order,
Receipt, and Payment. An Order can be placed via the OrderList resource. Each Order is
associated with exactly one Payment. To complete an Order two steps have to be performed.
The Payment corresponding to an Order has to be updated (aka. paid) and then the Receipt
associated with the Payment has to be deleted (aka. received). This process will be guided by
hyperlinks embedded in the resources representations. Figure 5.3 shows the ordering process
in detail as UML sequence diagram anlisting 5.1 shows the contents of the messages.

CoffeeShop: The CoffeeShop resource is the root resource of the application. It serves to give
an entry point and an overview. It has three Navigations. The Navigation to OrderList is
ONE_TO_ONE, the Navigations to Payment and Receipt are ONE_TO_MANY. This means

49

5. Reference Application

Figure 5.1.: Depiction of the relationships, adapted from [WPR10, figure 5-9]

that the representation of CoffeeShop will have one link to OrderList and several links to
the corresponding instances of Payment and Receipt.

OrderList: The OrderList resource is intended to provide a list of Orders. There are five
Navigations originating from the GET method of the OrderList resource, four of which are
self referencing. The self referencing Navigations are intended to provide paging
capabilities. For this, there are some query parameters defined for the GET method. Each
self referencing navigation will provide its own set of values for the query parameters,
for example the nextPage can be realized by calculating the offset (starting index of a
sorted list of Orders). Since Navigations are relationships, the OrderList is presented as a
list of hyperlinks to particular orders. The Navigation allOrders provides links to all
Orders and realizes the connection between OrderList resource and Order resource. The
POST method comes with two Interactions: archiveList emulates a long running task, and
createOrder is supposed to serve as controller to instantiate new Orders as indicated by
the green arrow (ResourceCreation).

Order: The Order resource represents an actual domain object and has an internal data
structure. It is a CRUD style resource with GET, PUT, and DELETE. It has one Navigation
pointing towards the Payment resource. This link exists as soon as the order Order is

50

5.3. Design of the Restbucks Implementation

Figure 5.2.: Restbucks as modeled in the modeling tool.

created since the Order and Payment resources are created through the same request to
the OrderList, see 5.3.

Payment: The Payment resource has an internal data structure and provides a link to its Order
and to its Receipt. As shown in figure 5.3 the Receipt resource is created on updating the
Payment resource to the status of being paid. The Payment resource has a GET method to
safely explore it and a PUT method to update it (i.e. to make a payment).

Receipt: The Receipt resource has an internal data structure and provides a link to its Order.
The Receipt resource has a GET method to safely explore it and a DELETE method to
conclude the process.

5.3. Design of the Restbucks Implementation

The design of the implementation of Restbucks is shown in figure 5.4. The implementation is
composed of five major building blocks. The Application, the Resources, the Model, the

51

5. Reference Application

Message content is listed in listing 5.1

Figure 5.3.: Ordering process in restbucks.

DomainLogicProviderRegistry, and the DomainLogicProvider Implementations. Except for the
DomainLogicProvider Implementations all architectural units are supposed to be generated by
the modeling tool. The DomainLogicProvider Implementations are supposed to be provided by
the User of the modeling tool. The term User, that will be used in the following, describes the
developer using the modeling tool to design and realize a REST API.

5.3.1. Brief introduction of JAX-RS

JAX-RS [jaxa] is short for Java API for RESTful Web Services. JAX-RS is a specification of an API
for the Java programming language that enables and standardizes the development of RESTful
web services. JAX-RS specifies annotations and associated classes/interfaces that can be used
with Java classes to expose them as REST resources. It is assumed that HTTP is used as
network protocol, so JAX-RS provides high level support for HTTP concepts. There are several
implementations of the JAX-RS specification. This thesis uses Jersey [jer], which is also the
reference implementation of JAX-RS. The specified annotations most relevant for this thesis
are the following:

@Path: The @Path annotations specifies a path for a resource class. JAX-RS considers Java
classes as resource classes when they have at least one method annotated with @Path or
a request method designator (see next). The @Path annotation can be used on class
level to specify a root resource class. In JAX-RS terms root resource classes provide roots

52

5.3. Design of the Restbucks Implementation

Listing 5.1 Restbucks messages and answers

postOrder POST /orders HTTP/1.1

<Order>

...

</Order>

postOrderResponse HTTP/1.1 201 Created
Location:/orders/1

getOrder GET /orders/1 HTTP/1.1
getOrderResponse HTTP/1.1 200 OK

<Order>

<Link href=“/payments/1“ title=“payment“>

</Order>

updatePayment PUT /payments/1 HTTP/1.1

<Payment>

<Status>paid</Status>

</Payment>

updatePaymentResponse HTTP/1.1 200 OK

<Payment>

<Status>paid</Status>

<Link href=“/payments/1“ title=“payment“>

</Payment>

deleteReceipt DELETE /receipts/1 HTTP/1.1
deleteReceiptResponse HTTP/1.1 204 No Content

of resource class trees, which means there can be several root resource classes. When
@Path is used on a method it identifies a sub-resource method or locator.

@GET, @PUT, @POST, @DELETE: These are request method designator defined by JAX-RS.
They are used to map HTTP requests to the methods that handle specific requests, e.g.
@GET handles HTTP GET requests, etc.

@Produces, @Consumes: These annotations can be applied to a resource method (a method
annotated with a resource method designator). They can be used to specify the media
types that are supported by the method. @Consumes is used to specify which media
types the resource accepts and @Produces is used to specify which media types the
resource can provide. These annotations are assisted by the MessageBodyReader and

53

5. Reference Application

Figure 5.4.: Design of Restbucks

MessageBodyWriter interfaces, that have to be implemented for each specified media
type. Jersey provides implementations for many of the most common media types.

@Context: The @Context annotation can be used to inject objects of a certain type into
resource class fields or method parameters. Types that can be injected include instances
of UriInfo, which provide access to the static and dynamic parts of the requested URI,
and HttpHeaders, which provides access to HTTP request header information.

@PathParam, @QueryParam: These annotations can be used to extract certain path
parameters or query parameters from the requested URI and inject them into class fields
or method parameters. Assuming a class is annotated as follows:

@Path("orders/{orderId}")

Then the injection of the dynamic URI part orderId can be realized as follows:

@PathParam("orderId") String id;

This declaration can be used either as a class field or as a method parameter.

5.3.2. Model

The Model of Restbucks is separated into two parts. The DomainModel contains simple Java
classes and the HyperlinkModel provides HATEOAS capabilities. The basic idea of the

54

5.3. Design of the Restbucks Implementation

separation is to encapsulate ideas and concepts of REST from the Java environment (also see
impedance mismatch discussed in chapter 2.4) . In the REST metamodel, Navigations
represent the relations between resources. Relationships are realized by creating fields in Java
with the other DomainModel classes as data type according to the Navigations. The user only
needs to work with DomainModel classes and associate them with each other. The
HyperlinkModel classes use those fields to create the hyperlinks to be embedded in their
representations.

DomainModel: The DomainModel is a set of POJOs (Plain Old Java Object). It is directly
derived from the resources, their data structure, and Navigations. Each Navigation
results in a field that can be used to show the associations between objects. The
DomainModel is intended to provide domain specific classes for the user of the modeling
tool to work with. It is used by the DomainLogicProviderInterfaces as input and return
values, and by the HyperlinkModel to construct hyperlinks for representation.

HyperlinkModel: The HyperlinkModel is the major unit for the realization of HATEOAS. Each
POJO of the DomainModel has a corresponding class in the HyperlinkModel. Instances of
HyperlinkClasses can only be instantiated with an instance of the corresponding
DomainClass and information about the address of the Resource, that was called. During
instantiation the HyperlinkClass calculates the proper links for display. HyperlinkClasses
are directly used to generate resource representations.

Examples for a DomainModel class and a corresponding HyperlinkModel class can be seen in
listing 5.2. The Order has fields for its data structure and relationships. Instances of Order can
be constructed with values or with an instance of the corresponding OrderHyperlink class. The
OrderHyperlink class only has fields for the data structure. Relationships to other resources are
extracted during the construction of its instances and stored as RESTHyperLink objects.
Another important difference is the presence of Annotations used for automatic
(de-)serialization. The information about what path segments have to be used for the links are
extracted from the DeploymentModel.

5.3.3. Resources

The Resources module is the main module to provide JAX-RS related logic. The Resources
module contains all Resource classes and provides all HTTP functionality. The Resource classes
expose the HyperlinkModel classes to the client. The other package of the Resources module are
the DomainLogicProviderInterfaces. Every Resource class has a corresponding
DomainLogicProviderInterface that provides the Resource with DomainModel objects. Those
objects are transformed by the Resource to their associated HyperlinkModel object. The
complete process from a HTTP request to the sending of the response is illustrated in figure
5.5. The payload of the request message is a HyperlinkObject in serialized form. It is
deserialized by the Resource on arrival and then transformed into a DomainObject. This

55

5. Reference Application

Listing 5.2 Example for manually developed domain and hyperlink model classes

1 public class Order {

2 // data structure

3 public String orderId;

4 public String customerName;

5 // relationships

6 public Payment payment;

7 // queryparameter

8 //this class doesn’t use query parameters

9 // constructors

10 public Order(String orderId, String customerName, Payment payment) { ... }

11 public Order(OrderHyperlink order) { ... }

12 }

13

14 @XmlRootElement(name = "Order")

15 public class OrderHyperlink {

16 //Link representations for HATEOAS

17 @XmlElements(value = { @XmlElement(name = "Link") })

18 public List<RESTHyperLink> restHyperLinks = new ArrayList<RESTHyperLink>();

19 // data structure

20 @XmlElement

21 public String orderId;

22 @XmlElement

23 public String customerName;

24 // The constructor adds links to related resources, if they are present.

25 public OrderHyperlink(Order order, UriInfo ui) {

26 this.orderId = order.getOrderId();

27 this.customerName = order.getCustomerName();

28 String baseURI = ui.getBaseUri().toString();

29 if (order.getPayment()!= null) {

30 this.addRESTHyperLink(new RESTHyperLink(baseURI + "payments/" +

order.getPayment().getPaymentId(), "payment"));

31 }

32 this.addRESTHyperLink(new RESTHyperLink(baseURI + "orders/" + this.uniqueId,

"self"));

33 }

34 }

56

5.3. Design of the Restbucks Implementation

Figure 5.5.: Processing of a HTTP Request with request payload and response payload

DomainObject is given to a DomainLogicProvider which performs the domain logic and returns
a DomainObject to the Resource. The Resource transforms this DomainObject to a
HyperlinkObject and serializes it as payload for the response message.

5.3.4. Other modules

Besides the Model and the Resources there are three smaller modules in the architecture of the
implementation. The Application, the DomainLogicProviderRegistry, and the
DomainLogicProviderImplementations.

Application: The Application module is the basis of any application generated with the
modeling tool. The Application scans the project for Resources and registers them with
the HTTP server.

DomainLogicProviderRegistry: The DomainLogicProviderRegistry is the main module to
integrate domain specific logic. It scans the classpath for implementations of
ResourceInterfaces and instantiates them. Also the DomainLogicProviderRegistry is
responsible for delivering those instances to the Resources. A detailed description of the
integration mechanism is given in chapter 5.4.

57

5. Reference Application

DomainLogicProviderImplementations: This module comprises all domain specific logic
and is the only module that has to be provided by the user of the modeling tool. The
integration of domain logic is explained in chapter 5.4.

5.4. Domain Logic Integration

In chapter 3.1 the task of this thesis was described in detail. One requirement of the thesis is,
that the solution must provide a loosely coupled way of integrating user provided domain logic
into the generated applications.
The intention is, that no generated code has to be modified for the domain logic to be
integrated into the resulting application. This brings several advantages:

• The user doesn’t need to understand the generated code. The user only needs to
understand the interfaces necessary for the integration of the manually written code. As
long as these interfaces remain stable the generated code can be improved at will
without additional work of adapting manually written classes.

• Without any handmade modifications on generated code, there is no risk that the user
might break anything. This requires that the interfaces are designed this way. This can
be achieved by following the principle of information hiding which means that the user is
only provided with information relevant to domain logic. The user should not be given
access to objects that could affect the intended behaviour of the generated code.

• There is no need for merging while generating code. All generated classes can simply be
overwritten.

• Generated code and user code can be managed separately.

Figure 5.4 shows that the DomainLogicProvider Implementations are connected to the
DomainLogicProviderInterfaces and the DomainLogicProviderRegistry. Every Resource in the
Resources module specifies a specific DomainLogicProviderInterface that is used to provide the
domain logic for the Resource. After the generated application is started, the Application
module also starts the DomainLogicProviderRegistry. The DomainLogicProviderRegistry then
scans the classpath of the application via reflections and instantiates at least one
implementation of any DomainLogicProviderInterface it can find. This mechanism allows that
the user of the modeling tool only has to implement the DomainLogicProviderInterface.

58

6. JAX-RS PSM Metamodel

This chapter introduces the platform specific meta model that has been developed to generate
the modeled application. The platform specific JAX-RS meta model is provided as an Ecore
model and its instances are the only source model for code generation. JAX-RS models are
constructed by transforming a deployment model, a resource model and some user input. In
the following, the most important model elements are explained. Figure 6.1 shows an UML
diagram of the complete JAX-RS PSM metamodel. The detailed listing of all element
description can be found in appendix A.1. The JAX-RS PSM Metamodel features several similar
constructs to the resource meta model. There are different ways to approach this issue. The
JAX-RS metamodel already references elements that are defined in the resource model. So the
JAX-RS metamodel could also reference other elements defined by the resource model and
extend them to fulfil the platform specific requirements. Another approach would be to define
wrapper classes that can reference to actual elements in the resource model, which would
have the advantage that the transformation from the resource model to the JAX-RS model
would require less effort to copy information by simply referencing other elements. Both of
these approaches were dismissed in favour of a third possibility. Constructs similar to those of
the resource model are defined in the JAX-RS meta model tailored to suit its needs. This
introduces an overhead in copying information between models, but also introduces
independence between the models. The resource model is in a state where it is highly unlikely
that there won’t be any changes in the future. Changes in the resource model also require that
the transformation from resource model to JAX-RS model have to be checked if they are still
valid. But if the JAX-RS model were to reference or inherit from changed constructs it would
require a significantly higher effort. The JAX-RS PSM metamodel would have to be checked if
the semantics of the changed elements are still valid. The model-to-model transformation
would have to be checked and most importantly the model-to-text transformation would have
to be adapted. This way the model-to-text transformation is more stable and can be improved
independent from changes to the resource model.

6.1. JaxrsModel

The JaxrsModel element is the root element of all JAX-RS PSMs. It has several project related
attributes like projectName, that have to be provided by the user and can not be derived from
the ResourceModel or the DeploymentModel. Most importantly, the JaxrsModel holds two lists.

59

6. JAX-RS PSM Metamodel

One list with all JaxrsResourceClass elements and one list with all JaxrsModelClass elements
that belong to the PSM. So the JaxrsModel element holds all information necessary to generate
application code.

6.2. JaxrsResourceClass

The JaxrsResourceClass element is the basic element for later generation of resource classes.
This element also knows its relative address realized through an ordered list of
JaxrsPathSegments. Each JaxrsResourceClass element has a reference to a JaxrsModelClass
element, which represents its data model. JaxrsResourceClass elements also hold all
information about offered HTTP methods . A JaxrsResourceClass can have one of each
HttpPutMethod, HttpGetMethod, HttpDeleteMethod, and several HttpPostMethod elements. Each
of those elements stores its consumed and produced mediatypes. All method elements except
for the HttpPostMethod element can also have JaxrsQueryParameter. The HttpPostMethod
additionally references a JaxrsModelClass class, because HttpPostMethod elements do not
necessarily work with the same data as its parent JaxrsResourceClass. An example for this is
the OrderList resource class described in chapter 5.2. Tranformed to a JaxrsResourceClass, the
OrderList resource will have two HttpPostMethods. One is designated to create new instances of
the Order resource class, so this HttpPostMethod references the JaxrsModelClass directly
derived from the Order resource. The archiveList HttpPostMethod references a JaxrsModelClass
specifically generated for this HttpPostMethod.

6.3. JaxrsModelClass

JaxrsModelClass elements are the core elements to generate the model classes of the
application code. JaxrsModelClass elements also reference to a parent JaxrsResourceClass but
are not necessarily the JaxrsModelClass element referenced by the JaxrsResourceClass. There
may be more JaxrsModelClass elements than JaxrsResourceClass elements since each
HttpPostMethod in the PSM can have its own instance of JaxrsModelClass. JaxrsModelClass
elements can have several JaxrsQueryParameter elements which are derived from the
associated JaxrsResourceClass elements methods. Furthermore all relations between resources
are reflected through JaxrsModelClassReference elements, that represent those relations
through a parentClass and a targetClass. JaxrsModelClassAttribute elements are used to realize
the data structure and represent the attributes of the resulting application code classes. Also
the JaxrsModelClassAttribute elements are referenced by instances of
JaxrsDynamicPathSegment to indicate identifying attributes of the JaxrsModelClass elements.

60

6.3.
JaxrsM

odelC
lass

The enumerations AttributeDataType, Multiplicity, and MediaType are imported from the resource meta model.

Figure 6.1.: UML diagram of the JAX-RS PSM meta model

61

7. Model Transformations

This chapter shows the complete process of generating application code from the point where
the DeploymentModel (see 2.6) and the ResourceModel (see 2.5) are provided. The process is
depicted in figure 7.1. The DeploymentModel and the ResourceModel are transformed into a
JAX-RS PSM, which is enhanced by user input and finally transformed into application code.

7.1. Transformation to PSM

This chapter describes how the elements of the JAX-RS PSM are transformed from elements of
the DeploymentModel and the ResourceModel. This chapter gives an overview over the
model-to-model transformation. A detailed description can be found in appendix A.2. The

DeploymentModel

JAX-RS PSM

ResourceModel

Application codeTransformation Transformation

User

input

input

input

input

output output

Figure 7.1.: The complete transformation sequence of this work.

63

7. Model Transformations

transformation assumes that all requirements listed below are met.
Requirements:

• The DeploymentModel must resemble a tree, originating from the root resource.

• The DeploymentModel and the ResourceModel must be valid. This means that they have
to be defined in the given meta models (chapters 2.6 and 2.5). Also they must comply to
validation rules defined by previous works.

The root element JaxrsModel of the JAX-RS PSM is transformed from its counterpart of the
ResourceModel. During the transformation process the user is prompted to provide project
specific information like the projectName, or the projectVersion. It is possible to make changes
to the generated JAX-RS PSM via a graphical editor.

7.1.1. Transformation to JaxrsResourceClass

The JaxrsResourceClass is derived from the Resource element of the ResourceModel and from
Mapping elements of the DeploymentModel. Each Resource in the ResourceModel results in one
JaxrsResourceClass. To calculate the appropriate URI for a JaxrsResourceClass (through ordered
URLFragments) the Mappings have to be traced towards the root from the Mapping where the
corresponding Resource is the target. The result is an ordered list of URLFragments that directly
represent the relative URI towards the root resource. Also the different Method elements of
each Resource in the ResourceModel are transformed to their counterparts in the
JaxrsResourceClass. Note that the Resource elements can only have one PostMethod with several
Interactions. Those Interactions are transformed to HttpPostMethod elements within the
JaxrsResourceClass. Each JaxrsResourceClass has a distinct JaxrsModelClass element, while each
HttpPostMethod can either have its own JaxrsModelClass or point to the JaxrsModelClass
element of any JaxrsResourceClass. So there might be more JaxrsModelClass elements than
JaxrsResourceClass elements in the PSM.

7.1.2. Transformation to JaxrsModelClass

The JaxrsModelClass elements can originate from two different elements of the ResourceModel.
Either from the Resource element or from the Interaction Element. If an Interaction has an own
entityStructure, a new JaxrsModelClass element is produced. Otherwise the Interaction points
to a Resource and will use its associated JaxrsModelClass element. The JaxrsAttribute elements
are transformed from the respective entityStructure. Navigations are the base elements to
become JaxrsModelClassReferences in the JAX-RS PSM. JaxrsModelClass instances transformed
directly from Resources use all Navigations originating from the GET, PUT, and DELETE Method
of the Resource as well as the Navigations that originate from any Interaction that references
the Resource. JaxrsModelClass instances transformed directly from Interaction use all
Navigations originating from that Interaction. The JaxrsQueryParameter are constructed from

64

7.2. Transformation to Application Code

all queryParameter of the GET, PUT, and DELETE methods of the Resource. Since Interactions
don’t have any Parameters there won’t be any JaxrsQueryParameter in a JaxrsModelClass
constructed from an Interaction. The parent of the JaxrsModelClass is either the
JaxrsResourceClass that is transformed from the same Resource, or the JaxrsResourceClass
transformed from the Resource associated with the Interaction (via PostMethod).

7.2. Transformation to Application Code

The transformation from the JAX-RS PSM to Java code is basically the transformation of
JaxrsResourceClasses and JaxrsModelClasses. The generated application is designed
correspondent to the design of Restbucks and provides code according to the JAX-RS
specification [jaxa] (introduced in 5.3.1). The architecture of Restbucks is depicted in figure
5.4 and the module descriptions can be found in chapter 5.3. To illustrate the transformated
code examples are shown, that were generated from the Restbucks model shown in 5.2. In the
following a DomainLogicProvider implementation is abbreviated with DLP.

7.2.1. Transforming the JaxrsModelClass

Each JaxrsModelClass is transformed into two distinct classes. A domain model class and a
hyperlink model class.

• The name attribute will be used to generate the actual class names of the resulting
classes.

• The attributes and references will be realized as fields with their respective type.

• The queryParameter will be defined as constants in the domain class.

Listings 7.1, 7.2, and 7.3 show the main aspects of generated hyperlink and domain classes.
There are two important differences between hyperlink and domain classes. The first
difference is that the hyperlink classes are annotated with JAXB-Annotations [jaxb] for
automatic (de-)serialization. The second difference is that hyperlink classes don’t have any
fields corresponding to the JaxrsModelClassReferences from its source model. Instead the
hyperlink classes extract links from the domain classes and offer them via XML/JSON.

Listing 7.1 shows the structure of domain classes. Fields are declared in an ordered fashion:
The first fields are the JaxrsQueryParameter names defined as constants (line 3-6). The second
group of fields are the JaxrsModelClassAttributes (line 22-23) followed by fields derived from
the JaxrsModelClassReferences (line 8-12, 25). If there are JaxrsQueryParameters present an
additional HashMap is declared to store values for queryParameters, that can be used either by
the corresponding hyperlink class or by the user. Line 8-11 show four fields declared with
OrderListDomain as type. These four fields result from the navigations pointing to the

65

7. Model Transformations

Listing 7.1 Generated OrderListDomain and OrderDomain from figure 5.2, (manual imple-
mentation in listing 5.2)

1 public class OrderListDomain {

2 //JaxrsQueryParameter names as constants

3 public static final String OFFSET = "offset";

4 public static final String COUNT = "count";

5 public static final String SORTBY = "sortby";

6 public static final String SORTORDER = "sortorder";

7 //JaxrsModelClassReferences

8 private OrderListDomain nextPage;

9 private OrderListDomain prevPage;

10 private OrderListDomain firstPage;

11 private OrderListDomain lastPage;

12 private ArrayList<OrderDomain> allOrders = new ArrayList<OrderDomain>();

13 //to store queryParameterValues

14 public HashMap<String, String> queryParameterMap = new HashMap<String, String>();

15 public OrderListDomain() {}

16 public OrderListDomain(OrderListDomain nextPage, OrderListDomain prevPage,

OrderListDomain firstPage, OrderListDomain lastPage, ArrayList<OrderDomain>

allOrders) { ... }

17 public OrderListDomain(OrderListHyperlink orderListHyperlink) { ... }

18 }

19

20 public class OrderDomain {

21 //JaxrsModelClassAttributes

22 private String orderId;

23 private String customerName;

24 //JaxrsModelClassReferences

25 private PaymentDomain payment;

26 //constructors

27 public OrderDomain() {}

28 public OrderDomain(String orderId, String customerName, PaymentDomain payment) { ... }

29 public OrderDomain(OrderHyperlink orderHyperlink) { ... }

30 }

OrderList and originate from the GET method of OrderList defined in figure 5.2, later they are
called self references. The intention is that the user provides these four objects with different
sets of queryParameter values to be transformed to links embedded in the representation of
OrderList resource. Line 12 shows how a ONE_TO_MANY relationship results in an ArrayList
of objects. Moreover the examples show each three constructors. One without any arguments,
one with one parameter per field (not static final), and one with the corresponding hyperlink
class for an argument. Getters and setters are generated but were omitted for the examples.

66

7.2. Transformation to Application Code

Listing 7.2 Generated OrderListHyperlink from figure 5.2

1 @XmlRootElement(name = "OrderList")

2 public class OrderListHyperlink {

3 //Wrapper for Links

4 @XmlElements(value = { @XmlElement(name = "Link") })

5 public ArrayList<RESTHyperLink> restHyperLinks = new ArrayList<RESTHyperLink>();

6 //Empty Constructor for automatic serialization

7 public OrderListHyperlink() {}

8 //Constructor with domain model object and URI as arguments to realize HATEOAS

9 public OrderListHyperlink(OrderListDomain orderListDomain, UriInfo ui) {

10 String baseURI = ui.getBaseUri().toString();

11 String queryParametersNextPage =

extractQueryParameters(orderListDomain.getNextPage());

12 // links, self referencing, ONE_TO_ONE multiplicity

13 if (!queryParametersNextPage.isEmpty()) {

14 this.addRESTHyperLink(new RESTHyperLink(baseURI + "orderlist" + "?" +

queryParametersNextPage, "nextPage"));}

15 ...

16 // links to allOrders, ONE_TO_MANY multiplicity

17 for (OrderDomain orderDomainLoop : orderListDomain.getAllOrders()) {

18 this.addRESTHyperLink(new RESTHyperLink(baseURI + "orderlist" + "/" +

orderDomainLoop.getOrderId().toString(), "allOrders"));

19 }

20 //link to this particular resource

21 String myQueryParameters = extractQueryParameters(orderListDomain);

22 if (!myQueryParameters.isEmpty()) {

23 myQueryParameters = "?" + myQueryParameters;

24 this.addRESTHyperLink(new RESTHyperLink(baseURI + this.getRelativeSelfPath() +

myQueryParameters, "self"));

25 } else {

26 this.addRESTHyperLink(new RESTHyperLink(baseURI + this.getRelativeSelfPath(),

"self"));

27 }

28 }

29 public String getRelativeSelfPath() {

30 return "orderlist";

31 }

32 ...

33 }

Listings 7.2 and 7.3 show the hyperlink classes corresponding to the domain classes shown in
listing 7.1. The first line of each listing shows the annotation @XmlRootElement that is needed
for automatic (de-)serialization. Lines 4 and 5 show the declaration of an ArrayList intended
to serve as wrapper for objects of the RESTHyperLink class, a simple JAXB annotated class with

67

7. Model Transformations

Listing 7.3 Generated OrderHyperlink from figure 5.2

1 @XmlRootElement(name = "Order")

2 public class OrderHyperlink {

3 //Wrapper for Links

4 @XmlElements(value = { @XmlElement(name = "Link") })

5 public ArrayList<RESTHyperLink> restHyperLinks = new ArrayList<RESTHyperLink>();

6 //JaxrsModelClassAttributes

7 private String orderId;

8 private String customerName;

9 //Empty Constructor for automatic serialization

10 public OrderHyperlink() {}

11 //Constructor with domain model object and URI as arguments to realize HATEOAS

12 public OrderHyperlink(OrderDomain orderDomain, UriInfo ui) {

13 setOrderId(orderDomain.getOrderId());

14 setCustomerName(orderDomain.getCustomerName());

15 String baseURI = ui.getBaseUri().toString();

16 //link to payment, ONE_TO_ONE multiplicity

17 if (orderDomain.getPayment() != null) {

18 this.addRESTHyperLink(new RESTHyperLink(baseURI + "payments" + "/" +

orderDomain.getPayment().getPaymentid().toString(), "payment"));

19 }

20 this.addRESTHyperLink(new RESTHyperLink(baseURI + this.getRelativeSelfPath(),

"self"));

21 }

22 //only the getters are marked as XmlElements

23 @XmlElement

24 public String getOrderId() { ... }

25 @XmlElement

26 public String getCustomerName() { ... }

27 ...

28 public String getRelativeSelfPath() {

29 return "orderlist" + "/" + this.getOrderId().toString();

30 }

31 }

fields for a link description (href for the URI and rel for the type). The main HATEOAS engine
is realized in the constructor that uses a domain object and an object of type UriInfo (see
5.3.1) as arguments (lst 7.2: line 9, lst 7.3: line 12). Each field in the domain class that is
derived from a JaxrsModelClassReference is accessed to extract a link. As can be seen in listing
7.2, fields resulting from self references are used to extract query parameters for constructing
a hyperlink (line 11, the other extractions were omitted because they are syntactically
identical). Line 17 shows how links are extracted from an ArrayList of objects
(ONE_TO_MANY multiplicity). Lines 21-27 show how a hyperlink to the current resource

68

7.2. Transformation to Application Code

Listing 7.4 Example @Path annotations from Restbucks (see figure 5.2)

1 @Path("")//address of the root resource

2 public class CoffeeShopResource extends AbstractResource { ... }

3 @Path("/orderlist")//static address

4 public class OrderListResource extends AbstractResource { ... }

5 @Path("payments/{paymentid}")//address with a static and a dynamic path fragment

6 public class PaymentResource extends AbstractResource { ... }

(domain object given as argument) is extracted. Listing 7.3 shows that all attributes are copied
to the hyperlink object (lines 13-14) and how a hyperlink is created from a ONE_TO_ONE
relationship. Additional to the OrderListHyperlink class from listing 7.2 the OrderHyperlink
class has also fields derived from JaxrsModelAttributes that can also be (de-)serialized through
annotated getters (lines 23-26).

7.2.2. Transforming the JaxrsResourceClass

Each JaxrsResourceClass results in a resource class and the corresponding interface.

• The name attribute will be used to generate the actual class names of the resulting
classes.

• The segments are used to generate code concerned with addressing the resource classes.
Detailed explanation follows in 7.2.2 : Resource identification.

• The httpGetMethod is used to generate the GET method, see (7.2.5 : HttpGetMethod).

• The httpGetMethod is used to generate the PUT method, see (7.2.5 : HttpPutMethod).

• The httpGetMethod is used to generate the DELETE method, see (7.2.5 :
HttpDeleteMethod).

• The httpGetMethod is used to generate the POST methods, see (7.2.5 : HttpPostMethod).

Resource identification

Since REST is based on resources and their identification each resource class needs its own
address. JAX-RS solves this by @Path annotations either at the class declaration or at methods.
For simplicity, this work solely uses the annotations at the class declaration level, but
hierarchical resource classes could be a point of future extension. Some examples of the
@Path annotations are shown in listing 7.4. Line 1 declares a @Path annotation with an
empty string. This means that the resource is the root resource. Line 2 shows an example for a
static address and line 5 shows an address with a static part and a dynamic part. The @Path

69

7. Model Transformations

Figure 7.2.: JAX-RS PSM resulting in an address with multiple dynamic parts.

Listing 7.5 Generated domain model class with multiple identifiers.

1 public class CresourceDomain {

2 // this domain class uses an identifier originating fromanother domain model class

3 //the identifier of Cresource

4 private String cindentifier;

5 //the identifier that was originally from Bresource

6 private String bresource_bidentifier;

7 ...}

annotation does not represent the absolute URI of a resource. The @Path annotation identifies
a resource relative to the address of the server the resource is hosted on. An address can have
multiple dynamic parts, each of which can originate from a different Resource. To keep the
convention that DLP only have to deal with one DomainObject all dynamic parts of a
particular resource are added as fields to the model object classes of the resource. An example
is shown in figure 7.2, where the Navigations bresource and cresource are both ONE_TO_MANY.
The corresponding declaration of Cresource domain model class is shown in listing 7.5. The
CresourceDomain class contains two fields. The cindentifier originates from the Cresource. The
bresource_bidentifier is derived from Bresource.

7.2.3. DomainLogicProviderInterface

Each resource class is generated along with a DomainLogicProviderInterface. The purpose of
the DomainLogicProviderInterface is to integrate domain logic into the resource class,
respectively its methods. Each HTTP method of the resource class generates one method in the
DomainLogicProviderInterface. An example from Restbucks is shown in listing 7.6. The listing

70

7.2. Transformation to Application Code

Listing 7.6 DomainLogicProviderInterface generated for OrderResource of Restbucks (5.2).

1 public interface OrderResourceInterface extends AbstractResourceInterface {

2 //used by the GET method

3 public OrderDomain get(String orderId);

4 //used by the PUT method

5 public OrderDomain put(String orderId, OrderDomain orderDomain);

6 //used by the DELETE method

7 public boolean delete(String orderId);

8 }

9

10 public interface OrderListResourceInterface extends AbstractResourceInterface {

11 //used by the GET method

12 public OrderListDomain get(String oFFSET, String cOUNT, String sORTBY, String

sORTORDER);

13 //used by a POST method

14 public OrderDomain createOrder(OrderDomain orderDomain);

15 //used by a POST method

16 public Boolean archiveList(ArchiveListDomain archiveListDomain);

17 }

shows the domain logic provider interfaces used by the OrderResource and by the
OrderListResource. The OrderResource is identified through a URI that contains a dynamic
segment. This is reflected by the fact that each of the interface methods uses the orderId as an
argument. The get and the put (lines 3 and 5) method both require an OrderDomain object as
return value that will be used for the response body. The put method also provides the
received OrderDomain object to update the resource. The delete method (line 7) only needs a
boolean value to indicate if the deletion was a success (return status code 204) or not (return
status code 500 - server error). The second interface is used by the OrderListResource. Since
the OrderListResource can be identified statically there is no identifier provided for the
methods. On answering a GET request, the user is provided with the values for all defined
query parameters (line 12). The method createOrder(...) is used to create new instances of the
OrderResource. The return value is used to create the location header and therefore the user
must update the orderId of the given OrderDomain. The archiveList(...) method requires a
Boolean return value from the user to indicate the success of the request. The user of the
modeling tool has to implement the interfaces to provide domain logic, see 5.4.

7.2.4. Domain Logic Provider

Each generated resource class needs an object that handles incoming domain objects and
provides requested domain objects. A DomainLogicProvider provides this services for the
resources. Each resource has a private method getDLP() with the corresponding

71

7. Model Transformations

DomainLogicProviderInterface as return. This method utilizes the DomainLogicProviderRegistry
to retrieve an implementation of its interface. The DomainLogicProviderRegistry is introduced
in 5.3.4: Other modules and 5.4: Domain Logic Integration.

7.2.5. Method Generation

The basic approach of JAX-RS (see 5.3.1) is, to offer Java methods as HTTP methods via
annotations. Also the content-negotiation is done by the JAX-RS implementation. The
MediaTypes for consumption and producing are defined by annotations at method declaration
level: @produces and @consumes. To make use of eventual dynamic url parts or query
parameters JAX-RS provides the @PathParam, and @QueryParam annotations. JAX-RS also
enables access to the current uri of the resource with the @Context annotation. @PathParam,
@QueryParam and @Context are used in the method header. The basic pattern for the
generated methods is the following (also illustrated in figure 5.5):

• Transform any incoming object (hyperlink) to a domain object.

• Call the DLP with the domain object as argument.

• Transform the returned domain object to a hyperlink object.

• Create a response with the hyperlink object as entity.

Of course this basic template can not be realized for all methods since GET usually has no
request entity and DELETE has no response entity. Every generated method has the capability
of answering with a HTTP status 500 (Internal Server Error) if an exception occurred during
the processing of a request. Also if a resource has dynamic URL parts each method might
answer with 404 (Not Found) if the DLP returns null. It is assumed that a resource without
dynamic url parts never gets a null value returned by the DLP. The JAX-RS implementation
used, deals with a lot of other issues concerning the response status, such as recognizing if a
method is allowed (405 Method Not Allowed) or content negotiation (406 Not Acceptable).

Listing 7.7 shows several generated methods as examples, that where generated from the
Restbucks model (figure 5.2). The first method is a PUT method from the OrderResource. It
uses both the @Consumes and @Produces annotations to specify which media types the
method accepts and provides. A well formatted request body is automatically transformed to
an OrderHyperlink object. The UriInfo as well as a PathParam are also injected (line 4). Line 6
shows how an domain object is created and given to the domain logic provider (DLP) in line 7.
Depending on the return value of the DLP a response is constructed. If the response entity is
null it is assumed that the resource didn’t exist and a status code 404 (not found) is sent.
Otherwise the responseEntity is transformed to a hyperlink object (line 10) and sent as
response body with status code 200 (OK) in line 11. All methods have in common that the
complete method body is enclosed by a try/catch block to capture possible exceptions. If an
exception occurs, a response status 500 (internal server error) is sent with a

72

7.2. Transformation to Application Code

Listing 7.7 Several generated methods from restbucks (figure 5.2)

1 @PUT

2 @Consumes({"application/xml", "application/json"})

3 @Produces({"application/xml", "application/json"})

4 public Response put(@Context UriInfo ui, @PathParam("orderId") String orderId,

OrderHyperlink orderHyperlink) {

5 try {

6 OrderDomain requestEntity = new OrderDomain(orderHyperlink);

7 OrderDomain responseEntity = getDLP().put(orderId, requestEntity);

8 if (responseEntity != null) {

9 // transform to linked object

10 OrderHyperlink responseEntityLinked = new OrderHyperlink(responseEntity, ui);

11 return Response.ok().entity(responseEntityLinked).build();

12 } else {return Response.status(404).build();}

13 } catch (Exception e) {

14 return Response.status(500).entity(new RESTServerException(e)).build();

15 }}

16 @POST

17 @Consumes({"application/archiveList+xml", "application/archiveList+json"})

18 public Response archiveList(@Context UriInfo ui, ArchiveListHyperlink

archiveListHyperlink) {

19 try {

20 ArchiveListDomain requestEntity = new ArchiveListDomain(archiveListHyperlink);

21 Boolean success = getDLP().archiveList(requestEntity);

22 //noProduces indicates no responseEntity--true/false

23 if (success) {return Response.ok().build();

24 } else {return Response.status(500).build();}

25 } catch (Exception e) {

26 return Response.status(500).entity(new RESTServerException(e)).build();

27 }}

28 @DELETE

29 public Response delete(@Context UriInfo ui, @PathParam("receiptId") String receiptId)

{

30 try {

31 Boolean success = getDLP().delete(receiptId);

32 if (success != null) {

33 if (success) {

34 return Response.noContent().build();

35 } else {return Response.status(500).build();}

36 } else {return Response.status(404).build();}

37 } catch (Exception e) {

38 return Response.status(500).entity(new RESTServerException(e)).build();

39 }}

73

7. Model Transformations

RESTServerException as body. The RESTServerException contains the full stacktrace delivered
by the exception.
The second method is a POST method which is only annotated with a @Consumes annotation
(line 17). The accepted media types differ from the specified media types in the model, which
were application/xml and application/json. The reason for this is that there are two post
methods in the OrderListResource from which it is generated. It is not possible to have more
than one method accepting and producing the same set of media types. Instead the media
types are extended to also reflect the method name in the media type. Automated (de-)
serialization is still provided through the JAX-RS implementation. Since the post method has
no @Produces annotation there is no response entity. Instead the DLP returns a boolean (line
21) indicating whether the request was accepted (line 23), to respond with status code 200, or
not accepted (line 24) in which case a status code 500 is sent.
The third method is a DELETE method without support for a request or response entity. This
method is from the ReceiptResource. Since the ReceiptResource has dynamic segments in its
URL the DLP is called with the receiptId as argument. The delete method has three possible
outcomes: The resource was not found (the return value is null) which results in a response
status code 404, the request was accepted (respond with status 204 no content), or the request
was not successful (respond with status 500).

HttpGetMethod

The HttpGetMethod method is the simplest of the generated methods. Since GET doesn’t
consume any request entities the DLP is only called with eventual @PathParam or
@QueryParam There is only the choice whether or not the method might need to return a
status 404 in case the resource has dynamic url parts. If not the method simply returns status
200 (OK) and the entity delivered by the DLP.

HttpPutMethod

The HttpPutMethod is basically the same as the HttpGetMethod with one important difference.
The HttpPutMethod not only produces, but also consumes an entity. This means that the
received entity (hyperlink model object) has to be transformed to a domain object before the
DLP can be called. Other than that a HttpPutMethod is the same as a HttpGetMethod.

HttpDeleteMethod

Contrary to HttpGetMethod and HttpPutMethod, the HttpDeleteMethod does not respond with
an entity, since the ResourceModel of the modeling tool does not provide MediaTypes for
producing. If it has MediaTypes for consuming, the HttpDeleteMethod transforms the incoming
object and gives it as an argument to the DLP. The HttpDeleteMethod either answers with 204

74

7.2. Transformation to Application Code

(No Content) which acknowledges deleting the resource, or with status 500 (Internal Server
Error) to indicate, that the resource could not be deleted by the server. In the case of DELETE
the DLP returns a simple boolean to show weather or not the resource was deleted.

HttpPostMethod

The HttpPostMethod is the most complex to generate, since it does not have defined semantics.
It can consume and produce entities. Depending whether the method produces an entity, the
DLP returns a boolean value to indicate if the request was successful, or the DLP returns an
entity. A third aspect to determine the structure is the postType (CREATION, RESOURCE, or
CUSTOM) of the HttpPostMethod. CREATION indicates that the method creates another
resource, RESOURCE indicates that the method uses the JaxrsModelClas associated with
another JaxrsResourceClass, and CUSTOM indicates that the method uses its own
JaxrsModelClass. The method answers as follows:

• No response entity:

– DLP returns true: successful processing, answer with 200 (OK)

– DLP returns false: processing unsuccessful, answer with 500 (Internal Server Error)

– DLP returns null: answer with 404 (Not Found). This can only happen if the
resource has dynamic path segments, e.g. a certain processing resource was not
found.

• Response entity expected:

– DLP returns entity:

∗ type is CREATION: answer with 201 (Created) and add a link header as well as
the response entity.

∗ type is CUSTOM or RESOURCE: answer with 200 (OK) and attach response
entity.

– DLP returns null:

∗ type is RESOURCE: answer with 404 (Not Found)

∗ type is CUSTOM: answer with 500 (Internal Server Error) because the server
couldn’t process the request.

75

7. Model Transformations

7.2.6. Other Generated Classes and Artifacts

Besides the model and resource classes there are other classes and artifacts that have to be
provided for the application to function properly. There is the DomainLogicProviderRegistry,
the RESTServerException class, the RESTHyperlink class, and abstract classes. Also there are
several artifacts needed for the Dropwizard framework : an Application class, a Configuration
class, a pom.xml, and a configuration YAML file. Dropwizard will be introduced in the
implementation chapter, see 8.1.3.

DomainLogicProviderRegistry: The DomainLogicProviderRegistry is a singleton [GHJV95]
and the provider of DLPs for the resource classes. It searches via reflections for
implementations of every DomainLogicProviderInterface and instantiates them. After
instantiation, the DomainLogicProviderRegistry registers them and delivers them to the
resources.

RESTServerException: RESTServerException is a class annotated for automatic XML/JSON
(de-)serialization and is used to provide exception stacktraces to the client.

RESTHyperlink: RESTHyperlink is a class annotated for automatic XML/JSON
(de-)serialization and is used to embed links into hyperlink model objects.

Application: The Application class is the starting point of the Dropwizard application. It is
responsible to register all resources with the server.

Configuration: The Configuration is a class to provide configuration items to the Application.

pom.xml: Since the generated applications use Maven to import dependencies (especially to
import Dropwizard), the pom.xml is a necessary requisite. It is an XML file that contains
configuration information used by Maven to build the application [mav].

configuration YAML file: A file that is used to configure the server and loggers. It can also be
used in combination with the Configuration class.

76

8. Implementation

This chapter describes the modeling tool, introduced in chapter 2.4, and how the solution
developed in this thesis was integrated. The chapter introduces new technologies used for the
solution, describes the architecture of the modeling tool and how the solution was integrated.

8.1. Technologies

Since the modeling tool was developed by Benjamin Schroth [Sch13], and enhanced by Jens
Petersohn [Pet14] this chapter will only cover the technologies that were introduced into the
modeling tool by this work. The modeling tool is based on Eclipse Epsilon [eps]. It uses the
Eclipse Modeling Framework (EMF [emf]) to define ecore meta models and EuGENia to
generate Java source code that can be used to generate graphical editors with the Graphical
Modeling Framework (GMF [gmf]). The Epsilon Transformation Language (EVL) is used to
validate instances of the defined meta models and the Epsilon Transformation Language (ETL)
is used to realize transformations between instances of the defined meta models. The before
mentioned technologies were already introduced in [Sch13], so this chapter focusses on Xtend,
Maven, and Dropwizard. The use of the Dropwizard (8.1.3) framework is a mandatory
requirement for the implementation of this thesis. Dropwizard provides necessary Java
libraries for REST application development like Jersey (JAX-RS) and Jetty (HTTP Server).

8.1.1. Xtend

For model-to-text transformation the modeling tool used Java Emitter Templates (JET) [jeta].
JETs latest release is from 2011 and there haven’t been any contributions in the last 12 months.
Also there is no more tooling for JET, which means that there are no editors with syntax
highlighting, validation, or other development features. So it was decided to realize the code
generation with Xtend.
Xtend is a programming language that has its syntactical and semantical roots in the Java
programming language. Instead to byte code, Xtend translates to Java source code, so it is
completely interoperable with Java and the JVM. Xtend was chosen for this work because it
provides features that are of great use for the model-to-text transformation.

77

8. Implementation

Listing 8.1 Definition and usage of an Extension Method.

1 //declaration, the extended class is the input

2 def String getXtendGetMethodInterface(JaxrsResource resource) {

3 ...

4 return "getMethodInterface"}

5 //usage

6 var resource = new JaxrsResource()

7 //the ’get’ can be ommitted

8 System.out.println(resource.xtendGetMethodInterface)

Extension Methods: The JAX-RS PSM meta model is defined as ecor emodel. This definition
is used to generate Java classes, which are used by the generator to transform a JAX-RS
PSM into Java source code. Since the model classes are regenerated with each adaption
of the meta model, it is not an option to alter these generated classes. Extension
Methods allow to add new functionality to existing classes without modifying the
original classes. The new methods can be used with the same syntax as one would use
methods of the original class. An example can be seen in listing 8.1. The JaxrsResource
used as input in line 2 is an imported class from the generated Java code of the JAX-RS
PSM meta model. The “traditional” way to extend this class would be to create a new
class and inherit from JaxrsResource and define new methods. Xtend allows to declare
so called extension methods in any class without the need to declare this inheritance (line
2). It is not necessary to use the extends keyword in the class definition. Within the class
a extension method is declared, it is possible to use the extension method on objects of
the original class, in this case JaxrsResource objects, in a manner as if the methods
would have been declared in the original class. The syntax for the declared method, with
the JaxrsResource object resource, would be resource.getXtendGetMethodInterface().
Furthermore Xtend allows to omit the a part of the method name (the “get”) so the
extension method can be used directly on JaxrsResource with the syntax as depicted in
line 8.

Template Expressions: Generating code often requires to repeatedly use the same fragments
of strings, or insert several smaller strings into a bigger template. Template Expressions
allow to define multi line expressions, inbetween triple single quotes (”’).The templates
facilitate the usage of expressions and control structures within the template through the
insertion of french quotes (guillemets: «»). Within the guillemets a developer can use IF
conditions, LOOPs and normal Xtend code. Also the templates enable a comfortable
whitespace handling to produce well formatted code. A small example of a template
with an IF control structure inside is shown in listing 8.2. If the condition returns true,
the complete string is “text conditional text” otherwise the string is “text text”.

78

8.1. Technologies

Listing 8.2 Example for a Template Expression
def String templateExample(){

//the template can be escaped via french quotes

return ”’text «IF condition»conditional «ENDIF»text”’

}

Other features of Xtend aim to shorten the written code, such as automatic type inference (so
the developers don’t need to declare variables with their type)[xte].

8.1.2. Apache Maven

Apache Maven is a project management tool that provides a uniform build system to build and
manage Java based projects. The basic thought behind Maven is “Convention over
Configurations”. Each Maven project has a project object model (POM),which is stored as
pom.xml and holds all information regarding the project. All Maven projects have the same
directory structure, unless not specified otherwise in the pom.xml. Software dependencies are
declared in the pom.xml and will be resolved by Maven when the project is built using local or
public Maven-respositories. Also Maven is well integrated with Eclipse by a plugin. It was
chosen because this work was required to generate Java applications using Dropwizard, which
is recommended to use with Maven [mav].

8.1.3. Dropwizard

[dw] Dropwizard is a Java framework for developing RESTful web services. The main idea of
Dropwizard is to provide Java libraries concerning the development of RESTful web services,
so the developer can focus on developing the application instead of piecing together all
needed libraries before even one line of code is written. Dropwizard also deals with the
integration of those libraries and provides an easy way for developers to create runnable Fat
JARs complete with HTTP Server and the developed application deployed. The most important
libraries for this project delivered by Dropwizard are Jetty, Jersey, and Jackson.

Jetty: The Jetty library is used by the Dropwizard application to embed an HTTP server to the
project. Dropwizard projects start the HTTP server with their main() method.[jetb]

Jersey: Jersey is the JAX-RS reference implementation that provides a lot of functionality
regarding RESTful web services.[jer]

Jackson: Jackson is a JSON library for Java used to provide simple automatic
(de-)serialization via annotations (Jackson annotations or JAXB annotations) to XML and
JSON.[jac]

79

8. Implementation

8.2. Architecture

This chapter shows the architecture of the existing modeling tool and explains the individual
modules the modeling tool is comprised of. The modeling tool is realized as an eclipse based
application, so it can only be used within eclipse. The tool is made up of four distinct modules:

Meta Models: The Meta Models module is a collection of all meta models used by the
modeling tool and is realized through several projects. All meta models are defined as
Ecore models to enable the generation of usable Java code for the Generator, and the
generation of graphical editors for users of the modeling tool.

ModelTransformations: The ModelTransformations is a set of ETL scripts that handle the
transformations between the models. Each transformation is offered to the user via the
context menu of eclipse.

ModelValidator: The ModelValidator is a set of EVL scripts to validate instances of the the
meta models provided by the Models module.

Generator: The Generator is the component that handles the transformation of JAX-RS PSMs
to Dropwizard projects. It is realized using the programming language Xtend that
integrates well with EMF and provides useful features for code generation (8.1.1).

An overview over the architecture is shown in figure 8.1.

8.3. Integration

The task of this work was to design and realize the generation of application code. Also the
solution was required to be integrated into the modeling tool. As described in [Sch13] and
[Pet14] the modeling tool already provided the capabilities to realize the generation of
application code, but in a rather simple fashion. The existing approach also didn’t have the
capability to cover all possible resource models. The new JAX-RS PSM meta model was
defined as an Ecore model and added to a project that already provided a platform specific
model, which is now deprecated. To transform the ResourceModel and the DeploymentModel
into the newly defined JAX-RS PSM, a new ETL script was added to the ModelTransformations
component.
An important aspect of this work was the development of a new Generator. This was realized
using the programming language Xtend. The modeling tool uses OSGi ([osg]) to integrate all
necessary projects. So the Generator was integrated by declaring dependencies in the projects
manifest file. The generation of application code can be accessed via eclipses context menu by
right-clicking on a JAX-RS PSM file.
Figure 8.3 shows the situation after modeling an application as a resource model and
corresponding deployment model. The context menu offers the generation of a JAX-RS PSM.
Necessary information is prompted from the user (see figure 8.2 (a)) and a JAX-RS PSM is

80

8.4. Limitations

Figure 8.1.: Architecture of the modeling tool.

generated. The JAX-RS PSM now offers the generation of a JAX-RS Maven project through the
context menu on the PSM. When started, the user is asked to provide the output directory. In
this case the original eclipse project (RestBucks in figure 8.3) was created as Java project and
the folder generated is a source code folder intended to serve as output directory, see figure 8.2
(b). The result of the code generation can be seen in figure 8.4.

8.4. Limitations

This chapter describes the technical limitations of the current solution. The limitations are as
follows:

MediaTypes: It is currently only possible to generate valid Java code for the MediaTypes
application/json and application/xml. The resource meta model provides three additional
media types: text/plain, text/html and application/octet-stream. This limitation could

81

8. Implementation

(a) User is prompted to provide the project name. (b) User is prompted to choose the output directory.

Figure 8.2.: User dialogs.

Figure 8.3.: Context menu on deployment model (several items of the context menu were
omitted).

82

8.4. Limitations

Figure 8.4.: The result of the code generation.

83

8. Implementation

be addressed by generating MessageBodyWriter and MessageBodyReader interfaces for
these media types to be implemented by the user.

Maven artifacts: The pom.xml is currently generated every time code is generated. Any
changes by the user will be lost. This limitation could be addressed by introducing an
additional model that allows the user to make additions to the pom.xml that will be
reflected in the generated file.

Dropwizard artifacts: The .yml file is currently generated every time code is generated. Any
changes by the user will be lost. This issue can be addressed through an addition to the
JAX-RS PSM or through an additional model that focusses on the Dropwizard
configuration file.

HTTP DELETE: It is currently not possible to provide a response body for HTTP DELETE
method. To address this limitation the resource meta model as well as the JAX-RS PSM
meta model have to be adapted.

URIs: It is currently only possible to associate one resource with one URI template. This
constraint was introduced to use the @Path element at class level (requires exactly one
URI template per resource class) in order to reduce the complexity of code generation
for this thesis. If a REST API provides access to a data structure with directories and files
there is a need for cyclic behaviour. It is possible to realize this behaviour through @Path
annotations at method level in JAX-RS resource classes and can be a point of future
extension to the prototype.

84

9. Summary

This work addresses the generation of source code for applications compliant to the
constraints of REST. The existing modeling tool described in 2.4 provides a formal model to
fully describe a REST API and the corresponding addressing of resources. The goal of the
thesis was the development of a platform specific model to later generate REST compliant
code using the Dropwizard (8.1.3) framework.
An important aspect was the development of a reference application (chapter 5) to identify
programming patterns that could serve as template for the resulting Java classes. The
developed application also served as a means to derive a platform specific model covering all
aspects to fully describe a Dropwizard application. Another important task was the
development of a concept to integrate manually written and automatically generated code.
The developed concept uses reflections to search the classpath of an application to discover
interface implementations at starting time of the application that can be used by the generated
code.
The platform specific model (chapter 6) and the generation of code (chapter 7.2) can be used
independently from the existing modeling tool. So the most important part of the integration
into the existing tool was the development of a model transformation that uses the resource
and the deployment model as input and transforms them into the platform specific model.
This transformation is described in 7.1. The modeling tool is implemented using the Eclipse
Modeling Framework, Eclipse Epsilon and the Graphical Modeling Framework. To integrate
this work into the framework the developed model transformation was realized using the
Eclipse Transformation Language so that the transformation could be added to the already
existing Model Transformations component of the modeling tool. The Generator was written
using Xtend (see 8.1.1) and added to the modeling tool as a plugin.

Conclusion

An important aspect of this work is the generation of source code for applications compliant to
the REST constraints. Every resource modeled with the modeling tool will ultimately result in
three Java classes. A resource class, a hyperlink class, and a domain class. A hyperlink class is
a means to provide at least two different representation formats for any resource. The
resource identification is derived from the deployment model and realized through @Path
annotations in Java. The usage of Jersey ensures that there are no ambiguous address

85

9. Summary

templates for resources in a running application. REST also calls for standard methods that
can now be easily realized through modeling. The resource model supports all HTTP methods
relevant to realize a CRUD-like (Create Retrieve Update Delete) interface for any resource.
The resource model also enables the modeling of relationships between resources via
navigations. This navigations are used by the solution to automatically embed appropriate
links into resource representations so HATEOAS can be realized by developers with ease. REST
demands stateless communication between client and server meaning that the server side
should not keep or use any session state for processing requests. This is enforced by not giving
control of the communication protocol to the developer of the application. The manually
implemented code is integrated through the manual implementation of generated interfaces.
None of these interface methods have any input other than identifiers or domain objects. So
the developer can not rely on context information from the server. This measures are all
designed to ease the development of applications compliant to the REST constraints and to
enforce several principles defined by REST. The developed solution provides an easy way to
develop applications compliant to the REST constraints without the need to manually
implement source code related to the technical aspects of HTTP based REST APIs and allows
developers to focus on the development of domain specific logic.

Prospect

There are several possibilities to improve the modeling tool described in this work. This
chapter provides several suggestions how the tool can be enhanced.

At the moment there is one JAX-RS PSM meta model that is sufficient to generate all artifacts
necessary for a Dropwizard application. Dropwizard uses the JAX-RS implementation Jersey.
There are many other ways to use classes annotated with JAX-RS annotations. The generated
classes can also be used for REST applications realized as WAR files (Web Application Archive)
or other formats. Currently the JAX-RS PSM contains information needed for Dropwizard and
Maven. This information could be moved to other models, so that the JAX-RS PSM only
contains information relevant to JAX-RS, while information on the target application could be
held in separate models. Possible new models could be a Dropwizard model, a WAR model,
and a maven model. Figure 9.1 shows the current model and transformation structure, as well
as the suggested.

Dropwizard model: A Dropwizard application needs a configuration file to start. The
generator currently creates a minimal version of this configuration file. The
configuration file of Dropwizard allows the configuration of the server, logging,
application metrics, and database access. This can currently only be done manually with
the risk, that the configuration file is overwritten during the next generation cycle.

86

Figure 9.1.: Current (left) and suggested (right) model and transformation structure

Dropwizard also provides capabilities for HealthChecks1 which can currently not be
created automatically.

Maven model: When developing an application it is often the case that additional libraries
are needed. Maven allows to declare dependencies to import libraries to the project.
This feature is currently used by generated applications, but it is not really available to
the application developer. As with the Dropwizard configuration file, the maven pom is
also generated in a minimal fashion. So a new Maven model could be used to provide
additional elements to be added to the generated pom.

Other suggestions to enhance the modeling tool are the following:

HATEOAS: Currently the RESTHyperlink class is used to create embedded links (see 7.2.6).
This could be enhanced so that the application developer can provide custom formats.

DomainClasses: Domain classes are currently modeled through the use of navigations and
attributes, which can only have three different attribute types. This mechanism could be
enhanced to allow a more sophisticated definition of domain classes through the use of
XML Schema.

MediaTypes: There are five predefined media types that can be modeled. There is currently
no possibility to provide a custom media type to a generated application.

URIs: Currently there is the requirement that there is exactly one URI template for each
resource. In some cases it is necessary that there can be multiple URI templates for
resource classes.

Deprecation: Sometimes resources might become deprecated. This fact is currently ignored
by the generator. So the deletion of resources in the model doesn’t result in the deletion

1“Health checks give you a way of adding small tests to your application to allow you to verify that your application
is functioning correctly in production”[dw]

87

9. Summary

of artifacts generated from the deleted resource. One possible way, is to mark those
resources as deprecated and delete all marked resources during the generation process.

88

A. Appendix

A.1. JAX-RS PSM Metamodel

JaxrsModel: The root element for all JAX-RS PSMs. It holds all information necessary to
generate a rest application (except for domain logic).

Attributes
String projectName: The name of the project, non optional.
String projectVersion: The version number, non optional.
String groupId: The groupId for the maven pom.xml, non optional.

Associations
JaxrsResourceClass[*] resources: A collection of all JaxrsResourceClasses in the

model.
JaxrsModelClass[*] modelClasses: A collection of all JaxrsModelClasses in the

model.

JaxrsResourceClass: Represents the resource classes that will later be generated.

Attributes
String name: The name of the resource class.

Associations
JaxrsPathSegment[*] segments: A ordered collection of JaxrsPathSegments that

describes the complete url path for this resource.
JaxrsModelClass modelClass: The primary JaxrsModelClass that represents the

entity associated with the resource.
HttpGetMethod httpGetMethod: The GET method of the resource. Can be empty.
HttpPutMethod httpPutMethod: The PUT method of the resource. Can be empty.
HttpDeleteMethod httpDeleteMethod: The DELETE method of the resource.

Can be empty.
HttpPostMethod[*] httpPostMethods: Collection of POST methods of the

resource. Can be empty.

JaxrsPathSegment: An abstract class to group static and dynamic JaxrsPathSegments.

JaxrsStaticPathSegment: The static version of the JaxrsPathSegment. It represents a static
url path segment.

89

A. Appendix

Attributes
String segment: A url path segment.

JaxrsDynamicPathSegment: The dynamic version of the JaxrsPathSegment. It points to a
JaxrsRentityAttribute.

Associations
JaxrsModelClassAttribute attribute: The JaxrsRentityAttribute that will be used

as dynamic url path segment.

HttpMethod: An abstract class to group all HttpMethods.

HttpGetMethod: The representation of a GET method.

Attributes
MediaType[1..5] produces: A collection of MediaTypes the method can produce.

Associations
JaxrsQueryParameter[*] queryParameter: A collection of JaxrsQueryParameter

the method uses.
JaxrsResourceClass parent: The resource that offers the method.

HttpPutMethod: The representation of a PUT method.

Attributes
MediaType[1..5] produces: A collection of MediaTypes the method can produce.
MediaType[1..5] consumes: A collection of MediaTypes the method can consume.

Associations
JaxrsQueryParameter[*] queryParameter: A collection of JaxrsQueryParameter

the method uses.
JaxrsResourceClass parent: The resource that offers the method.

HttpDeleteMethod: The representation of a DELETE method.

Attributes
MediaType[0..5] consumes: A collection of MediaTypes the method can consume.

Can be empty.
Associations

JaxrsQueryParameter[*] queryParameter: A collection of JaxrsQueryParameter
the method uses.

JaxrsResourceClass parent: The resource that offers the method.

HttpPostMethod: The representation of a POST method

Attributes
String methodName: The name of the method.

90

A.1. JAX-RS PSM Metamodel

PostType postType: The type of the method.
MediaType[0..5] produces: A collection of MediaTypes the method can produce.

Can be empty.
MediaType[0..5] consumes: A collection of MediaTypes the method can consume.

Can be empty.
Associations

JaxrsModelClass modelClass: The JaxrsModelClass that is used by this method.
This can either be the JaxrsModelClass of the parent JaxrsResourceClass or a
separate JaxrsModelClass used only by this method.

JaxrsResourceClass parent: The resource that offers the method.

JaxrsModelClass: This class provides all information to generate DomainClasses and
HyperlinkClasses (see chapter 5.2).

Attributes
String name: The basic name of the resulting classes. Will be extended by

“Hyperlink” or “Domain”.
Associations

JaxrsModelClassAttribute[*] attributes: A collection of
JaxrsModelClassAttributes that define the data structure of the model classes.
Can be empty.

JaxrsModelClassReference[*] references: A collection of
JaxrsModelClassReferences. To show the associations to other JaxrsModelClasses.

JaxrsQueryParameter[*] queryParameter: A collection of JaxrsQueryParameter.
Contains all JaxrsQueryParameter of all methods of the parent resource to
define them as static fields in the class declaration.

JaxrsResourceClass parent: The main resource where the JaxrsModelClass is
used.

JaxrsModelClassAttribute: Used to model the data structure or JaxrsModelClasses.

Attributes
String name: The name of the attribute.
AttributeDataType type: The type of the attribute.

Associations
JaxrsModelClass parentModelClass: The JaxrsModelClass associated with the

attribute.

JaxrsModelClassReference: Used to model the associations between the resulting
DomainClasses.

Attributes
String name: The name of the reference.

91

A. Appendix

String referencedResourceName: The name of the JaxrsResourceClass the
reference is associated with. Mainly used during transformation.

Multiplicity multiplicity: An enumeration to differentiate between ONE_TO_ONE
and ONE_TO_MANY relationships.

Associations
JaxrsModelClass targetClass: The JaxrsModelClass the parentClass is associated

with.
JaxrsModelClass parentClass: The JaxrsModelClass that is the owner of the

reference.

JaxrsQueryParameter: A simple class to model QueryParameters.

Attributes
String name: The name of the JaxrsQueryParameter.

PostType: An enumeration to differentiate between different types of POST methods.

CREATION: Indicates that the POST method creates an instance of of a particular
resource (its JaxrsModelClass).

RESOURCE: Indicates that the POST method uses the JaxrsModelClass of a resource
method.

CUSTOM: Indicates that the POST method uses its own JaxrsModelClass, that is not a
primary JaxrsModelClass of a resource.

A.2. Model-To-Model Transformation Rules

A.2.1. JaxrsModel Transformation

input: ResourceDiagram

• projectName: user input, non optional.

• projectVersion: user input, non optional.

• groupId: user input.

• resources: transformed from ResourceDiagram resources (A.2.2).

• modelClasses: transforment from ResourceDiagram resources (A.2.9).

92

A.2. Model-To-Model Transformation Rules

A.2.2. JaxrsResourceClass Transformation

input: Resource, DeploymentModel
initiatedBy: JaxrsModel Transformation

• name: derived from Resource name.

• segments: derived from the DeploymentModel. The input Resource is searched within the
DeploymentModel and then traced backwards to the root.

• modelClass: the JaxrsModelClass is simultaneously created from the Resource (A.2.9).

• httpGetMethod: transformed from Resource GET (A.2.5)

• httpPutMethod: transformed from Resource PUT (A.2.6)

• httpDeleteMethod: transformed from Resource DELETE (A.2.7)

• httpPostMethods: transformed from Resource POSTs Interactions. (A.2.8)

A.2.3. JaxrsStaticPathSegment Transformation

input: StaticURLFragment
initiatedBy: JaxrsResourceClass Transformation

• segment: derived from StaticURLFragment fragment.

A.2.4. JaxrsDynamicPathSegment Transformation

input: DynamicURLFragment
initiatedBy: JaxrsResourceClass Transformation

• attribute: transformed from DynamicURLFragment attribute (A.2.11).

A.2.5. HttpGetMethod Transformation

input: GetMethod
initiatedBy: JaxrsResourceClass Transformation

• produces: derived from GetMethod produces.

• queryParameter: derived from GetMethod params.

• parent: the initiating JaxrsResourceClass

93

A. Appendix

A.2.6. HttpPutMethod Transformation

input: PutMethod
initiatedBy: JaxrsResourceClass Transformation

• produces: derived from PutMethod produces.

• consumes: derived from PutMethod consumes.

• queryParameter: derived from PutMethod params.

• parent: the initiating JaxrsResourceClass

A.2.7. HttpDeleteMethod Transformation

input: DeleteMethod
initiatedBy: JaxrsResourceClass Transformation

• consumes: derived from DeleteMethod consumes.

• queryParameter: derived from DeleteMethod params.

• parent: the initiating JaxrsResourceClass

A.2.8. HttpPostMethod Transformation

input: Interaction
initiatedBy: JaxrsResourceClass Transformation

• methodName: derived from Interaction name.

• postType: calculated from the Interaction. CREATION if the Interaction is a LinkSource of
ResourceCreation, RESOURCE if the Interaction has an inputResource, and CUSTOM if the
Interaction has its own entityStructure.

• produces: derived from Interaction produces.

• consumes: derived from Interaction consumes.

• modelClass: either the modelClass of another JaxrsResourceClass (postType is CREATION
or RESOURCE), or a new modelClass is created (postType is CUSTOM, A.2.10).

• parent: the initiating JaxrsResourceClass

94

A.2. Model-To-Model Transformation Rules

A.2.9. JaxrsModelClass Transformation from Resource

input:Resource
initiatedBy: JaxrsResourceClass Transformation

• name: derived from Resource name.

• attributes: transformed from Resource entityStructure (A.2.11).

• references: transformed from the Navigations of the Resource GET, PUT, DELETE
(A.2.12).

• queryParameter: transformed from the queryParameter of Resource GET, PUT, DELETE
(A.2.13).

• parent: the initiating JaxrsResourceClass.

A.2.10. JaxrsModelClass Transformation from Interaction

input: Interaction
initiatedBy: HttpPostMethod Transformation

• name: derived from Interaction name.

• attributes: transformed from Interaction entityStructure (A.2.11).

• references: transformend from the Navigations of the Interaction (A.2.12).

• queryParameter: The Resource POST does not have any QueryParameter. So this will stay
empty.

• parent: The parent Resource of the associated PostMethod.

A.2.11. JaxrsModelClassAttribute Transformation

input: EntityAttribute
initiatedBy: JaxrsModelClass Transformation from Resource or JaxrsModelClass
Transformation from Interaction

• name: derived from EntityAttribute name.

• type: derived from EntityAttribute type.

• parentModelClass: the initiating JaxrsModelClass.

95

A. Appendix

A.2.12. JaxrsModelClassReference Transformation

input: Navigation
initiatedBy: JaxrsModelClass Transformation from Resource or JaxrsModelClass
Transformation from Interaction

• name: derived from Navigation type.

• referencedResourceName: derived from Navigation source parent.

• targetClass: derived from Navigation target.

• parentClass: the initiating JaxrsModelClass.

• multiplicity: derived from Navigation multiplicity.

A.2.13. JaxrsQueryParameter Transformation

input: Parameter
initiatedBy: HttpGetMethod Transformation or HttpPutMethod Transformation or
HttpDeleteMethod Transformation

• name: derived from Parameter name.

96

Bibliography

[dw] Dropwizard. URL http://www.dropwizard.io/. (Cited on pages 79 and 87)

[emf] Eclipse Modeling Framework. URL https://eclipse.org/modeling/emf/. (Cited
on page 77)

[eps] Eclipse Epsilon. URL http://www.eclipse.org/epsilon/. (Cited on page 77)

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, 2000. (Cited on pages 9 and 13)

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995. (Cited on page 76)

[gmf] Graphical Modeling Framework. URL http://www.eclipse.org/modeling/gmp/.
(Cited on page 77)

[HFK+14] F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, K. Vukojevic-Haupt. Service
Composition for REST. In Proceedings of the 18th IEEE International EDOC
Conference (EDOC 2014). IEEE, 2014. (Cited on page 21)

[HKLS14] F. Haupt, D. Karastoyanova, F. Leymann, B. Schroth. A Model-Driven Approach for
REST Compliant Services. In Proceedings of the IEEE International Conference on
Web Services (ICWS 2014), pp. 129 – 136. IEEE, 2014.
doi:10.1109/ICWS.2014.30. (Cited on pages 7, 30 and 31)

[HLP15] F. Haupt, F. Leymann, C. Pautasso. A conversation based approach for modeling
REST APIs. In 12th Working IEEE / IFIP Conference on Software Architecture -
WICSA 2015. IEEE Computer Society, 2015. (Cited on pages 7, 30, 31 and 32)

[htt99] Hypertext Transfer Protocol – HTTP/1.1, 1999. URL
https://tools.ietf.org/html/rfc2616. (Cited on pages 15, 16 and 22)

[jac] Jackson JSON Processor. URL http://wiki.fasterxml.com/JacksonHome. (Cited
on page 79)

[jaxa] Java API for RESTful Services (JAX-RS). URL https://jax-rs-spec.java.net/.
(Cited on pages 52 and 65)

97

http://www.dropwizard.io/
https://eclipse.org/modeling/emf/
http://www.eclipse.org/epsilon/
http://www.eclipse.org/modeling/gmp/
https://tools.ietf.org/html/rfc2616
http://wiki.fasterxml.com/JacksonHome
https://jax-rs-spec.java.net/

Bibliography

[jaxb] Java Architecture for XML Binding (JAXB). URL
https://jcp.org/en/jsr/detail?id=222. (Cited on page 65)

[jer] Jersey. URL https://jersey.java.net/. (Cited on pages 52 and 79)

[jeta] Java Emitter Templates. URL https://eclipse.org/modeling/m2t/?project=jet.
(Cited on page 77)

[jetb] Jetty. URL http://www.eclipse.org/jetty/. (Cited on page 79)

[LSS09] M. Laitkorpi, P. Selonen, T. Systa. Towards a Model-Driven Process for Designing
ReSTful Web Services. In Web Services, 2009. ICWS 2009. IEEE International
Conference on, pp. 173–180. 2009. (Cited on pages 7, 41, 43 and 46)

[mav] Apache Maven. URL https://maven.apache.org/. (Cited on pages 76 and 79)

[mim96] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, 1996. URL
https://tools.ietf.org/html/rfc2046. (Cited on page 16)

[Mus12] J. Musser. Open APIs, what’s hot, what’s not, 2012. (Cited on pages 7 and 10)

[omg] Object Management Group. URL http://www.omg.org. (Cited on page 27)

[ope] URL http://www.opengroup.org/. (Cited on page 19)

[osg] OSGi. URL http://www.osgi.org. (Cited on page 80)

[Pau09] C. Pautasso. Some REST Design Patterns (and Anti-Patterns), 2009. (Cited on
page 9)

[Pet14] J. Petersohn. A multilayered model for REST applications, 2014. (Cited on
pages 39, 77 and 80)

[PZL08] C. Pautasso, O. Zimmermann, F. Leymann. Restful Web Services vs. "Big"’ Web
Services: Making the Right Architectural Decision. In Proceedings of the 17th
International Conference on World Wide Web, WWW ’08. ACM, 2008. (Cited on
pages 21 and 22)

[rmm] Richardson Maturity Model. URL
http://www.crummy.com/writing/speaking/2008-QCon/act3.html. (Cited on
page 22)

[Sch11] S. Schreier. Modeling RESTful Applications. In Proceedings of the Second
International Workshop on RESTful Design, WS-REST ’11. ACM, 2011. (Cited on
pages 7, 41 and 42)

[Sch13] B. Schroth. Entwurf und Realisierung von REST - Anwendungen nach Prinzipien
der modellgetriebenen Softwareentwicklung, 2013. (Cited on pages 39, 77
and 80)

98

https://jcp.org/en/jsr/detail?id=222
https://jersey.java.net/
https://eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/jetty/
https://maven.apache.org/
https://tools.ietf.org/html/rfc2046
http://www.omg.org
http://www.opengroup.org/
http://www.osgi.org
http://www.crummy.com/writing/speaking/2008-QCon/act3.html

Bibliography

[SVEH07] T. Stahl, M. Völter, S. Efftinge, A. Haase. Modellgetriebene Softwareentwicklung:
Techniken, Engineering, Management. dpunkt, 2 edition, 2007. (Cited on pages 26
and 27)

[Til08] S. Tilkov, 2008. URL http://www.infoq.com/articles/rest-anti-patterns.
(Cited on page 9)

[uri05] Uniform Resource Identifier (URI): Generic Syntax, 2005. URL
https://tools.ietf.org/html/rfc3986. (Cited on page 17)

[url94] Uniform Resource Locators (URL), 1994. URL
https://tools.ietf.org/html/rfc1738. (Cited on page 17)

[Vit10] T. Vitvar, 2010. URL http://www.programmableweb.com/news/

api-anti-patterns-how-to-avoid-common-rest-mistakes/2010/08/13. (Cited
on page 9)

[VP09] F. Valverde, O. Pastor. Dealing with REST Services in Model-driven Web
Engineering Methods. V Jornadas Científico-Técnicas en Servicios Web y SOA,
JSWEB, 2009. (Cited on pages 7, 41, 46 and 47)

[w3c] World Wide Web Consortium. URL http://www.w3.org. (Cited on page 19)

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005. (Cited on pages 7 and 20)

[WPR10] J. Webber, S. Parastatidis, I. Robinson. REST in Practice: Hypermedia and Systems
Architecture. O’Reilly Media, Inc., 1st edition, 2010. (Cited on pages 7, 39, 49
and 50)

[wsd] Web Service Description Language. URL http://www.w3.org/TR/wsdl. (Cited on
pages 8, 20 and 21)

[xte] Xtend. URL http://www.eclipse.org/xtend/. (Cited on page 79)

All links were last followed on Oktober 16, 2015.

99

http://www.infoq.com/articles/rest-anti-patterns
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc1738
http://www.programmableweb.com/news/api-anti-patterns-how-to-avoid-common-rest-mistakes/2010/08/13
http://www.programmableweb.com/news/api-anti-patterns-how-to-avoid-common-rest-mistakes/2010/08/13
http://www.w3.org
http://www.w3.org/TR/wsdl
http://www.eclipse.org/xtend/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 REST - Representational State Transfer
	2.2 Service Orientated Architecture and REST
	2.3 Model Driven Software Development and Architecture
	2.4 Modeling Tool
	2.5 Resource Metamodel
	2.6 Deployment Metamodel

	3 Solution Approach
	3.1 Task Description
	3.2 Description

	4 Related Work
	4.1 "Modeling RESTful applications"
	4.2 "Towards a Model-Driven Process for Designing ReSTful Web Services"
	4.3 "Dealing with REST Services in Model-driven Web Engineering Methods"

	5 Reference Application
	5.1 Introducing Restbucks
	5.2 Model
	5.3 Design of the Restbucks Implementation
	5.4 Domain Logic Integration

	6 JAX-RS PSM Metamodel
	6.1 JaxrsModel
	6.2 JaxrsResourceClass
	6.3 JaxrsModelClass

	7 Model Transformations
	7.1 Transformation to PSM
	7.2 Transformation to Application Code

	8 Implementation
	8.1 Technologies
	8.2 Architecture
	8.3 Integration
	8.4 Limitations

	9 Summary
	A Appendix
	A.1 JAX-RS PSM Metamodel
	A.2 Model-To-Model Transformation Rules

	Bibliography

