
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 0202-0010

Data Parallelization in Complex
Event Processing Without a

Dedicated Splitter

Qing Lu

Course of Study: INFOTECH

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Dipl.-Inf. Ruben Mayer

Commenced: January 18, 2016

Completed: July 19, 2016

CR-Classification: C.2.4 Distributed applications

Abstract

With the popularity of Internet of Things(IoT), Complex Event Processing (or CEP)
shows its power in detecting specified patterns from input event stream. There are
existing parallel CEP architectures to improve the capacity of CEP system. The major
data parallel CEP architecture is the Split-Process-Merge architecture, which is able to
provide unbounded parallelism degree. However, it has limitation when the splitting
decision becomes computational heavy, which leads the splitter becoming a bottleneck.
E.g. splitting decision depends on comparing two images to check if they contain the
same object such as a person. The result is that the single splitter, instead of operator
instances, is doing the computational expensive job. To help analyze the cause of "heavy"
splitting decision, this thesis proposes an Extended SNOOP query language, which
combines features from both SNOOP and TESLA, two of the leading event specification
languages. Then this thesis derives an architecture, which avoids the splitting decision,
from Split-Process-Merge architecture. The Split-Process-Merge architecture splits the
input event stream into sub-streams and each operator instance handles one or more
sub-streams. Instead, the new architecture creates Tasks by combining every incoming
event to all existing Partial Matches, and operator instances process the Tasks. The
Task Creation Algorithm is content independent. It won’t check the content, like the
image data, in events. Therefore, the computational heavy splitting decision is avoided.
Together with this thesis, an example implementation of new architecture for a specific
query is given. The Evaluation results of implementation show the new architecture
obtains a good scalability as number of CPU cores increasing and as the cost of operation
increasing.

3

Acknowledgment

I would like to take this opportunity to thank the Distributed Systems department
represented by Prof. Kurt Rothermel for giving me the chance to write my Master
Thesis.

A deep appreciation for my supervisor Ruben Mayer who guided me the direction and
gave me much inspiration during my work.

I am also grateful for the assist from my family and friends. They encouraged me a lot
when I had hard time.

It would be impossible to finish this thesis if I didn’t received the support from them. I
would like to express my gratitude here again.

Qing Lu
Esslingen, 12. July. 2016

4

Contents

1 Introduction 15

2 Background 19
2.1 Background of CEP Systems and Query Languages 19
2.2 CEP Architecture . 20

3 "Heavy" Splitter Problem 23
3.1 Pseudo CEP Language "Extended SNOOP" 23
3.2 Application Examples . 27
3.3 Analysis of Application Examples . 32
3.4 Problem Classification . 34
3.5 Thesis Goal . 35

4 Approach to Create New Architecture 37
4.1 Chapter Organization . 39
4.2 Improved Finite State Machine . 39
4.3 General View of New Architecture . 42
4.4 Terminology Definition . 43
4.5 Parallelize the Improved Finite State Machine 52
4.6 Generalization of the architecture . 56
4.7 Merger . 62
4.8 Summary about Architecture . 63

5 Details of New Architecture 65
5.1 Operator Instance . 65
5.2 Merger . 66
5.3 Centralized Data Structure . 67
5.4 Optimization . 77
5.5 Improved Finite State Machine . 78

6 Evaluation 83
6.1 Environment Setup and Evaluation Configuration 83
6.2 Terminology Used in Evaluation . 87
6.3 Evaluation Results . 89

5

7 Conclusion and Outlook 107

Bibliography 109

6

List of Figures

2.1 Split-Process-Merger Architecture . 21

4.1 Merged Splitter and Operator . 38
4.2 Finite State Machine Model of Query Algorithm 4.1 40
4.3 Finite State Machine Syntax . 40
4.4 Special Transfer . 40
4.5 Order of Two Partial Matches/Final Matches 48
4.6 State Machine Model for Example Query 2 53
4.7 Architecture for Example Query 2 . 53
4.8 Architecture for State Machine Model in Figure 4.2 54
4.9 Architecture with Improved Parallelism Degree 55
4.10 Architecture of Unbounded Parallelism Degree 56
4.11 Single Input Queue from Multiple Output Queues and Single Output

Queue to Multiple Input Queues . 57
4.12 Centralized Data Structure . 58
4.13 Architecture with General Processing Units 61
4.14 Architecture with Merger . 62

5.1 Two Partial Match Data Structure . 70
5.2 State Machine Model of SEQ Operator 79
5.3 State Machine Model of OR Operator . 79
5.4 State Machine Model of ALL(E1, E2, E3, E4) 80
5.5 State Machine Model of ALL Operator 81
5.6 State Machine Model of NOT Operator 82

6.1 Throughput . 90
6.2 Legend of Boxplot Chart . 91
6.3 Raw Event Processing Latency w.r.t. Raw Event block size 92
6.4 Raw Event Queuing Time w.r.t. Raw Event Block Size 93
6.5 Clean Up Cost Time . 94
6.6 Partial Match Data Structure Size w.r.t. Raw Event Block Size 96
6.7 Final Match Consumption Cost Time w.r.t. Raw Event Block Size 97
6.8 Throughput w.r.t number of cores . 98
6.9 Optimum Throughput w.r.t. number of cores 99

7

6.10 Raw Event Processing Latency w.r.t. number of cores 101
6.11 Task Evaluation Cost Time . 102
6.12 Throughput w.r.t. Different Complexity of Operation 103
6.13 Final Match Consumption Cost Time of Tree w/o Hash Map, Priority Task

Queue, w.r.t. Different Complexity of Operation 104
6.14 Raw Event Queuing Time of Tree w/o Hash Map, Priority Task Queue,

w.r.t. Different Complexity of Operation 105

8

List of Tables

6.1 Event Generation Rate in throughput test w.r.t number of vCPU cores . . 85
6.2 Event Generation Rate in latency test w.r.t number of vCPU cores 85

9

List of Listings

5.1 APIs supported by Raw Event List . 67
5.2 APIs supported by Partial Match Data Structure 68

6.1 Evaluation Configuration Parameters . 84

11

List of Algorithms

3.1 Syntax of SNOOP . 23
3.2 Syntax of TESLA . 24
3.3 A complex example query of TESLA . 25
3.4 A more complex example query of TESLA 25
3.5 Syntax of Extended SNOOP . 26
3.6 TESLA Query for Application 1 . 28
3.7 Extended SNOOP Query for Application 1 28
3.8 TESLA Query for Application 2 . 29
3.9 SNOOP Query for Application 2 . 30
3.10 Extended SNOOP Query for Application 2 30
3.11 Extended SNOOP Query for Application 3 31
3.12 Extended SNOOP Query for Application 4 32
3.13 Extended SNOOP Query for Application 5 32

4.1 Simple Example Query . 38
4.2 Example Query 2 . 52
4.3 Task Creation Algorithm of RawEventReceiver 59
4.4 Task Creation Algorithm of Operator Instance 60

5.1 Merging Algorithm . 66
5.2 Consumption Algorithm for Graph . 73
5.3 Consumption Algorithm for Tree . 73

13

1 Introduction

The idea of Complex Event Processing (or CEP) was raised decades ago. The concept CEP
is derived from discrete event simulation, and active database area. The functionality
of active database is limited since it is based on a database system. Data needs to be
stored in database before they can be processed, which will lead to high I/O latency.
The expressiveness is limited in active database because there are only limited operators
supported to express the relationship between events. Maybe these operators were
enough for the scope of database, but they are far from enough for the world outside
database. Therefore, CEP focus on processing event stream instead of database and
it needs more operators to express better relationship between events. The source of
events can be anywhere and everywhere. In addition, the size of an event stream is
unbounded. It is impossible to store all data first and then to process them. CEP needs
to process the events as soon as they arrive. Also, CEP doesn’t keep the working data in
hard disk, but just keep them in memory which has much higher I/O speed. Once the
events have been processed, these events can be just discarded. Of course, it is possible
to record the events for other purpose, but for CEP system, these data are useless after
being processed.

CEP is used mainly in Business Intelligence or Operational Intelligence. A major usage
of CEP is to detect certain patterns in an event stream. These patterns are identified as
opportunities or threats by domain experts. A very good example of CEP application is al-
gorithmic stock-trading[Luc02][Lun06]. The domain experts describe the patterns when
to trigger a "sell" or "buy" activity and the CEP system finds out all these opportunities
by detecting the patterns from event stream.

In last ten to twenty years, the Internet of Things(IoT) had its boom times. With
the rise of IoT, CEP shows its power in analyzing the data from RFID, and/or sensor
networking because of the capability of processing large amount of continuous event
stream.[WSK08][Dun09][YCL11] CEP is used to detect patterns in the field of environ-
ment monitoring, traffic management, and also business process management. Domain
experts only need to define the pattern rules, CEP will find the complex events from
hundreds of thousands simple raw events and then present the valuable information
to the user. Nowadays, the artificial intelligence has been developed rapidly. Maybe in
future, the pattern rules will be generated from artificial intelligence more than human
beings. This is another story beyond this thesis.

15

1 Introduction

Besides the growth of IoT, the Internet itself grows explosively as well. More accurately,
the amount of content on the Internet keeps exploding in recent years. [Jam12] shows
the data created every minute and that was in 2012, 4 year ago. CEP has already
shown its power in pattern detection. Is it possible for CEP to detect patterns from
the whole Internet instead of just IoT? Or how dose CEP perform if incoming events
containing images, audio, and video, etc.? E.g. [HLR+13] gives examples about "vehicle
tracking" and "traffic monitoring" using Mobile CEP. To achieve this target, CEP needs
to handle "heavier" data than before. Previously, the data CEP processed are mainly
primary data types, i.e. integers, floating numbers, boolean values, and strings, etc. The
operations against these data types,e.g. adding two numbers, finding a sub-string in
a string, are quite "cheap" since only several nanoseconds are needed. On the other
hand, the content on the Internet is much "heavier",e.g. articles, images, audios, and
even videos. Computer needs much more time, from several milliseconds to hundreds
of milliseconds, to process these data. To handle a large amount of "heavy" content, a
parallel architecture is always preferred. However, this thesis will show most current
popular parallel CEP architectures are not suitable for this kind of "heavy" content and a
new parallel CEP architecture for "heavy" content will be proposed in later chapters.

Thesis Structure

The structure of this thesis is as following:

Chapter 2 – Background: In this chapter, some CEP systems as well as parallel CEP
architecture will be introduced.

Chapter 3 – "Heavy" Splitter Problem: In this chapter, "heavy" splitter problem in the
Split-Process-Merge architecture will be put forward and analyzed. To help analyze
the problem, a pseudo CEP language as well as some application examples will be
given.

Chapter 4 – Approach to Create New Architecture: This chapter will show the ap-
proach how to obtain the major components of new architecture from Split-
Process-Merge architecture step by step.

Chapter 5 – Details of New Architecture: This chapter will show the details about the
components of new architecture. Related data structure, algorithms, and APIs will
also be introduced.

16

Chapter 6 – Evaluation: Evaluations about the performance of new architecture will
be in chapter 6.

Chapter 7 – Conclusion and Outlook: The last chapter will list some possible direction
of further work.

17

2 Background

2.1 Background of CEP Systems and Query Languages

As mentioned in previous chapter, CEP has become popular in last tens of years. The sur-
vey paper from [CM12b] has excellent historical stories about different CEP systems. At
very beginning, CEP is derived from active database, e.g. HiPac[DBB+88], Ode[LGA96],
Samos[GGD91], and SNOOP[CM94]. People wanted to detect specified patterns from
the modification of database. For instance, people wanted the database could automat-
ically raise an alert when some values in database matched certain rules, instead of
inquiring the database manually. This is the function of active database. Most of active
database only supports internal events, i.e. the modification on database. Samos and
SNOOP support both internal events and external events as the input. They can detect
patterns from events inside database as well as outside database, such as events from
sensors. SNOOP is also independent from the database model, which makes it easy to
modify to use it outside the database management system. SNOOP provides selection
and consumption policy in addition, while the other three do not support this function.
If multiple combination of events matches the pattern, the selection policy specifies
which combination to choose. For example, there are four events in the event stream, A1,
A2, B, and C. The index indicates the order of events so as to distinguish two A events.
Both A1BC and A2BC will match the pattern ABC. Then with first occurrence selection
policy, a matched result A1BC will be fired, while with last occurrence selection policy,
A2BC will be fired. After a matched result is fired, the consumption policy defines what
to do with the events in a matched result. E.g. Selected consumption policy will cause
every event in a matched result to be consumed. None of them will ever appear in
other later matched results. SNOOP achieves this by constructing and traversing a tree.
However, this limits the possibilities of selection and consumption policy. For instance,
SNOOP doesn’t support to specify selecting the first event A and the last event B. Also
SNOOP cannot consume part of selected events, e.g. just consume event A but not event
B.

Later, Complex Event Processing Systems are proposed. CEP system is designed to detect
patterns from one or more event streams rather than events in a database. The source
of events can be anywhere, e.g. stock market, sensors or the Internet. There are lots of

19

2 Background

CEP system been present. I would like to emphasis three of them: Amit, Cordies, and
TESLA. Amit[AE04] inherits many features from SNOOP, which is a very expressive and
flexible event detecting language. Amit also introduces the lifespan, a time window for
detecting a pattern, which is not supported in SNOOP. However, compared to Cordies
and TESLA, Amit, as a commercial product, doesn’t support the functionality that allow
the user to define and implement an arbitrary evaluation operation. Cordies[KKR10],
another CEP system, has good expressiveness in describe arbitrary relationship between
events. In addition, Cordies provides functionality for user to define new operators,
although in the original paper, these operators are simple arithmetic operations or logic
operations. However, the syntax of Cordies seems more complex than other CEP query
languages, such as SNOOP. While, TESLA[CM10], as a general purpose CEP system as
well, has less expressiveness then SNOOP but better flexibility. TESLA doesn’t support
every operator in SNOOP, which decreases the expressiveness, but the pattern detecting
algorithm allows it to perform a more flexible selection and consumption strategy.

Since SNOOP has higher expressiveness in query language, besides SNOOP is quite
similar to SQL which is also a very popular query language, I will derive a pseudo CEP
language, Extended SNOOP, by adding the features from TESLA and T-REX ([CM12a]
an implementation of TESLA), which has a better detecting algorithm, into SNOOP. This
pseudo CEP language will be described in Chapter 3.1 and it can help us to express
the examples in later chapters. Considering the pattern detecting algorithm, TESLA
and T-REX show a better mechanism to do so. Therefore, in later chapters, the pattern
detecting mechanism will be based on TESLA and T-REX model.

2.2 CEP Architecture

Considering the data rates in high frequency trading(HFT), a stock-trading algorithm,
large amount of trades and quotes can be generated per second. Since New York Stock
Exchange stops publishing the volume of contracts made by stock-trading algorithm, the
real amount becomes mysterious. However, [Aga12] reports that in the May 6-th Flash
Crash in 2010, HFT contributed 49% out of 27,000 contracts within 14 seconds. That
still is a large event rate for a single machine. Also in the field of IoT, even if the network
has 100 sensors which send 1 event per millisecond per sensor, the total event rate
would be 100,000 event per second. In the era of data explosion, it is hard for a single
machine to process such an event stream. Therefore, efficient parallel CEP architecture
is necessary to enable CEP system to handle an event stream with high data rate.

There are works about parallel CEP architecture. These works can be distinguished be-
tween intra-operator parallelization, and data parallelization. [WDR06] and [GJP+12]
show the approaches to obtain good parallelization for specific operators. [BDWT13]

20

2.2 CEP Architecture

Splitter

Operator
Instance

Operator
Instance

...
Merger

eee...

e

ee

Figure 2.1: Split-Process-Merger Architecture

also mentions a state-based parallelization method. The interesting idea of these three
works is to convert a query in event specification language, e.g. SNOOP, to a finite
state machine. This leads to the state-based parallelization, which is easy to pipe-lined
parallel execute. Each processing unit handles one state in the finite state machine
model. However, the intra-operator parallelization has its limitation. The parallelism
degree is bounded by the number of states in the finite state machine model, which is
derived from the query. Therefore, the parallelism degree is query dependent.

Another parallelization method is data parallelization. One of the most popular data
parallelization architecture is the Split-Progress-Merge architecture(Figure 2.1). The gen-
eral idea of Split-Process-Merger architecture is to split the event stream into partitions
(i.e. sub-streams, a.k.a. selection) by a "splitter". For instance, paper[KMR+13] shows
a way to define the start and end of a partition. Each partition can be independently
executed against the query by an operator instance. Therefore, all processing units
are identical and arbitrary number of operator instances can be assigned to one event
stream. Thus, the parallelism degree is no longer bounded by query.

To keep the results from the Split-Process-Merge architecture consistent as the results
from sequential processing architecture, a "merger" is needed as well as some rules must
be obeyed by splitting algorithm. The "merger" sorts the results from each operator
instance so that the matched results from the Split-Process-Merge architecture have
the same order as the matched results from a sequential processing architecture. Of
course, the union of matched results from each operator instance should be no more
(i.e. no false positive) or no less (i.e. no false negative) than the matched results from
a sequential processing architecture. To satisfy this requirement, the "splitter" must

21

2 Background

assign the events exactly needed to detect a pattern to each partition. If some events are
missing in a partition, it may cause false negative. If some extra events are assigned to a
partition, false positive may happen. If all requirements above are satisfied, then the
parallelization is transparent to outside.

However, most data parallelization CEP system splits the event stream based on key-
based fission models[BEH+10][ASF16][IBY+07]. Dynamic changes to the assignment
of key values to operator instances is hard or not allowed at all. Also for some operators,
a key to group events belonging to a pattern of interest is hard to find. There are
works, [BDWT13][MKR15][MKR14], to improve this issue by using a pattern-sensitive
fission model in splitter and, in addition, there are works, e.g.[MMTR16][OKRR13],
to improve the performance of operator instance so that the overall performance can
be improved. While, it’s hard to find works discussing about a computational heavy
splitting decision.

For example, in a scenario that we need to put two events containing the same object
into the same partition. It doesn’t cost much time for the "splitter" to split events based
on meta-data such as time-stamp or event id. However, it costs much time for the
"splitter" to split events based on the content, such as similarity between two images.
Because, when an event containing an image comes in, it is hard for the splitter to decide
what is the other event to compare with the incoming event. In most cases, the incoming
event should be compared to all existing events in the system. Besides, the computation
of similarity between two images itself is already computational expensive.

Therefore, the computational heavy splitting decision will lead the single "splitter" to
the bottleneck of the architecture, which is this thesis focus on. This thesis will try to
find out the cause of a "heavy" splitting decision and then propose a new architecture to
avoid such "heavy" splitter in following chapters.

22

3 "Heavy" Splitter Problem

In this chapter, I will try to find out the cause of a "heavy" splitter. To help analyze the
problem, first I will introduce a pseudo CEP language, extended SNOOP. This pseudo
CEP language tries to combine the features from both SNOOP[CM94] and TESLA[CM10].
Then several example applications are given and analyzed by using the pseudo CEP
language. Some of them have a "heavy" splitter while the others do not. At the end of
the chapter, I will try to classify the "heavy" splitter problem according to the examples
and then give the goal of this thesis.

3.1 Pseudo CEP Language "Extended SNOOP"

In this section, I will analyze the syntax of query languages from SNOOP and TESLA. The
differences between these two query languages will be pointed out. Then, the Extended
SNOOP query language will be proposed. The Extended SNOOP query language can
help us to understand the cause of a "heavy" splitter in later sections.

3.1.1 Syntax of SNOOP and TESLA

Algorithm 3.1 and 3.2 are the syntax of SNOOP and TESLA query. There are five major
differences as following.

Algorithmus 3.1 Syntax of SNOOP
SELECT ∗
FROM Pattern
WHERE

Constraints (Key-based|Batch-based|Content-based)
WITHIN
RETURN
PARAMETER-CONTEXT

23

3 "Heavy" Splitter Problem

Algorithmus 3.2 Syntax of TESLA

DEFINE ComplexEvent
FROM

SimpleEvents with Constraints
WHERE

Assign values to Complex Event
CONSUMING Consumed Events

1. The pattern to be detected is explicitly written in the FROM clause of SNOOP,
but hidden in FROM clause of TESLA.

2. TESLA introduces event composition operators, each−within, first−within, and
last− within. These operators can nicely express event selection strategy.

SNOOP only offers very simple global selection strategy by PARAMETER CONTEXT.
If a pattern SEQ(A; B; C) needs to be detected and we would like to fire a complex
event with first A, last B, and each C, then this is not supported in SNOOP.

3. Although TESLA introduces event composition operators which can nicely express
event selection strategy, as discussed in number 2, TESLA has limitation in ex-
pressing an order-irrelevant query. For example, the ANY operator in SNOOP:
ANY (2, A, B, C).

We don’t care the order of events A, B, and C. We just want to detect if any two of
these three events happened. In TESLA we need write the query as algorithm 3.3.

If we require more, we want to select last A, first B, and each C with a total
time windows size 5 seconds in the event stream. We already know this cannot be
supported in SNOOP as discussed in number 2, but in TESLA, the query will be so
complex as algorithm 3.4.

In this scenario, both query language has their limitation.

4. TESLA offers “hierarchies of events” and “iterations”. A complex event definition
can be reused in the constraints of another complex event definition. SNOOP
doesn’t support this feature.

5. TESLA can explicitly express the consuming policy in CONSUMING clause.
Individual event in a set of involved events can be consumed respectively.

SNOOP can only consume the whole set of involved events. If a pattern
SEQ(A; B; C) would like to be detected and only A is need to consume, then
this is not supported in SNOOP.

24

3.1 Pseudo CEP Language "Extended SNOOP"

Algorithmus 3.3 A complex example query of TESLA

DEFINE AnyTwoOfABC
FROM

(A AND B) OR
(B AND C) OR
(A AND C)

Algorithmus 3.4 A more complex example query of TESLA

DEFINE AnyTwoOfABC
FROM

((A
first B within 5 seconds from A AND
each C within 5 seconds from A) OR
(B
last A within 5 seconds from B AND
each C within 5 seconds from B) OR
(C
last A within 5 seconds from C AND
first B within 5 seconds from C)) AND
A within 5 seconds from B AND
B within 5 seconds from C AND
C within 5 seconds from A AND

3.1.2 Extended SNOOP Query Language

Both SNOOP and TESLA has their limitation, but either of them could be prefect
complement to the other one. Therefore, I would like to combine both features of
SNOOP and TESLA.

As I have mentioned before, I would like to use the pattern detecting algorithm from
TESLA, which uses finite state machine, it is easy for me to directly derive a state
machine model from query with an explicit “PATTERN” clause. Therefore, I would like
to focus on SNOOP and extend it with some features from TESLA. Also SNOOP has SQL
style syntax, which is another advantage compared to TESLA. Thus, the issue mentioned
in difference number 1 is solved with no more efforts.

The two features I would like to extend first are the issues mentioned in difference
number 2 and difference number 5. Because SNOOP supports some similar strategies
but very simple ones. It can increase expressiveness if these features are extended. The
selection strategy can also solve the issue in difference number 3.

25

3 "Heavy" Splitter Problem

Algorithmus 3.5 Syntax of Extended SNOOP
SELECT ∗
FROM Pattern
WHERE

FILTER
Constraints Part1

Constraints Part 2
PICK each-within-from| first-within-from| last-within-from

WITHIN
RETURN
CONSUMING the events need to be consumed

Issue mentioned in difference number 4 does not interest me very much since I think
this feature can be achieved by a chain of pattern definition in SNOOP.

Algorithm 3.5 shows the syntax of Extended SNOOP. The whole structure of query is
kept still as the syntax of SNOOP, except three modifications are made.

1. I split the original constraints in WHERE clause into two parts. One part is
FILTER clause. I want put all constraints that semantically indicate two events
representing the same object into this clause. In most cases, these constraints are
checking if two fields in two events are equal or checking the type, source, etc.
of the event. E.g. e1.id = e2.id, e1.photoData matches e2.photoData, e1.source =
ABC. Semantically, this means event e1 and event e2 carry the information about
the same object.

The purpose of this modification is that, in Split-Process-Merge architecture, the
splitter distributes the events based on the FILTER-style constraints in most cases.
However, there are some cases the splitter doesn’t work fine. I introduce the
FILTER clause so that I can analyze what kind of constraints limits the perfor-
mance of splitter.

From the functionality view, the FILTER hasn’t any function. It just helps us to
analyze the cause of a "heavy" splitter in later sections.

2. I introduce the PICK clause. This clause is taken from event selection strategy in
TESLA. It should have the same function as in TESLA. Each constraint in PICK

clause indicates a selection strategy for an event.

Since there is already a key word SELECT in SNOOP, I use PICK instead.

3. The CONSUMING clause is as same as the CONSUMING clause in TESLA.
This clause indicates what sub-set in selected events should be consumed.

26

3.2 Application Examples

In next section, I will try to use some application examples to demonstrate the Extended
SNOOP.

3.2 Application Examples

In this section, five application examples are given. In each example, a target is defined
and one or more queries are given. The first two applications are more complex than
the rest. Therefore, more details are described in first two applications. The next section
following application examples, is the analysis of these five examples.

3.2.1 Application 1

Object Recognition and behavior pattern detection for auto-driving/alarm system

Target:

Designed for Auto-driving car or component of alarm system in car. The system should
avoid collision or give alarm when the behavior pattern of others leads to a potential
dangerous situation.

Example:

When the traffic light turns red, an object (a human being, car, or bicycle, etc.) is still
moving fast than 5km/h (this speed is w.r.t human walking speed.) and is really close
to crossroad. The system should give warning about a potential dangerous situation
that the object may break the traffic law and invade into your normal path. You should
execute emergency break or evasion.

Solution:

(HD) Cameras are need to catch real time photos of environment around the car. Then
the photos are pre-processed into small photos. Each small photo contains one object
(e.g. a human, car, bicycle, traffic sign, etc.). Each small photo should also contain
the information about the position in the original photo. A CEP system can be used to
analyze these small photos. Each small photo is one event. Those events contain the
same object should be linked together to calculate the speed and direction of that object.
A user-defined function “match” is needed. This function gives the possibility if two
events contain the same object. Then these two events are used to calculate the speed
and direction of the object they represent. Now a complex event “One Object” is created.
“One Object” is processed with other events. In the event stream, within 5 seconds from
the timestamp of “One Object”, if the CEP find one event which contains the traffic light

27

3 "Heavy" Splitter Problem

Algorithmus 3.6 TESLA Query for Application 1

DEFINE OneObject(speed[3], direction[3])
FROM

Event2(PhotoData = $x) AND
last Event1(PhotoDatamatch$x) within 5 seconds from Event2

WHERE
calculate the speed[3] and direction[3]

CONSUMING
Event1

DEFINE MayCollide()
FROM

OneObject(Speed > 5km/h, direction towards my path) AND
last ItsTrafficeLight(V alue = Red) within 5 seconds from OneObject

Algorithmus 3.7 Extended SNOOP Query for Application 1
SELECT ∗
FROM ALL(SEQ(E1; E2), E3)
WHERE

FILTER
E1.photoData matches E2.photoData

E3.photoData matches ”TrafficLight”
CalculateSpeed(E1, E2) > 5km/h

CalculateDirection(E1, E2) towards my path

E3.light = ”Red”
PICK last E1 within 5 seconds from E2
WITHIN 5 seconds

RETURN
MayCollideEvent

CONSUMING E1

for “One Object” and the traffic light is red. At the same time, “One Object” is moving
faster than 5km/h and towards to your normal path. A complex event “May Collide” is
created.

Algorithm 3.6 and 3.7 show the TESLA Query and Extended SNOOP Query can be
used in this Scenario respectively. In TESLA, “last-within-from” is used to select traffic
light event. But in this case we can only select the traffic light event happens before
OneObject Event. In Extended SNOOP, we are using “ALL” pattern and with global
“WITHIN” clause to constraint the size of time window. Then we can cover both situation
that traffic light event E3 happens either before or after events E1 and E2.

28

3.2 Application Examples

Algorithmus 3.8 TESLA Query for Application 2

DEFINE SimilarNews(Content1, Content2, Similarity)
FROM

Event1(Content = $x) AND
each Event2(CalculateSimilarity(Content, $x) > 80%) within 1 hour from

Event1
WHERE

Content1 = Event1.Content

Content2 = Event2.Content

Similarity = CalculateSimilarity(Event1.Content, Event2.Content)

3.2.2 Application 2

Fetch common content from different web source.

Target:

A system tries to monitor different web content sources. When common content appears
w.r.t. certain rules, the system executes some reactions.

Example:

A system gets information from certain major News sources (e.g. BBC, CNN, ABC).
When these major News sources publish similar main news within a short range of time,
and the news hasn’t been published before, then the system could assume there is some
big (global/ domestic) news just happened.

Solution:

In this case, articles from major News sources can be the events of CEP. Each News
source can be one event stream. CEP system analyzes the similarity between those
events in different streams. If CEP finds similar events in different streams within a short
range of time, then CEP may find a newly happened (global/ domestic) news.

Algorithms 3.9, 3.8, and 3.10 show the algorithms can be used in this scenario. Function
CalculateSimilarity(Content1, Content2) is a user defined function. Domain knowledge
is needed to implement it. Function IsF irstT imeAppear(Event.newsContent) could be
implemented by calculating similarity of new content against history news.

29

3 "Heavy" Splitter Problem

Algorithmus 3.9 SNOOP Query for Application 2
SELECT ∗
FROM ALL(E1, E2, E3)
WHERE

FILTER
E1.source ̸= E2.source

E1.source ̸= E3.source

E2.source ̸= E3.source

CalculateSimilarity(E1.newsContent, E2.newsContent) > 80%
CalculateSimilarity(E2.newsContent, E3.newsContent) > 80%
CalculateSimilarity(E1.newsContent, E3.newsContent) > 80%

IsF irstT imeAppear(E1.newsContent) > 50%
IsF irstT imeAppear(E2.newsContent) > 50%
IsF irstT imeAppear(E3.newsContent) > 50%

WITHIN 1 hour

RETURN
Recently happened news E1, E2, E3

Algorithmus 3.10 Extended SNOOP Query for Application 2
SELECT ∗
FROM ALL(E1, E2, E3)
WHERE

FILTER
E1.source ̸= E2.source

E1.source ̸= E3.source

E2.source ̸= E3.source

CalculateSimilarity(E1.newsContent, E2.newsContent) > 80%
CalculateSimilarity(E2.newsContent, E3.newsContent) > 80%
CalculateSimilarity(E1.newsContent, E3.newsContent) > 80%

IsF irstT imeAppear(E1.newsContent) > 50%
IsF irstT imeAppear(E2.newsContent) > 50%
IsF irstT imeAppear(E3.newsContent) > 50%

WITHIN 1 hour

RETURN
Recently happened news E1, E2, E3

CONSUMING E1, E2, E3

30

3.2 Application Examples

Algorithmus 3.11 Extended SNOOP Query for Application 3
SELECT ∗
FROM SEQ(E1; E2; E3)
WEHER

FILTER
E1.receiver = E2.receiver

E1.receiver = E3.receiver

E1.accountID = E2.accountID

E1.accountID = E3.accountID

E1.amount < 100 AND
E2.amount < 100 AND
E3.amount > 250

WITHIN 72 hours

RETURN
Probablefraud

CONSUMING E1, E2, E3

3.2.3 Application 3

Detect credit card fraud pattern, given certain detecting rules.

Example:

One of usual credit card fraud pattern is that a group of small amount of transferred
money followed by one large amount of transferred money.

Algorithm 3.11 shows a simple Extended SNOOP Query w.r.t. the credit card fraud
pattern in example.

3.2.4 Application 4

Detect if one car over takes another car in the forbidden area.

Example:

Set two cameras to catch the license plate of car. Detect the sequence of appearance of
cars. If the sequence from camera 2 is different from the sequence from camera 1, then
overtaken happens.

Algorithm 3.12 gives the simple Extended SNOOP Query for the example above.

31

3 "Heavy" Splitter Problem

Algorithmus 3.12 Extended SNOOP Query for Application 4
SELECT ∗
FROM SEQ(SEQ(E1; E2); SEQ(E3; E4))
WHERE

FILTER
E1.carID = E4.carID

E2.carID = E3.carID

E1.source = camera1
E2.source = camera1
E3.source = camera2
E4.source = camera2

RETURN
Overtakenhappened.

Algorithmus 3.13 Extended SNOOP Query for Application 5
SELECT ∗
FROM E1
WHERE

FILTER
E1.name = ”IBM”

E1.price > $85
RETURN

IBM price is greater than $85

3.2.5 Application 5

Monitor one stock price if it is greater than a value.[DGP+07]

Example:

Monitor if the price of IBM is greater than $85.

Algorithm 3.13 is the algorithm used in this scenario, which should be very similar to
the original SNOOP Query.

3.3 Analysis of Application Examples

In previous section, five application examples are given. Some of them are suitable for
the existing Split-Process-Merge architecture, while the others are not.

32

3.3 Analysis of Application Examples

Application 4 and Application 5 are quite suitable for Split-Process-Merge architecture.
The splitter can distribute the events based on the attributes id and name.

Application 3 can also be handled by Split-Process-Merge architecture. The attribute
accountID can be used to distribute the events. But what if in some cases it is hard to
distribute the events based on certain attributes. This could happen when the splitting
decision is heavy. (e.g. Application 1 and Application 2)

Application 1 and Application 2 are the examples of computational heavy splitting
decision. Because the splitter needs to check if two photo data are match or to calculate
the similarity of two news articles. These operations are not so simple operations as to
check if two integers or two strings are equal. Then this leads to a heavy splitter since
the splitter handles the work which should be done by operators.

The “heavy” splitting decision is one issue in Split-Process-Merge architecture when the
splitter decides to open (usually happens in opening, but also possible in closing) one
partition, which will be CPU bottleneck for a single splitter.

Another issue of Split-Process-Merge architecture is that the splitter needs to go through
all partitions to check if it should close certain partition and at the same time, there are
many (overlapped) partitions.

In Application 2 and Application 3, in the worst cases to CEP system, the credit card
fraud and the global/domestic news never happen. However, it is still necessary to check
if all incoming events match the pattern.

In Application 2 the splitter needs to start a partition for EACH incoming event, which
will lead to a huge amount of overlapping partitions. For a popular news source, the
rate of incoming events could be a very high value. At the same time, each partition
needs to keep for 1 hour. The situation will become worse if the time window needs to
be longer. When a new incoming event has received, the splitter needs to check through
all these existing partitions if a certain partition should be closed. This would be another
CPU bottleneck for single splitter.

In Application 3 there is the same problem. If the partitions need to be open for a long
time, there will be huge amount of partitions waiting to be checked by the single splitter
if the partition should be closed or not. In these two scenarios, the single splitter will
have CPU bottleneck when closing the partitions.

In simple words, the single splitter will have CPU bottleneck in following two situa-
tions.

• The splitter needs to execute expensive operation when opening (sometimes
closing) a partition.

33

3 "Heavy" Splitter Problem

• The splitter needs to go through huge amount of partitions to check if a partition
should be closed or not.

In next section, I will try to find out the cause why some applications are suitable for
Split-Process-Merge architecture while the others will leads to a "heavy" splitter.

3.4 Problem Classification

As mentioned in last section, Application 1 and Application 2 are not suitable for Split-
Process-Merge architecture. Application 3 will also have performance issue. On the
other hand, Application 4 and 5 are quite suitable for Split-Process-Merge architecture.
To find the cause, we need to look into the differences among their queries.

In Application 1 and Application 2,there are e1.photoData matches e2.photoData and
CalculateSimilarity(E1.newsContent, E2.newsContent) in “FILTER” clause, which is
quite different than other applications. The operation matches and CalculateSimilarity

are the cause of an heavy splitting decision.

I have a category for these kind of applications as Application 1 and Application 2:
Content-Based. Other applications are Key-Based.

The difference between Key-based and Content-based is as following.

• Key-based: Using meta-data from event as the key. E.g. the ID of the event,
the time-stamp, the counter. These meta-data are independent from the content
that event carries.

• Content-based: Using the content that event carries as the key. E.g. the photo
of an object, the whole text of a news article.

But in some cases, it is hard to distinguish Key-based from Content-based. As in
Application 4, the carID could be the meta-data as well as the content.

However, in most cases if the splitter wants to split the events by content, then the
splitter needs to process the content, which should be the job of operator. This will cause
a “heavy” splitter and leads to the first situation in last section, i.e. “The splitter needs
to execute expensive operation when opening (sometimes closing) a partition.”

Another issue of Split-Process-Merge architecture is the usual result of a complex pattern
with large “WITHIN” time windows size. Usually a more complex pattern will lead to
a larger partition size, because more events are involved. A longer time window also
leads to a larger partition size because more events in time-line are involved.

34

3.5 Thesis Goal

Some semantic aspects will also influence the overlapping between partitions. For
example, in Application 3 the events can be distributed by accountID, so there won’t
be overlapping between partitions. Because semantically, those events having different
accountID are irrelevant to each other. However, in Application 2 the shift-size of
partition is one event, so there will be many overlapping between partitions. Because
every event is potentially relevant to each other (i.e. each news may be similar to the
other).

As a conclusion, in most cases Content-based “FILTER” will cause heavy splitting decision
and a heavy splitter, which will become a CPU bottleneck in whole architecture. Because,
we don’t want the splitter to do the operator’s job.

Complex pattern with large “WITHIN” windows size will cause huge amount of partitions.
Some semantic aspects will influence the overlapping between partitions as well. Huge
amount of partitions takes splitter lots of time to go through and to check the closing
condition, which will also become a CPU bottleneck in whole architecture.

3.5 Thesis Goal

From the analysis and classification above, the cause of a "heavy" splitter has been found:
the splitter needs to execute expensive operations against the content carried by events.
In the idea of Split-Process-Merge architecture, these "heavy" jobs should belong to
operator instance. Therefore, a new architecture is required to avoid a "heavy" splitter
while at the same time, the features of Split-Process-Merge architecture should also be
maintained: data parallelization and unbounded parallelism degree.

For the beginning, the developed architecture shall be tailored towards shared-memory
machine, i.e. multi-core host.

35

4 Approach to Create New Architecture

In this chapter, I will show the approach how I obtained the major components of new
architecture from Split-Process-Merge architecture step by step. Then I will explain each
component of new architecture in details in next chapter.

As described in previous chapters, Split-Process-Merge architecture provides a very
valuable feature in parallelism CEP: unbounded degree of parallelism. The splitter
distributes the events according to certain rules. Each operator instance detects the
pattern against a given set of events, i.e. partition or selection. Then merger receives
results from operator instances and serializes the results for further processing.

These event sets may be overlapped, but they are independent from each other. I.e.
Different selections may contain same events, but the result derived from one selection
does not depend on other selections. Since selections are independent from each other,
the operator instances are also independent, because they are detecting the same pattern
but against different event set (selection) and no communication between operator
instances is needed.

The independence between selections as well as between operator instances is the basis
of data parallelism and basis of unbounded parallelism. This feature should be kept in
the new architecture. Therefore, somehow in new architecture there will be a component
maintaining unbounded number of operator instances, and operator instances should be
independent from each other.

According to the analysis in previous chapter, one reason that the CPU bottleneck appears
in the splitter in Split-Process-Merge architecture is because splitter needs to execute
expensive distribution decision.

The splitter needs to check:

1. If the incoming event starts a new selection? (i.e. Ps() operation)

2. If the incoming event closes some selections? (i.e. Pc() operation)

3. What selections should this new event be sent to?

37

4 Approach to Create New Architecture

New
Operator
Instance

New
Operator
Instance

...
Mergereee...

Figure 4.1: Merged Splitter and Operator

Algorithmus 4.1 Simple Example Query
SELECT ∗
FROM SEQ(E1; E2; E3)
WHERE

FILTER
(Constr.1) E1.type = A

(Constr.2) E2.type = B

(Constr.3) E3.type = C

(Constr.4) E1.photoData matches E2.photoData

(Constr.5) E1.photoData matches E3.photoData

All these three tasks in splitter need to look into the content or meta-data of event. To
some extent, the splitter is doing the job of operators. Therefore, I would like to move
this part of function from splitter to operators. I don’t want the splitter check the content
or meta-data of event at all.

What I am doing is to merge the splitter and operators in Split-Process-Merge architecture.
After merging splitter and operator, the architecture looks as Figure 4.1.

However, this leads into losing the parallelism. Because there is no splitter now, and
the event stream flows directly into the operator instances. Every operator instance is
handling the same event set (or no sets at all, just the same event stream) and gives
same results. Parallelism should be created at some point of the architecture.

Now I look into the query to find where can we get parallelism. Algorithm 4.1 is used as
a simple example query. Obviously, the major computational cost in detecting the pattern

38

4.1 Chapter Organization

is in evaluating the constraints (Constr.1 to Constr.5), especially the matches operation
(Constr.4 and Constr.5). Therefore, it is reasonable to parallelize the constraints
evaluating part, which of course makes the architecture state-based intra-operator
parallelism. In later sections, data parallelization will be introduced into the architecture
again so that the architecture will become hybrid parallelism later.

4.1 Chapter Organization

First, an improved Finite State Machine will be introduced in Section 4.2. Then Sec-
tion 4.3 gives a general but brief view that how does the new architecture finally look
like. To describe the new architecture in a formal way, Section 4.4 gives the terminology
used both in Chapter 4 and in Chapter 5. Following two sections are about improvement
of parallelism degree and generalization of the new architecture. The last section is
the summary about new architecture obtained. In next Chapter, details about every
component in new architecture will be introduced.

4.2 Improved Finite State Machine

4.2.1 Finite State Machine with Conditions

The first idea to parallelize the constraints evaluating part would be state-based paral-
lelization. (Chapter 4.1 in [BDWT13]) Since state machine has following features.

• Easy to implement

• Easy to pipeline (intra-operator parallelism)

• Universal approach to convert from pattern to state machine model (This is also
the reason why I focus on extending SNOOP rather than TESLA)

The example query can be modeled by a Finite State Machine as shown in Figure 4.2.
The original idea of this State Machine Model is from TESLA automaton model[CM10].
TESLA makes some modification to the Finite State Machine. To transfer from one state
to next state, the state machine does not depend on input, but depends on if conditions
are met. I.e. the state machine will go to next state as long as there is an input event
and conditions are met.

Figure 4.3 gives the syntax of State Machine Model. There are also two special cases:
unconditional transfer, and transfer without an input. Figure 4.4a shows a situation

39

4 Approach to Create New Architecture

S0 S1 S2 S3
E1,Constr.1

E2,Constr.2
Constr.4

E3,Constr.3
Constr.5

ε ε ε

Transition.1 Transition.2 Transition.3

Figure 4.2: Finite State Machine Model of Query Algorithm 4.1

S1 S2
<input>,<Condition>[,<more conditions>]

Transition

Figure 4.3: Finite State Machine Syntax

that unconditional transfer as long as there is an input. Figure 4.4b shows a situation
that conditional transfer without an input. The state machine will go to next state if
condition is met, but no input is needed.

With the help of conditions, it is possible to check constraints between two nonadja-
cent events. Because, to transfer to next state, the original Finite State Machine only
depends on input value, which means it can only check the constraints on current input
value, maybe plus the value of predecessor input if current state stores some more
information.

In the Query Algorithm 4.1, with the help of conditions, the state machine will transfer
from state S2 to S3 if there is any input E3 as well as conditions Constr.3, and Constr.5
are met. In Constr.5 we would like to check if E1.photoData matches E3.photoData.

S1 S2
E1,-

(a) Unconditional Transfer

S1 S2
-,<Condition>

(b) Conditional Transfer Without Input

Figure 4.4: Special Transfer

40

4.2 Improved Finite State Machine

However, the original Finite State Machine cannot achieve this, because E1 and E3 are
not adjacent in event stream and the transfer only depends on current input event. It
can only check if Constr.3 is met, i.e. if E3.type = C but not Constr.5, because at state
S2, there is no information about event E1 any more.

By using the conditions instead of input value in transition, the functionality of Finite
State Machine is extended. In next section, a replication mechanism is introduced to
extend the Finite State Machine further.

4.2.2 Finite State Machine with Replication

Let’s still look at same state machine in Figure 4.2.

Even with help of conditions, this state machine still has limitation. It can only detect
one ABC match from AABBCC. For explanation, I will distinguish the input event
A,B,C by index. For a given event stream A1 A2 B1 B2 C1 C2, the state machine can
only detect A1 B1 C1 and loses A2 B1 C1, A1 B2 C1, A1 B1 C2, etc.

This is because there is only one “state machine instance”. When A2 arrives, state S1 can
only represent one event, either A1 or A2, the other one is then dropped. To keep both
A1 and A2 events, two state instances S1 are needed. It is the same for other events.

This is the idea of replication in TESLA: as soon as the state machine goes into next
state, current state machine instance is replicated and kept still, the new state machine
instance will go into next state with the input event. Therefore, the state of every
incoming event is stored in a certain state instance. A sequence of state instances makes
up the state machine instance.

In RIP paper[BDWT13], each transition will output a middle result, which is called
partial match because it is a part of final match. In TESLA paper[CM10], it is called
automaton instance.

The difference is that in RIP paper, they don’t have replication mechanism so that each
partial match will be consumed in next state and a new partial match is generated, or
equivalently, the partial match is updated. While in TESLA paper, they introduce the
replication mechanism, for each transition, the automaton instance is replicated, and
the old one is kept still, the new one is updated.

In this paper, “Partial Match”, “automaton instance”, and “state machine instance” are
equivalent and the replication mechanism is also used. I.e. each transition will output
a Partial Match, which is replicated from an old Partial Match and applied the new
incoming event to. A detailed definition about Partial Match in this paper can be found

41

4 Approach to Create New Architecture

in Section 4.4.6. Following is the formula representing the generation of a new Partial
Match.

(4.1) pmn = TransitionConditionn(pmn−1, en) or pmn = TCn(pmn−1, en)

pmn is the new Partial Match generated.

en is the next incoming event.

TransitionConditionn() is the evaluation operation of the constraints w.r.t. state Sn,
and the evaluation result must be true, otherwise, there won’t be the transition triggered
and no new Partial Match created. In the diagram, this process is represented by the
edge with arrow(i.e. Transition) between two states.
TCn() is used as the short form of TransitionConditionn().
For n = 1, pm0 = ∅, pm1 = TransitionCondition1(pm0, e1).
pm0 is used to represent the output Partial Match when the state machine enters the
start state. (I.e. entering into the start state is treated as a transition, which also outputs
a Partial Match pm0.)
pmn is generated from pmn−1, and pmn−1 is kept still. This the implementation of
replication mechanism.

Next, I will prove the necessity to replicate the Partial Match. To prove the necessity, I
need an assumption as following.

Assumption: It is always possible to detect a Partial Match in event stream. I.e. the
pattern to be detected will finally appear in the event stream.

always ∃e1 such that pm1 = TC1(pm0, e1)
always ∃en such that pmn = TCn(pmn−1, en)

Therefore, ∀pmi, ∃ej and ∃ek such that pmj = TCi+1(pmi, ej) and pmk = TCi+1(pmi, ek)
If ej ̸= ek, then pmj ̸= pmk.

If pmi is consumed in pmj = TCi+1(pmi, ej) and not replicated, then pmk =
TCi+1(pmi, ek) is not executable since there is no pmi anymore, so that pmk is lost,
which may cause false negative. Hence, pmi should be replicated. Both pmj and pmk

should be updated from the replica of pmi. pmi itself should be kept still.

4.3 General View of New Architecture

Following sections are the approach how did I obtain the new architecture from extended
Finite State Machine step by step as well as the definition of terminology. Before

42

4.4 Terminology Definition

going into the details of approach and terminology, I would like to introduce the new
architecture briefly so that you could have a general view about how does the new
architecture finally look like.

There are three major components in the new architecture: A Centralized Data Structure,
a group of Operator Instances, and a Merger.

Centralized Data Structure maintains all incoming Raw Events and Partial Matches in
the system. It also takes over the work-flow of the whole system by creating Tasks
and scheduling Tasks. Besides, Centralized Data Structure creates new Partial Matches
according to the Task Results from Operator Instances.

Operator Instances are the worker. They receive Tasks from Centralized Data Structure,
evaluate the Tasks, generate Task Results, and then returns the Task Results back to
Centralized Data Structure.

Merger is responsible for sorting the Final Matches and firing them. The order of Final
Matches should be consistent to the result from a sequential processing architecture, as
described in previous chapters. In addition, if any fired Final Match needs to consume
Raw Events according to consumption policy, Merger should inform the Centralized
Data Structure about the consumed Raw Events.

In next section, the definition of terminology used in the new architecture will be
given.

4.4 Terminology Definition

To explain the new architecture in a more accurate and mathematical way, this section
lists the terms and their definition used in following sections.

4.4.1 Path

Definition 4.4.1
path = (TC1, TC2, TC3, . . . , TCm) means a path starting from the start state S0, passing
through TC1, followed by TC2 TC3 . . . in sequence, and ended at state Sm.

A path is a sequence of Transition Conditions in State Machine Model. Each Transition
Condition connects two states, starting from the start state. The path is order-sensitive.
path = (TC1, TC2) and path = (TC2, TC1) are different paths.

43

4 Approach to Create New Architecture

4.4.2 Equality of Path

Existing two paths pathi and pathj, pathi contains n Transition Conditions and pathj

contains m Transition Conditions.

Definition 4.4.2
Two paths are equal when they have the same size and elements. The order of elements
should also be the same.

pathi ≡ pathj ⇔
n = m and
(1 ≤ ∀k ≤ n) TCk,i = TCk,j

4.4.3 Raw Event

Definition 4.4.3
A Raw Event is an event in the event stream.

General notation: e

Notation with index: ei means the i-th Raw Event in the event stream.

Definition 4.4.4 (Consumed Raw Event (or invalid Raw Event))
A Raw Event has been consumed by a Final Match when the Final Match is fired. Once a
Raw Event is consumed, it will have no more impact on following Raw Events in Raw Event
Stream as well as the Partial Match Data Structure.

A Raw Event can only be consumed no more than once.

Definition 4.4.5 (Valid Raw Event)
A Raw Event has not been consumed yet.

4.4.4 A Sequence of Raw Events

To represent a sequence of n Raw Events, following notation is used.

Definition 4.4.6

(e)size=n
.= (e1, e2, . . . , en)

44

4.4 Terminology Definition

When the size of sequence is not important, size = n will be omitted.

Sequence of Raw Events is order-sensitive. (e) = (e1, e2) and (e) = (e2, e1) are different
sequences of Raw Events.

The sequence of Raw Events must have the same order the Raw Events are in the event
stream.

4.4.5 Equality of Sequence of Raw Events

Existing two sequences of Raw Events (e)i and (e)j. (e)i contains n raw events. (e)j

contains m raw events.

Definition 4.4.7
Two sequences of Raw Events are equal when they have the same size and elements. The
order of elements should also be the same.

(e)i,size=n ≡ (e)j,size=m ⇔
n = m and
(1 ≤ ∀k ≤ n)ek,i = ek,j

4.4.6 Partial Match

Definition 4.4.8
Partial Match is the median result between states.

Partial Match can be used to represent the state machine instance. Therefore, it is
totally the same as the “automaton instance” in TESLA paper[CM10]. Partial Match
in this paper has small difference from the partial match in RIP paper[BDWT13]. In
RIP paper, partial match will be consumed or updated in following state. In this paper,
Partial Match can only be generated or discarded, but never be updated because of the
replication mechanism.

The generation formula of Partial Match is pmn = TCn(pmn−1, en). This is the iteration
expression, and the expanded expression is as following.

(4.2) pmn =TCn(TCn−1(TCn−2(. . . TC2(TC1(pm0, e1), e2) . . . , en−2), en−1), en)

I format the formula and use following notation to represent the formula above.

(4.3) pmn
.=((TC1, TC2, . . . , TCn−1, TCn); (e1, e2, . . . , en−1, en))

45

4 Approach to Create New Architecture

Since start state pm0 is constant, pm0 is omitted in the notation. (TC1, TC2, . . . , TCn−1, TCn)
is a path and (e1, e2, . . . , en−1, en) is a sequence of Raw Events, therefore,

(4.4) pmn = (pathn; (e)n)

From the formula, it is obvious that Partial Match contains the information about all
history Raw Events and the path starting from the start state, which can be used for
consumption problem later.

4.4.7 Equality of Partial Match

Definition 4.4.9
Two Partial Matches are equal when they have the same path and same Raw Event Sequence.

pmi ≡ pmj ⇔
pathi ≡ pathjand
(e)i ≡ (e)j

4.4.8 Final Match

Definition 4.4.10
A Final Match is a Partial Match that fully matched to the query. I.e. Starting from the
start state in Finite State Machine, the last Raw Event in Final Match ends at a end state.

4.4.9 Order of Two Partial Matches

Definition 4.4.11
A Partial Match W is earlier than another Partial Match X if one of following rules is
satisfied.

1. The last Raw Event in Partial Match W is earlier than the last Raw Event in Partial
Match X.

2. The last Raw Event in Partial Match W is equal to the last Raw Event in Partial Match
X, and the first Raw Event in Partial Match W is earlier than the first Raw Event in
Partial Match X.

46

4.4 Terminology Definition

3. The last Raw Event in Partial Match W is equal to the last Raw Event in Partial Match
X, and the first Raw Event in Partial Match W is equal to the first Raw Event in Partial
Match X. Then compare the sub-sequences of both Partial Matches. I.e. Both Partial
Matches W and X removes the first Raw Event. If the sub-sequence of Partial Match W
is earlier than sub-sequence of Partial Match X.

To be more intuitive, Figure 4.5 shows the order of two Partial Matches. The Partial
Matches with number 1, 2, 3, 4, 6, and 9 (with a dot in front of number) are earlier
than Partial Match X. For Number 7, the order depends on the sub-sequences of both
Partial Matches. (I.e. remove both first Raw Events)

4.4.10 Order of Two Final Matches

Definition 4.4.12
A Final Match W is earlier than another Final Match X if one of following rules is satisfied.

1. The last Raw Event in Final Match W is earlier than the last Raw Event in Final Match
X.

2. The last Raw Event in Final Match W is equal to the last Raw Event in Final Match X,
and the first Raw Event in Final Match W is earlier than the first Raw Event in Final
Match X.

3. The last Raw Event in Final Match W is equal to the last Raw Event in Final Match
X, and the first Raw Event in Final Match W is equal to the first Raw Event in Final
Match X. Then compare the sub-sequences of both Final Matches. I.e. Both Final
Matches W and X removes the last Raw Event. If the sub-sequence of Final Match W is
earlier than sub-sequence of Final Match X.

To be more intuitive, Figure 4.5 shows the order of two Final Matches. The Final Matches
with number 1, 2, 3, 4, 6, and 9 (with a dot in front of number) are earlier than Final
Match X. For Number 7, the order depends on the sub-sequences of both Final Matches.
(I.e. remove both last Raw Events)

4.4.11 Dependency between Raw Events and Partial Matches

Definition 4.4.13
If a Raw Event e was an input parameter in a Partial Match, then this Partial Match depends
on Raw Event e.

47

4 Approach to Create New Architecture

Partial Match X
or

Final Match X

Legend:

time

 1

 2

 3

 4

 5

 6

？7

 8

 9

10

11

12

13

A Partial Match
or

A Final Match

First Raw Event Last Raw Event

Figure 4.5: Order of Two Partial Matches/Final Matches

Obviously, a Partial Match pmi = (pathi; (e)i) depends on a Raw Event ek iff ek ∈ (e)i.
The dependency between Raw Events and Partial Matches is used in later chapter for
data structure, consumption problem, and optimization.

4.4.12 Dependency between Partial Matches w.r.t. Raw Events

Definition 4.4.14
If a Partial Match pmi was an input parameter in another Partial Match pmj, then pmj

depends on pmi w.r.t. Raw Events.

According to formula pmn = TCn(pmn−1, en), pmn depends on both pmn−1 and en, since
they are the input parameters. The dependency between Raw Event and Partial Match is

48

4.4 Terminology Definition

introduced in previous section. Now we look at pmn−1. Since pmn−1 can be expressed
as pmn−1 = (pathn−1; (e)n−1), the dependency between pmn and pmn−1 is related to two
aspects: Transition Condition and Raw Event. In this section, the dependency w.r.t Raw
Events is discussed. In next section, the dependency w.r.t Transition Condition will be
introduced.

The dependency w.r.t. Raw Events between pmn and pmn−1 has following property.

Property: pmj depends on pmi if and only if pathpmi
⊂ pathpmj

AND (e)pmi
⊂ (e)pmj

.

This property will be used in data structure and consumption problem in later chapter. In
simple words, consumption of pmi will cause the consumption of pmj, and the algorithm
knows this relationship because of this property.

Now I will prove that pmj depends on pmi if and only if pathpmi
⊂ pathpmj

AND
(e)pmi

⊂ (e)pmj
from both necessity and sufficiency aspects.

Necessity Prove

Since
pathpmi

= (TCi, TCi−1, . . . , TC1),
pathpmi

⊂ pathpmj
,

(e)pmi
⊂ (e)pmj

,

pathpmj
can be written as

pathpmj
= (TCj, TCj−1, . . . , TCj−k, TCi, TCi−1, . . . , TC1)

(e)pmj
can be written as

(e)pmj
= (e1, e2, . . . , ei−1, ei, ej−k, . . . , ej−1, ej)

Therefore,

pmj =((TCj, TCj−1, . . . , TCj−k, TCi, TCi−1, . . . , TC1);
(e1, e2, . . . , ei−1, ei, ej−k, . . . , ej−1, ej))

Since

pmi = ((TCi, TCi−1, . . . , TC1); (e1, e2, . . . , ei−1, ei)),
formatting the equation yields

pmj = TCj(TCj−1(. . . TCj−k(pmi, ej−k) . . . , ej−1), ej)
Thus, pmi was an input parameter of pmj at some point in the past, which means pmj

depends on pmi.

Necessity proved.

49

4 Approach to Create New Architecture

Sufficiency Prove

Since pmj depends on pmi, then at some point in the past, pmi was the input parame-
ter.

At the same time, pmj can be represented by pmj = TCj(pmj−1, ej).

Expending pmj−1 yields

pmj = TCj(TCj−1(. . . TCi+1(pmi, ei+1) . . . , ej−1), ej)

Formatting this equation yields

pmj =((TCj, TCj−1, . . . , TCi+1, TCi, TCi−1, . . . , TC1);
(e1, e2, . . . , ei−1, ei, ei+1, . . . , ej−1, ej))

Compare this equation to

pmi = ((TCi, TCi−1, . . . , TC1); (e1, e2, . . . , ei−1, ei))

Obviously, pathpmi
⊂ pathpmj

AND (e)pmi
⊂ (e)pmj

.

Sufficiency proved.

4.4.13 Independency between Partial Matches w.r.t. Transition

Definition 4.4.15
Given a same Transition, if two Partial Matches pmi+1 and pmj+1 are generated from pmi

and pmj respectively, and pmi+1 has no dependency to pmj+1 w.r.t. Raw Event, then pmi

are independent from pmj w.r.t Transition

According to pmn = TCn(pmn−1, en), each Transition only takes one Partial Match as
input parameter. Therefore, from the respect of Transition, it is no difference to take
which Partial Match pmi or pmj first. Because w.r.t. Raw Event, pmi+1 only depends
on pmi and pmj+1 depends on pmj. This is the independency between Partial Matches
w.r.t. Transition. This independency will be used for data parallel to achieve unbounded
parallelism degree in later section.

50

4.4 Terminology Definition

4.4.14 Task

Definition 4.4.16
A Task is an entity contains all information for an operator instance to evaluate a certain
Transition Condition. Then a Task Result, which will be introduced later, should be derived
from this Task and returned from the operator instance.

Notation Taskpm is used to represent a Task corresponding to pm.

Definition 4.4.17 (Valid Task)
A valid Task is a Task such that when it is taken from the Task Queue by an operator
instance, ALL Raw Events involved in the Task are NOT consumed yet at that point.

Definition 4.4.18 (Invalid Task)
An invalid Task is a Task such that when it is taken from the Task Queue by an operator
instance, at least one Raw Event involved in the Task has already been consumed at that
point.

Definition 4.4.19 (Necessary Task)
A necessary Task is a Task leads to a Final Match.

A Task generating a Partial Match, which is contained in a Final Match, is also a necessary
Task. If one necessary Task is missing, the outcome of the system will NOT be consistent to a
sequential processing architecture.

Definition 4.4.20 (Unnecessary Task)
An unnecessary Task is a Task doesn’t lead to a Final Match.

If one unnecessary Task is missing, it will not influence the outcome.

Definition 4.4.21 (Order of two Tasks)
The order of two Tasks is defined by the order of two Raw Events that these two Tasks are
carrying.

4.4.15 Task Result

Definition 4.4.22
A Task Result is the corresponding outcome of the evaluation of a Task from operator
instance.
A Task Result can be either True or False. Please see definition of True Task Result and False
Task Result.

51

4 Approach to Create New Architecture

Algorithmus 4.2 Example Query 2
SELECT ∗
FROM SEQ(OR(E1, E2, E3); E4)
WHERE
(Constr.1) E1.type = A

(Constr.2) E2.type = B

(Constr.3) E3.type = C

(Constr.4) E4.type = D

Definition 4.4.23 (True Task Result)
The result of the evaluation on a Task is true, which means a Partial Match is detected and
should be added into the Partial Match Data Structure.

Definition 4.4.24 (False Task Result)
The result of the evaluation on a Task is false, which means no Partial Match is detected.

4.5 Parallelize the Improved Finite State Machine

So far, the Improved Finite State Machine is able to detect the pattern against arbitrary
constraints and nonadjacent events in the event stream. In this section I will explain
how to parallelize the Improved Finite State Machine.

4.5.1 Pipeline the Improved Finite State Machine

The state machine has the nature to be pipe-lined easily. Each state can be assigned
to a processing unit. For instance, to detect a query such as Algorithm 4.2. The state
machine model will be as Figure 4.6. The architecture will be as Figure 4.7a.

Each state will be assigned to one processing unit. Each Raw Event in event stream
will be forwarded to all processing units. Each processing unit has an output Partial
Match queue. The Partial Match in output queue will be sent to the input queue of all
succeeding processing units.

To decide the destination input queue of Partial Match, which is output from the pro-
cessing unit S0, S0 has to evaluate three constraints, Constr.1, Constr.2, and Constr.3.
The other three processing units S1, S2, and S3 have to evaluate constraint Constr.4.
Obviously, there are unbalanced work here. One processing unit S0 has more work than
others. While at the same time, evaluation of constraints is the heavy job in detecting

52

4.5 Parallelize the Improved Finite State Machine

S0

S1

S2

S3

E1,Constr.1
Transition1

E2,Constr.2
Transition2

E3,Constr.3
Transition3

E4,Constr.4
Transition4

E4,Constr.4
Transition5

E4,Constr.4
Transition6

S4

ε

ε

ε

ε

Figure 4.6: State Machine Model for Example Query 2

eee...

Input
queue

Output
Partial Match

queue

Processing
unit

S0

S1

S2

S3

S4
Output final

match

Input
Partial Match

queue

(a) State as Processing Units

eee...

Input
queue

Output
Partial match

queue

Processing
unit

Transition1

Transition2

Transition3

Output final
match

Transition6Transition5Transition4

(b) Transition as Processing Units

Figure 4.7: Architecture for Example Query 2

the pattern. A state with many outgoing edges(i.e. Transitions) will be the bottleneck of
whole architecture.

Therefore, assigning the state to the processing unit is not a good idea. Instead, it is
more reasonable to assign the transition to the processing unit, i.e. each processing unit
handles one transition.

Now the architecture looks like as Figure 4.7b. For simplicity, the input queue of each
processing unit is omitted unless it is necessary to show it. Please just remember, each

53

4 Approach to Create New Architecture

Transition1eee... pmpmpm

Transition2

Transition3

pmpmpm

pmpmpm Output
SEQ(A;B;C)

Input
queue

Output
queue

Processing
unit

e

pm

Raw event

Partial match

Figure 4.8: Architecture for State Machine Model in Figure 4.2

processing unit will have an input queue to receive the Partial Matches from output
queue of predecessors.

The number of processing units is now proportional to the workload, i.e. Transitions
amount. Although it seems there are three processing units working on the same
constraint (Transition4, Transition5, and Transition6), this won’t be a problem. I
will try to generalize the processing units later to achieve a more balanced workload
distribution.

Now, let’s look back to the state machine model in Figure 4.2, which is used to detect
pattern ABC. The architecture for Figure 4.2 is shown in Figure 4.8.

At this point, we have already achieve the parallelism with bounded parallelism degree
by using pipe-lining. The degree of parallelism is bounded by the amount of Transitions.
In next step, the parallelism degree will be improved.

4.5.2 Data Parallelization

Although we have parallelized the Transitions, the parallelism degree is still bounded.
Since evaluation of constraints Constr.4 and Constr.5 has high execution cost, this
architecture will have the bottleneck at processing unit Transition2. (Because it is the
first processing unit to evaluate matches operation.)

54

4.5 Parallelize the Improved Finite State Machine

Transition1

eee...

Transition2

Transition3

Output
SEQ(A;B;C)

Input
queue

Output
queue

Processing
unit

Transition2

pmpmpm

pmpmpm

pmpm ...

pmpm ...

Input
queue of

Transition2

Figure 4.9: Architecture with Improved Parallelism Degree

The first idea to increase the parallelism degree will be to increase the number of
processing unit Transition2. The input queue is shared between all processing units of
Transition2. The architecture becomes as Figure 4.9.

Because Partial Matches in the input queue of Transition2 are independent to each other
w.r.t. Transition2 (See Section 4.4.13, Page 50), if processing units of Transition2 are
identical then every Partial Match in the input queue can be distributed to an arbitrary
processing unit of Transition2.

Therefore, the additional processing unit of Transition2 should be identical to the first
one, the input queue should be shared between the processing units of Transition2,
and the Partial Matches in input queue can be distributed to either processing unit.
However, please notice, each Partial Match should only be passed to ONE processing
unit of Transition2, NOT both.

Since the Partial Matches in one input queue are distributed in parallel to multiple
processing units, the merging problem should be concerned. The issue about Merger
will be discussed in Section 4.7.

By this approach, the parallelism degree has been increased by 1. In next step, more
processing units will be added to achieve higher parallelism degree.

55

4 Approach to Create New Architecture

Transition1

eee...

Transition2

Transition3

Output
SEQ(A;B;C)

Input
queue

Output
queue

Processing
unit

Transition2

pmpmpm

pmpmpm

pmpmpm

...

...

...

Transition1

Transition3

Input
queue

... pmpm

... pmpm

Figure 4.10: Architecture of Unbounded Parallelism Degree

Since the Partial Matches in the input queue of Transitioni are independent to each
other w.r.t. Transition, Partial Matches can be distributed to replicas of processing
unit Transitioni, i.e. instance of operators. Therefore, the architecture, as shown
in Figure 4.10, achieves unbounded degree of parallelism by increasing the number
of processing units for each Transition. The input queue and output queue of each
Transition are shared among all processing units of such Transition.

4.6 Generalization of the architecture

In current architecture, each Transition will have ONE output queue and ONE input
queue and multiple identical processing units. These queues need to be maintained
somewhere. In the example above, the output queue of Transitioni can be the same
input queue of Transitioni+1. In other cases, it is also possible that an input queue
receives Partial Matches from two output queues and an output queue forwards Partial
Matches to two input queues. For instance, a part of state machine model as described
in Figure 4.11a. Then the architecture will be as in Figure 4.11b. Unrelated components
are omitted.

The input queues of Transition3 receives Partial Matches from two output queues, output
queues of Transition1 and Transition2. The same as the input queue of Transition4.

56

4.6 Generalization of the architecture

S1

S2

S3

S4

S5

ε

ε

ε

ε

ε

Transition1

... ...

Transition2

Transition3

Transition4

(a) State Machine Model Example 3

Transition1

Transition2

Transition3

Transition4

eee...

Input
queue

Output
queue

Processing
unit

...

...

(b) Architecture for State Machine Model Example 3

Figure 4.11: Single Input Queue from Multiple Output Queues and
Single Output Queue to Multiple Input Queues

Also, Partial Matches in output queues of Transition1 and Transition2 are sent to two
input queues.

The problem is that if the output queue is maintained in the processing unit, then
the processing unit needs to know the topology of all processing units. Because it
needs to know which processing unit it should send the Partial Match to or should get
Partial Match from. Adding extra processing unit will be expensive because all existing
processing units need to update the topology.

4.6.1 Centralized Data Structure

To eliminate the dependency between processing units, I would like to introduce a
Centralized Data Structure, which maintains all queues.

Each processing unit gets/puts back Partial Match as well as Raw Events from/to
the Centralized Data Structure. Therefore, the dependency between processing units

57

4 Approach to Create New Architecture

Transition1

Transition2

Transition3

Transition4

Output
SEQ(A;B;C)

Event
Stream

Output queue
Transition1

Processing
units

eee...

Centralized Data Structure

pmpmpm

pmpmpm

pmpmpm

pmpmpm

...

......

...

...

...

Output queue
Transition2

Input queue
Transition1

Input queue
Transition2

(a) Keep Queues

Output
SEQ(A;B;C)

Event
Stream

eee...

Centralized Data Structure

pmpm

Hash
Table
for

Partial
Matches

...

Transition1

Transition2

Transition3

Transition4

Processing
units

...

...

(b) Use Hash Map instead of Queues

Figure 4.12: Centralized Data Structure

are eliminated. Only the Centralized Data Structure needs to know the topology of
processing units. Figure 4.12a shows such architecture.

Also, pmi is the state machine instance, which contains the current state Si in the state
machine model, because pmi contains pathi, whose last state is the current state. There-
fore, it is unnecessary to maintain so many queues in the Centralized Data Structure. To
send the Task Taskpmi

to a processing unit, Centralized Data Structure only needs to
look up the outgoing edges of state Si in the state machine model, and send Taskpmi

to
a processing unit of each Transition. Thus, input queues are no longer needed and a
hash table to store the Partial Match in output queues in Centralized Data Structure is
enough. The Centralized Data Structure generates new Partial Match according to Task
Result returned from processing units and add Partial Match into the hash table. Then
the architecture looks like in Figure 4.12b.

Now there is no more output queues and input queues, every Task will be sent to
corresponding processing units by looking up the outgoing edges of current state in
Partial Match. However, a Task should also contain a Raw Event as an input parameter.
So, which Raw Event in event stream should be contained in the Task sent to the

58

4.6 Generalization of the architecture

Algorithmus 4.3 Task Creation Algorithm of RawEventReceiver

procedure CREATE TASKS

for all existing pm do
et−1 ← last Combined Raw Event of pm

et ← next Raw Event after et−1 in event stream
while et exists do

for all outgoing Transition of current state of pm do
CREATE A TASK(Transition,pm,et)

end for
et ← next Raw Event after et in event stream

end while
end for

end procedure

processing units? In next section, Task Creation Algorithm will be introduced to solve
this issue.

4.6.2 Task Creation Algorithm

TESLA gives the operating algorithm in single-thread environment. Every automaton
instance should be handled one-by-one. Also a new incoming event should wait unless
there is no more automaton instance that needs to be handled. To apply the replication
mechanism in multiple-thread environment, it is necessary to keep the result consistent
as in the single-thread environment. Therefore, the simplest approach is that a new
incoming event waits until all Tasks have got the Task Results back. However, this
obviously unacceptable, because it limits the parallelism, since the Raw Event now
depends on the result of previous ones.

To solve this problem, each Partial Match should save a record indicating the last Raw
Event it combines with to create a Task. For a newly created Partial Match, the initial
value of this record is the last Raw Event in Partial Match.

Then the Centralized Data Structure needs to regularly traversal all existing Partial
Match to check if the record of each Partial Match meets the last Raw Event in event
stream so far. I call the thread doing this job RawEventReceiver.

To decrease the workload of RawEventReceiver, operator instances are also allowed
to create Tasks when a True Task Result is returned. Otherwise, it is very likely that
operator instances are waiting for Tasks while the RawEventReceiver is so busy in
creating Tasks.

59

4 Approach to Create New Architecture

Algorithmus 4.4 Task Creation Algorithm of Operator Instance

procedure CREATE TASKS(TaskResultpmi
)

if TaskResultpmi
is True then

for all Raw Event e after the last Raw Event in (e)i do
for all outgoing Transition of current state of pmi do

CREATE A TASK(Transition,pmi,e)
end for

end for
end if

end procedure

The Task Creation Algorithm is as following.

1. The Raw Events should be saved in a list in the order of arriving.

2. RawEventReceiver regularly traversal all existing Partial Matches, apply Algo-
rithm 4.3

3. When an operator instance returns a Task Result TaskResultpmi
, apply Algorithm

4.4

4.6.3 General Processing Units

If we look back to the Split-Process-Merge architecture, we will find that the operator
instances are totally identical. This makes it easy to add a new operator instance or
remove an old one. It is also easy to pick an operator instance to detect the pattern
against the selection given by the splitter, i.e. just to pick any idle operator instance.

Therefore,the processing units in new architecture should also be totally identical.

In current architecture, for each incoming Raw Event e and every pmi in the Centralized
Data Structure, the Centralized Data Structure needs to look up all outgoing Transitions
of current state Si in pmi, e.g. an Transition Transitioni+1, and passes the pmi as well as
e to a specific processing unit Transitioni+1. Thus, this is a Task for specific processing
unit Transitioni+1 and the passed parameters are pmi and e. The processing unit will
return if pmi+1 should be generated or not, which is the Task Result.

If the processing unit becomes general, then Transitioni+1 should also be contained as
part of parameters in the Task.

For example, previously, Centralized Data Structure tells the specific processing unit
Transitioni+1 to process pmi and e. The Task is Taskpmi+1 =< pmi, e > and it is sent

60

4.6 Generalization of the architecture

Optrj

Output
SEQ(A;B;C)

Event
Stream

Processing
units

eee...

Centralized Data Structure

pmpm

Hash
Table
for

Partial
Matches

...

Task=<Transitioni+1,pmi,e>

TaskResult

...

...

Optrj-1

Optrj+1

Figure 4.13: Architecture with General Processing Units

to processing unit of Transitioni+1. The processing unit gives TaskResultpmi+1 back to
Centralized Data Structure. It can only evaluate Transitioni+1. Transition other than
Transitioni+1 are not supported.

Now, Centralized Data Structure tells the general processing unit to act as Transitioni+1
to process pmi and e. Thus, the Task becomes Taskpmi+1 =< Transitioni+1, pmi, e >. It
also requires TaskResultpmi+1 back to Centralized Data Structure. But the processing
unit can also evaluate other Transition than Transitioni+1 as far as the role is given in
the Task.

Therefore, Transition Transitioni+1 as well as pmi and e will be the parameters in a Task
sent to the general processing unit. Figure 4.13 gives the new architecture with General
Processing Units.

Now the architecture has totally identical operator instances. The Centralized Data
Structure creates Task Taskpmi+1 =< Transitioni+1, pmi, e > according to Task Creation
Algorithm, which has been introduced in previous section, and sends the Task to one
of operator instances. The operator instance evaluates the condition of Transitioni+1
against pmi and e, then returns the Task Result to the Centralized Data Structure.

At this step, the components of architecture are nearly finished. Before introducing the
details about algorithms and Centralized Data Structure, I would like to discuss about
the Merger, which I skipped in previous section.

61

4 Approach to Create New Architecture

Optrj

Final
Match

SEQ(A;B;C)

Event
Stream

Processing
units

eee...

Centralized Data Structure

pmpm

Hash
Table
for

Partial
Matches

...

Task=<Transitioni+1,pmi,e>

pmi+1

...

...

Optrj-1

Optrj+1

Merger

Final Matches
in order

Figure 4.14: Architecture with Merger

4.7 Merger

In Section 4.5.2, multiple processing units of the same Transition are introduced into the
architecture. For further processing, a merger is needed to merge the Partial Matches.
But the Merger is only needed when the Final Match is fired.

Prove:
For each Transitioni operation, only two input parameters are required: one Partial
Match pmi−1 and one Raw Event e. There is no second Partial Match required. Therefore,
for each operator instance, there is no need to merge two Partial Matches. Thus, no
merger is needed before the final state in state machine model is reached.

However, for further processing beyond current architecture, it is possible that some
operations required two or more Final Matches as input. Therefore, a merger is needed
to merge the Final Matches. Figure 4.14 shows the architecture with merger. The details
about Merging Algorithm will be introduced in Section 5.2.

62

4.8 Summary about Architecture

4.8 Summary about Architecture

Till now, all components in the architecture are introduced. There are three major
components in this architecture: Centralized Data Structure, Operator Instances, and
Merger. Centralized Data Structure is responsible for maintaining all Partial Matches and
all Raw Events. It also creates Tasks according to Task Creation Algorithms, accepts Task
Results from Operator Instances, and fires Final Matches to Merger. The Centralized
Data Structure controls work-flow of the whole system. The Operator Instances are
responsible for evaluating the given Tasks and generate a Task Result for each Task.
The Operator Instance also take participate in creating Tasks according to Task Creation
Algorithm to decrease the workload of RawEventReceiver. The Merger is responsible
for sorting the Final Matches and informing the Centralized Data Structure which
Raw Events are consumed when a Final Match is fired. Since each operator instance
handles different transition of the extended Finite State Machine, this is a intra-operator
parallelism architecture. Also, because of independency between Partial Matches w.r.t.
Transition, data parallelization has been introduced into the architecture, which makes
the architecture a data-parallelism architecture as well. The parallelism degree is nearly
unbounded. (Yes, it is still bounded by the amount of Tasks can be created, but after the
system runs for some time, that value would be very large, compared to the number of
states, and the value will grow as the size of data structure grows.) Therefore, "heavy"
splitter is avoided, since Centralized Data Structure now has nothing to do with the
content of events, and the features of Split-Process-Merge architecture have been kept. In
next chapter, the details about each component, algorithms, and API will be introduced.
There are also some optimization can be achieved for the new architecture..

63

5 Details of New Architecture

In this chapter, the details about each component in new architecture will be introduced.
Operator Instance will be the first one, since it is the simplest component to describe.
The second one will be Merger. Centralized Data Structure will be the last component to
explain. After three components, some optimization will be introduced. The last section
will be the approach to convert some example SNOOP query to State Machine Model.

Due to the time limitation of this thesis, this chapter will focus on query SEQ(A; B; C)
first, which is the major example I used in this thesis. The first occurrence selection
strategy, and all selected consumption strategy are also performed. However, the idea is
suitable for arbitrary query.

5.1 Operator Instance

The job of Operator Instance is to evaluate a given Task and generates the corresponding
Task Result.

To evaluate a given Task, Operator Instance needs to evaluate the Transition Conditions
against an old Partial Match together with a new incoming Raw Event, which are all
included in the given Task.

This is where the user defined function should be implemented, since Transition Condi-
tions are the only places in the architecture where allow to invoke user defined functions.
For example, if the user wants to have matches or calculateSimilarity functions in
Transition Condition, then they need to implement these two functions here. Because
it is operator instance that invokes user defined functions to evaluate the Transition
Conditions.

In later Evaluation Chapter, to simplify the implementation of user defined functions, I
used a face detection function from OpenCV to simulate the CPU complexity of evaluating
a Task. The details will be shown in Evaluation Chapter.

65

5 Details of New Architecture

Algorithmus 5.1 Merging Algorithm

procedure RECEIVE FINAL MATCH(FinalMatch)
add into a sorted queue

end procedure
procedure FIRE FINAL MATCH(FinalMatch)

oneF inalMatch← the first Final Match in the sorted queue
if CENTRALIZEDDATASTRCTURE.ISEARLIESTFINALMATCH(oneF inalMatch) then

CENTRALIZEDDATASTRUCTURE.CONSUME(oneF inalMatch)
fire oneF inalMatch

else
put oneF inalMatch back to the sorted queue
sleep for some time

end if
end procedure

5.2 Merger

The job of Merger is to sort the Final Matches (the definition of order of Final Matches,
see Section 4.4.10). The simplest way to sort the Final Matches would be starting to sort
Final Matches after all Final Matches arrived, which will definitely lead to huge latency.
That is why the simplest way is not acceptable. Besides, for an event stream, it is hard
to tell when Final Matches have all arrived.

Therefore, as soon as a Final Match has been detected, the Final Match is stored in a
sorted queue. The Merger needs to check if the first Final Match in the sorted queue is
the correct one to fire. To achieve this purpose, the Merger needs to know if the first
Final Match is the earliest Final Match in the system. I.e. there won’t be an earlier
Final Match than this one in future. The Merger needs to ask the Centralized Data
Structure if this Final Match is the earliest Final Match in the system. One of APIs,
isEarliestF inalMatch(), in Centralized Data Structure is designed for this purpose.
If the Final Match indeed is the earliest Final Match, then the Merger informs the
Centralized Data Structure that this Final Match is consumed and fires it. If the Final
Match may not be the earliest one, the Merger will put the Final Match back to the
sorted queue, wait for some time, pick the first Final Match in the queue, and repeat this
procedure again. Algorithm 5.1 shows this Merging Algorithm. The Merger repeatedly
invokes FIRE FINAL MATCH method unless the Merger is shutdown.

Yes, busy waiting is used here to avoid additional synchronization. Otherwise, Merger
needs to synchronize with Centralized Data Structure every Task Result is returned.

66

5.3 Centralized Data Structure

Listing 5.1 APIs supported by Raw Event List
add(RawEvent):void

getNextawEvent(RawEvent):RawEvent

consume(RawEvent):void

cleanUp(RawEvent, CounterWindowSize):void

setSynchronizationPoint(RawEventSeqId):void

5.3 Centralized Data Structure

The Centralized Data Structure is the most complex component in the architecture.
Because it maintains all Partial Matches and all Raw Events as well as controls the
work-flow. There are two Data Structures in this component. One Data Structure, Raw
Event List, is for maintaining all Raw Events. The other one, Partial Match Data Structure
(or PMDS) is used to maintain all Partial Matches.

Since there are different ways to implement the Data Structure, I first list the APIs
supported by Centralized Data Structure in Listing 5.1 and Listing 5.2. Following section
is the explanation of each API’s usage. The implementation details are introduced later.
Listing 5.1 gives the APIs supported by Raw Event List.

• add(RawEvent) is used when a new Raw Event arrives from event stream. The
new incoming Raw Event is added to the end of Raw Event List.

• getNextRawEvent(RawEvent) returns the next valid Raw Event after the given
Raw Event in the Raw Event List.

• consume(RawEvent) will remove the given Raw Event from the Raw Event List.
I.e. the given Raw Event will become invalid.

• cleanUp(RawEvent, CounterWindowSize) will remove all Raw Events whose se-
quence Id are earlier than the sequence Id of given Raw Event minus Counter
Window Size. For instance, if the Raw Event Sequence Id is 100, and Counter
Window Size is 25, then this method will remove all Raw Events whose sequence
Id are earlier than 75 (100 minus 25). This is invoked when a Final Match is
consumed. Any Raw Events, whose ids are earlier than the id of first Raw Event in
the Final Match minus counter window size, should be useless so far. Otherwise,
the isEarliestF inalMatch(FinalMatch) should prevent this Final Match to fire
because there may be an earlier Final Match than this one.

• setSynchronizationPoint(RawEventSeqId) is used to set a synchronization point.
The synchronization point well be introduced in Section 5.4.2.

67

5 Details of New Architecture

Listing 5.2 APIs supported by Partial Match Data Structure
iterator():Iterator<PartialMatch>

receiveTaskResultAndGetNewTasksAndPartialMatch(TaskResult):Tasks and PartialMatch

isEarliestFinalMatch(FinalMatch):boolean

consume(FinalMatch):boolean

cleanUp()

Listing 5.2 gives the APIs supported by Partial Match Data Structure.

• iterator() returns an iterator to traversal all Partial Matches in the Data Structure.
The iterator is used in Task Creation Algorithm(See Section 4.6.2) to reach all
Partial Matches.

• receiveTaskResultAndGetNewTasksAndPartialMatch(TaskResult) is also used
in Task Creation Algorithm(See Section 4.6.2). The Task Creation Algorithm says
when a Task Result is returned, the Centralized Data Structure should generate a
new Partial Match or not according to the Task Result. It also needs to create new
Tasks if a new Partial Match is indeed created.

• isEarliestF inalMatch(FinalMatch) is used by Merger to check if a Final Match
is the earliest Final Match in the system.

• consume(FinalMatch) is used by Merger to consume all related Raw Events
according to Consumption Strategy when a Final Match is fired.

• cleanUp() is used for optimization purpose, which will be introduced in Sec-
tion 5.4.2.

5.3.1 Details of Raw Event List

Since Raw Event List needs to be a list and it also needs to have the feature of fast
access (because of getNextRawEvent(RawEvent)), the ConcurrentSkipListMap in java
is an excellent choice for this Data Structure. The ConcurrentSkipListMap uses a con-
current variant of skip list to store the keys[Ora16]. The nodes in the skip list uses
compare-and-set algorithm for concurrent modification. The Raw Event Sequence
Id can be used as a key for fast accessing. The time complexity for add(RawEvent),
getNextRawEvent(RawEvent), and consume(RawEvent) is log(n). The time complex-
ity for cleanUp(RawEvent, CounterWindowSize) is also not expensive because it only
needs to remove the head sub map or maybe just reset the header pointer if implement
the Raw Event List by oneself.

68

5.3 Centralized Data Structure

5.3.2 Details of Partial Match Data Structure

Currently a hash table is used in the Centralized Data Structure to maintain all Partial
Matches. This works fine if a Partial Match will never become invalid. (E.g. because of
consumption problem or counter window size constraints)

However, when consumption problem, which will be discussed in details in later sections,
is taken into consideration, a Partial Match pmj will become invalid if another Partial
Match pmi which pmj depends on is consumed. Also, a Partial Match pmj may become
invalid because of counter window size constraints. For example, if the query gives a
counter window size as 25 events, then all Partial Matches earlier than the 25-th Raw
Event and those Partial Matches depend on these ones should become expired.

All expired Partial Matches should no longer take participate in creating new Tasks and
they should wait for deleting at a certain time point (See Section 5.4.2).

If hash table is still used under this scenario, it is a huge execution cost to discard all
invalid Partial Matches because the Centralized Data Structure needs to go through
all Partial Matches to discard them according to the dependencies introduced in Sec-
tion 4.4.11 and Section 4.4.12.

According to the dependency between Partial Matches w.r.t. Raw Events, pmi depends
on pmj is equivalent to pathj ⊂ pathi and (e)j ⊂ (e)i. Therefore, to store pmi, only
the additional information other than pmj, i.e. additional Transition and Raw Events,
are needed to store in the data structure. There are two ways to achieve this: tree or
graph.

Partial Match Graph

Figure 5.1a is an example of Partial Match Graph. The graph is built up by nodes and
edges. Each node contains one Raw Event. Also each Raw Event only appears in one
node. Each edge connects two nodes and edge has direction. The graph has a “Root”
node. The Root node is a special case. Root node represents the initial Partial Match
pm0, thus Root node contains ∅ as the Raw Event. Edge represents a transition from
one state to another state, which results a new Partial Match. Therefore, a path from
Root node to another node represents a Partial Match.

In Figure 5.1a, there are 6 nodes, excluding the Root node. There are also many paths
in this graph. Each path represents a Partial Match. E.g. path ∅ → e1 represents a
Partial Match pm1 = ((Transition1); (e1)); path ∅→ e1 → e2 represents a Partial Match
pm2 = ((Transition1, T ransition2); (e1, e2)).

69

5 Details of New Architecture

e1

e3

e4

e2

e5 e6

Transition1

Root

Transition1

Transition1

Transition2

Transition3

Transition5

Transition4

(a) Example of Partial Match Graph

e1

e3

e4

e2

e5 e6

Transition1

Root

e6

Hash
Map

e1

e2

e3

e4

e5

e6

Transition1

Transition1

Transition2

Transition3 Transition4

Transition5

(b) Example of Partial Match Tree

Figure 5.1: Two Partial Match Data Structure

Obviously, pm2 depends on pm1 w.r.t. Raw Events. The dependency is expressed in the
graph in such way that one node is a successor of another node.

A detailed discussion about consumption problem and algorithm is in later part of this
section. But in simple words, to consume one Raw Event or to discard an invalid Partial
Match, the Data Structure only needs to delete a certain node and then check if there
are any unreachable nodes from the Root node. E.g. in this graph, if e2 is consumed, e5
will become unreachable so that e5 should also be deleted.

Partial Match Tree

Figure 5.1b is an example of Partial Match Tree. The tree is built up by nodes and edges.
Each node contains one Raw Event, but each Raw Event may appear in different nodes.
Each edge connects two nodes. The tree has a Root node, which contains ∅ as Raw
Event. Since, a path from the Root node can represent a Partial Match, and the path to
each tree node is unique, each tree node in the tree is actually a Partial Match.

In Figure 5.1b, there are 7 tree nodes, but there are only 6 Raw Events. Raw Event
e6 appears in two tree nodes, which means it appears in two Partial Matches. To
explain “each tree node is a Partial Match”, let’s see some examples. Node e1 is
a Partial Match pm1 = ((Transition1); (e1)). Node e2 is a Partial Match pm2 =
((Transition1, T ransition2); (e1, e2)). There are two Nodes e6. Therefore, there are

70

5.3 Centralized Data Structure

two Partial Matches pm6.1 = ((Transition1, T ransition2, T ransition4); (e1, e2, e6)) and
pm6.2 = ((Transition1, T ransition5); (e4, e6)).

Obviously, pm2 depends on pm1 w.r.t. Raw Events. The dependency is expressed in the
tree in such way that one tree node is a successor of another tree node.

To access a specific Raw Event ei in the tree in a fast way, a hash map is needed to
store the location on each Raw Event in the tree. This is the extra cost compared to
the tree without hash map and to the graph, because the hash map needs to update
when new Partial Match is generated. In the tree without hash map, no hash map needs
to maintain. In the graph, the hash map only needs to update when a new node is
created.

So far, data structure has been introduced. In following sections, the algorithms of API
will be explained.

5.3.3 Iterator

The iterator is used to traverse the Data Structure to get all existing Partial Matches.
This can be done by depth-first-search or breadth-first-search. Also, there is not much
space to optimize the traversal algorithm.

5.3.4 Receive Task Result

This method is used to receive Task Result and to create a new Partial Match and Tasks
if the Task Result is true. The complexity of this algorithm is mainly in searching the
parent Partial Match in the data structure. To avoid searching, the parent Partial Match
stores a pointer pointing to the node, which represents the parent Partial Match, so that
the node can be directly accessed when the Task Result is returned. The complexity of
this algorithm becomes O(1).

5.3.5 isEarliestFinalMatch

This method is used by Merger to check if a given Final Match is the earliest Final Match
in the system.

For Partial Match Tree, only the left sub trees of given Final Match needs to check. There
are two conditions need to check:

71

5 Details of New Architecture

1. All Partial Matches in the left sub trees of given Final Match should have al-
ready been combined to a Raw Event whose sequence Id meets one of following
conditions:

a) higher than the sequence Id of last Raw Event in Final Match.

b) equals to the synchronization point.

c) reaches the maximum counter windows size.

2. All Partial Matches in the left sub tree of given Final Match should have no earlier
Tasks than a Task contains the last Raw Event of given Final Match.

If both conditions are met, then the given Final Match is the earliest Final Match in the
system.

For Partial Match Graph, all Partial Matches containing a Raw Event which is earlier
than the last Raw Event in Final Match need to check. There are also two conditions
need to check. The two conditions are the same as the ones in Partial Match Tree. If
both conditions are met, then the given Final Match is the earliest Final Match in the
system.

5.3.6 Consumption

One of APIs of Partial Match Data Structure is consume(FinalMatch), which means
no matter tree or graph, with or without hash map, they should support to consume
a Final Match. However, so far, consumption problem is never considered, because
once consumption problem is taken into consideration, the dependency between Partial
Matches will be changed.

The definition of consumption is such that once a Raw Event e or a Partial Match pmi

is consumed, this Raw Event e or Partial Match pmi will never show up in further
processing and have no more impact to the system.

Without consumption, pmj depends on pmi if and only if pathpmi
⊂ pathpmj

AND
(e)pmi

⊂ (e)pmj
. Also, a new generated Partial Match has no influence on existing ones.

(i.e. a future result will not influence a past result.)

If the consumption problem is taken into consideration, the system becomes acausal
system (a term in control theory, means current result not only depends on previous
result but also depends on future result), because pmj also depends on the FUTURE
consumption result of pmi. I.e. existence of pmj depends not only on current pmi but
also on the fact that pmi will not be consumed in future. This is what makes the problem
complex.

72

5.3 Centralized Data Structure

Algorithmus 5.2 Consumption Algorithm for Graph

procedure CONSUME(list of Raw Events to consume)
for all Raw Event e in list of Raw Events to consume do

nodei ← get the node contains e

remove all edges pointing to nodei

remove nodei

end for
REMOVE UNREACHABLE NODES

end procedure

Algorithmus 5.3 Consumption Algorithm for Tree

procedure CONSUME(list of Raw Events to consume)
for all Raw Event e in list of Raw Events to consume do

setOfNodes← get the nodes contain e

for all Node n in setOfNodes do
remove the sub-tree of Node n

end for
end for

end procedure

To solve this problem in an easy way is to apply following two steps

1. Assume Partial Match will never be consumed in future, which makes the system
back to causal system again and behave as previously.

2. Once a Partial Match does be consumed in future, invalidate all existing Partial
Matches which depend on this consumed Partial Match.

Now a consumption algorithm is needed to invalidate all existing Partial Matches which
depend on a consumed Partial Match.

Consumption Algorithm

The algorithm is used to invalidate a set of Partial Matches when a Raw Event or a
Partial Match is consumed. However, the nature of consumption of a Partial Match pmi

actually is the consumption of a sequence of Raw Events (e)i rather than one Raw Event.
Therefore, the problem becomes "how to invalidate a set of Partial Matches when one or
more Raw Events are consumed".

With the help of the data structure introduced in Section 5.3.2 the algorithm becomes
more efficient, compared with going through all Partial Matches in a hash table.

73

5 Details of New Architecture

Algorithm 5.2 is for Partial Match Graph. To consume a list of Raw Events in Partial
Match Graph, following steps need to execute in sequence.

1. Find the nodes containing the target Raw Events

2. Remove all edges pointing to these nodes

3. Remove these nodes, which containing the target Raw Events

4. Check the graph to see if there are any unreachable nodes. If yes, then remove all
unreachable nodes in the graph.

Algorithm 5.3 is for Partial Match Tree. To consume a list of Raw Events in Partial Match
Tree, following two steps need to execute in sequence.

1. Find the nodes containing the target Raw Events

2. Remove the sub-tree of these nodes

The complexity of these two algorithms will be discussed in next section.

5.3.7 Complexity Analysis of Data Structure

The Partial Match Data Structure is to store and maintain Partial Matches. There are
three data structures to be analyzed: Tree w/o Hash Map, Tree with Hash Map and
Graph. Each of them has its own properties, which will be discussed now.

There are three major operations in Partial Match Data Structure:

1. Traversal

2. Add new Partial Match

3. Consume a Final Match

As described in Section 5.3.3, the complexity of traversal are almost same and the
complexity depends on the number of nodes in data structure. Obviously, the tree will
have more nodes than graph, but the complexity still remains in the same complexity
class. The complexity of adding a new Partial Match can be improved to O(1) as
described in Section 5.3.4. The most difference of three data structure is in consuming a
Final Match.

74

5.3 Centralized Data Structure

Partial Match Tree w/o Hash Map

For Tree w/o Hash Map, consumption contains two steps: Search and Remove.

• Search: Search for a group of tree nodes which contain the Raw Event included in
a given set of Raw Events.
Complexity: O(All nodes in tree) i.e. O(Size of tree)

• Remove: Remove the group of nodes from the tree.
Complexity: size of group ×O(1) = O(size of group)

Thus, the overall complexity is O(|Tree|) +
size of Raw Event Set∑

i=1
(O(|groupi|))

Partial Match Tree with Hash Map

For Tree with Hash Map, consumption contains three steps: Remove, Update and Check
dead link.

• Remove: Get the set of links from hash map. Remove the nodes attached to the
links.
Complexity: size of links×O(1) = O(size of links)

• Update: Remove the <key, value> pair from hash map. Complexity: O(1)

• Check dead link: Remove from hash map the links pointing to the nodes which are
in the sub-tree of deleted node.
Complexity: size of sub-tree×O(2) = O(size of sub-tree)

Thus, the overall complexity is
size of Raw Event Set∑

i=1
(O(size of links)+O(1)+O(size of sub-tree))

Partial Match Graph

For Partial Match Graph, consumption contains these steps: Remove, Check unreachable
nodes, and Update.

• Remove: Get the link to the node according to Hash Map. Remove the node. I.e.
delete a given node and its all incoming links.
Complexity: O(1) + O(size of incoming links)

75

5 Details of New Architecture

• Check unreachable nodes: Check if there is any isolated nodes or isolated sub-
graph in graph. This is done by traversing the whole graph first and the nodes not
reached are unreachable nodes.
Complexity: O(size of graph)

• Update: Remove unreachable node from Hash Map
Complexity: O(size of unreachable nodes)

Thus, the overall complexity is O(size of graph) + O(size of unreachable nodes) +
size of Raw Event Set∑

i=1
(O(1) + O(size of incoming links)i)

Summary

First, we compare Tree w/o Hash Map and Tree with Hash Map.

O(size of group) and O(size of links) are in the same complexity class. It depends on
the number of occurrence of ONE Raw Event.

In Tree w/o Hash Map, O(|Tree|) is independent to the size of given Raw Event Set. The
corresponding component in Tree with Hash Map is O(size of sub-tree). In worst case,∑

O(size of sub-tree) equals to O(|Tree|).

O(1) in Tree with Hash Map is the extra overhead to maintain the hash map.

Then, we compare Tree with Hash Map and Graph.

O(1) is the overhead to maintain the hash map.

O(size of links) and O(size of incoming links) are in the same complexity class.

In Graph, O(size of graph) is independent to the size of given Raw Event Set. The corre-
sponding component in Tree with Hash Map is O(size of sub-tree), but the complexity is
still in the same class as O(size of graph).

However, please notice that it is unnecessary to check unreachable nodes in graph for
every consumption. Because unreachable nodes won’t influence the system except they
cost some memory. Therefore, the clean-up of unreachable nodes can be delayed to
the synchronization point(See Section 5.4.2) Then the overall complexity for each
consumption in graph will become O(size of graph)+O(size of unreachable nodes)

number of consumption invoked between two synchronization points +
size of Raw Event Set∑

i=1
(O(1) + O(size of incoming links)i).

76

5.4 Optimization

5.4 Optimization

So far, the functionality of the architecture has been introduced. However, there are
possibilities to improve the performance. In this section, two approaches are provided to
improve the performance: Task Scheduling (or Priority Task Queue) and Synchronization
Point. Task Scheduling (or Priority Task Queue) is to prioritize a Task which is more
likely to be a necessary Task. Synchronization Point is to synchronize the progress
between Task Creation, Task Evaluation, and Final Match Consumption.

5.4.1 Task Scheduling (or Priority Task Queue)

Task Scheduling is to use a Priority Task Queue to prioritize a Task which is more likely
to be a necessary Task. The scheduling strategy is query dependent.

For example, given the query SEQ(A; B; C), a "longer" Task is more likely to be a
necessary Task as well as an "earlier" Task is more likely to be a necessary Task. A
"longer" Task is a Task has more Raw Events in the Partial Match it carries. E.g. Given
a Raw Event e, a Task carrying Partial Match AB is longer than a Task carrying Partial
Match A. The first Task is more likely to become a Final Match. An "earlier" Task is a Task
carries an earlier Partial Match. For instance, if A1 is earlier than A2 in event stream,
then a Task carrying Raw Event A1 should have higher priority than a Task carrying Raw
Event A2 because of first occurrence selection policy. Therefore, for query SEQ(A; B; C),
the strategy "longer Task, higher priority; earlier Task, higher priority" can be used.

While in another example, given the query OR(SEQ(A; D), SEQ(A; B; C)), previous
scheduling strategy won’t work as well as previously. Because given a Raw Event e, a
Task with Partial Match A and a Task with Partial Match AB have the same probability
leading to a Final Match.

Thus, the Task Scheduling Strategy is query dependent. The domain expert needs to
give a suitable Task Scheduling Strategy according to the query.

Since the implementation is based on query SEQ(A; B; C), the strategy "longer Task,
higher priority; earlier Task, higher priority" is used as default strategy in following
chapters.

It is also possible not to use Task Scheduling Strategy. Then the Task Queue is called
Simple Task Queue, which applies FIFO rules.

77

5 Details of New Architecture

5.4.2 Synchronization Point

Synchronization point is to divide the incoming Raw Events into blocks. The end of
each block is the Synchronization Point. The amount of Raw Events between two
Synchronization Point is the Raw Event Block Size. At the end of each block, the system
forces all components to rendezvous at that point. This mechanism is used to avoid such
situation that the Tasks are created in a very fast rate while all unnecessary Tasks have
higher priority in Task Queue because of a bad Task Scheduling Strategy. (Actually, it is
very hard to get a perfect Task Scheduling Strategy.) In such situation, it is very likely
that no Final Match can be fired, the system is working on all unnecessary Tasks, and
the Partial Match Data Structure keeps growing until the system is out of memory.

Thus, to avoid such situation, a Synchronization Point is introduced. When the syn-
chronization point arrives, no more Tasks will be created unless all created Tasks are
processed and all potential Final Matches are fired. Also, the Synchronization Point can
be used to indicate the time point to clean up the Partial Match Data Structure. E.g.
Clean up all unreachable nodes in Partial Match Graph.

5.5 Improved Finite State Machine

As described in Chapter 4, the new architecture is established on the Improved Finite
State Machine, however, the user is more similar with the CEP query language. Therefore,
an approach is needed to convert the CEP query language into Improved Finite State
Machine. The Improved Finite State Machine generated from a query is called State
Machine Model. A State Machine Model maps to a unique query, while a query can
map to several State Machine Model. In this section, I will show some examples how to
convert the SNOOP query into a State Machine Model.

5.5.1 SEQ Operator

For a given pattern SEQ(E1; E2; E3; . . . ; En), the State Machine Model is shown in
Figure 5.2.

A Partial Match pm1 entered into State S1 is created if the initial Partial Match pm0
receives event E1 and meets related Transition Constraints. Similarly, Partial Matches
entered into State S12,S123,S123...n are created if pm1 receives event E1,E2,E3, . . . ,En

and meets Transition Constraints respectively.

78

5.5 Improved Finite State Machine

S1 S 1 2 S1 2 3 S1 2 3 n...

E1 E2 E3 En

Figure 5.2: State Machine Model of SEQ Operator

S1

S2

Sn

...

E1

E2

En

Figure 5.3: State Machine Model of OR Operator

5.5.2 OR Operator

For a given pattern OR(E1, E2, . . . , En), the State Machine Model is shown in Figure 5.3.
Different Raw Events will lead to different states according to Transition Condition.

5.5.3 ANY and ALL Operator

Since “ALL” operator is a special case of “ANY”, “ALL” operator will be shown first. The
model of “ANY” operator is a brief version of the model of “ALL”.

79

5 Details of New Architecture

S1

S2

S3

S4

S12

S13

S14

S23

S24

S34

S123

S124

S134

S234

S1234

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 5.4: State Machine Model of ALL(E1, E2, E3, E4)

To explain “ANY” and “ALL” operator in a more detailed way, a detailed pattern
ALL(E1, E2, E3, E4) will be used as an example first.

The State Machine Model of ALL(E1, E2, E3, E4) is shown in Figure 5.4

A Partial Match pm1 entered one of States S1,S2,S3, or S4 is created when pm0 receives
one of Events E1,E2,E3, or E4. Then Partial Match pm2 which enters into next level of
states is created if pm1 receives second Raw Event. For example, if the incoming Raw
Event stream is as following sequence: E2;E3;E1;E4, then pm1 which enters into S2 in
the first level is created, pm2 which enters into S23 in the second level is created, pm3
entering into S123 in the third level is created, and finally pm4 entering into S1234 in the
last level is created.

Then the general State Machine Model of “ALL” operator is shown in Figure 5.5

For a given ALL(E1, E2, E3, . . . , En), the model will have n levels. At level k, there will
be

(
k
n

)
(binomial coefficient) states. Notes: The naming of States indicates what Raw

80

5.5 Improved Finite State Machine

S1

S2

...

Sn

S1 2

S1 3

S1 n

...

S2 n

Sn-1 n

...

...

S2 3 ...

S123...n-1

S123...n-2 n

...

S234...n-1 n

S123...n-1 n

Level 0 Level 1 Level 2 Level n-1 Level n

Figure 5.5: State Machine Model of ALL Operator

Events have already been received. E.g. State S123 means the Partial Match has already
received Events E1,E2,E3.

Since ALL(E1, E2, E3, . . . , En) is a short form of ANY (n, E1, E2, E3, . . . , En), for a given
pattern ANY (m, E1, E2, E3, . . . , En), the State Machine Model is the first m levels of the
model of ALL(E1, E2, E3, . . . , En).

81

5 Details of New Architecture

S1

~Condition/E1

Figure 5.6: State Machine Model of NOT Operator

5.5.4 NOT Operator

The State Machine Model of “NOT” operator is to set the negation of related condition
as shown in Figure 5.6

82

6 Evaluation

In this chapter a group of evaluation results will be shown. These evaluations are
taken place on Google Cloud Compute Engine. Section 6.1 is the general view of the
evaluation. The hardware and software environment information will be listed in section
6.1.1. Section 6.1.2 will show the evaluation configuration, i.e. what parameters are
evaluated. Before the detailed discussion about the evaluation results in Section 6.3,
some terminology will be introduced in Section 6.2.

6.1 Environment Setup and Evaluation Configuration

6.1.1 Environment Setup

The evaluations are taken place on Google Cloud Compute Engine. In the evaluation,
several types of Google Cloud Compute Engine are used:“n1-standard-1”, “n1-standard-
2”, “n1-standard-4” “n1-highcpu-8”, and “n1-highcpu-16”. The last number indicates the
number of vCPU cores. I.e. “n1-standard-1” has 1 vCPU. “n1-highcpu-16” has 16 vCPUs.
The type “High CPU”, as described by Google, is “High-CPU machine types are ideal for
tasks that require more virtual CPUs relative to memory. High-CPU machine types have
0.90 GB of RAM per virtual CPU.”[Goo16]. While the “Standard” type has the same CPU
performance but with a larger RAM. Because for the program, a minimum RAM should
be guaranteed. If a “High CPU” type with small amount of vCPU cores is used, the RAM
is too small for the program. Therefore, for 1, 2, and 4 vCPU cores, the type “Standard”
is chosen.

The OS in the evaluations uses Ubuntu 16.04 LTS, provided by Google together with the
Compute Engine. The JVM uses JavaSE8.

There are two third party components, OpenCV 3.1[Its16] and Sigar 1.6.4[Hyp16].
OpenCV is used to simulate the heavy weight operation. The heavy weight operation,
to be more detailed, is to detect a face in an image. The cost time of heavy weight
operation depends on the size of image and the classifier used. Sigar is used to measure
CPU Load during evaluation.

83

6 Evaluation

Listing 6.1 Evaluation Configuration Parameters
Number of vCPU cores and Event Generation Rate:

see Table 6.1 and Table 6.2

Query:

SEQ(A;B;C)

Counter Window Size:

25 (events for each Event, i.e. the max Global Counter Window Size is 75)

Image Size:

80x60, 160x120, 320x240

Event Generating Time:

1 hour for Latency test

30 min for Throughput test

Task Queue Type:

Simple Task Queue (FIFO)

Priority Task Queue (Longer Task, higher priority; Earlier Task, higher priority)

Partial Match Data Structure:

Tree w/o Hash Map

Tree with Hash Map

Graph

Raw Event Block Size:

4, 16, 64, 256, 1024, 4096, 16384, 65536, 131072

6.1.2 Evaluation Configuration

During the evaluations, two important variables are measured, throughput and latency.
Since latency is meaningless if the program is overloaded, because all Events will be
queued up and waiting for processing, the longer running time, the larger latency,
therefore a throughput test is executed first to determine the throughput against all
configuration parameters. Then an Event Generation Rate, which is slightly smaller than
the minimum throughput in the throughput test, is picked to use in the latency test to
avoid overloading the system. Thus, the first two evaluation configuration parameters
are Event Generation Rate and number of vCPU cores. The other parameters are listed
in Listing 6.1. All these parameters will be explained in following subsections.

Number of vCPU cores and Event Generation Rate

In the throughput test, a large enough Event Generation Rate(Unit: events per second)
is used to overload the system, as shown in Table 6.1. The program only exits when all
Raw Events generated have been processed. Any larger value is also acceptable, but
it will take too much time for the program to finish its job. Therefore, the throughput
can be calculated by dividing the total events generated by total running time, i.e.
throughput = total events generated

total running time
.

84

6.1 Environment Setup and Evaluation Configuration

of vCPU cores Event Generation Rate
1 30
2 30
4 100
8 120
16 200

Table 6.1: Event Generation Rate in throughput test w.r.t number of vCPU cores

of vCPU cores Event Generation Rate
1 9
2 15
4 25
8 45
16 75

Table 6.2: Event Generation Rate in latency test w.r.t number of vCPU cores

In the latency test, the Event Generation Rate is chosen slightly smaller than the
minimum throughput in throughput test, as shown in Table 6.2, so that the machine
won’t be overloaded.

Example Scenario and Query, Counter Window Size

In Section 3.2.2, Application 2 shows a scenario about object recognition and behavior
pattern detection for auto-driving/alarm system. Here, to simplify the scenario a little bit
more, I use query SEQ(A; B; C) instead of ALL(SEQ(E1; E2), E3). Instead of looking
for sequence E1, E2, E3, or E3, E1, E2, I just look for sequence A, B, C, i.e. one of
two cases in Application 2. In Application 2, the user defined function matches should
do object recognition. Here I use OpenCV face detection function to simulate the CPU
complexity of object recognition. The CPU complexity can be adjusted by resizing the
image size or using other classifiers. I also set Counter Windows Size as 25, which means
an event will expire after 25 events if there is no Partial Match detected. For instance,
an event A will expire after 25 events unless there is B event in these 25 events. If there
is a sequence A and B has been detected, then the expiration of this Partial Match is
determined by the event B. I.e. if there is no C event in 25 events after B event, the
Partial Match sequence AB will be expired.

The threshold 25 is chosen according to the throughput. If the Counter Window Size is
too small, then the Partial Match Data Structure will always remain small because the

85

6 Evaluation

query is too simple. The Event Generation Rate needs to be very large to overload the
program. If the Counter Windows Size is too large, then the query will be too complex
and Partial Match Data Structure will be large, which leads to a very small throughput
and it is hard to compare among different configurations if all throughput are small and
close to each other.

Together with the query SEQ(A; B; C), the first occurrence selection strategy is used.
I.e. If there are many A events followed by a B event and a C event, the first A event
occurred is selected to generate a Final Match ABC. The consumption strategy is that
all selected events will be consumed. I.e. In sequence ABC, all of three events will be
consumed once the Final Match ABC is fired.

Image Size

There are three image sizes: 80x60, 160x120, and 320x240. Different image sizes can
be used to simulate different CPU complexities because the OpenCV needs more time on
a singe CPU to detect a face in larger image. Image size 80x60 and 320x240 are only
used for testing the performance w.r.t. different CPU complexity operations. In all other
performance tests, the image size is fixed to 160x120. These image size 160x120 is also
chose according to the throughput so that a suitable throughput can be obtained for
comparison. The other two are just half or doubled image size.

To achieve a suitable throughput baseline, for image size 160x120, the face detection
classifier uses “lbpcascade_frontalface.xml” which comes together with OpenCV package.
The image size 320x240 uses the same classifier. While for image size 80x60, another
classifier “haarcascade_frontalface_alt_tree.xml” is used so as to achieve a more less
CPU complicity operation.

Event Generating Time

Event Generating Time is the time duration that how long the events are generated at a
given Event Generation Rate for. E.g. 30 min for throughput test at Event Generation
Rate 120. Events will be generated at 120 events per second for 30 minutes in throughput
test.

Notice: Event Generating Time is NOT the total running time. Total running time is
the time duration that how long does the program need to process all events generated.
In throughput test, the total running time will be much longer than Event Generating
Time. While in latency test, the total running time obtained should be equal to Event
Generating Time.

86

6.2 Terminology Used in Evaluation

Task Queue Type

See Section 5.4.1. Task Queue Type is the scheduling strategy used in Task Queue. A
Simple Task Queue uses FIFO strategy, i.e. a Task put into Task Queue earlier will be
processed by operator instance earlier. A Priority Task Queue uses "Longer Tasks, higher
priority;earlier Task, higher priority" strategy. For example, there are two Tasks and each
Task containing one Partial Match. If PM1 is longer than PM2, i.e. PM1 contains more
Raw Events than PM2, then the Task containing PM1 will be processed by operator
instance earlier. If PM1 and PM2 have the same length, then the Task containing earlier
Raw Event will be processed earlier.

Partial Match Data Structure

There are three Partial Match Data Structure introduced in this thesis: Partial Match
Tree w/o Hash Map, Partial Match Tree with Hash Map, and Partial Match Graph. Please
see Section 5.3.2 for details.

Raw Event Block Size

The Raw Event Block Size is the number of Raw Events between two Synchroniza-
tion Points. The CEP system will process the Raw Events block by block. Please see
Section 5.4.2 for details.

6.2 Terminology Used in Evaluation

Definition 6.2.1 (Raw Event Processing Latency)
The elapsed time between the Raw Event put into Raw Event List and it is totally processed.
A Raw Event is considered as totally processed when it has no more impact on the Partial
Match Data Structure.

A new incoming Raw Event should be combined to all existing Partial Matches to create new
Tasks. Therefore, after this combination is finished, this Raw Event has no more influence to
the Partial Match Data Structure. Because following Raw Events will combine to the Partial
Matches, not to this Raw Event.

However, it is hard to check whether a Raw Event has finished combining all existing Partial
Matches in parallel system. I use “last taken time” as the time point when the Raw Event is

87

6 Evaluation

totally processed. Whenever a Raw Event has been accessed to create a new Task, the “last
taken time” will be updated.

Definition 6.2.2 (Raw Event Queuing Time)
The time between the Raw Event put into the Raw Event List and it is first time accessed by
an operator instance.

Definition 6.2.3 (Raw Event Life Time)
The time between the Raw Event put into the Raw Event List and it is removed because of
consumed or expired.

Definition 6.2.4 (Task Queuing Time)
The time between the Task is created and it is taken from Task Queue by an operator
instance.

Definition 6.2.5 (Task Evaluation Cost Time)
The elapsed time between the Task taken from Task Queue and all Transition Conditions
are evaluated.

Definition 6.2.6 (Task PMDS Processing Latency)
The time used to manipulate the Partial Match Data Structure. I.e. Add a new Partial
Match and create new Tasks.

Definition 6.2.7 (Task Processing Latency)
The time between the Task is created and it is totally processed.

A Task can only have following ending.

1. Invalid Task

An invalid Task will not be evaluated. It will be treated as a False Task Result immediately
after it is taken from the Task Queue by an operator instance. The operator instance removes
the Task from the tracking list in the Partial Match Data Structure

2. Valid Task with False Task Result

The Task is valid, but the evaluation gives a False Task Result, which means it doesn’t pass
the evaluation. The operator instance removes the Task from the tracking list in the Partial
Match Data Structure.

3. Valid Task with True Task Result

The Task is valid and the evaluation gives a True Task Result, which means it passed the
evaluation. The operator instance creates a new Partial Match and new Tasks in the Partial
Match Data Structure as well as removes the Task from the tracking list.

88

6.3 Evaluation Results

The time when the operator instance finished manipulation in the Partial Match Data
Structure is considered as the Task is totally processed. Therefore, Task Processing Latency
contains different components according the ending of Task.

1. Invalid Task

Task Processing Latency only contains the Task Queuing Time

2. Valid Task with False Task Result

Task Processing Latency contains the Task Queuing Time plus the Evaluation Cost Time.

3. Valid Task with True Task Result

Task Processing Latency contains the Task Queuing Time, the Evaluation Cost Time, and
PMDS Processing Latency.

6.3 Evaluation Results

Following are three subsections. In Section 6.3.1, the Evaluation Results are about the
Throughput and Raw Event Processing Latency w.r.t. different Raw Event block size,
Task Queue, and Partial Match Data Structure. The evaluation is run on a 8 vCPUs
machine and use 160x120 image. Explanations about how these three configuration
parameters impact on the Throughput and Raw Event Processing Latency will also be
given. Section 6.3.2 will discuss about the architecture scalability as the number of CPU
cores increases. Section 6.3.3 is about the performance of architecture w.r.t. different
CPU complexity operations.

6.3.1 Performance about Raw Event Block Size, PMDS, and Task Queue

The Figure 6.1 shows the throughput test result on a 8 vCPUs cloud instance. Obviously,
Partial Match Data Structure with Priority Task Queue generally obtains a better perfor-
mance. With Priority Task Queue, the throughput of all Partial Match Data Structures
are nearly same at block size 4, approximately 52 events per second. As the block size
increasing, all data structures shows improvement, but at different rates. The Graph
reaches its optimum area 90 events per second at block size between 256 and 1024,
achieved 73% improvement . The Tree without Hash Map has its highest throughput
90 events per second at block size 1024, achieved 73% improvement as well. The
Tree with Hash Map reaches its optimum area also around block size 1024, but with
a lower throughput, only 85 events per second, which is 63% improvement. After the
optimum area, the throughput becomes worse as the block size increasing. At block size

89

6 Evaluation

40
45
50
55
60
65
70
75
80
85
90
95

4 16 64 256 1024 4096 16384 65536 131072

Th
ro

ug
hp

ut
(U

ni
t:

ev
en

ts
pe

r
se

co
nd

)

Raw Event Block Size

Throughput

Graph, Priority TQ
Graph, Simple TQ

Tree w/o Hash Map, Priority TQ
Tree w/o Hash Map, Simple TQ

Tree with Hash Map, Priority TQ
Tree with Hash Map, Simple TQ

Figure 6.1: Throughput

131072, the throughput of Graph and Tree with Hash Map are both around 77 events
per second. The Tree without Hash Map has the worst throughput, only about 54 events
per second.

The throughput of three Partial Match Data Structures with Simple Task Queue (i.e.
FIFO Queue) have the same trend, except the throughput value is lower. At block size
4, the throughput only achieves 45 to 50 event per second. The highest throughput
of Graph and Tree without Hash Map are 80 events per second. The highest value of
Tree with Hash Map is about 76 events per second. Then at block size 131072, the
throughput decreased to 72, 58, and 72 events per second respectively.

All lines shows there is an optimum Raw Event block size range for each configuration.
This optimum point mainly depends on the Raw Event Processing Latency, which will be
described in Figure 6.3.

Before looking into Figure 6.3, I would like to the show the legend of boxplot first.
Figure 6.2 shows the legend used in boxplot charts. There are six values in each box:
95%, 75%, 50%, 25%, 5%, and mean value. E.g. 95% means 95% results are lower
than this value. The X mark is the mean value of all results. Now we continue to look
into Figure 6.3.

Figure 6.3 described the Raw Event Processing Latency. At block size 4, all configurations
show high Raw Event Processing Latency. With Priority Task Queue, the Raw Event
Processing Latency keeps around 100ms. With Simple Task Queue, the Raw Event
Processing Latency keeps from 270 to 370ms. As block size increasing, all configurations
obtain the optimum area around block size 256 or 1024. With Priority Task Queue, the

90

6.3 Evaluation Results

95%

75%
Mean value

Median value

25%
5%

Figure 6.2: Legend of Boxplot Chart

Graph has optimum point 6.38ms at block size 256. The Optimum point of Tree w/o
Hash Map is 5.83ms, at both block size 256 and 1024. The lowest Raw Event Processing
Latency of Tree with Hash Map is 6.05ms at block size 1025. While with the Simple
Task Queue, the Raw Event Processing Latency is a little bit higher than the Priority Task
Queue. The Graph has 9.61ms at block size 256. The Tree w/o Hash Map has 8.87ms at
block size 1024. The Tree with Hash Map has 8.52ms also at block size 1024. As the
Raw Event block size keeps increasing, the Raw Event Processing Latency grows back.
At block size 131072, the Graph with Priority Task Queue has Raw Event Processing
Latency 46.14ms. With Simple Task Queue, the Raw Event Processing Latency of Graph
grows to 72.28ms. With Priority Task Queue and Simple Task Queue, the Tree w/o Hash
Map has Raw Event Processing Latency 13.77ms and 24.03 respectively, and the Tree
with Hash Map has 11.07ms and 19.18ms respectively.

Figure 6.4 is the Raw Event Queuing Time. Compared with Figure 6.3, at block size
4, the Raw Event Queuing Time almost takes 90% of Raw Event Processing Latency.
Even at optimum block size, the Raw Event Queuing Time still makes 60% to 70% of
Raw Event Processing Latency. As the block size keeps increasing after the optimum
point, the Raw Event Queuing Time also grows, but at a lower speed than Raw Event
Processing Latency. At block size 131072, the Raw Event Queuing Time is higher than at
the optimum point, but it takes less percentage in the Raw Event Processing Latency.

Between Raw Event block size 4 and 1024, the Raw Event Queuing Time plays an
important role in the Raw Event Processing Latency. The improvement of Raw Event
Queuing Time leads to a better Raw Event Processing Latency, and eventually leads
to the growth of throughput. The queuing time decreases as block size increasing is
because more Raw Events can be processed in parallel. For example, in block size 4,
the 5th to 8th Raw Event have to wait all first four Raw Events finished processing
before they can be processed, even though they arrive as early as the 1st Raw Event.
While in block size 16, all first sixteen Raw Events can be processed as soon as they
arrive. However, after optimum Raw Event block size, the throughput and Raw Event
Processing Latency become worse again, while the Raw Event Queuing Time only grows
a little, which means the Raw Event Queuing Time doesn’t influence so much to the

91

6 Evaluation

(a) Graph, Priority Task Queue (b) Graph, Simple Task Queue

(c) Tree w/o Hash Map, Priority Task Queue (d) Tree w/o Hash Map, Simple Task Queue

(e) Tree with Hash Map, Priority Task Queue (f) Tree with Hash Map, Simple Task Queue

Figure 6.3: Raw Event Processing Latency w.r.t. Raw Event block size

92

6.3 Evaluation Results

(a) Graph, Priority Task Queue (b) Graph, Simple Task Queue

(c) Tree w/o Hash Map, Priority Task Queue (d) Tree w/o Hash Map, Simple Task Queue

(e) Tree with Hash Map, Priority Task Queue (f) Tree with Hash Map, Simple Task Queue

Figure 6.4: Raw Event Queuing Time w.r.t. Raw Event Block Size

93

6 Evaluation

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

4 16 64 256 1024 4096 16384 65536131072

C
os

t
Ti

m
e

(U
ni

t:
m

s)

Raw Event Block Size

Clean Up Cost Time

Graph, Priority TQ
Graph, Simple TQ

Tree w/o Hash Map, Priority TQ
Tree w/o Hash Map, Simple TQ

Tree with Hash Map, Priority TQ
Tree with Hash Map, Simple TQ

Figure 6.5: Clean Up Cost Time

system. Another point needs to mention is the reason why Raw Event Queuing Time
at Raw Event block size 4 is much larger than the value at other block sizes. This is
because at block size 4, the best throughput can be achieved is already very low, which
is very close to the Event Generation Rate used in latency test. Therefore, some events
will be queued up a little bit in the latency test.

As the Raw Event block size increasing, other factors influence the system more and
more, e.g. Partial Match Data Structure size and clean-up cost time. Figure 6.5 and
Figure 6.6 show the clean-up cost time and the Partial Match Data Structure size. The
median block size is around 30 to 80 Partial Matches in the data structure at block size 4.
The amount of Partial Matches in the data structure exponentially increases as the block
size increasing. At block size 131072, the median block size reaches more or less 20,000.
As the Raw Event block size keeps increasing, the Partial Match Data Structure will
become larger and larger. The time to traversal and to clean-up also increase, especially

94

6.3 Evaluation Results

the clean-up cost time. In Figure 6.5, between block size 4 and 1024, the clean-up cost
time almost equals to none. However, from block size 1024, it shows the exponentially
increment. Considering the Partial Match Data Structure size and clean-up cost time, the
benefit of large Raw Event block size will eventually be neutralize, just as the Figure 6.1
shown.

Another feature shown in Figure 6.1 is that the throughput of Tree w/o Hash Map
drops more violently than other two data structures. This is because other two data
structures use hash map to fast access the Partial Matches during the consumption.
Figure 6.7 shows the Final Match Consumption Cost Time. In 6.7a, 6.7b, 6.7e, and 6.7f,
the consumption cost time remains same and only costs 0.1ms for each Final Match,
while the consumption cost time for Tree w/o Hash Map increases as the Raw Event
block size increasing. The consumption cost time for Tree/wo Hash Map grows from
0.1ms to 25ms and 18ms, as shown in 6.7c and 6.7d. This result matches Figure 6.6
because Tree w/o Hash Map doesn’t have a mechanism to fast access a Partial Match
containing a given Raw Event and a larger Partial Match Data Structure needs more
time to traversal.

95

6 Evaluation

(a) Graph, Priority Task Queue (b) Graph, Simple Task Queue

(c) Tree w/o Hash Map, Priority Task Queue (d) Tree w/o Hash Map, Simple Task Queue

(e) Tree with Hash Map, Priority Task Queue (f) Tree with Hash Map, Simple Task Queue

Figure 6.6: Partial Match Data Structure Size w.r.t. Raw Event Block Size

96

6.3 Evaluation Results

(a) Graph, Priority Task Queue (b) Graph, Simple Task Queue

(c) Tree w/o Hash Map, Priority Task Queue (d) Tree w/o Hash Map, Simple Task Queue

(e) Tree with Hash Map, Priority Task Queue (f) Tree with Hash Map, Simple Task Queue

Figure 6.7: Final Match Consumption Cost Time w.r.t. Raw Event Block Size

97

6 Evaluation

(a) 1 vCPU (b) 2 vCPUs

(c) 4 vCPUs (d) 8 vCPUs

(e) 16 vCPUs

Figure 6.8: Throughput w.r.t number of cores

6.3.2 Scalability

Figure 6.8 shows the throughput of Tree with Hash Map, Priority Task Queue against
different number of vCPU cores, and Raw Event block size. As discussed in previous
subsection, there is an optimum point in Raw Event block size. The optimum throughput
is obtained at block size 256, 256, 256, 1024, and 1024 w.r.t. 1, 2, 4, 8, 16 vCPUs. It
is obvious that the optimum point is moving from small block size to large block size
as the number of CPU cores increasing. This result matches to the mechanism of Raw
Event block size since larger block size means higher parallel degree. A machine with
more CPU cores should be more suitable for higher parallel degree.

98

6.3 Evaluation Results

8

16

32

64

128

256

1 2 4 8 16

Th
ro

ug
hp

ut
(U

ni
t:

ev
en

ts
pe

r
se

co
nd

)

Number of Cores

Scalability

Best Achieved Throughput
Optimum Throughput Baseline 1
Optimum Throughput Baseline 2

Figure 6.9: Optimum Throughput w.r.t. number of cores

Figure 6.9 is the best throughput can be achieved w.r.t. different number of vCPU
cores. (i.e. The throughput at optimum Raw Event Block Size) For 1 vCPU machine,
the optimum throughput is around 20 events per second. For 2 vCPUs, the optimum
throughput becomes 23 events per second. Then the optimum throughput achieves 46,
85, 160 events per second for 4, 8, 16 vCPUs. In the figure, there are two baselines.
Baseline 1 is based on the throughput of 1 vCPU, which means proportional scalability.
I.e. the throughput of a multi-core machine should be equal to the product of throughput
of 1 vCPU machine and the amount of vCPU cores. Baseline 2 shows the doubled
throughput of half vCPU cores, i.e. if the number of vCPU cores are doubled, then
the throughput should also be doubled. From the figure, obviously, if the number of
vCPU cores is doubled, the throughput is also nearly doubled, except when vCPU cores
increase from 1 to 2, the throughput only increases about 30%. There is a huge loss
when vCPU cores amount increases from 1 to 2. The reason for the loss is still unclear.
It may be caused by frequent context switch among four working threads (For 2 CPUs,

99

6 Evaluation

there are 2 operator instances, 1 Raw Event Receiver, and 1 Merger). Since there are
always only 1 Raw Event Receiver and 1 Merger, the more CPU cores a machine have,
the less influence these two thread will impact to the system.

Figure 6.10 shows the Raw Event Processing Latency w.r.t. different number of vCPU
cores. The Raw Event Processing Latency at block size 4 is still very high, the range of
distribution is from 10ms to 1000ms. This is mainly because the input event rate is so
close to its best throughput can be achieved at block size 4 that some Raw Events are
inevitably queued up, which leads to very high Raw Event Queuing Time. While the
Raw Event Processing Latency maintains 6ms around optimum block size. Compared
with Figure 6.3, the Raw Event Processing Latency result remains same, which means
the number of cores doesn’t influence the Raw Event Processing Latency as long as the
machine is not overloaded.

6.3.3 Performance about different complexity of operations

Figure 6.11 shows the average cost time of evaluation for each Task. Although the
variation range is quite small, within ±1ms, the cost time increases when the Raw Event
Block Size increases. This is because when larger block size is used, more Tasks are
created and it is more likely to occur context switch in CPU scheduling. In general, the
Task Evaluation Cost Time is stable near a certain value. This value is related to the
image size. An image with size 80x60, the average cost time is about 2ms. When the
image size grows up to 160x120, the cost time rises to 5.5ms. The cost time becomes
29ms when the image size doubled again. There seems to be a relationship between
image size and cost time, but that’s not our emphasis. We will focus on the performance
of the system w.r.t different Task Evaluation Cost Time.

First of all, Figure 6.12 is the throughput w.r.t. different complexity of operation. For
2ms operation, the optimum throughput can achieve 200 events per second. For 5.5ms
operation, the optimum throughput is around 90 events per second. Compared with
2ms operation, 5ms operation is 2.75 times heavier than 2ms operation, the throughput
drops 55% off. For 29ms operation, the optimum point is nearly 18 events per second.
compared with 5.5ms operation, the operation is 5.27 times heavier, the throughput
decreases 80% off. It seems if the complexity of transition is in high value range (e.g.
more than 5ms), the throughput is proportional to the complexity of transition, but if
the complexity of transition is in low value range (e.g. less than 5ms), the throughput
will lose more as the complexity of transition increases.

The result is the same as expected, since this architecture is designed for heavy weight
operation, which is not suitable for dedicated splitter in Split-Merge-Process architecture.
The manipulation to the Partial Match Data Structure is designed not to be influenced

100

6.3 Evaluation Results

(a) 1 vCPU (b) 2 vCPUs

(c) 4 vCPUs (d) 8 vCPUs

(e) 16 vCPUs

Figure 6.10: Raw Event Processing Latency w.r.t. number of cores

101

6 Evaluation

(a) Image Size 80x60 (b) Image Size 160x120

(c) Image Size 320x240

Figure 6.11: Task Evaluation Cost Time

by the complexity of operation, as shown in Figure 6.13. The Final Match Consumption
Cost Time of Image Size 320x240 at block size 65526 and 131072 is much less than
other two Image Sizes, because the Event Generation Rate for Image Size 320x240 is
much less than other two Image Sizes, only 9 events per second, therefore there are
not as many Final Matches for Image Size 320x240 as for other two Image sizes. Thus,
the Final Match Cost Time is much less than other two Image Sizes. However, the Final
Match Cost Time at optimum block size is quite similar.

Figure 6.14 also shows the Raw Event Queuing Time is not influenced by complexity of
operation. The Raw Event Queuing Time keeps around 4ms to 6ms if the system is not
overloaded. The Raw Event Queuing Time at block size 4 is much higher is because the
Event Generation Rate is very close to the maximum throughput at block size 4, which
means the system is nearly overloaded.

102

6.3 Evaluation Results

(a) Image Size 80x60 (2ms) (b) Image Size 160x120 (5.5ms)

(c) Image Size 320x240 (29ms)

Figure 6.12: Throughput w.r.t. Different Complexity of Operation

Since variables like Raw Event Queuing Time and Final Match Consumption Cost Time
are not influenced by the complexity of operation, the heavier operation to execute, the
less these variables impacts to the performance.

103

6 Evaluation

(a) Image Size 80x60 (2ms) (b) Image Size 160x120 (5.5ms)

(c) Image Size 320x240 (29ms)

Figure 6.13: Final Match Consumption Cost Time of Tree w/o Hash Map, Priority Task
Queue, w.r.t. Different Complexity of Operation

6.3.4 Evaluation Conclusion

In the evaluation, following configuration parameters are measured.

• Partial Match Data Structure

• Raw Event Block Size

• Task Scheduling Strategy (i.e. Task Queue)

• Scalability

• complexity of operation

104

6.3 Evaluation Results

(a) Image Size 80x60 (2ms) (b) Image Size 160x120 (5.5ms)

(c) Image Size 320x240 (29ms)

Figure 6.14: Raw Event Queuing Time of Tree w/o Hash Map, Priority Task Queue,
w.r.t. Different Complexity of Operation

The evaluation results indicate that there is an optimum Raw Event Block Size. A higher
block size will lead to more expensive clean-up cost and more unnecessary Tasks created,
which will neutralize the benefits of the large block size.

The results also show that for larger Raw Event Block Size, Partial Match Graph and
Partial Match Tree with Hash Map is more suitable than Partial Match Tree without Hash
Map.

The results proves as well that a good Task scheduling strategy will improve the per-
formance. However, the Task scheduling strategy is query dependent. It is not easy to
derive a strategy that suits every query.

The new architecture scales well if the number of CPU cores is more than 4. The
improvement from 1 CPU to 2 CPUs is not so satisfied.

105

6 Evaluation

The new architecture also performs well as the complexity of operation increases, as
long as the operation is heavy enough (e.g. more than 5ms).

106

7 Conclusion and Outlook

In this Thesis the limitation of typical Split-Process-Merge architecture has been put
forward. According to the analysis, for computational expensive splitting, the single
splitter will become the bottleneck of the system. To avoid the "heavy" splitter, a new
architecture has been proposed. The new architecture doesn’t split the event stream,
but creates Tasks by combining every incoming events to all existing Partial Matches.
Through this method, the "heavy" splitter is avoided since all Transition Conditions are
evaluated only in operator instances. Meanwhile, the parallelism degree is still nearly
unbounded, or bounded by a very high value, which will grow as the size of Partial
Match Data Structure increasing.

In this new architecture, arbitrary number of operator instance are allowed to be added.
However, this architecture is designed for shared-memory machine. There is no reason
to add more operator instances than the number of CPU cores. Therefore, to actually
achieve unbounded parallelism degree, it is necessary to adapt the architecture into
distributed environment.

While, in the distributed environment, the component Centralized Data Structure could
be a problem. As the number of operator instances increasing, the manipulation cost
and traversing cost of Partial Match Data Structure in Centralized Data Structure will
eventually grow beyond the capacity of single machine. Then, distributed Data Structure
is needed. For the Task Creation Algorithm, there is no need to modify it. Multiple
threads can run concurrently to traverse the data structure. either a single shared iterator
or multiple iterators can be used. Of course, it is also possible to modify the traversing
algorithm to adapt the case that multiple iterators are used. However, the data structure
itself needs some adjustment. For Partial Match Tree, it is quite simple to implement.
The whole tree can be chopped into several sub-trees from the Root node and put each
sub-tree in a single machine. Then, the operator instances only need to communicate
with one of sub-trees and there is no communication needed between sub-trees unless
re-balance is needed. For Partial Match Graph, it is more complicated to divide a graph
into several sub-graphs. Also, the sub-graphs need to synchronize between each other.

Another interesting direction is how does the system reacts to a unbalanced input event
stream. Currently, the Raw Events in input event stream are assumed evenly distributed.
What if all events come in as a pulse? Then how should the system react to this case? E.g.

107

7 Conclusion and Outlook

adapting the Raw Event block size dynamically may or may not improve the performance
in such situation.

108

Bibliography

[AE04] A. Adi, O. Etzion. “Amit-the situation manager.” In: The VLDB Journal—The
International Journal on Very Large Data Bases 13.2 (2004), pp. 177–203
(cit. on p. 20).

[Aga12] A. Agarwal. “High-frequency trading: Evolution and the future.” In:
Capgemini, London, UK (2012) (cit. on p. 20).

[ASF16] The Apache Software Foundation. Apache Storm. 2016. URL: http://storm.
apache.org/ (cit. on p. 22).

[BDWT13] C. Balkesen, N. Dindar, M. Wetter, N. Tatbul. “RIP: run-based intra-query
parallelism for scalable complex event processing.” In: Proceedings of the
7th ACM international conference on Distributed event-based systems. ACM.
2013, pp. 3–14 (cit. on pp. 20, 22, 39, 41, 45).

[BEH+10] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, D. Warneke. “Nephele/-
PACTs: a programming model and execution framework for web-scale
analytical processing.” In: Proceedings of the 1st ACM symposium on Cloud
computing. ACM. 2010, pp. 119–130 (cit. on p. 22).

[CM10] G. Cugola, A. Margara. “TESLA: a formally defined event specification
language.” In: Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems. ACM. 2010, pp. 50–61 (cit. on pp. 20, 23,
39, 41, 45).

[CM12a] G. Cugola, A. Margara. “Complex event processing with T-REX.” In: Journal
of Systems and Software 85.8 (2012), pp. 1709–1728 (cit. on p. 20).

[CM12b] G. Cugola, A. Margara. “Processing flows of information: From data stream
to complex event processing.” In: ACM Computing Surveys (CSUR) 44.3
(2012), p. 15 (cit. on p. 19).

[CM94] S. Chakravarthy, D. Mishra. “Snoop: An expressive event specification
language for active databases.” In: Data & Knowledge Engineering 14.1
(1994), pp. 1–26 (cit. on pp. 19, 23).

109

http://storm.apache.org/
http://storm.apache.org/

Bibliography

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin,
D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, et al. “The Hipac project:
Combining active databases and timing constraints.” In: ACM Sigmod
Record 17.1 (1988), pp. 51–70 (cit. on p. 19).

[DGP+07] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, W. M. White,
et al. “Cayuga: A General Purpose Event Monitoring System.” In: CIDR.
Vol. 7. 2007, pp. 412–422 (cit. on p. 32).

[Dun09] J. Dunkel. “On complex event processing for sensor networks.” In: 2009
International Symposium on Autonomous Decentralized Systems. IEEE. 2009,
pp. 1–6 (cit. on p. 15).

[GGD91] S. Gatziu, A. Geppert, K. R. Dittrich. “Integrating active concepts into an
object-oriented database system.” In: DBPL. Citeseer. 1991, pp. 399–415
(cit. on p. 19).

[GJP+12] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, P. Valduriez.
“Streamcloud: An elastic and scalable data streaming system.” In: IEEE
Transactions on Parallel and Distributed Systems 23.12 (2012), pp. 2351–
2365 (cit. on p. 20).

[Goo16] Google. Machine Types. 2016. URL: https://cloud.google.com/compute/
docs/machine-types#highcpu (cit. on p. 83).

[HLR+13] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, B. Koldehofe.
“Mobile fog: A programming model for large-scale applications on the
internet of things.” In: Proceedings of the second ACM SIGCOMM workshop
on Mobile cloud computing. ACM. 2013, pp. 15–20 (cit. on p. 16).

[Hyp16] Hyperic. Sigar. 2016. URL: https://support.hyperic.com/display/SIGAR/
Home (cit. on p. 83).

[IBY+07] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad: distributed data-
parallel programs from sequential building blocks.” In: ACM SIGOPS Oper-
ating Systems Review. Vol. 41. 3. ACM. 2007, pp. 59–72 (cit. on p. 22).

[Its16] Itseez. OpenCV. 2016. URL: http://opencv.org/ (cit. on p. 83).

[Jam12] J. James. “How much data is created every minute.” In: Domo, Retrieved
from https://www. domo. com/blog/2012/06/how-much-data-is-created-
every-minute/(accessed 12 January 2016) (2012) (cit. on p. 16).

[KKR10] G. G. Koch, B. Koldehofe, K. Rothermel. “Cordies: expressive event correla-
tion in distributed systems.” In: Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems. ACM. 2010, pp. 26–37 (cit.
on p. 20).

110

https://cloud.google.com/compute/docs/machine-types#highcpu
https://cloud.google.com/compute/docs/machine-types#highcpu
https://support.hyperic.com/display/SIGAR/Home
https://support.hyperic.com/display/SIGAR/Home
http://opencv.org/

Bibliography

[KMR+13] B. Koldehofe, R. Mayer, U. Ramachandran, K. Rothermel, M. Völz.
“Rollback-recovery without checkpoints in distributed event processing sys-
tems.” In: Proceedings of the 7th ACM international conference on Distributed
event-based systems. ACM. 2013, pp. 27–38 (cit. on p. 21).

[LGA96] B. Lieuwen, N. Gehani, R. Arlein. “The Ode active database: Trigger se-
mantics and implementation.” In: Data Engineering, 1996. Proceedings of
the Twelfth International Conference on. IEEE. 1996, pp. 412–420 (cit. on
p. 19).

[Luc02] D. Luckham. The power of events. Vol. 204. Addison-Wesley Reading, 2002
(cit. on p. 15).

[Lun06] A. Lundberg. “Leverage complex event processing to improve operational
performance.” In: Business Intelligence Journal 11.1 (2006), p. 55 (cit. on
p. 15).

[MKR14] R. Mayer, B. Koldehofe, K. Rothermel. “Meeting predictable buffer limits
in the parallel execution of event processing operators.” In: Big Data (Big
Data), 2014 IEEE International Conference on. IEEE. 2014, pp. 402–411
(cit. on p. 22).

[MKR15] R. Mayer, B. Koldehofe, K. Rothermel. “Predictable Low-Latency Event
Detection with Parallel Complex Event Processing.” In: IEEE Internet of
Things Journal 2.4 (2015), pp. 274–286 (cit. on p. 22).

[MMTR16] R. Mayer, C. Mayer, M. A. Tariq, K. Rothermel. “GraphCEP: real-time
data analytics using parallel complex event and graph processing.” In:
Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems. ACM. 2016, pp. 309–316 (cit. on p. 22).

[OKRR13] B. Ottenwälder, B. Koldehofe, K. Rothermel, U. Ramachandran. “MigCEP:
operator migration for mobility driven distributed complex event process-
ing.” In: Proceedings of the 7th ACM international conference on Distributed
event-based systems. ACM. 2013, pp. 183–194 (cit. on p. 22).

[Ora16] Oracle. ConcurrentSkipListMap Java API. 2016. URL: https://docs.oracle.
com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.
html (cit. on p. 68).

[WDR06] E. Wu, Y. Diao, S. Rizvi. “High-performance complex event processing over
streams.” In: Proceedings of the 2006 ACM SIGMOD international conference
on Management of data. ACM. 2006, pp. 407–418 (cit. on p. 20).

[WSK08] W. Wang, J. Sung, D. Kim. “Complex event processing in epc sensor net-
work middleware for both rfid and wsn.” In: 2008 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Com-
puting (ISORC). IEEE. 2008, pp. 165–169 (cit. on p. 15).

111

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html

[YCL11] W. Yao, C.-H. Chu, Z. Li. “Leveraging complex event processing for smart
hospitals using RFID.” In: Journal of Network and Computer Applications
34.3 (2011), pp. 799–810 (cit. on p. 15).

All links were last followed on July 18, 2016.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Background of CEP Systems and Query Languages
	2.2 CEP Architecture

	3 "Heavy" Splitter Problem
	3.1 Pseudo CEP Language "Extended SNOOP"
	3.2 Application Examples
	3.3 Analysis of Application Examples
	3.4 Problem Classification
	3.5 Thesis Goal

	4 Approach to Create New Architecture
	4.1 Chapter Organization
	4.2 Improved Finite State Machine
	4.3 General View of New Architecture
	4.4 Terminology Definition
	4.5 Parallelize the Improved Finite State Machine
	4.6 Generalization of the architecture
	4.7 Merger
	4.8 Summary about Architecture

	5 Details of New Architecture
	5.1 Operator Instance
	5.2 Merger
	5.3 Centralized Data Structure
	5.4 Optimization
	5.5 Improved Finite State Machine

	6 Evaluation
	6.1 Environment Setup and Evaluation Configuration
	6.2 Terminology Used in Evaluation
	6.3 Evaluation Results

	7 Conclusion and Outlook
	Bibliography

