
Institut für Formale Methoden der Informatik

Master Thesis

The Generalized Minimum
Manhattan Network Problem

by Michael Schnizler
matriculation number: 2525758

Supervisors:
Prof. Dr. Volker Diekert,
Prof. Dr. Stefan Funke,

Dipl.-Inf. Martin Seybold

May 4th, 2015

Abstract

In this thesis we consider the Generalized Minimum Manhattan Network Problem:
given a set containing n pairs of points in R2 or Rd, the goal is to find a rectilinear
network of minimal length which contains a path of minimal length (a so-called
Manhattan path) between the two points of each pair. We restrict our search to a
discrete subspace and show that under specific conditions an optimal solution can
be found in polynomial time using a dynamic program. The conditions concern the
intersection graph of the bounding boxes of the pairs. Its maximum degree as well
as the treewidth must be bounded by two constants which are independent of n.
Finally, we present a simple greedy algorithm for practical purposes.

Kurzfassung

Wir wollen in dieser Arbeit das verallgemeinerte Minimum-Manhattan-Netzwerk-
Problem betrachten: Wir suchen, gegeben eine Menge von n Punktepaaren aus R2

oder Rd, ein achsenparalleles Netzwerk von kleinstmöglicher Gesamtlänge, das für
jedes Paar jeweils einen sogenannten Manhattan-Pfad enthält, einen achsenparal-
lelen Pfad minimaler Länge, der die beiden Punkte verbindet. Wir schränken die
Suche auf einen diskreten Teilraum ein und zeigen, dass es unter bestimmten Vo-
raussetzungen möglich ist, mittels eines dynamischen Programms in Polynomialzeit
eine optimale Lösung zu finden. Die Voraussetzungen betreffen den Schnittgraph der
Bounding-Boxen der Punktepaare. Sein Maximalgrad und seine Baumweite müssen
durch zwei Konstanten beschränkt sein, die unabhängig von n sind. Zuletzt stellen
wir einen einfachen Greedy-Algorithmus für die Anwendung in der Praxis vor.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Background and Related Work . 7
1.3 Contribution . 8

2 Essentials 9

3 Two-dimensional Case 13
3.1 High Level Idea . 15
3.2 Simple Path . 16
3.3 Circle . 18
3.4 Tree . 19
3.5 Union Graph . 20
3.6 Series-parallel Graph . 23
3.7 Remarks . 25

4 Higher Dimensions 29
4.1 Generalizations . 29

5 Treewidth 33
5.1 Introduction . 33
5.2 Main Results . 34
5.3 Remarks . 36

6 Implemented Algorithm 37
6.1 Greedy Algorithm . 37
6.2 Input Sortings . 38

7 Conclusion 45

1 Introduction

1.1 Motivation

The Generalized Minimum Manhattan Network Problem, this title refers
to Manhattan, borough of New York City, where the street map looks like a grid
with most of the streets intersecting at a 90◦ angle. If the grid was complete, you
could get from one intersection to another without ever making a detour.

For a given set of points in R2 (or, more general, in Rd), the goal of MMN (Minimal
Manhattan Network) is to find a rectilinear network connecting all of the points in
such a way that the distance from one point to another is always minimal.

The generalized version (GMMN) requires only a given subset of the points to be
connected via shortest paths. It arises in the context of VLSI circuit design where
e.g. certain transistors must be connected in a rectilinear fashion. It is not necessary
to connect all of the transistors and logic gates, this is why GMMN describes this
application better than MMN does. In general, a circuit designed using GMMN
techniqes is significantly shorter than one relying on MMN-based layouts alone.
Gudmundsson et al. ([GLN01]) wrote “Many VLSI circuit design applications require
that a given set of terminals in the plane must be connected by networks of small
total length.” and “Manhattan networks are likely to have many applications in
geometric network design and in the design of VLSI circuits.”

1.2 Background and Related Work

The above quote was one of the motivations when Gudmundsson et al. first in-
troduced the Minimum Manhattan Network Problem in 1999 (we reference their
verison from 2001: [GLN01]). They also presented an algorithm with an approxi-
mation factor of 4, i.e. the computed network was at most 4 times as long as the
minimal network for any set of points. In 2003, Benkert et al. [BWW04] came up
with an improved factor of 3, followed by a rounding 2-approximation by Chepoi
et al. [CNV08] in 2008. More approximations followed, c.f. [GSZ08a], [GSZ08b] or
[FS08]. Das et al. provided an approximation algorithm for MMN in higher dimen-
sions in [DGK+11]. Benkert et al. [BWWS06] were the first to study exact solutions
for MMN. The complexity was settled in 2011 by Chin et al. when they proved
MMN to be NP-complete, c.f. [CGS11]. Very closely related to MMN is RSA, the

8 Introduction

rectilinear Steiner arborescence Problem. For a more detailed view on RSA, we refer
the reader to [SS05] and the references there.

Chepoi et al. introduced the generalized version (GMMN) in [CNV08]. There is a
O(log(n))-approximation for two and a O(logd+1(n))-approximation for higher (d >
2) dimensions (c.f. [DFK+13] and [DGK+15]). The currently best approximation
was given by Funke and Seybold in [FS14]. They achieved an approximation factor
of O(D), where D ∈ O(log(n)), so it matches the O(log(n))-bound, but performs
better on instances with specific properties.

1.3 Contribution

In this thesis, we want to determine under which premises it is possible to find an
exact solution for the generalized minimum Manhattan network problem in polyno-
mial time. Chapter 2 will provide some basics as well as terminology and notation.
In Chapter 3 we will look at the two-dimensional version of GMMN and identify
some instances which are solvable in polynomial time. Particularly we look at in-
tersection graphs generated by GMMN instances, those roughly represent the basic
structure of the instances. Using a dynamic program we can find exact solutions for
some types of intersection graphs. We try to generalize the results (and lemmas)
from Chapter 3 in Chapter 4 so we can solve certain instances of the d-dimensional
GMMN problem. The most important proposition will be Theorem 4.4 which yields
a polynomial upper bound on the runtime of the generalized dynamic program.

The main result of this thesis will be proven in Chapter 5, Theorem 5.4 states a
one-to-one correspondence: provided that the intersection graph’s maximum degree
is bounded, the premises of Theorem 4.4 are fulfilled if and only if the treewidth of
the intersection graph is bounded by some constant.

Finally, in Chapter 6 we present a simple greedy algorithm for practical purposes.

2 Essentials

We assume the reader is familiar with basics of graph theory. Chapter 1 and 4 in
[Die12] offer a good introduction. Throughout this thesis, all graphs are undirected,
finite and do not have parallel edges or loops.

We introduce some notation for the Minimum Manhattan Network problem :

Definition 2.1
For any point p = (ξ1, . . . , ξd)

T ∈ Rd the L1 norm is defined as

‖p‖1 =
d∑

i=1

|ξi|.

For the L1 distance or Manhattan distance of two points p, q ∈ Rd we write

d1(p, q) = ‖p− q‖1.

Let π = (p1, . . . , pm) be a path in Rd. Then π is called Manhattan path or M-
path for short, if it is axis aligned and its length is the same as the Manhattan
distance from p1 to pm. That is an axis aligned path of minimum length.
Equivalently we could require the sequence p1, . . . , pm to be monotonous in
every coordinate.

Let P be a finite set of points in Rd. A graph G = (V,E) is a Manhattan
network for P , if P is contained in V , every edge is axis aligned and for each
pair of points (p, q) ∈ P × P , G contains an M-path πp,q from p to q in E.

It has been shown by Chin et al. [CGS11] in 2011 that MMN is NP-complete. In
2008, Chepoi et al. [CNV08] introduced a generalization, where the input consists of
n pairs of points and the problem is to find a network connecting each of the pairs
rather than one where all the points are connected to each other. The following
notation is now common:

10 Essentials

a

bc

d

e

f

a

b
c

d

e

f

Figure 2.1: example of 2-MMN and 2-GMMN where P = {a, . . . , f}

Definition 2.2
An instance R is a subset of all possible pairs, i.e. R ⊆ P × P . We denote by
P (R) ⊆ P the set of points actually appearing in R and refer to those points
as terminals.

G = (V,E) is a generalized Manhattan network or GMN for R, if the vertex
set V contains P (R), all the edges are axis aligned and G contains an M-path
πp,q for each pair (p, q) ∈ R.

G = (V,E) is a generalized minimum Manhattan network or GMMN, if the
overall edge length of G is minimal among all generalized minimum Manhattan
networks for R.

For the d-GMMN problem we are interested in finding a GMMN for a given set R of
n terminal pairs in Rd. It generalizes the d-MMN problem, where the set R always
consists of all pairs of terminals. Note that we consider R to be the input, so the
input size n is the number of pairs, not the number of terminals.

Definition 2.3
For i ∈ {1, . . . , d} let

πi : Rd → R
(ξ1, . . . , ξd)

T 7→ ξi

be the projection onto the i-th coordinate. Let πi(R) denote the image of P (R)
under πi. Furthermore, let

V =
d⊗

i=1

πi(R)

and

E =

{
(v, w) ∈ V × V :

πi(v), πi(w) are neighboring in πi(R) for some i
and pj(v) = pj(w) for all j 6= i

}
.

This graph is called Hanan grid for R, we write H(R) = (V,E) for short.

11

a

b
c

d

e

f

a
d

f

Figure 2.2: example of a Hanan Grid in 2 dimensions

a

b
c

d

e

f

a

b

c

d

Figure 2.3: example of 2- and 3-dimensional boxes and a 3-GMMN solution

The Hanan Grid is the axis aligned grid which is basically obtained by shooting
a line through every terminal in each direction x1, . . . , xd. See Figure 2.2 for an
example.

Definition 2.4
We denote by box the axis aligned bounding box of a pair of terminals (p, q).
Now let R be a GMMN instance and

V = R,

E = {(pair1, pair2) ∈ V × V : box(pair1) ∩ box(pair2) 6= ∅} .

The graph G = (V,E) is called intersection graph for R.

Note that every M-path connecting a pair (p, q) is fully contained in the pair’s
bounding box. Two Examples of boxes are shown in Figure 2.3. Two M-paths cannot
share a segment if their corresponding pairs’ boxes intersection is empty. Therefore a
set of disjoint boxes yields a lower bound for the length of a minimal network. In case
the intersection graph has more than one connected component, we can just split this
one (big) instance into multiple (smaller) instances. Their minimal solutions then
add up to a minimal solution for the original instance. A disconnected intersection
graph is shown in Figure 2.4. This is why we look at intersection graphs: it shows
which M-paths might share segments and (just as important) which do not.

For sake of simplicity we will from now on identify a pair of terminals with its
bounding box and as well with the correspondig vertex of the intersection graph.

12 Essentials

Figure 2.4: instance with boxes and corresponding intersection graph

Lemma 2.5
For any given d-GMMN instance R, the Hanan Grid H(R) contains no more
than (2n)d vertices and consists of at most d · 2n straight lines. The number
of edges is bounded by d · (2n)d.

Proof : Thanks to |πi(R)| ≤ |P (R)| ≤ 2n the number of straight lines in direction
xi is bounded by 2n. That leaves us with an overall total of 2dn lines. Every vertex
lies on exactly d lines, therefore the number of vertices is upper bounded by (2n)d.
Considering only one direction xi, a single vertex has at most 2 neighbors, namely
one to the left and one to the right. So the overall number of adjacent edges for
that single vertex is 2d. Adding all these up (thereby counting each edge twice) and
dividing by 2 yields the desired upper bound. �

3 Two-dimensional Case

For now we restrict ourselves to the 2-dimensional GMMN problem. We write x for
x1 and y for x2, not only for coordinates but also for derived expressions like e.g.
πy(R) instead of π2(R). First, we want to narrow down our search space from a
possibly uncountable space to a finite subspace. Namely, we restrict ourselves to the
Hanan grid.

Lemma 3.1
Let N be a (not necessarily optimal) generalized Manhattan network for a
2-GMMN instance R and denote by ` the operator mapping a network to its
total length. Then there exists a generalized Manhattan network N ′ which is
completely contained in the Hanan Grid for R and also satisfies

`(N ′) ≤ `(N).

Particularly, the existance of an optimal network implies the existance of an
optimal network within the Hanan Grid.

The idea of the following proof has been given in [FS14].

Proof : We only give the proof for the x-coordinate, y follows analogously. Again,
πx(R) = {ξ(1), . . . , ξ(k)} denotes the projection of the terminals in R onto their
x-coordinate. Let S be the set of vertical segments in N with constant x-value
ξ∗ /∈ πx(R) where ξ∗ is minimal. Let aL and aR be the number of edges adjacent to
S in N on the left and right respectively.

If aL = aR, we can just shift S to the left until we reach the next ξ(i). The edges
adjacent to S are of course shortened or extended (depending on whether they adjoin
on the left or on the right). The number of edges shortened is aL which equals aR,
the number of edges extended by the same length. Therefore, the overall length of
the network remains the same.

If aL < aR, we can shift S to the right until we reach the next ξ(i) or the nearest
x-coordinate showing up in N , whichever comes first. As before, we adjust the
adjacent edges. Since we shorten more edges than we extend, the overall network
length decreases. If aL > aR, we can shift S to the left accordingly.

Now S is fully contained in H(R). Iterating this proces will eventually yield a net-
work without vertical edges. It remains to show that it remains a valid Manhattan
network.

14 Two-dimensional Case

a = 4

b = 3

Figure 3.1: left: ’small’ box of width a = 4 and height b = 3 in a large Hanan grid;
right: 1 out of the

(
7
3

)
= 35 M-paths for that box

Any M-path using a (part of a) segment of S cannot end on S (unless ξ∗ ∈ πx(R) in
the first place), so it must run from left to right or vice versa. We added some length
to one edge of the M-path and subtracted the same length from some other edge
on the path, so in total, the length did not change, so it continues having M-path
properties. �

This restriction suggests a naive brute force algorithm. There are 2(8n2−4n) subsets
of edges in the Hanan Grid by Lemma 2.5. For each of those subsets we can test if
a single pair of terminals (p, q) is connected via M-path by breadth-first search in
O(n2). Testing all n pairs then requires O(n3) time, which leaves us with an overall
worst case runtime of O(n3 · 256n2

). By Lemma 3.1, this algorithm eventually will
find an optimal network for any 2-GMMN instance.

Lemma 3.2
The number of M-paths connecting both terminals of a box (p, q) within H(R)
is exactly (

a+ b

a

)
=

(
a+ b

b

)
=

(a+ b)!

a! · b!
,

where a denotes the distance of πx(p) to πx(q) in πx(R), i.e. the number of
horizontal edges from the left to the right end of the box, and b correspondingly
the distance form πy(p) to πy(q) in πy(R).

For this notation we assume πx(R) and πy(R) to be sorted.

Proof : Any M-path consists of a horizontal and b vertical edges within H(R).
Basically we have a bijection between the set of M-paths in H(R) and the set of bit
strings

B =
{
w ∈ {x, y}a+b : |w|x = a, |w|y = b

}
by identifying each path with the concatenation of the directions the path takes
from p to q. Combinatorics takes the rest. �

3.1 High Level Idea 15

Figure 3.2: left: 2-GMMN instance with boxes; right: local grid for a single box; each
terminal of a neighboring box contributes at most 2 lines

For the rest of the chapter, the Hanan grid will be considered a collection of at most
2n horizontal and 2n vertical lines.

3.1 High Level Idea

Knowing that a minimal network can be found within the Hanan Grid (Lemma 3.1),
we might suspect that a stronger restriction is also possible. For a fixed box (p, q),
consider the smaller Hanan Grid generated by the smaller instance consisting of
the box itself and all of its neighbors (i.e. boxes intersecting (p, q)). This smaller
instance has size m + 1, where m denotes the degree of (p, q) in the intersection
graph. For fixed m, Lemma 3.2 yields a constant upper bound on the number of
possible M-paths for that box, namely

(
4m+2
2m+1

)
, since every neighbor contributes at

most 2 horizontal and 2 vertical lines, one of each through each terminal.

However, there are counterexamples showing that the above restriction to this sort
of local grid cannot guarantee to always find an optimal solution. In Figure 3.3,
consider all vertical distances to be very small, i.e. assume they add up to length
less than one of the long horizontal ones. It is easy to verify that the center gap
in the local grid forces any solution in this grid to contain at least 7 of the long
horizontal edges in contrast to the minimal solution containing only 6. Stretching
the instance horizontally will cause the difference between any solution contained in
the local grid and a minimal solution to become arbitrarily large.

Also, by adding more thinner boxes on the left and right, this counterexample can
be easily modified in such a way, that even the local grid generated from the box,
its neighbors and their neighbors (up to the kth iterated neighbors) will not contain
a minimal solution.

It is still possible to use Lemma 3.2, which gives us an upper bound on the number
of M-paths for a single box. The above idea is slightly modified: every neighboring
box contributes at most 2 horizontal and 2 vertical lines (we will see why in the
following sections), but simply chosing the 4 lines defining the neighboring box (as
we tried before) is not enough. If there are not too many choices, a dynamic program
might be able to optimally solve 2-GMMN at least for some ’simple’ instances.

16 Two-dimensional Case

Figure 3.3: top: 2-GMMN instance with boxes; middle: local grid; bottom: minimal
network not contained in the local grid

In each of the following sections we consider one specific type of intersection graph
and present a corresponding dynamic program.

3.2 Simple Path

In case the intersection graph G of an instance R turns out to be a simple path,
each box (p, q) ∈ R has at most two neighbors. Each of those neighbors must contain

an M-path connecting their terminals. Given entry points p
(in)
1 , p

(in)
2 and exit points

p
(out)
1 , p

(out)
2 for both M-paths, p

(in)
i and p

(out)
i must be connected via M-path, just

like p and q. This is in turn a GMMN instance

R̃ =
{(
p, q
)
,
(
p
(in)
1 , p

(out)
1

)
,
(
p
(in)
2 , p

(out)
2

)}
.

In the case the M-path starts (or ends) inside of (p, q), p
(in)
i (or p

(out)
i) is defined as

the corresponding terminal.

Figure 3.4: left: box with two neighboring boxes; right: relevant Hanan lines for this
box, entry and exit points shown in black

3.2 Simple Path 17

Now Lemma 3.1 enables us to restrict ourselves to the grid consisting of at most 12
lines, namely the 4 lines defining the bounding box plus at most 2 additional lines
for each entry or exit point of either of the two M-paths (totalling at most 8 extra
lines), still being guaranteed to find an optimal network. An example is shown in
Figure 3.4. Such lines are called relevant lines. Therefore we have a + b ≤ 10 in
Lemma 3.2, so we have a maximum of

(
10
5

)
= 252 different M-paths going from p to

q along those 12 lines. Remember that we need to know the points where both of
the other M-paths enter and leave the box (p, q). So we use a dynamic program to
compute optimum network lengths for any set of such points.

We enumerate all terminal pairs from 1 to n according to their position in the
intersection graph. Up next, we enumerate all the subsets of size 8 out of the set of
all lines formed by the Hanan Grid. Recall that by Lemma 2.5, there are 4n lines,
which leaves us with at most N =

(
4n
8

)
subsets. Lastly, we enumerate the different

M-paths from 1 to 252. This number only describes the way the M-path follows in
terms of the grid generated by the current subset of lines, e.g. (left, up, up, . . .).

For the dynamic program, we want to fill a 3-dimensional matrix A with entries
�i,j,k where i ∈ {1, . . . , n} j ∈ {1, . . . , N}, k ∈ {1, . . . , 252}. Each entry �i,j,k is
supposed to indicate the minimum length of a valid Manhattan network for the first
i terminal pairs, assuming that for box i itself j is the subset of relevant lines and
box i is connected via the k-th M-path with respect to the subset of lines known by
index j.

For i = 1 we can achieve this by setting

�1,j,k = d1(p1, q1)

for all j, k. Via induction on i we compute

�i,j,k = min
j′,k′
{�i−1,j′,k′ + d1(pi, qi)− c(j, k, j′, k′)} ,

where the minimum is taken over all j′ ∈ {1, . . . , N} and k′ ∈ {1, . . . , 252}. The
term c(j, k, j′, k′) denotes the accumulated length of all edges contained both in the
network used for �i−1,j′,k′ and in the network obtained by connecting (pi, qi) on the
subgrid j via M-path k.

It should be clear, that this process will always produce a valid network for boxes
1 to i with the desired requirements (see above). So for i = n we can compute an
optimal solution:

`opt = min
j,k
{�n,j,k} .

Now that we know the length of a minimum Manhattan network, we can use a
simple backtracking algorigthm to find the network itself.

The matrix A has size n × N × 252 = O(n) · O(n8) · O(1) = O(n9). Computing a
single entry corresponds to taking a minimum of 252N = O(n8) previously calculated
entries, so we have a total runtime of O(n9) · O(n8) = O(n17).

18 Two-dimensional Case

3.3 Circle

Provided the intersection graph G is a circle, we can use a similar dynamic program,
since a path and a circle are pretty similar. First, we chose an arbitrary vertex
(p1, q1) ∈ R to start with and enumerate the remaining vertices in order. We also
need an enumerated list of all the 252N different M-paths connecting p1 to q1. We add
another dimension to the dynamic program, so we have new matrix entries �i,j,k,l,
where i ∈ {1, . . . , n}, j ∈ {1, . . . , N}, k ∈ {1, . . . , 252} and l ∈ {1, . . . , 252N}.
Like before, j and k represent the M-path for the i-th box, we refer to this as the
configuration of a box. l represents the configuration for the first box (p1, q1).

We want to maintain the following invariant: every �i,j,k,l denotes the minimum
length of a Manhattan network for the boxes 1 through i, where the configuration
for (pi, qi) is given by j and k and the configuration for (p1, q1) is given by l. We can
basically achieve this as follows:

Let i = 1, then

�1,j,k,l = d1(p1, q1)

for all j, k, l. Note that j and k are redundant here. Now for 1 < i < n we set

�i,j,k,l = min
j′,k′
{�i−1,j′,k′,l + d1(pi, qi)− c(j, k, j′, k′)} .

For i = n we’ve come full circle. So we set

�n,j,k,l = min
j′,k′
{�n−1,j′,k′,l + d1(pn, qn)− c(j, k, j′, k′)− c(j, k, l)} .

As before, we minimize with respect to j′ ∈ {1, . . . , N} and k′ ∈ {1, . . . , 252} in the
standard case 1 < i < n. The most important difference is of course the last case,
i = n. Here, box n is not only adjacent to box n− 1, but also to box 1. However, we
cannot continue the same scheme, since we already picked a configuration for box
1, namely configuration l. Therefore, we must substract c(j, k, l) = c(j, k, j′′, k′′),
where j′′, k′′ are the redundant indices (determined by l) from case i = 1.

Now that we are sure that �n,j,k,l gives us the minimum length of a network for all
boxes on condition that the first box is in configuration l, we compute

`opt = min
j,k,l
{�n,j,k,l} ,

minimizing over j ∈ {1, . . . , N}, k ∈ {1, . . . , 252} and l ∈ {1, . . . , 252N}. So we have
found the minimal length of a Manhattan network.

The total runtime has increased, the matrix A has size n×N×252×252N = O(n17)
now. However, computing a single entry �i,j,k,l still takes O(n8) time, since we only
minimize over j′ and k′ while l is fixed. Overall, we end up in O(n25).

3.4 Tree 19

3.4 Tree

If R is a 2-GMMN instance whose intersection graph G is a tree, we can follow the
same basic strategy. First, we need the following lemma:

Lemma 3.3
Given a single box with m neighbors, there are at most

(
4n
4m

)
·
(
4m+2
2m+1

)
possible

M-paths within the Hanan Grid H(R).

Proof : Denote by pi and qi the points, where the i-th neighbor’s M-path enters
and leaves the box (p, q), i.e. pi is either a terminal of the neighbor or lies on the
boundary of (p, q). We can then apply Lemma 3.1 to the set

R̃ = {(pi, qi) : i ≤ m} ∪ {(p, q)} .

Lemma 3.1 also allows us to assume the terminals pi, qi are contained in the Hanan
Grid. So if we know the pi, qi, we have at most 2m + 2 points generating a grid of
4m+ 4 lines. We have

(
4n
4m

)
possible ways to chose a subset of size 4m+ 4 from the

4n lines of the Hanan Grid if we demand the set to contain the lines through p and
q. By Lemma 3.2 there are

(
4m+2
2m+1

)
possible M-paths for each subset. �

This time we want �i,j,k to be the minimum length of a network for the subtree
under vi when for (pi, qi) itself the configuration is given by j and k.

Let vi be a leaf, then

�i,j,k = d1(pi, qi)

for all j, k. Now for inner vertices vi = (pi, qi) we set

�i,j,k = min
j′,k′

{∑
i′

�i′,j′,k′ − c(j, k, j′, k′) + d1(pi, qi)

}
. (3.1)

Now that there is no canonical ordering of the vertices, we proceed step by step.
In the first step, we compute all the partial solutions �i,j,k for leaves vi of the
intersection graph G. Next, all the vertices we have yet to deal with form a subtree
of G. We consider a leaf vi of this subtree. Since we already know the partial solutions
for all of its children vi′ , we compute optimal partial solutions for the subtree under
vi via (3.1). Finally we arrive at some index ir where vir is the last vertex left in the
subtree i.e. the root. In case there are 2 vertices left, we just chose one of them to
be the root, then we make one more step and we are left with just the root. So the
minimum length is

`opt = min
j,k
{�ir,j,k} ,

20 Two-dimensional Case

minimizing over j and k.

For each vi we have to consider at most
(
4n
4m

)
·
(
4m+2
2m+1

)
different M-paths by Lemma 3.3,

where m = deg(vi). For each of these paths we compute a minimum over∏
i′

(
4n

4mi′

)(
4mi′ + 2

2mi′ + 1

)
=
∏
i′

O(n4mi′)

= O(n4·
∑

mi′) (3.2)

combinations of already computed partial solutions in (3.1). Here, mi′ = deg(vi′).

In order to guarantee (3.2) to be a polynomial bound on the runtime, we demand m
as well as all of the mi′ to be bounded by a constant M ∈ N, i.e. we only consider
instances where the intersection graph has maximum degree at most M .

The overall runtime can then be bounded by

n · O(n4·
∑

mi′) = n · O(n4M2

) = O(n4M2+1) = O(nO(1)),

assuming m = mi′ = M for all vertices in (3.2).

Summarizing the first 3 sections of this chapter, we get the following:

Theorem 3.4
Let G be the intersection graph of a GMMN instance R and suppose G is a
path, a circle or a tree with bounded degree.

Then an optimal GMMN for R can be found in polynomial time.

3.5 Union Graph

In this section, we want to extend the methods we used before to more general
instances, i.e. more general intersection graphs.

Definition 3.5
A graph G = (V,E) is called union graph with interface c (where c ∈ N), if
there exists a rooted tree T satisfying the following properties:

(a) Every vertex of T is a subset ∅ 6= Vi ⊆ V , the root of T is V .

(b) Every leaf of T is a singleton, i.e. Vi = {v} ⊆ V .

(c) The subset Vi of any inner vertex is partitioned amongst its children.

(d) The accumulated number of interface vertices of the children of Vi does not
exceed c. In particular, each child alone has at most c interface vertices.

3.5 Union Graph 21

Figure 3.5: example of a union graph with interface 5 and its partially drawn union
tree, interface vertices of the first (second) level shown in black (gray),
note that black implies gray by definition

A vertex v ∈ Vi ⊆ V is called interface vertex of Vi, if there exists a vertex
w ∈ V \Vi such that (v, w) ∈ E or equivalently, if there exists an edge between
Vi and the rest of V . This tree T is called a union tree.

Definition 3.6
The height of a tree vertex v is defined as follows:

If v is a leaf, then height(v) = 1. If v is an inner vertex, then height(v) = h+1,
where h denotes the height of its highest child.

If the intersection graph G is a union graph with maximum degree M , the same
strategy can be used again.

We start with height h = 1 in the union tree T , let V ′ be a leaf, then V ′ = {v}
for some v ∈ V . For a single vertex there are exactly

(
4n
4m

)
·
(
4m+2
2m+1

)
possible ways to

connect the corresponding terminal pair (p, q) via M-path. Once again, m denotes
the degree of v in G. For each of these configurations we save the length of the
corresponding network, i.e. we always save d1(p, q).

We want to maintain the following invariant: for each configuration of the interface
vertices of V ′ ⊆ V , we want to know the minimum length of a network for V ′.

So let V ′ be a tree vertex of height h > 1. Inductively, we assume that we already
know the desired lenghts for each configuration of the interface vertices of any child

22 Two-dimensional Case

of V ′, since their height is less than h. Label the children V1, . . . , Vk. Let I be the
union of the interface vertices of V1, . . . , Vk and note that |I| ≤ c. We consider all
c-tuples of configurations of all the interface vertices in I, there are at most((

4n

4M

)
·
(

4M + 2

2M + 1

))c

= (O(n4M))c = O(n4cM) (3.3)

of them by Lemma 3.3. For every combination of configurations of the interface
vertices of any Vj we already know an optimal network. The union of these k optimal
networks for V1, . . . , Vk sure yields a valid network for V ′. Now we look at the
interface vertices of V ′, recall that there are at most c of those. For these c vertices,
there are again ((

4n

4M

)
·
(

4M + 2

2M + 1

))c

= (O(n4M))c = O(n4cM)

combinations of single configurations. So as we construct valid networks for V ′, we
know they are not necessarily optimal, but if we always store the shortest one we
have encountered so far for each configuration, we will end up with exactly what we
wanted: an optimal network for V ′ when being restricted to a single configuration
of all of its interface vertices. We iterate this process until we reach the full height
of the union tree. For the root, where V ′ = V by definition, there are no interface
vertices, we can just take the minimum of all the unions of optimal solutions for the
children yielding an optimal solution for R.

Theorem 3.7
Let R be a 2-GMMN instance and G the intersection graph of R. Further-
more, suppose G is a union graph with interface c and the maximum degree is
bounded by some constant M . Then a minimum Manhattan network can be
found in polynomial time.

Proof : For the algorithm: see above. Optimality for R follows from optimality
for individual terminal pairs (trivial, see algorithm) and inductively by the main-
tained invariant. Having all optimal solutions for all tree vertices V ′ of height h,
parametrized by the configurations of their respective interface vertices, we find the
new optimal solutions for height h+1 by minimizing over all possible configurations
and then parametrize those by the configurations of this height’s interface vertices.
Therefore, the obtained network is optimal for R.

For the runtime: we have O(n4M) configurations for each leaf by Lemma 3.3, so for at
most n leaves we get a runtime of O(n4M+1). For each tree vertex we have O(n4cM)
look-ups (see (3.3)) and the computation of the union within the set of edges in
H(R) (which is linear in the number of edges, which is 2 · (2n)2 c.f. Lemma 2.5)
in O(n2). We assume the union tree to be redundance-free, i.e. there cannot be a
vertex V ′ with only one child V ′′, implying V ′ = V ′′. Therefore, the number of tree
vertices is at most n, so the total runtime is bounded by n ·O(n4cM+1) = O(n4cM+2).
�

3.6 Series-parallel Graph 23

3.6 Series-parallel Graph

Definition 3.8
A graph G = (V,E) is called a series-parallel graph or sp-graph for short, if
one of the following conditions holds:

• G = K2, i.e. V = {v1, v2} and E = {(v1, v2)}.

• G = CS(G1, G2), i.e. G is the series composition of two sp-graphs G1, G2.

• G = CP (G1, G2), i.e. G is the parallel composition of two sp-graphs G1, G2.

A series parallel graph has two distinguished vertices s, t ∈ V . s will be re-
ferred to as source and t as target, in the literature t may be called sink. The
compositions are defined as follows:

Let G1 = (V1, E1) and G2 = (V2, E2) be sp-graphs. Then

V ′ = (V1 ∪ V2) identifying s2 = t1,

E ′ = E1 ∪ E2

and the series composition is

CS(G1, G2) = (V ′, E ′) with source s′ = s1 and target t′ = t2.

Furthermore

V ∗ = (V1 ∪ V2) identifying s1 = s2, t1 = t2

E∗ = E1 ∪ E2

and the parallel composition is

CP (G1, G2) = (V ∗, E∗) with source s∗ = s1 and target t∗ = t1.

In this definition we always assume V1 and V2 to be disjoint before a composition is
formed. Also, if Gi = K2 and (sj, tj) ∈ Ej for i 6= j, we set

CP (G1, G2) = Gj

to avoid parallel edges.

24 Two-dimensional Case

Proposition 3.9
Every series parallel graph with maximal degree M is a union graph.

Proof : Let G = K2, then the union tree in Figure 3.6 will proof the claim.

V = {v1, v2}

{v1} {v2}

Figure 3.6: union tree for G = K2

In this case c = 2.

Now let G = CS(G1, G2), where G1, G2 are series parallel. Since they have less
vertices, they are union graphs (with interfaces c1, c2 respectively) by induction. Let

V1 = {v1, . . . , vn} ,
V2 = {w1, . . . , wm}

where v1 = s1, vn = t1, w1 = s2 and wm = t2. Then (using the identification vn = w1)
V = {v1, . . . , vn, w2, . . . , wm}. Union trees T1, T2 for G1, G2 exist by induction, we
stick them together as shown in Figure 3.7.

{v1, v2, . . . , vn, w2, . . . , wm}

{v1, v2, . . . , vn} {��w1, w2, . . . , wm}

B1 B2

Figure 3.7: union tree for G = CS(G1, G2) constructed out of T1 and T2

For this construction to result in a union tree, we delete w1 in every tree vertex that
comes from T2. Deleting w1 cannot increase the number of interface vertices. The
leaf {w1} (or ∅ by then) is now deleted completely. In case two tree vertices end up
being identical, we melt them together. Note, that this can only happen if one is
the parent and the other one is his only child. Since the vertices were identical, the
bound c2 is not violated.

We make sure the tree T we constructed is indeed a union tree for G = CS(G1, G2).
The root is V = {v1, . . . , vn, w2, . . . , wm} and none of the vertices is ∅. The children
of any vertex V ′ are disjoint after w1 is deleted and their union yields V ′ again. Also,

3.7 Remarks 25

by construction, leaves are singletons. What remains to show is that the number of
interface vertices is bounded by some constant c ≤M . For T1, T2 this holds already
by induction. Only the root V needs to be checked. Here, the left child is V1, the right
child is V2 \ {w1}. G1 and G2 are only connected via one vertex which is vn = w1.
Therefore, V1 contains just 1 interface vertex, namely vn. The interface vertices of
V2 \ {w1} consists of all neighbors of vn in V2. Since we assume G to be connected,
vn has at least 1 neighbor in V1, so we have at most M − 1 of them in V2. Overall
the number of interface vertices is bounded by 1 +M − 1 = M . Deleting vn instead
of w1 might lower that bound for concrete cases, depending on whether vn has less
or more neighbors in V1 than w1 has in V2. Either way, c is bounded by M and we
conclude: T is a valid union tree with interface c ≤ max{c1, c2,M}.

Now let G = CP (G1, G2), where G1, G2 are series parallel with vertex sets

V1 = {v1, . . . , vn} ,
V2 = {w1, . . . , wm}

where v1 = s1, vn = t1, w1 = s2 and wm = t2. Identifying v1 = w1 and vn = wm we
have V = {v1, . . . , vn−1, w2, . . . , wm}.

By induction there exist union trees T1, T2 with interfaces c1, c2 respectively. Again
we can merge them into one tree, see Figure 3.8.

{v1, v2, . . . , vn−1, w2, . . . , wm}

{v1, . . . , vn−1,�vn} {��w1, w2, . . . , wm}

T1 T2

Figure 3.8: union tree for G = CP (G1, G2) constructed out of T1 and T2

Here, we delete not only the leaf {w1}, but also {vn}. Apart from that, we can use
the same procedure and the result is a valid union tree for G = CP (G1, G2). The
main difference is the interface, in this case we get c = max{c1, c2, 2M}, since both
w1 and vn can have M − 1 neighbors in the opposing vertex sets. �

3.7 Remarks

For all the graphs mentioned above (paths, circles, trees and sp-graphs), there are in
fact 2-GMMN instances having those as their intersection graphs. Paths are almost
trivial and circles likewise. For any tree, a 2-GMMN instance can be constructed as
follows: chose any vertex to be the root and construct a n×3 box. For the i-th child,
construct a ni × 3 box, where ni is the size of its subtree. Since

∑
ni = n− 1 < n,

26 Two-dimensional Case

Figure 3.9: instances for intersection graphs K5 and K3,3 with bounding boxes

it is possible to fit those boxes next to each other without overlap. Also, shift them
down by 2, then repeat the process with the subtrees. Series-parallel graphs can be
constructed in a straightforward fashion, just maintain the invariant, that the box
corresponding to the source (target) is always the highest (lowest) box, i.e. there is a
horizontal line interesecting the source box such that every other box lies completely
below (above).

Whether a graph can occur as an intersection graph of a 2-GMMN instance does not
seem to depend on planarity: there are instances with non-planar intersection graphs,
c.f. the complete graph K5 and the bipartite graph K3,3 shown in Figure 3.9.

On the other hand, we found planar graphs with no matching 2-GMMN instance,
e.g. the diamond in Figure 3.10.

Label the grey vertices v1, v2 and their boxes respectively. Use indices 3, . . . , 6 (in
order) for the rest. Consider the two projections of v1 and v2 onto the coordinate
axes. If both π1(v1) ∩ π1(v2) = ∅ and π2(v1) ∩ π2(v2) = ∅, then every other box vi
must contain the same corner of v1, thus v3∩v4∩v5∩v6 6= ∅, a contradiction. If both
of these intersections are non-empty, then v1 ∩ v2 6= ∅, another contradiction. So we
can assume w.l.o.g. that π1(v1) ∩ π1(v2) 6= ∅ = π2(v1) ∩ π2(v2), i.e. the situation of
the boxes looks like in Figure 3.11.

Figure 3.10: planar graph and planar embedding with no 2-GMMN instance

3.7 Remarks 27

v1

v2

v3

v4

v5

Figure 3.11: 2-GMMN almost-instance for the graph shown in Figure 3.10

This layout is forced by the fact that (v3, v4), (v4, v5) ∈ E and (v3, v5) /∈ E. By
convexity it is impossible to have another box v6 intersect v1, v2, v5 and v6 without
intersecting v4. Therefore, even though it is planar, the diamond in Figure 3.10 is
not an intersection graph of any 2-GMMN instance.

4 Higher Dimensions

Now we drop the requirement d = 2 and consider arbitrary d ∈ N. It is worth men-
tioning that F. S. Roberts introduced a graph parameter called boxicity [Rob69]. The
boxicity of G is the minimum d such that there are n boxes in Rd with intersection
graph G. Roberts proved that the boxicity of a graph with n vertices is bounded by
bn
2
c. This means every graph can occur as the intersection graph of some d-GMMN

instance as long as d is big enough. For example, Figure 3.10 can be obtained from
a 3-GMMN instance, even though it was impossible from 2-GMMN. So in general,
we cannot restrict ourselves to a proper subset of graphs. Although, for fixed d it
might be possible, e.g. interval graphs in the case d = 1.

4.1 Generalizations

We want to generalize Lemma 3.1:

Lemma 4.1
Let N be a (not necessarily optimal) Manhattan network for a d-GMMN in-
stance R. Then there exists a Manhattan network N ′ which is completely
contained in the Hanan Grid for R and also satisfies

`(N ′) ≤ `(N).

Particularly, the existance of an optimal network implies the existance of an
optimal network within the Hanan Grid.

The proof is analogous to the proof of Lemma 3.1, the idea is taken from [FS14].

Proof : We only proof the result for one coordinate x1, it follows analogously for
x2, . . . , xd. Let π1(R) = {ξ(1), . . . , ξ(k)} be the projection of the terminals in R onto
their x1-coordinate and assume ξ(1) ≤ · · · ≤ ξ(k). Let H be the hyperplane perpen-
dicular to x1 containing ξ(1), i.e. H : x1 = ξ(1). We then sweep H upwards (increasing
its x1-coordinate). By induction we assume the part of N below H is already con-
tained in the Hanan Grid. Suppose at some height ξ∗ /∈ π1(R) a subset E ′ of the
edges of N is contained in H and denote by E↑, E↓ the set of edges parallel to x1
incident to H from below and above respectively.

30 Higher Dimensions

If |E↑| ≥ |E↓| we can shift E ′ downward until we reach the next x1-value in H(R),
thereby extending the edges from above and shortening the edges from below. There-
fore, the overall length of the network does not increase. Every M-path passing
through H must start below and end above H or vice versa. Since one edge is short-
ened by the same length the other one is extended, the length of the path does not
change, so M-paths are preserved.

If |E↑| < |E↓| we can, in a similar fashion, shift E ′ upwards. To satisfy the induction
invariant, we can only shift E ′ to either the next ξ(j) or to the next ξ∗∗ containing
some other subset E ′′, whichever comes first. �

Lemma 4.2
The number of M-paths connecting both terminals of a box (p, q) within H(R)
is exactly

(
∑
ai)!

a1! · · · ad!
,

where ai denotes the distance of πi(p) to πi(q) in πi(R).

Again, the proof is analogous to the proof of Lemma 3.2.

Proof : Any M-path for (p, q) consists of a1 + · · ·+ad edges within H(R). Basically
we have a bijection between the set of M-paths in H(R) and the set of strings

B = {w ∈ {x1, . . . , xd}∗ : |w|xi
= ai}

by identifying each path with the concatenation of the directions the path takes
from p to q. Combinatorics takes the rest. �

The following generalizes Lemma 3.3:

Lemma 4.3
Given a single box (p, q) with m neighbors, the number of possible M-paths
within the Hanan Grid H(R) is at most

(d · (2dm+ 1))!

((2dm+ 1)!)d
·
(

2dn

2dm

)
.

4.1 Generalizations 31

Proof : For m = 0 every M-path uses exactly d edges, one in each direction
x1, . . . , xd. The order can be chosen freely, so there are d! = d!

1!···1! different M-paths.
For m ≥ 1, any new M-path intersecting (p, q) has some entry point ei and some
exit point fi on the boundary of the box. Alternatively, if one or both terminals of
the i-th neighboring box are within (p, q), the terminal(s) substitute(s) ei or/and fi.
In the worst case, both ei and fi are contained in the interior of the box. Applying
Lemma 4.1 to

R̃ = {(ei, fi) : i ≤ m} ∪ {(p, q)} ,

we can restrict our search to H(R̃) if we know the entry and exit points. Each of the
new vertices increases the length of an M-path from p to q in terms of the number of
Hanan edges by at most d (1 in each dimension). So we have a1 = . . . = ad = 2m·d+1
in Lemma 4.2, which shows that the number of M-paths for a fixed set of entry and
exit points is bounded by

(d · (2dm+ 1))!

((2dm+ 1)!)d
.

We have 2dn straight lines in H(R), so there are
(
2dn
2dm

)
possible ways to chose a

subset of size 2dm. �

Of course the goal is to generalize Theorem 3.7, so while the overall strategy we used
for union graphs remains the same, the runtime bounds we derived from Lemma 3.2
must be replaced by bounds from Lemma 4.2.

Theorem 4.4
Let R be a d-GMMN instance and G the intersection graph of R. Further-
more, suppose G is a union graph with interface c and the maximum degree is
bounded by some constant M . Then a minimum Manhattan network can be
found in polynomial time.

Proof : For the algorithm: like in Theorem 3.7, we start with height h = 1 in the
union tree T . Leaves are singletons and by Lemma 4.3, for a single vertex v with
deg(v) = m the number of possible M-paths connecting the corresponding terminal
pair (p, q) in H(R) is bounded by

(d · (2dm+ 1))!

((2dm+ 1)!)d
·
(

2dn

2dm

)
.

Note that for m ≤M and a fixed dimension d, only the binomial coefficient depends
on n, the factor is a constant. For each of these configurations we save the length of
the corresponding network, i.e. we always save d1(p, q).

We want to maintain the following invariant: for each configuration of the interface
vertices of V ′ ⊆ V , we want to determine the minimum length of a network for V ′.

32 Higher Dimensions

So let V ′ be a tree vertex of height h > 1. Inductively, we assume that we already
know the desired lenghts for each configuration of the interface vertices of any child
of V ′, since their height is less than h. Label the children V1, . . . , Vk ⊆ V . Let I be
the union of the interface vertices of V1, . . . , Vk and note that |I| ≤ c. We consider
all c-tuples of configurations of all the interface vertices in I, there are at most(

(d · (2dM + 1))!

((2dM + 1)!)d
·
(

2dn

2dM

))c

= (O(n2dM))c = O(n2cdM) (4.1)

of them by Lemma 4.3. For every combination of configurations of the interface
vertices of any Vj we already know an optimal network. The union of these k optimal
networks for V1, . . . , Vk sure yields a valid network for V ′. Now we look at the
interface vertices of V ′, recall that there are at most c of those. For these c vertices,
there are (

(d · (2dm+ 1))!

((2dm+ 1)!)d
·
(

2dn

2dm

))c

= (O(n2dM))c = O(n2cdM)

combinations of single configurations. So as we construct valid networks for V ′, we
know they are not necessarily optimal, but if we always store the shortest one we
have encountered so far for each configuration, we will end up with exactly what we
wanted: an optimal network for V ′ when being restricted to a single configuration
of all of its interface vertices. We iterate this process until we reach the full height
of the union tree. For the root, where V ′ = V by definition, there are no interface
vertices, we can just take the minimum of all the unions of optimal solutions for the
children yielding an optimal solution for R.

Optimality for R follows from optimality for individual terminal pairs (trivial, see
algorithm) and inductively by the maintained invariant. Having all optimal solutions
for all tree vertices V ′ on some height h, parametrized by the configurations of their
respective interface vertices, we find the new optimal solutions for height h + 1
by minimizing over all possible configurations and then parameterize those by the
configurations of this height’s interface vertices. Therefore, the network we obtain
in the end, is optimal for R.

For the runtime: we need O(n2dM) for each leaf by Lemma 4.3, where m ≤M , so for
n leaves we get a total of O(n2dM+1). For each tree vertex we have O(n2cdM) look-ups
(see (4.1)) and the computation of the union within the set of edges in H(R) (which is
linear in the number of edges, which is d ·(2n)d c.f. Lemma 2.5) in O(nd). We assume
the union tree to be redundance-free, i.e. there cannott be a vertex V ′ with only one
child V ′′, implying V ′ = V ′′. Therefore, the number of tree vertices is at most n, so
the total runtime is bounded by O(n2dM+1) + O(n2cdM+1) + O(nd+1) = O(n2cdM+1).
�

5 Treewidth

In Chapter 3 we showed that Simple paths, circles, trees and series parallel graphs
have one thing in common: for each of these graph classes there exists an upper
bound on a graph parameter called the treewidth.

We give a short introduction to treewidth, for further information see [Die12].

5.1 Introduction

Given an intersection graphG, we are interested in knowing how similar the structure
of G is to a structure of a tree.

Definition 5.1
A decomposition tree of a graph G = (V (G), E(G)) is a tree D = (V (D), E(D))
satisfying the following conditions:

(i) Every tree node is a subset of V (G).

(ii) Every vertex v ∈ V (G) appears in at least one tree node.

(iii) For every edge (v, w) ∈ E(G) there is a tree node X ∈ V (D) containing both
v and w.

(iv) For v ∈ V (G), if v appears in two tree nodes Xi, Xj, then v is contained in
every tree node on the path connecting Xi to Xj in D.

The width of a decomposition tree D is

width(D) = max{|X| − 1 : X ∈ V (D)}.

Among all valid decomposition trees for G, the minimum width is called the
treewidth of G. We write tw(G) for short.

Following the notation in [Bod98], elements of V (G) are called vertices and elements
of V (D) are nodes. While decomposition trees of a graph G are ambiguous, the
treewidth is unique. To see this, we consider the trivial decomposition tree where
V (D) = {V (G)} and E(D) = ∅. Therefore tw(G) ≤ n− 1.

34 Treewidth

Trees have treewidth 1 due to the fact, that we added the −1 in the definition of
width. A decomposition tree of width 1 has a node for every edge in the original
tree.

Remark 5.2
Condition (iv) is equivalent to the following:

For every vertex v ∈ V (G), the set of all nodes Xi containing v forms a
connected subtree Dv of D.

5.2 Main Results

Theorem 5.3
Let G be an intersection graph of a d-GMMN instance R. Suppose there exist
constants M,k ∈ N bounding the maximum degree and the treewidth of G
respectively.

Then G is a union graph.

Proof : Using a decomposition tree D of G, we constuct a union tree T . Let

V (D) = {Xi : i ∈ I}

for some finite index set I. Then we set

V (T) = {Yi : i ∈ I} ∪ {{v} : v ∈ V (G)} .

We connect Yi to Yi′ in T whenever Xi and Xi′ are neighbors in D, so we get the
same basic tree structure. Since D is a tree, we proceed as follows: for each vertex
v ∈ V (G) we chose one node Xi ∈ V (D) of maximal height such that v ∈ Xi. Here,
we introduce an edge between {v} and Yi. All we have to do now, is to define the
vertices Yi of T . We start with Yi = ∅ for all i ∈ I. In ascending height we then add
to each Yi the vertices contained in all of its children. We delete empty vertices and,
as before, if two vertices are identical, we merge them into one.

Every vertex Yi of T is now a subset of V , the root is V since every vertex v ∈ V (G)
was inserted at some point. Leafs are singletons, since empty Yi’s are deleted. The
union of the children yields the parent and the children are disjoint because each
v ∈ V (G) was inserted exactly once. Now consider some vertex Yi with child Yj and
suppose v ∈ Yj is an interface vertex. We have 2 cases:

5.2 Main Results 35

v ∈ Xj: This case can occur k + 1 times, since tw(G) = k.

v /∈ Xj: Then the entire subtree Dv must lie below Xj in D. Since v is an interface
vertex, there exists w ∈ V (G) \ Yj such that (v, w) ∈ E(G). By definition,
D has a node Xi′ containing both v and w. Of course Xi′ belongs to Dv and
therefore

height(Xi′) < height(Xj) < height(Xi).

Note that w /∈ Yj implies w ∈ Xi′′ for some Xi′′ with height(Xi′′) ≥ height(Xi).
D is a decomposition tree, therefore we also have w ∈ Xi. Since tw(G) = k, at
most k+1 different w’s are possible, each of them having at most M neighbors,
so the number of interface vertices v /∈ Xj is bounded by M · (k + 1).

Overall, we have c = k + 1 + M(k + 1) = (M + 1)(k + 1), so T is indeed a union
tree for G which completes the proof. �

Theorem 5.4
Let G be a graph and suppose its maximum degree is bounded by some con-
stant M ∈ N.

Then G is a union graph if and only if the treewidth of G is bounded by a
constant.

Proof : The reverse implication follows from Theorem 5.3, so we only proof the
following: given a union graph G with interface c, there exists a constant k ∈ N such
that tw(G) ≤ k.

W.l.o.g. we assume G to be connected. Using the union tree T we construct a
decomposition tree D.

For every vertex Vi in T we define Xi ⊆ V (G) to contain all the interface vertices
of Vi’s children (at most c) and all of Vi’s interface vertices (at most c). Therefore
|Xi| ≤ 2c. We connect Xi to Xj in D, when Vi and Vj are connected in T .

It remains to show that D is a decomposition tree. Condition (iii) can be seen as
follows: consider some edge (v, w) ∈ E(G). Starting from the leaves {v} and {w}, v
and w are propagated upwards by construction until they lose their interface status,
i.e. they encountered all of their neighbors. Particularly, v and w are both contained
in their lowest common ancestor. We remark, that on its way from leaf to root,
a vertex v can lose the status of an interface vertex, but that status can never be
regained. One of the consequences of this fact is condition (iv), because once a vertex
v loses interface status on its way towards the root, v never appears in any other
Xi. So D is indeed a valid decomposition tree of G and width(D) ≤ k := 2c− 1. It
follows that tw(G) ≤ k. �

36 Treewidth

Figure 5.1: instance with boxes and grid intersection graph, maximum degree M = 4

5.3 Remarks

It is not possible to drop either one of the two requirements of Theorem 5.3. The
intersection graph G in Figure 5.1 is a grid graph, each vertex has at most 4 neigh-
bors. However, there is no constant k bounding the treewidth of G, this follows from
Lemma 88 in [Bod98]. If we apply it to this

√
n ×
√
n grid graph G, it states that

tw(G) ≥
√
n. Likewise, we can easily construct an intersection graph G in such

a way that tw(G) = 1, yet the maximum degree is n − 1, see Figure 5.2 for an
example.

This clearly shows that none of the requirements implies the other. Furthermore,
it was vital to have an upper bound for the degree in (3.1). Recall that the upper
bound for the runtime was a consequence of the minimum in (3.1) being taken over
a polynomial number of Hanan line sets. We used the same idea for the general case
in (3.3) and (4.1), so all of our dynamic programs require the maximum degree of the
intersection graph to be bounded. Finally, the upper bound on the treewidth is es-
sential as well. This is a consequence of Theorem 5.4 since the most general dynamic
program of this thesis is the one for union graphs. Intuitively, the decomposition tree
provides the structure we need for the dynamic program.

Figure 5.2: instance with boxes and tree intersection graph, treewidth k = 1

6 Implemented Algorithm

In this chapter we desribe a greedy algorithm for 2-GMMN. Unlike the dynamic
programs we presented in the previous chapters, the algorithm will not always find
a minimal network, but (in contrast to the dynamic programs) will actually be
applicable in practice.

6.1 Greedy Algorithm

We only present the algorithm in pseudo code. More detail is provided below.

Algorithm 1 (Greedy Algorithm)

sort R
for all e ∈ H(R) do
we ← `(e) / ne

end for

N ← ∅
for all (p, q) ∈ R do

find shortest M-path πp,q from p to q (w.r.t. w)
N ← N ∪ {πp,q}
for all e ∈ πp,q do
we ← 0

end for
end for
return N

Like before, R denotes the problem instance containing pairs of terminals. First, the
set R is sorted. Multiple sortings were implemented for the terminal pairs: from left
to right (or vice versa), by L1 distance, by area, in the order of input or random.
Others can be added easily. The choice of sorting will typically affect the length of
the network N .

Next, each Hanan edge e in H(R) is assigned a weight, based on its length and the
number of bounding boxes containing e. In this algorithm we consider Hanan edges
(see Definition 2.3), not complete Hanan lines (as we did in Chapters 3 and 4).
Edges contained in many boxes are given a lower weight, as they are more likely to
be useful for a short network.

38 Implemented Algorithm

For each pair of terminals (p, q) we apply a shortest path algorithm using these
weights instead of the original edge lengths. We then add this M-path πp,q to the
current network. The weights of the added edges are set to 0 so all the following
shortest path computations can use these edges ’for free’. By construction, the out-
put network N is always a valid Manhattan network as it contains an M-path for
each pair (p, q) ∈ R.

Note that there exists a topological ordering on the edges, so the shortest path
algorithm runs in O(n2) since the overall number of Hanan Edges is quadratic (see
Lemma 2.5). Altogether we end up with a runtime in O(n3).

However, even if the runtime is easy to determine, the quality of the solution is not.
There is a trivial upper bound on the length of the network N . Let (p∗, q∗) be the
box with maximal L1 distance. Then

`(N) ≤
n∑

i=1

d1(pi, qi) ≤ n · d1(p∗, q∗) ≤ n · `(Nopt), (6.1)

where Nopt denotes a minimal network. Even an algorithm completely ignoring the
overlap of the bounding boxes would easily match this upper bound by just con-
necting each pair of terminals by any M-path. Since GMMN is NP-hard, there is no
efficient way of computing `(Nopt) (unless P = NP), so we cannot compare our so-
lution to the optimum. Instead, we want to give an overview over the input sortings
we used and their influence on the length of the output network N .

6.2 Input Sortings

The following sortings were implemented:

• L1
↑: sort pairs by d1(p, q) in ascending order

• L1
↓: sort pairs by d1(p, q) in descending order

• A↑: sort pairs by area of the bounding box in ascending order

• A↓: sort pairs by area of the bounding box in descending order

Furthermore, we added a random sorting for comparison and a sorting based on the
order the terminal pairs are inserted. This allows the user to manually specify the
order. These two will be ignored throughout the following analysis.

The concept of both of the ascending sortings L1
↑ and A↑ is based on the scenario

shown in Figure 6.1. For this given instance, the sortings by area and L1 distance are
equivalent. If we stretch the instance vertically, we can ignore the horizontal edges
and just compare the numbers of ’long’ vertical edges. Then the upper solution is
approximately 1.5 times longer than the bottom one.

Intuitively, it is much easier for a large box to adapt its M-path to some already
existing small M-path along the way than vice versa.

6.2 Input Sortings 39

Figure 6.1: top: step-by-step view of the algorithm using sorting L1
↓ or A↓; bottom:

step-by-step view of the algorithm using sorting L1
↑ or A↑

However, sorting the instance in ascending order (by area or L1 distance) does not
always yield a minimal network either. For example, consider Figure 6.2.

Figure 6.2: top: step-by-step view of the algorithm using sorting L1
↑ or A↑; bottom:

step-by-step view of the algorithm using sorting L1
↓ or A↓

40 Implemented Algorithm

network size

of networks

Figure 6.3: histogram for 1000 instances of size n = 100 for different input sortings;
red: random, blue: L1

↑, green: L1
↓, purple: A↑, orange: A↓

Again, sortings L1
↑ and A↑ are equivalent. If the instance is stretched horizontally, we

only need to consider horizontal egdes. Suppose the two small boxes have combined
length 1

2
`(a) + ε, where a is the vertical segment shared by the two larger boxes and

ε > 0. Hence, the upper solution (vertical length ≈ 2a) is approximately 4
3

times
longer than the bottom one (vertical length ≈ 1.5a).

So none of the sortings can guarantee to always find an optimal solution. But there
is an advantage to the sorting A↑ in comparison to L1

↑. Suppose there is a vertex
pair (p, q) with πx(p) = πx(q), i.e. p and q share the same x-coordinate. Then p and
q must be connected by a straight vertical line in every valid Manhattan network.
In this case, chosing (p, q) first provides some edges with weight 0, which would
have been added later anyways. Adding them early makes it possible to use these
edges for the rest of the algorithm and therefore to lower the length of the output
network.

Figure 6.3 shows a histogram of 1000 instances. We added n = 100 pairs of terminals
at random (independent identically distributed) into a 500×500 integer grid. Then,
all five sorting algorithms were tested on these instances and the resulting networks
were sorted by length. The histogram also shows the median, plotted as a long
vertical line. While the sorting L1

↑ produces significantly shorter networks than the
random sorting, the sorting A↑ performs even better. The histograms for n = 20 and
n = 50 show the same overall behavior. Overall, the sortings A↓ and L1

↓ are least
sucessful. We did not provide any numbers for the histogram, as it is only intended
to show the differences between the input sortings. To get an idea of the quality of
the solutions, we used a tool martin Seybold (FMI, University of Stuttgart) provided
to calculate lower bounds for those 1000 instances. For the calculation of these lower
bounds see [FS14].

6.2 Input Sortings 41

1 2

1.144 1.769
1.389

1.148 1.642
1.368

1.146 1.716
1.4

1.14 1.629
1.352

1.146 1.71
1.411

Figure 6.4: box plot of approximation factors for 1000 instances of size n = 20 for
different input sortings; red: random, blue: L1

↑, green: L1
↓, purple: A↑,

orange: A↓

Since we only have lower bounds for the length of a minimal network, we get upper
bounds for the approximation factors. The box plots for these approximation factors
are shown in Figure 6.4, 6.5 and 6.6 for n = 20, n = 50 and n = 100 respectively.
They feature quantiles at 0%, 25%, 50% (median), 75% and 100%.

1 2

1.423 1.952
1.656

1.397 1.878
1.62

1.446 2.022
1.69

1.379 1.864
1.573

1.448 2.01
1.72

Figure 6.5: box plot of approximation factors for 1000 instances of size n = 50 for
different input sortings; red: random, blue: L1

↑, green: L1
↓, purple: A↑,

orange: A↓

42 Implemented Algorithm

1 2

1.663 2.186
1.897

1.61 2.098
1.848

1.697 2.213
1.955

1.535 2.004
1.762

1.747 2.379
2.012

Figure 6.6: box plot of approximation factors for 1000 instances of size n = 100 for
different input sortings; red: random, blue: L1

↑, green: L1
↓, purple: A↑,

orange: A↓

We end this chapter with a short example, where the difference between sorting in
ascending order (L1

↑,A↑) and sorting in descending order (L1
↓,A↓) is linear in n.

Consider the instance shown in Figure 6.7: a symmetric GMMN instance, each pair
of terminals contains one point in the lower left and the point directly opposite.
Here, the sortings L1

↑ and, equivalently, A↑ produce an output network of constant
size 8a, where a denotes half the side length of the bounding square, independent
of n. On the other hand, the sortings L1

↓ and, equivalently, A↓ produce a network of

size 4a+ n−2
2
a, which is linear in n. In (6.1) we already mentioned that the factor by

which such networks differ is at most O(n), so this is one of the biggest differences
we might suspect between L1

↑ and L1
↓ for this greedy algorithm.

6.2 Input Sortings 43

a

a’

b

b’

c

c’

a

a’

b

b’

c

c’

Figure 6.7: top: selected steps of the algorithm using sorting L1
↓ or A↓; bottom:

selected steps of the algorithm using sorting L1
↑ or A↑

7 Conclusion

We have successfully shown that a dynamic program can be used to compute optimal
solutions for d-GMMN in polynomial time, given that the instance’s intersection
graph is a union graph with an upper bound for the maximum degree. Also, a proof
has been given that such union graphs can be characterized in terms of treewidth.
Graph classes with bounded treewidth include (but are not limited to):

• circles (tw ≤ 2)

• trees (tw ≤ 1)

• series-parallel graphs (tw ≤ 2, c.f. [Bod98], Theorem 41)

• outerplanar graphs (tw ≤ 2, c.f. [Bod88], Theorem 4.5)

• k-outerplanar graphs where k is fixed (tw ≤ 3k−1, c.f. [Bod88], Theorem 4.5)

For more examples we recommend [Bod86].

Furthermore, we introduced and implemented a greedy algorithm for practical pur-
poses with a runtime in O(n3). The algorithm relies on a shortest path algorithm
and processes the instance in a certain order. The choice of this initial sorting affects
the length of the output network and both in theoretical reasoning and in heuristic
testing the sorting by area of the bounding box performed best.

Bibliography

[Bod86] Hans L. Bodlaender. Classes of graphs with bounded tree-width. Techni-
cal Report RUU-CS-86-22, Department of Information and Computing
Sciences, Utrecht University, 1986.

[Bod88] Hans L. Bodlaender. Planar graphs with bounded treewidth. Technical
Report RUU-CS-88-14, 1988.

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209, 1998.

[BWW04] Marc Benkert, Alexander Wolff, and Florian Widmann. The minimum
Manhattan network problem: A fast factor-3 approximation. In Discrete
and Computational Geometry, Japanese Conference, JCDCG 2004, vol-
ume 3742 of Lecture Notes in Computer Science. Springer, 2004.

[BWWS06] Marc Benkert, Alexander Wolff, Florian Widmann, and Takeshi
Shirabe. The minimum Manhattan network problem: Approximations
and exact solutions. Comput. Geom., 35, 2006.

[CGS11] Francis Y. L. Chin, Zeyo Guo, and He Sun. Minimum Manhattan net-
work is NP-complete. Discrete and Computational Geometry, 45, 2011.

[CNV08] Victor Chepoi, Karim Nouioua, and Yann Vaxès. A rounding algo-
rithm for approximating minimum Manhattan networks. Theoretical
Computer Science, 390, 2008.

[DFK+13] Aparna Das, Krzysztof Fleszar, Stephen G. Kobourov, Joachim Spo-
erhase, Sankar Veeramoni, and Alexander Wolff. Approximating the
generalized minimum Manhattan network problem. In Algorithms
and Computation - 24th International Symposium, ISAAC 2013, Hong
Kong, China, December 16-18, 2013, Proceedings, volume 8283 of Lec-
ture Notes in Computer Science. Springer, 2013.

[DGK+11] Aparna Das, Emden R. Gansner, Michael Kaufmann, Stephen G.
Kobourov, Joachim Spoerhase, and Alexander Wolff. Approximating
minimum Manhattan networks in higher dimensions. In Algorithms
- ESA 2011 - 19th Annual European Symposium, Saarbrücken, Ger-
many, September 5-9, 2011. Proceedings, volume 6942 of Lecture Notes
in Computer Science. Springer, 2011.

[DGK+15] Aparna Das, Emden R. Gansner, Michael Kaufmann, Stephen G.
Kobourov, Joachim Spoerhase, and Alexander Wolff. Approximating

48 Bibliography

minimum Manhattan networks in higher dimensions. Algorithmica, 71,
2015.

[Die12] Reinhard Diestel. Graph Theory. Springer-Verlag, 2012.

[FS08] Bernhard Fuchs and Anna Schulze. A simple 3-approximation of min-
imum Manhattan networks. In Seventh Cologne Twente Workshop on
Graphs and Combinatorial Optimization, gargano, Italy, 13-15 May,
2008. University of Milan, 2008.

[FS14] Stefan Funke and Martin P. Seybold. The generalized minimum Man-
hattan network problem (GMMN) - scale-diversity-aware approxima-
tion and a primal-dual algorithm. In The Canadian Conference on
Computational Geometry, volume 26, 2014.

[GLN01] Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan.
Approximating a minimum Manhattan network. Nordic Journal of
Computing, 8, 2001.

[GSZ08a] Zeyu Guo, He Sun, and Hong Zhu. A fast 2-approximation algorithm
for the minimum Manhattan network problem. In Algorithmic Aspects
in Information and Management, 4th International Conference, AAIM
2008, Shanghai, China, June 23-25, 2008. Proceedings, volume 5034 of
Lecture Notes in Computer Science. Springer, 2008.

[GSZ08b] Zeyu Guo, He Sun, and Hong Zhu. Greedy construction of 2-
approximation minimum Manhattan network. In Algorithms and Com-
putation, 19th International Symposium, ISAAC 2008, Gold Coast,
Australia, December 15-17, 2008. Proceedings, volume 5369 of Lecture
Notes in Computer Science. Springer, 2008.

[Rob69] Fred S. Roberts. On the boxicity and cubicity of a graph. Recent
Progress in Combinatorics, 1969.

[SS05] Weiping Shi and Chen Su. The rectilinear steiner arborescence problem
is NP-complete. SIAM J. Comput., 35, 2005.

Declaration

I hereby declare that I, Michael Schnizler, wrote this thesis myself, that I did not
use any source outside of the bibliography and that every adoped statement has
been noted as such. This thesis has never been presented (in whole or in part) to
any other examination committee. Furthermore, I declare that the electronic copy
matches the printed copies.

Erklärung

Ich versichere hiermit, dass ich, Michael Schnizler, die vorliegende Arbeit selbst ver-
fasst, keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder
sinngemäß aus anderen Werken übernommenen Aussagen als solche gekennzeichnet
habe. Diese Arbeit ist weder vollständig noch in wesentlichen Teilen Gegenstand
eines anderen Prüfungsverfahrens gewesen. Weiterhin versichere ich, dass das elek-
tronische Exemplar mit den gedruckten Exemplaren übereinstimmt.

(Michael Schnizler, Stuttgart, May 4th, 2015)

I want to thank Volker Diekert for supervising this thesis and Stefan Funke for
selecting this topic and his help over the last months. Also, their lectures helped a
lot. Special thanks goes to Martin Seybold, who really took a lot of time helping me
and provided the lower bounds for the results in Chapter 6. Big thanks to Maria
Wiebe for many useful hints and to everyone who supported me during my studies.
Especially I want to thank my good friend Hansjörg Schmauder for supporting me
and helping me with everything concerning code and implementation!

	Introduction
	Motivation
	Background and Related Work
	Contribution

	Essentials
	Two-dimensional Case
	High Level Idea
	Simple Path
	Circle
	Tree
	Union Graph
	Series-parallel Graph
	Remarks

	Higher Dimensions
	Generalizations

	Treewidth
	Introduction
	Main Results
	Remarks

	Implemented Algorithm
	Greedy Algorithm
	Input Sortings

	Conclusion

