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Abstract

The fourth industrial revolution and the advent of cyber-physical systems increase the
flexibility and effectiveness in production, but they also change the role of software.
Traditional monolithic systems need to split up in order to increase flexibility, maintainability
and performance. There are existing approaches transforming traditional software towards
a cloud-based infrastructure, but little work is done in applying this to real-time applications.
This work proposes an architecture that uses containers to modularize real-time control
applications, messaging for communication and a hardware abstraction layer to improve
maintainability, reusability and flexibility. Using a prototypical implementation of the
architecture, we validate the feasibility of this approach through a benchmark.

Kurzfassung

Die vierte industrielle Revolution und die aufkommende Verbreitung von cyber-
physikalischen Systemen (CPS) erhöht die Fliexibilität und Effektivität von Produktion-
sanlagen, ändert jedoch auch die Rolle der Software. Traditionelle monolitische Systeme
müssen aufgesplittet werden, um die Flexibilität, Wartbarkeit und Performanz zu erhöhen.
Es gibt bereits Ansätze, traditionelle Software in eine Cloud-basierte Infrastruktur zu
transformieren, aber bisher gibt es wenige Arbeiten darüber, wie dies auf Echtzeitanwen-
dungen übertragen werden kann. Diese Arbeit stellt eine Architektur vor, die Container
verwendet, um Echtzeit-Steueranwendungen zu modularisieren, und außerdem Messaging
zur Kommunikation und eine Hardware-Abstraktions-Schicht einsetzt, um Wartbarkeit,
Wiederverwendbarkeit und Flexibilität verbessert. Mit einer prototypischen Implemen-
tierung der Architektur wird der Ansatz mit einem Benchmark evaluiert.
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1 Introduction

The field of industrial production is currently undergoing the fourth revolution, entering
the era of Industry 4.0. Techonlogical advances in fields like artifical intelligence, robotics,
and the Internet of Things enable new possibilities in the way goods are manufactured.
The creation of cyber-physical systems plays a major role in this. Cyber-physical systems
comprise of physical components coupled with software that coordinates, monitors and
controls them [Raj+10]. In comparison to traditional automated systems, more complex
software runs closer to the actual physical components and the interconnectivity between
components increases.

As the importance and complexity of control software increases, so does the frequency it
needs to be updated. Mass customization requires manufacturers to incorporate customer-
specific changes into prodution processes [Gil+97]. Technological advancements yield
newer and better algorithms, e.g. for CNC path planning. Monitoring and machine learning
tools can predict that a process would be imporoved if a software component is changed. If
every software update requires to stop a machine completely, they can impose a significant
loss of revenue while the update is taking place. Thus, there is an incentive to localize
downtimes to specific modules or to avoid them completely if possible.

Productions usually follow a hierarchical structure, illustrated by the automation pyramid
(DIN EN 62264 [DIN14] or Siepmann [Rot16], see the left side of Figure 1.1). The bottom
layer comprises of systems that directly communicate with hardware. The upper layers
send commands to lower layers, which in turn report data up the hierarchy. Traditionally,
this hierarchy is not only used to logically structure the components, but it also manifests
itself in the physical deployment. Components of all levels are usually deployed on-premise
in the manufacturer’s IT infrastructure, and network infrastructure enforces data flow as
defined by the pyramid.

With the advent of cloud computing and cyber-physical systems, this strict hierarchy is
softened [BK13] (see the right part of Figure 1.1). Components can still be categorized
into the levels of the pyramid (indicated by the colors), but they are deployed more flexibly,
e.g. in a cloud. Interaction between the components is also loosened so that data can be
transferred as required.

However, real-time components are usually left out in these approaches, and are still
developed on proprietary and monolithic platforms. On the one hand, this allows to focus
on the components that can be more easily transformed to a cloud-based architecture,
and keeps the reliability of traditional control systems where safety is needed. On the
other hand, it creates a gap between an increasing flexible and easy-to-deploy-to world of
high-level applications and the traditional monoliths for real-time control software.

9



1 Introduction

For applications running in the cloud, flexibility can be achieved by splitting monolithic
applications into smaller services and running them independently. Using operating system
containers, these services can be isolated without significant overhead. For non-real-
time applications, this is state of the art and widely used. This work investigates how a
container-based architecture can be used for real-time applications.

real-time
criticalField level

Control (PLC) level

Process control level

Plant management level

Enterprise resource
planning level

Automation hierarchy CPS.-based Automation

Figure 1.1: The automation pyramid and its decomposition with the adoption of cyber-
physical systems [BK13] (translation by [LM13])

10



2 Related Work

For running industrial applications in the cloud, there are already several architectures.
Gievhchi et al. give an overview over the existing architectures [GTJ13]. For example,
Goldschmidt et al. propose a cloud-based architecture for PLC Software that offers multi-
tenancy support and is horizontally scalable [Gol+15]. Within their own classification of
real-time software into soft, firm, and hard, where only the latter considers a deadline miss
a total system failure, they recognize that a cloud-based system can never support hard-
realtime requirements. Benchmarks of a prototype of their architecture yield round-trip
times below 1000 ms in 99.72% of cases for a system with 30 tenants on one instance.

Goldschmidt et al. evaluate the use of containers for industrial applications [GHS16].
Their results are promising in that they show a very low overhead of using containers in
comparison to executing code natively. In their proposed architecture, they also adress the
issue of running legacy software on different architectures using emulation.

In conclusion, there is existing work on running industrial software in the cloud with
latencies of hundreds of milliseconds. There is however not much research done on using
containers for real-time control software. Goldschmidt et al. show the feasability of this
approach, but there are many research questions left open. This work focuses on how to
use containers to split a real-time control application into modules, how these modules can
communicate with each other and how they can interact with hardware.
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3 Basics

3.1 Real-time Operating Systems

A real-time system needs to achieve reliable response times even in the worst case. In a
control application, this means reading input values, computing a response and writing
this into output values needs to complete within a specified time span. For some devices, it
is safety relevant that this time never exceeded. Software that runs on bare metal – i.e.,
without an operating system – can reach this goal without complications if the computation
time is smaller than the available time, e.g. a cycle time. If however additional software is
run on the same CPU, it may delay execution of the critical real-time code, so that it may
miss its deadline. Multi-processing operating systems incorporate interrupt management
and a scheduler to control when which application can run. In a complex system with many
applications and drivers, it can be hard to guarantee that none of them delays the critical
real-time code so that it misses deadlines. Modern operating systems usually support task
priorities, but internal routines in the operating system kernel can still block a user task
from running for a non-deterministic time. Therefore, a real-time operating system is
needed.

3.1.1 Approaches

There are different ways to enhance a modern operating system so that it can fulfill real-time
requirements. In the following, the four most common ones are briefly explained.

RT-Enhanced Kernel

A standard operating system kernel can be enhanced to meet real-time requirements.
First, it needs to be able to prioritize tasks that are marked as real-time tasks over other,
non-real-time tasks. As soon as a real-time task is runnable, the scheduler should interrupt
(preempt) other running task and switch to the real-time task. This feature is already
available as a scheduling policy in many standard operating systems. For example, in Linux,
SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE all provide a deterministic scheduling policy with a
higher priority than other tasks.

Secondly, real-time tasks also need to be able to interrupt the kernel itself. For Linux,
a patch called PREEMPT_RT is available that allows all kernel tasks to be preempted. It is
actively maintained and available for recent versions of Linux. Many of its changes are
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3 Basics

already merged upstream, i.e., into the standard Linux kernel, and there is ongoing effort
to continue this practice.

The purpose of this patch is to minimize the time the kernel can not be preempted, that is,
not be interrupted by tasks of higher priority. The fewer and shorter such non-preemptible
phases occur, the better is the worst-case delay until a critical real-time task can be run. The
patch does this by replacing many instances of spinlocks by preemptible synchronization
mechanisms like semaphorse and by executing interrupt handlers within kernel threads
[McK05].

Asymmetric Multiprocessing

A second approach is to dedicate a processor core to real-time tasks. They can run directly
on bare metal without a kernel; then, no real-time code can be prevented from being run
by kernel routines. Alternatively, a small real-time kernel can be used to provide basic
operating system features such as multi tasking. In contrast to a rt-enhanced kernel this one
can be simpler so that it is easier to verify that its maximum latencies are within bounds.

Co-Kernel

The co-kernel approach also employs a separate real-time kernel (called co-kernel), but it
also runs the regular kernel. The co-kernel’s scheduler decides when a real-time task should
be run and when there is time to run the regular kernel. Similar to the previous approach,
this co-kernel is relatively small compared to a full Linux kernel and thus validation is
easier.

Separation Kernel

A separation kernel is located in a hypervisor. Both real-time and non-real-time code only
see a virtual processor, and the separation kernel decides when each of them can be run.
This separation is transparent to the guest systems. Thus, a regular operating system can
be run on a separation kernel.

3.2 Messaging

3.2.1 Message Brokers

A message broker is a component that receives messages and routes them to their intended
destinations [Hoh03]. In a system with a message broker, the individual components do
not need to know each other. Instead, they only know how to connect to the broker and
retrieve messages from and send outgoing messages to it.

14



3.2 Messaging

Messages are usually categorized in channels or topics. Components only need to know
which category of messages they are interested in and categorize their outgoing messages.
The broker can use these categories to route the messages, but it can also be configured
with advanced routing instructions or even transform messages in transit. As all messages
pass through the broker, it can also implement management and monitoring functionality,
such as logging messages of a certain kind or auditing the message flow against security
guidelines. To cope with the high throughput and to provide high availability, brokers
should be replicated with multiple instances.

However, brokers also introduce a significant overhead, both regarding network usage and
latency [Zer17]. As the components can not communicate directly with each other, all
messages need to be routed through the message broker. In a system where each message
is routed to exactly one recipient component, this doubles the network usage because each
message needs to pass twice through the network. It also doubles the latency introduced
by the network alone. Also, the broker itself adds to the latency because of the processing
time needed to determine the recipient component.

Brokers do not need to be centralized [Rab10]. A system can consist of multiple brokers
that in turn communicate with each other. E-mail is an example for such a system: An
SMTP server acts as a message broker; clients only need to contact their server to send an
email. To deliver a message, the SMTP servers communicate with each other.

A system can also combine brokers with brokerless message flow [Rab10]. To a client, a
broker is just one peer it can send messages to and receive messages from. To a message
broker, it does not matter if one of its clients also communicates with other peers directly.
Message brokers can also be used as a buffer between two components [Zer17] in case
one of the components is not available and messages need to be queued until it is ready to
receive messages again.

3.2.2 Messaging Frameworks

Advanced Message Queuing Protocol

Advanced Message Queuing Protocol (AMQP) is an open standard for a language-
independent messaging protocol. It describes how messaging clients can communicate
with message brokers. There are many message brokers that implement this protocol, e.g.
RabbitMQ1 or JBoss AMQ2.

1https://www.rabbitmq.com/
2https://www.redhat.com/en/technologies/jboss-middleware/amq
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3 Basics

ZeroMQ

ZeroMQ is a framework for developing brokerless messaging systems. It is written in C, but
bindings for many other languages exists. It provides basic functions to create sockets and
send messages consisting of byte sequences. There are multiple transport implementations
such as TCP, UDP or IPC that all are accessible through the same API.

3.3 Scheduling

The scheduler is a component of an operating system kernel that determines which task
is to be run at a specific time. It operates on a list of tasks that can be run (and are
not, for example., waiting for another task or a system resource). Scheduling can be
preemptive or cooperative; in the former case, the scheduler can interrupt already running
tasks in order to prioritize other tasks, while in the latter case, tasks need to yield to the
scheduler themselves when they want other tasks to be able to run. Waiting on I/O such
as disk or network operations also implicitly yields control to the scheduler and thus to
a different runnable process. Each task switch takes time because the state (mainly the
registers) of one process needs to be saved and the state of the to-be-run task is to be
restored. Cooperative scheduling avoids unnecessary task switches and therefore improves
the throughput of a system. On the other hand, one misbehaving task can effectively freeze
the whole system by performing continuous CPU operations and never yielding. This is
especially bad for interactive systems where certain tasks need to react to user input or
other triggers within a specific time. Therefore, depending on the nature of the system, an
appropriate scheduler needs to be selected.

Real-time tasks can be classified as interactive tasks as their quality of operation is defined
by the latency of their responses and not by the average throughput. If both real-time and
non-real-time tasks run on the same system, non-real-time tasks need to be interrupted if a
a deadline of a real-time task would be missed otherwise.

Linux offers three real-time scheduling policies [Schb]. The simplest one is SCHED_FIFO

(first-in-first-out). It instructs the scheduler to choose the task that was enqueued last.
Tasks can be assigned a priority between 0 and 99; tasks of higher priority are always
preferred over those with lower priority and can preempt them if they become runnable.
SCHED_RR (round-robin) is similar but restricts the maximum execution time of a task until it
is preempted.

SCHED_DEADLINE is a policy for sporadic tasks, i.e. one with a sequence of jobs that are executed
at most once per cycle [Schb]. It implements the global earliest deadline first algorithm
with constant bandwidth server. Tasks with this policy are configured with a triplet of
values: period, deadline and runtime. The policy guarantees that the task is scheduled
periodically for a given runtime, before the configured deadline is exceeded. To ensure
this, the kernel keeps track of the sum of runtime-period ratios and disallows further task
creations if a predefined limit exceeded. Tasks may still be preempted during this runtime,
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e.g. because of a task with an earlier deadline, but can continue their execution afterwards
with the remaining amount of their runtime. [Scha] When the runtime quota is exceeded,
the task will not be scheduled until the next period begins. If a task blocks, e.g. because
it waits on the result of an I/O operation, its runtime is still being reduced, so it can only
execute a second time if it unblocks before the remaining runtime has reached zero. This
way, the scheduler can meet the runtime guarantees for all running processes.
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4 Architecture

In this chapter, an architecture for a modular real-time control software system will be
presented. Meeting the real-time requirement is critical for this architecture, so we will
start with a basic system that meets this requirement. Throughout this chapter, when new
features of the architecture are proposed, the real-time aspect will be reconsidered to make
sure it is met within the whole architecture.

4.1 Modularization

One way of developing a module is to implement its functionality for one specific machine
and run this software directly on the machine without an operating system (“bare metal”).
This would give the developer full control on how the software is run, as there would be
no third-party code involved. As long as the module is implemented correctly, real-time
properties are guaranteed to be satisfied.

However, using one physical machine per module does not scale well and puts highly
modularized systems in a very disadvantageous position. Therefore, the architecture needs
to be able to run multiple real-time modules on the same machine. Also, running the
module software on bare metal would require the developers of a module to bring all
utilities and drivers they need with them, as there would be no support by an operating
system.

The base for this architecture will be a real-time operating system. Section 3.1 introduced
multiple approaches. In the following, we will evaluate approaches to modularization in
the context of the initial requirements. After having decided on a modularization approach,
we will revisit the options for real-time operating systems and evaluate their fitness for the
modularization approach.

4.1.1 Source Code Modularization

One way of running multiple modules on the same system is to combine their source codes
and compile the resulting monolith into one binary. This allows to reevaluate realtime
properties of the combined system by inspecting the source code, but this would be a time
consuming and a difficult manual task. There are several disadvantages to this approach:

• The source code needs to be available, which is not always the case for third-party
code.
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• All modules need to be written in the same programming language

• Dependencies to libraries need to be found and version conflicts resolved

• To add or update a module, the whole monolith needs to be compiled and deployed
again

An advantage is that modules can synchronously communicate with each other by calling
functions. Regarding latency, this is the fastest and most predictable way of communication,
so it would be a good fit for hard real-time constraints.

4.1.2 Static or Dynamic Linking

Instead of integrating at the source code level, each module could also be compiled into
one library. The whole system then would consist of an executable that loads each module
library and calls them all. In contrast to the previous approach, no source code would
need to be available, and different programming languages could be used. However, not
all kinds of languages could be combined as e.g. the calling convention needs to be the
same.

Libraries can be linked either statically or dynamically. Statically linked libraries are added
to the executable. To add or update such a library, the executable thus has to be relinked
and redeployed. Using dynamic linking, libraries can be added or removed at runtime.
That way, this approach enables it to update libraries in a running system without affecting
existing modules.

Like the previous approach, modules can also communicate via function calls. However,
when modules are updated in a running system using dynamic linking, still being able to
call functions is not a trivial task.

4.1.3 Multiple Processes

The most prevalent method to run multiple services on an operating system is to run them
in separate processes. If each module runs in its own process, they can be updated and
restarted independently from each other. Modules are also more independent in how
they are developed: They can be written in different programming languages and use
their own versions of third-party libraries. For communication between modules, function
calls are no longer an option. Instead, operating systems offer methods for inter-process
communication. This can involve shared memory regions, pipes or sockets. It is also
possible to communicate via network protocols through a loopback device.

Modules that are running as processes are mostly independent from each other, but they
are still coupled to the host system. For example, a module targeted for Linux might
assume that specific versions of system tools or binaries exist in certain locations, which
might differ between distributions. Also, all modules share the system resources and might
interfere with each other. Deploying a new module into a running system might jeopardize
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real-time guarantees that have been met before, just before it uses more system resources
than anticipated.

4.1.4 Virtualization

To isolate modules even more while still running them on one machine, virtualization
technology can be used to run multiple virtual operating systems at the same time. They
are mostly independent from each other, so if one virtual machine is used per module, it
can be configured exactly as needed for the module. Also, resources can be dedicated to
specific virtual machines, so that their runtime behavior is isolated from other modules.

However, virtual machines impose a significant overhead on the system, as each module
needs to bring its own operating system. Also, using a standard virtualization system makes
it impossible to implement real-time software within virtual machines. Instead, a real-time
hypervisor needs to be used which is aware of which machine needs to execute real-time
tasks.

4.1.5 Containerization

Containers are a lightweight alternative to virtual machines. They allow programs to run
in their own private space without the need to run the operating system multiple times.
Usually, only the target program is run inside a container, and no other services like logging,
remote access, or user management. They are either provided by the container host system
or not needed to just one application. That way, running a container needs significantly
less memory and CPU than a full operating system.

For the host system, a process or thread running in a container is not conceptually different
from a task that runs directly on the host system. Scheduling options like real-time
properties do not get lost, and so the kernel can treat them correctly.

Docker provides many options to configure a container. If containers need to communicate,
they can be assigned a shared namespace for inter-process communication. Tooling exists
to easily create and assign networks. By setting capabilities, modules can be allowed to set
their scheduling options. With resource limits, CPU and memory quotas can be set.

4.1.6 Conslusion

Source code modularization and static linking do not fulfill the requirement to add or
update modules at run-time, and even using dynamic linking, this is not easy to accomplish.
Also, for all of them, the coupling between the modules is too high. Therefore, these
options are no longer considered.

Virtualization offers good isolation at the cost of a high overhead. The architecture targets
control devices which usually have limited power. If only few modules could actually run
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simultaneously, designing a distributed system would be difficult to accomplish. Probably,
one would look for alternative ways to do a more lightweight modularization within this
system which defeats the purpose of this architecture. Additionally, the overhead of using a
real-time hypervisor in conjunction with the real-time scheduler of the guest system would
impose an overhead in latency.

Using processes or containers is very similar. Containers have a low overhead compared to
regular processes. The benefits it offers like resource limits help to achieve the requiements
of this architecture. Therefore, this architecture will use containerization as modularization
technique.

Table 4.1: Comparison of modularization options
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Language-independent X X X

Independent permissions X X X

Independently deployable X X X X

Independent system utilities X X

Architecture-independent X

Small memory overhead X X X X

4.2 Real-time Operating Systems

Section 3.1.1 outlines four basic approaches on how a real-time operating system can be
designed. In this section, they will be evaluated in the context of Docker.

4.2.1 RT-Enhanced Kernel

A rt-enhanced kernel is a regular kernel augmented with features to support running
real-time tasks. This capability is orthogonal to supporting containers, so if the base kernel
supports containers, the rt-enhanced kernel is likely to support containers that can run
real-time tasks.

Linux supports containers, and the PREEMPT_RT patch enhances Linux for real-time
use. The main changes introduced in the patch affect locking and hardware interrupts.
Containerization features like process namespacing are sufficiently encapsulated so that
the patch does not break them.
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4.2 Real-time Operating Systems

Standard linux already supports real-time scheduling policies and supports limiting real-
time execution time via cgroups (cpu.rt_runtime.us with CONFIG_RT_ROUP_SCHED), which is used
by Docker. This allows containers to rely on a certain CPU bandwidth which they can in
turn use to guarantee their real-time properties.

4.2.2 Co-Kernel

A co-kernel is a second, specialized, kernel – in our case, a real-time kernel. It runs real-time
tasks as well as the main kernel which in turn runs regular tasks. The co-kernel needs to be
able to schedule tasks independently from the main kernel because otherwise, it would
need to synchronize with it and thus lose its real-time property. Therefore, it needs to
maintain a separate task structure and run queue. Unless specially being accounted for,
namespacing and process isolation features that make up the foundation of containers
are therefore not respected in the co-kernel. However, the feature set of the co-kernel is
reduced compared to the main kernel. For example, file system access is not handled by
a co-kernel. Therefore, file system namespacing does not need to implemented by the
co-kernel anyway.

Xenomai’s co-kernel, Cobalt, is integrated into the Linux kernel. Task to be scheduled by
Cobalt can be created by regular Linux tasks, and they are known to the Linux kernel, too.
To access non-realtime resources like the file system, they are run as a regular Linux task
and can make system calls to the Linux kernel. For these actions, the Linux kernel takes
care of namespace restrictions.

However, Cobalt itself does not support containers. This is most apparent in that it does not
resolve namespaced process ids correctly. This bug can however be fixed with few changes
to the Cobalt source code. Then, Cobalt can be used from within Docker containers. To do
this, a special device file that is used to communicate with the Cobalt kernel needs to be
mapped into the Docker container. Also, Cobalt needs to be configured to grant access to
the kernel not only to the root user, but also to users of a certain group, and this group has
to be configured for the container.

Resource limits like the CPU quota set on the container via cgroup is are not respected by
Cobalt. Also, the Xenomai developers explicitly state that once granted access to the Cobalt
APIs, a process should be considered to have unlimited access over the system. The APIs
are not security-reviewed and allow direct access to the hardware, anyway.

In conclusion, a co-kernel approach using Cobalt can be integrated into a container archi-
tecture but, with the current state of the art, does not provide security or isolation.

4.2.3 Asymmetric Multiprocessing

In the asymmetric multiprocessing approach, some CPU cores are dedicated to real-time
tasks while other execute non-real-time tasks. If multiple real-time tasks are to be run on
one CPU core, a special real-time scheduler is needed. In our architecture, this would likely
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be the case, because otherwise, the number of modules would be limited to the number of
CPU cores.

The compatibility of this approach with containers depends on the design of the scheduler
for real-time tasks. If it maintains task structure totally separate from the main kernel,
containerization features implemented in the main kernel do not apply to real-time tasks.
If both kernels are interconnected and allow a task to switch between real-time and
non-real-time mode, this approach is comparable to the co-kernel approach.

4.2.4 Separation Kernel

A separation kernel resides in the hypervisor of a virtualized system. This is on a different
level than containers and the separation kernel does not see the containers at all. Thus,
this approach is not compatible with containerization.

4.2.5 Conclusion

A rt-enhanced kernel is the approach most compatible with containerization. The architec-
ture will therefore be based on a Linux kernel with the PREEEMPT\_RT patch.

However, for safety-critical features, the predictability of the co-kernel approach might
be needed. In this case, both approaches can be combined, using Xenomai and Cobalt in
combination with a Linux kernel with the PREEEMPT\_RT patch. Cobalt is linked into the kernel
via a set of patches. These patches need to be merged with the patches of PREEMPT\_RT. This
results in some file conflicts. Once they are resolved, a functional kernel can be compiled
which passes basic tests regarding real-time properties and Cobalt APIs. Further evaluation
is needed to determine if this works in all edge cases.

4.3 Messaging

The advantages of the container architecture are most apparent when a control system is
split into multiple modules. These modules likely need a way to synchronize and send data
to each other. In a conventional, monolithic application, modules can communicate using
simple function calls and shared memory. When modules run in different containers, they
can no longer call each other, and they can not necessarily access shared memory. Instead,
the modules can communicate over network protocol.s In case two modules run on the
same host system, inter-process communication techniques are also an option

Modules are most reusable if they do not make assumptions as to whether they run on
the same host or on different hosts. Therefore, it is advisable to not base their design on
the availability of shared memory to communicate. If it is, this may be an efficient way
to exchange data. However, the modules should still work when being distributed across
different hosts, then exchanging the data using a networking protocol. This suggest the
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usage of the messaging design pattern. It provides an abstraction on the physical way
of transport and notification. Messages can be exchanged using various protocols, and
the applications that are sending and receiving the messages do not need to know the
implementation details.

Another advantages of messaging is that it generally leads to more loosely-coupled systems.
If the format of messages are formally specified, one module can be exchanged for a
different one without the need to change connected modules, as long as the message
format and semantics stay the same.

This enables several use cases, for example:

• The behavior of a system can be modified without changing existing modules. For
example, to debounce input values, a simple module can be plugged between the
input device and the modules that access it.

• The algorithm of one aspect can be swapped by replacing a module with a compatible
one. In the controller of a CND machine, the interpolation code could be swapped
this way.

• Cross-concern aspects like logging or monitoring can be added to an existing system
by connecting the modules that generate these values to logging and monitoring
modules. Existing connections that are required for the function of the system do not
need to be changed.

4.3.1 Real-time messaging

Messaging can be used to decouple components regarding time. In many situations, it is
not important that a messages is processed in the instant it arrives. In case the recipient
is currently not available, busy with other tasks, or the network connection is down, an
incoming message can be queued and processed later. Such a system is considered robust
because the functional correctness is not affected by load peaks.

However, in a real-time context, there is a hard limit on the acceptable time it takes to
process a message. If a message could not be delivered in a certain time, there is no point
in reliably storing it. This suggests there are special aspects to consider when designing a
real-time messaging system.

• Messages of unbound lengths are not allowed in a real-time system because it would
not be possible to calculate a worst-case transmission or processing time.

• There can be message queues, but they also need to be limited in length. This is
relevant when messages can be processed faster than they are created, and a certain
processing delay is acceptable. The system has to be configured so that the message
queue does not grow beyond a certain length.
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• The timing characteristics of message transport affect the real-time property of the
whole system. Thus, in order to evaluate the real-time behavior of a system, the
transport methods of all message channels need to be selected first.

• The ability of a module to meet its deadline requirements depends on the responsive-
ness of other modules. The runtime behavior thus becomes part of the contract of a
message channel, much like the message format.

In summary, although messaging allows to functionally decouple modules from each
other and form the technical communication implementations, a system still needs to be
evaluated as a whole in order to determine its real-time behavior.

Obviously, the whole code that implements the messaging framework needs to be real-time
capable. This means its runtime may not exceed a specific limit, even if other, non-real-time,
tasks are running on the same system. For example, it can not use a standard network stack
that is shared with non-real-time applications. If kernel features are used, they need to be
aware of the priority of the calling process.

However, the restrictions also grant an assumption to be made by the messaging framework:
As both message length and queue size is limited for a given message channel, the whole
queue size is limited. Thus, a ring buffer of fixed length can be used for the queue. This
property will be used in one implementation that is described later.

4.3.2 Message Brokers

As described in Section 3.2.1, message brokers are components that receive messages and
route them to their destination. Employing a message broker in an architecture has many
benefits as it brings features that are likely to be required, from service discovery over
management to monitoring. However, its main disadvantage – the introduced latency and
overhead – is to be considered, especially for a real-time application.

If a control application with a cycle time below one millisecond is to be split up into several
modules, a low-latency way to communicate becomes crucial. One cycle can involve several
modules that each need to receive a message, process it and pass the result to the next
module. Depending on the module granularity, the actual work done by a module can be
as small as comparing a value to a threshold, doing a conversion or an interpolation. In
this scenario, the extra overhead of passing each message twice – once to a broker, and
once from the broker to the next module – is significant. Therefore, the disadvantage of
the extra overhead introduced by a broker is emphasized in our architecture.

If a broker is used for communication between real-time modules, the broker itself needs
to be real-time capable, too. First, this means that all procedures involved in receiving,
routing and sending messages, need to be time bounded. Even algorithms of logarithmic
time complexity regarding an unbounded variable might violate this property. All threads
running these procedures need to use real-time scheduling policies. Secondly, if real-time
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and non-real-time messages are processed by the same broker, it has to support priorities
on messages.

In a real-time system, having message queues that are available even if modules are
unavailable, is generally less important than in many other systems. Messages describing
the current state of the system are obsolete rather quickly and replaced by the next one.
If a module is not available at a given time, queuing the message may not be of any use
because by the time the module is restarted, the deadline for the response might have
already elapsed. In a safety-critical control application, the correct way to handle a faulty
situation is usually to switch to a safe state, e.g. by switching off power of actuators. This
is not to say that there is no use for message queues in control applications, but there are
many situations where this is not needed.

Similarly, persistent message storage is less important than in other contexts. The guarantee
of a messaging broker to store messages persistently allows to develop transactionally safe
components. A component might for example receive a message, process it by performing a
modification in a data base, and then acknowledge the successful processing of the message.
If the system crashes before the data modification is acknowledged and persisted in the
data base, the message is still held persistently in the message broker, and after a restart,
can be processed again. This only works if the message broker guarantees to store messages
persistently.

Recovering from a crash of a control system is not this simple. With cycle times in the
range of milliseconds, recovering from a crash takes longer than a cycle and thus deadlines
are missed either way. As physical state of the machine might have changed in between,
it is generally safer to recover from a crash with a defined protocol instead of continuing
to process old messages as if nothing happened. Besides, any state in the modules would
need to be persisted in each cycle in real time.

On the other hand, some features of message brokers are required by this architecture. Even
though modules should be able to communicate directly with each other, the configuration
of which modules communicates with which should not be hard-coded in the modules
themselves. Ideally, it should even be possible ot update this configuration in a running
system. In this case, a message broker can be used to distribute the configuration to the
modules. However, this approach is limited because it might be necessary to reconfigure
the containers if they need to be able to communicate to a new module. In Docker, some
reconfigurations can only be done by removing and recreating a container.

4.3.3 Messaging Framework

In a messaging system without a broker, the whole messaging functionality needs to be
implemented in the communicating modules themselves. In Section 3.2.2, the brokerless
messaging framework ZeroMQ has been introduced. It supports a variety of transport
mechanisms from in-process to network protocols and offers a clean uniform API. The
developers of ZeroMQ performed latency tests on a Linux system with a rt-enhanced kernel
[Sus08] and measured maximum latencies below 100 µs. Therefore, this library qualifies
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in principle for usage in real-time systems, although more specific tests obviously need to
be performed.

ZeroMQ provides the generic functions zmq_bind and zmq_connect which accept a string
that specifies the transport protocol and protocol-specific address information. After
this configuration, the functions to send and receive messages work independent from
the protocol. This is important because the transport protocol might not be known at
compile time. The API of ZeroMQ allows to write the code transport-independent and pass
the correct connection string at runtime, e.g. via environment variables, config files or
arguments.

4.3.4 Messaging Patterns

The simplest form of messaging uses unidirectional channels which transport arbitrary
messages from one module to another. Most use cases can be implemented using this
simple design.

Request-reply

A synchronous request-reply pattern (where a client module sends a message to a server
module and then waits for the reply) can be implemented with two channels, one from
the client module to the server module for the requests and one opposite for the replies.
As there is at most one request under way, it is clear to which request a reply relates. If
the client module does not synchronously wait for the reply but continues executing, it
might happen that it sends a second request while the first one has not been answered
yet. As long as the server module processes incoming requests in order, replies can still be
related properly on the client side. If, however, processing of requests can be parellelized
and replies are sent in any order, there needs to be an explicit mechanism to correlate
replies to requests. In this case, the request message should include a request identifier. For
convenience for the developers and to reduce the chance of flawed implementations, this
functionality can be provided by a library.

ZeroMQ has special socket types for the synchronous request-reply pattern. The user
is requred to send and receive messages alternately. Both requests and replies are sent
through one socket. This simplifies set-up for this use case but it requires that sockets can
be bidirectional. In contrast to two unidirectional channels, this reduces the flexibility as
both requests and replies now need to follow the same transport path. There might be
transport protocols that only support one direction (e.g. UDP multicast) or it might be
appropiate to route requests or replies, respectively, through an additional module. In any
case, the synchronous request-reply pattern is simple enough with unidirectional channels
so that the complexity of bidirectional channels will be avoided in the architecture.
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Publish-subscribe

Publish-subscribe is a messaging pattern where one participant sends (publishes) messages
and others can subscribe to them. The sender usually does not know who will receive the
messages or how many recipients there are. This is useful to inform others about an event
if no direct response is required.

Some of the requirements for this architecture require the availability of the publish-
subscribe pattern. For example, modules that provide sensor data should make them
available for any interested module. This data providing module does not require any
feedback from the recipients. Thus, it is a perfect fit for a publisher. Monitoring modules
also make use of this pattern as they are linked to certain output parameters in order to
monitor their value. The modules that output the values do not care if there is a monitor
attached or if they are just sending them through the normal path to the next processing
module. Here, the monitoring modules are subscribers.

Messaging architectures with brokers easily support this pattern because the broker already
provides an abstraction to who sends and receives messages; publish-subscribe is just one
way to route messages. Partial subscriptions, e.g. based on hierarchical topics, can be
implemented in the broker. Also, it is possible for multiple publishers to send message into
the same topic, which then get merged and delivered to all receivers of this topic.

In a brokerless environment, where messages only flow between receivers and publishers,
more configuration effort is needed for the publish-subscribe pattern. In the simplest
case, the publishers know all recipients and send the messages directly to them. This can
be abstracted in a framework so that the application code only needs to call the API for
sending the message once. The list of recipients then can be configured at deploy time or
at runtime.

If connection-based message protocols are used (e.g. TCP or unix sockets), it is also
possible that the subscribers open connections to the publisher. The publisher then sends
outgoing messages through all open connections and does not otherwise need to know the
subscribers.

There are also scenarios where neither recipients nor publishers directly know each other
but are connected through a common handle like a topic. In this case, a common component
needs to find out who is subscribed to a topic and who publishes messages to it. Then,
it can for example instruct subscribers to connect to all the publishers or it can instruct
publishers to connect to all the subscribers. These might even be combined, i.e. a publisher
sends its messages to some recipients, but other recipients initiate the connection to the
publisher. Which is best depends on the transport protocol.

In conclusion, publish-subscribe is a pattern required for our architecture. Without a broker,
support by the framework is needed in order to set up the message flow correctly. Therefore,
the architecture needs to include way to configure a message flow and inject the resulting
connection configuration into the modules.
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Proxy

As noted above, any change in the system can affect the real-time properties. Message flow
is no exception. In particular, if a core real-time module needs to send outgoing messages
to many other modules, potentially over the Internet, this can impact its performance.

To reduce the impact on the real-time module, the proxy pattern can be used. This is
a simple module which only passes messages through, from potentially many incoming
connections to potentially many outgoing connections. The original module only needs
to send its messages to the proxy module. If the proxy module is located on the same
machine as the real-time module, an efficient inter-process transport can be used. The
proxy module then takes care of sending the message to a larger number of recipients.
If this transmission takes longer than anticipated, the real-time properties of the original
module are not impacted.

4.3.5 Ring Buffer Transport

If a monolithic application is split into several modules, it is likely that they still need to
exchange a lot of data. To reduce the overhead of the containerized architecture to such
software, we propose a transport implementation based on ring buffers. This transport
assumes the availability of shared memory between both connected modules. This can be
achieved by assigning both containers to the same IPC namespace.

The algorithm is based on an open source implementation by Frederick M. Proctor [Pro99].
It uses a queue data structure which resides in memory shared between the receiver and
the sender. It consists of a fixed-length array of messages, a read position and a write
position. A message is an arbitrary fixed-length data structure, e.g. a byte array and a
length information.

Upon initialization, read and write position are set to equal values. To send a value, the
write position is determined by incrementing the current write position, and wrapping it
around to zero if it exceeded the queue length. the message is copied into the queue at the
correct position and then, the write position is updated in the data structure. The receiver
waits until the write position changes and then reads the next message off the queue. It
also updates its read position so that the sender can check if it would override messages
that have not yet been read.

Instead synchronizing using write and read positions, semaphores can also be used. A write
semaphore is initialized with zero; a read semaphore with the queue length. the write
semaphore is incremented each time a message is sent and decremented when it has been
read. for the read semaphore, it is the opposite. That way, the operating system takes care
of synchronizing both processes.
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Limitations

Using Docker, only one IPC namespace can be assigned to each container. This is either
a private namespace, the host namespace, or it is shared with other containers. If many
containers should communicate via shared memory, they all need to share one IPC names-
pace. Any of these modules can then potentially intercept the communication of any other
module in the same namespace. In contrast to networking, the channels can not be locked
down further using routing rules or a firewall.

The suggested solution for this case is to identify sets of modules of the same trust level and
assign a IPC namespace to each of these sets. The communication between the namespaces
then needs to use a different transport, e.g. named pipes or a network protocol.

4.3.6 Conclusion

We use the messaging pattern for communication because it decouples the modules in sev-
eral ways. Once the message formats are defined, modules can be developed independently
from each other can even switched for different implementations without impacting the
interoperability. The technical transportation of messages can be abstracted with a simple
API so that for each communication channel, the best transport can be chosen without
having to change the module implementation. It is necessary to support more than one
transport depending on latency requirements, physical and logical location of modules and
available hardware resources.

A brokerless solution is preferred because it minimizes latency, which is especially important
in loops with small cycle period lengths. The publish-subscribe messaging pattern should
be supported explicitly because it is needed to implement the requirements and it can not
easily be implemented without framework support. Other patterns like request-reply do
not need special support because it can be implemented within the modules.me

4.4 Drivers

Control applications usually need to interact with specialized hardware like sensors or
motors. To improve the portability of an application, it should not be assumed that the
required drivers for the hardware it accesses, is installed on the target environment. Instead,
it would be beneficial to leverage the advantages gained by containerization for drivers,
too. This can be achieved with user-mode drivers [Nak02]. There is still some support
needed in the kernel, but this support can be generic enough to support various use cases,
while the actual drivers are implemented within a Docker container running in user space.
These containers need special permissions to access memory mapped directly to hardware,
so it is advisable to keep them small. The driver modules then can communicate with other
modules via messaging.
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It is also possible to combine regular kernel-space drivers with Docker containers: If a
device is connected to the host via a generic bus interface, it can be advisable to use a
regular driver for the bus, and a container that uses this bus driver to communicate with the
remote device. The bus driver would then be mapped as device file within the container.

4.5 Scheduling

The architecture involves running many modules, with mixed real-time and non-real-time
tasks, on the same system. The system’s scheduler and the task’s scheduling policies need
to configured properly to ensure all real-time guarantees are met. Whether this is the case
can be answered by induction (looking at modules individually and deducing the overall
performance) or by tests of the whole system.

Looked at in isolation, a module fulfills it requirements if it performs correctly, i.e., it
delivers correct responses in time. To prove this, one can assume that other modules and
the operating system (most importantly, the scheduler) behave as specified. Then, the
whole system is correct if all its modules are implemented correctly, their assumptions do
not contradict, and the system is able to meet the total requirements.

As an example, imagine a system consisting of three modules that each require 400 µs
of CPU time each millisecond, and that needs to read inputs at the beginning of each
cycle of one millisecond and respond before the end of a cycle. On a dual-core processor,
the system is able to guarantee the required execution time for each module with some
fraction to spare for non-real-time tasks. If module three depends on the results of both
modules one and two, the scheduler is able to execute the first two modules in parallel,
and then the third one after both of them have finished. If however the second module
depends on a result of the first module, and the third module depends on a result of the first
module, then this configuration can not be scheduled in a way that still fulfills the response
time of one millisecond. This shows that adding up the CPU fractions of all individual
modules is not sufficient, and the interaction between modules needs to be taken into
account. In the general case, the interaction can be complex and may even be different
for each cycle. Deciding if the system can be scheduled properly, just by looking at the
source code of each module is undecidable, because it is a non-trivial property according
to Rice’s theorem [Ric53]. Therefore, it is necessary to specify the module’s behavior in a
simpler way. One possibility is to use execution profiles that describe how a module reacts
to incoming messages, how and when it sends messages itself and when it requires what
system resources like the CPU.

Examples of execution profiles are:

1. A periodic source that is activated periodically, performs a computation takes up to t
CPU ticks (e.g. to read a value from a hardware port), and then sends an outgoing
message
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2. A consumer that waits for an incoming message and then performs a computation
that takes up to t CPU ticks (e.g. to write a value to a hardware port).

3. A pipeline module that waits for an incoming message, then performs a computation
that takes up to t CPU ticks, and then responds with an outgoing message.

Real-world modules can be more complicated than this, and listing all possible execution
profiles would not be possible. The point is to bring the module’s source code to an
abstraction level where only external events such as incoming and outgoing messages are
represented, and everything in between is summarized in something like t CPU ticks. An
UML interaction diagram could be used to visualize an execution profile, but it would be
advisable to use a format that is specifically tailored for this use case. One possibility is the
following definition:

1. A module consists of several tasks.

2. A task consists of a sequence of phases, that is repeated infinitely.

3. A phase consists by a blocking state where the module waits for an external event and
a running state with a solid block of execution on the CPU.

4. A phase defines a trigger that ends the blocking state and starts the running state,
e.g. a timer or an incoming message.

5. A phase also defines the worst-case CPU time for the running state, and which
messages will have been sent after it executed.

6. A phase may define a deadline for its completion.

This definition can be used to describe all of the examples above and more, but it can
not describe all possible cases. To determine if a system consisting of several modules
can be scheduled, all execution profiles need to be created. Then, a dependency diagram
for phases needs to be constructed. Each phase has a dependency on the previous phase,
and for each message it waits for a dependency to the phase of a module that sends this
message is added. In order to reflect the latency of message passing, an intermediate node
needs to be inserted with the worst-case latency as its time. Once the dependency diagram
is created, a topological sorting algorithm can be used to determine an optimal scheduling
plan. If all phases that define deadlines are completed before their deadline, the system
can be scheduled correctly.

This approach assumes the scheduler always chooses the optimal schedule. None of the
policies explained in Section 3.3 are able to do this because they miss cricical information
about the dependency between modules or about deadlines. SCHED_DEADLINE is the
closest one because it respects deadlines, but it is not suitable for tasks that wait multiple
times, e.g., once for a timer and then for an incoming message. Also, multi-core systems
are not properly represented by a topological sort but need a more advanced algorithm.
Another approach is to use the execution profiles and calculating all possible outcomes
with a specific scheduler, such as SCHED_RR, and then determining if the worst case of
them respects all deadlines.

33



4 Architecture

If all modules are already implemented, it is also possible to test the behavior by running
the complete system.

4.6 Complete Architecture

Figure 4.1 illustrates the architecture from a functional view. An application consists of
several modules (M1, M2, and M3 in the example). A module is a piece of executable
software (in the form of a container image), combined with its metadata. Included in
the metadata are input and output definitions (illustrated by small squares) with type
information regarding messages being sent or received. Links connect inputs and outputs
of compatible types. Multiple links can be connected to a single input or output, to support
messaging patterns described in Section 4.3.4. A link also specifies which transport (e.g.
UDP or IPC) is to be used. This information is not required from a purely functional point
of view, but necessary to fully specify an application for performance tests.

The common hardware interface acts as a meta-module that provides generic inputs and
outputs for various types of hardware. These hardware types are not specific products but
abstractions with a generic interface. Modules can be written against these interfaces to
improve reusability.

M1 M2

M3

Common Hardware Interface

Figure 4.1: Functional view of the architecture

Applications following this architecture can be deployed on hosts. Such hosts are Linux
machines with some additional preparations (see Figure 4.2). In full configuration, the
kernel has both the PREEMPT_RT patch and the Cobalt kernel patch applied. This allows to
run different modules in both kernels at the same time, depending on their criticalness. The
Cobalt kernel needs to be patched in order to support PID namespaces. It is also possible to
only apply one of these two patches.

Drivers can be installed both in the Linux kernel and in Cobalt, to be used by modules
running on the corresponding kernel. All modules run in Docker containers, managed by
the Docker daemon. They interact with drivers via device files mapped within the container.
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Communication between modules takes place according to the links and configured trans-
port methods. The corteX runtime (cortex standing for container orchestration for real-time
environment X) is responsible for creating and updating Docker containers and supporting
infrastructure such as volumes and networks. It informs the containers about connected
links and makes sure they can connect using the specified transport methods, e.g. by
assigning related modules to a shared network or IPC namespace.

The common hardware interface is translated to a set of modules that implement the re-
quired device drivers. Upon deployment, the user can choose the specific drivers according
to the used hardware.

M1

Hardware

i-pipe

Cobalt
Linux

with PREEMPT_RT

DriversDrivers

Docker
deaemon

Cortex
runtime

DrM3

M2
Docker environment

Dr

Figure 4.2: System view of the architecture
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5.1 Prototypical Implementation

To evaluate the proposed architecture, we developed a prototypical implementation of the
core aspects. These include running multiple real-time Docker containers on one host,
using messages to communicate, and accessing native drivers through containers. The
prototype consists of several modules, a common framework for these models (libcortex),
and a command-line interface tool to manage orchestrations.

For consistency in performance and to simplify interacting with the kernel, modules are
written in C. All modules need to implement messaging functionality with various transport
methods. Therefore, this has been extracted into the library libcortex. It offers a very
simple messaging API: cortex_input and cortex_output to open channels, and cortex_send
and cortex_receive to send and receive byte sequences. The library parses environment
variables to determine which transport to use for each input and output. Most transports
(tcp, udp, ipc and inproc) are handled via the library ZeroMQ. In addition, the shm transport
implements the Ring Buffer Transport in shared memory as described in Section 4.3.5.
There is also a variant shm+sem that uses semaphores to communicate the availability of
new messages.

A command-line interface written in Python servers as a simplified cortex runtime. It reads
an application description from a YAML file and creates and configures the necessary Docker
containers, networks and volumes. The application description includes modules and their
configuration (environment variables, capabilities, and device files) as well as links. For
each link, the source module and output, the target module and input, and the transport
protocol can be specified. All modules share an IPC namespace, a network, and a volume to
share IPC files. This way, multiple applications can be run simultaneously without effecting
each other, and still allow free communication between all the modules.

5.2 Benchmarks

In order to evaluate the real-time behavior of a containerized system communicating
via messages, we set up a benchmark. This benchmark is based on the prototypical
implementation introduced in the last section. It consists of two modules: The benchmark
module and a relay module. The benchmark module runs in a loop and executes multiple
runs that each generate one set of aggregated statistics. A run is executed within a thread
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with real-time priority. It executes a configured number of cycles with a configured interval
time. The sequence of one run is illustrated in Figure 5.1. Each cycle sends a message
through its output channel and then waits for a reply on the input channel. The time it
spends sending and receiving (including the waiting time for the reply) is recorded as
runtime. Latency on the other hand is the time difference between the scheduled wake-up
time and the actual wake-up time between two cycles.

Due to the short period lengths, a benchmark usually executes a large number of cycles
(more than a million in ten minutes at a period of 500 µs). To simplify working with
the results, the tool aggregates the metrics runtime and latency on the benchmark level.
Via the number of benchmarks and the number of cycles per benchmark, the resolution
of the output data can be configured. The aggregations include minimum, maximum,
mean, median, percentiles (99% to 99.999%), standard deviation and the mean absolute
percentage error.

5.3 Results

We ran the benchmark tool described above on a machine with Linux 4.9.53, the PRE-
EMPT_RT patch and the cobalt kernel patch. We used three different transport methods
(UDP, IPC and the ring buffer as described in Section 4.3.5. Each benchmark consists of 500
runs of 121000 cycles with a period of 500 µs each. During the test, the stress generator
stress-ng1 was running with the options –cpu 4 –io 4 to use the CPU and keep the kernel
busy with sync calls.

queued

running

queued sleeping

running

runtimelatency

benchmark consisting of n cycles

sleep time

Figure 5.1: Diagram showing a benchmark that is split evenly into cycles, and a possible
cycle execution

1http://kernel.ubuntu.com/~cking/stress-ng/
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5.3 Results

Figure 5.2 plots the maximum round-trip time within each run. We are only interested in
the maximum times because a real-time system must meet its time constraints also in the
worst case. Note that the UDP diagram uses a different time scale because its worst-case
performance is worse by a factor of ten. This behavior only occurs if the –io option is
specified on the stress test – otherwise, the round-trip times of UDP are only slightly higher
than those of IPC (while the IPC times are not affected by the –io option), as seen in charts
(b) and (d).
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Figure 5.2: Round-trip time from benchmark module to relay module and back, with
different transports (a,c,e: with –io option in stress-ng; b,d,f: without –io
option)
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Plot (e) and (f) show the results of the custom ring buffer transport using shared memory
and semaphores, as described in Section 4.3.5. In comparison to ZeroMQ’s IPC, its worst-
case times are lower by a factor of three. The difference is to be attributed to the difference
in complexity – the shared-memory approach does not even use separate threads for
communication.
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6 Conclusion

We analyzed the opportunities and challenges that come with a real-time control application
based on containers and proposed a reference architecture that enables reusability, porta-
bility, and flexibility. The architecture incorporates solutions for communication between
containers and between containers and hardware. We showed that the PREEMPT_RT patch
can be combined with the Cobalt kernel and that Cobalt-based applications can be run
within containers.

With a prototypical implementation of the container orchestration runtime, we executed
benchmarks that test round-trip time of messages with different transport methods. The
results suggest that round-trip times between 50 and 150 µs in the worst case are feasible
and thus it is possible to implement an application with a periodic interval of 500 µs can be
split into several dependent modules.

As part of future work, we consider developing standards for message types to increase
the reusability of modules within different applications. From a technical viewpoint, the
performance differences with different transport protocols need to be further analyzed, i.e.,
it should be determined if the IPC functionality of ZeroMQ can be lifted to comparable
round-trip times as the ring buffer transport using shared memory.
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