
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Visualization of Performance
Antipattern Detection Results

Matthias Popp

Course of Study: Softwaretechnik

Examiner: Dr.-Ing. André van Hoorn

Supervisor: Dr. Dušan Okanović,
Teerat Pitakrat, M.Sc.,
Jun.-Prof. Dr. Fabian Beck (Universität
Duisburg-Essen)

Commenced: July 3, 2017

Completed: January 3, 2018

CR-Classification: D.4.8, H.5.2

Abstract

In many cases developers do not understand appearing performance problems after the
implementation or some changes. The problems can often be traced back to same root
causes, which are present in many different software systems. Some of these problems
are collected and analyzed, called anti-patterns, and can be detected by software
diagnosis tools. Thus, organizations are using application performance management
(APM) tools, to detect bottlenecks and other performance problems in their product. To
support the developers, this thesis will deal with visualization of detected anti-patterns.
Information about the anti-pattern, individual data from the system under test (SUT) to
understand the problem and their solutions are a part of the report. The result of the
work will be a prototype framework, which uses available diagnosis and APM results to
generate the visualized based report, e.g. stack traces and time series.

iii

Kurzfassung

Oftmals verstehen Entwickler nicht, wieso ihre Softwaresysteme Performance-Probleme
aufweisen, nachdem sie es implementiert oder verändert haben. Diese Probleme können
meistens auf schon bekannte Ursachen zurückgeführt werden. Die bekannten Ursachen,
auch als Anti-Pattern bekannt, können von Software-Diagnosewerkzeuge erkannt wer-
den. Solche Programme nutzen Messdaten von Application Performance Management
(APM) Systemen und werten diese aus. Sobald ein Performance-Problem gefunden
wird, werden die Ergebnisse in Form eines Berichts präsentiert. In dieser Arbeit geht es
um die Erweiterung dieser Informationsberichte. Um die Entwickler daringehend zu
unterstützen, dass sie das Performance-Problem verstehen und die Ursache herausfinden
können, wird in dieser Arbeit versucht, solche Daten visuell darzustellen. Das Ergebnis
dieser Arbeit wird ein Prototyp sein, welcher visuelle Berichte für gefundene Anti-Pattern
erstellt.

v

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Goal . 2

2. Foundations and State of the Art 5
2.1. Application Performance Management 5
2.2. Software Performance Anti-Patterns . 6
2.3. Data Types . 9
2.4. Visualization Techniques . 11
2.5. Related Work . 16

3. Anti-pattern Visualization 19
3.1. Application Hiccups . 20
3.2. The Ramp . 21
3.3. Single User Problem . 22
3.4. More is Less . 23
3.5. Traffic Jam . 23
3.6. Unbalanced Processing . 24
3.7. CPU-intensive Application . 25
3.8. Database Congestion . 26
3.9. One Lane Bridge . 29
3.10.Excessive Messaging . 29

4. Implemented Visualization Tool 31
4.1. Features . 31
4.2. Visualization Techniques . 32
4.3. Integration . 35

5. Evaluation 37
5.1. Evaluation Goal . 37

vii

5.2. Evaluation Design . 37
5.3. Results . 38

6. Conclusion 41
6.1. Summary . 41
6.2. Discussion . 41
6.3. Future Work . 42

A. VoP Example 43

B. Evaluation Form 45

Bibliography 47

viii

List of Figures

2.1. Anti-pattern Taxonomy . 7
2.2. EXTRAVIS Call relations within a program shown using linear edges (left)

and using hierarchical edge bundles (right) [CHZ+07] 12
2.3. SynchroVis [Döh12] . 14
2.4. Horizon Chart: 1) Filled line chart. 2) Flipped negative values over x-axis

and colored red. 3) Divided into bands and overlaid, again halving the
height [HKA09] . 15

2.5. SyncTrace [KTD13] . 16

3.1. Visualization Pipeline . 19
3.2. Spiral Chart [TS08] . 21
3.3. Stacked Chart visualization for 4-time series [JME10] 22
3.4. Sunburst [HBO10] . 24
3.5. 1) expanded call graph 2) low level abstract level [LTOB10b] 25
3.6. Matrix View [HBO10] . 27
3.7. Sankey Diagram [Med14] . 28
3.8. Flamegraph [Gre16] . 28

5.1. Evaluation task results . 39
5.2. Evaluation question results . 39

A.1. VoP Example . 43

ix

List of Tables

3.1. Anti-pattern overview . 20

5.1. User study participants (PPD = Performance Problem Detection, HCI =
Human Computer Interaction) . 38

xi

List of Acronyms

APM application performance management

SPAs Software Performance Anti-Patterns

SUT system under test

xiii

List of Listings

4.1. Example JSON for tab layout . 32
4.2. Example JSON for chart layout . 32

xv

Chapter 1

Introduction

This thesis investigates approaches to visualize performance anti-pattern results.

This chapter clarifies the motivation behind this approach and shows the goals of the
thesis. The first Section 1.1 describes the motivation in detail. Section 1.2 gives an
overview about the thesis goal and Section 1.2 describes the thesis structure and provides
a short outlook.

1.1. Motivation

Nowadays, software systems are monitored by application performance management
(APM) to prevent and detect performance problems earlier [HHMO17]. Performance
problems, like little increases in load times, can have huge impacts of the profitability
on a company. Therefore, companies should always pay attention to the performance of
their systems.

The basic functions of performance supervision tools are often, visualization of
performance-relevant measures, alerting or in some cases detection of problem in-
stances. This performance problem instances are caused by design mistakes. Such issues
have been documented in the form of performance anti-pattern.

These anti-patterns can be detected by APM tools. The common practices is to alert
the user after an anti-pattern is detected. A report about the performance problem
is then generated. The report consist the problem instance and a natural language
description. However, users can’t comprehend the detection or even the root causes.
Trusting the results or looking in the measurements and analyzing these manually are
the only possibilities to confirm the result. In order to improve this situation, this thesis

1

1. Introduction

will use existing visualization approaches to add more visualized data to the detection
report, depending on the detected performance anti-pattern.

Not every visualization technique is equally good. Each of them has its own qualities
and can sometimes only be used to a specific scenario. After a short overview about
existing visualization techniques in Section 2.4 and a more detailed description for the
used techniques in Chapter 3, we will evaluate the techniques based on the data types
and the presented anti-pattern. Therefore, the visualization techniques also have an
evaluation in the performance visualization scenario.

1.2. Goal

The goal of this thesis is to implement a prototype reporting framework, which can be
integrated into existing APM tools. It obtains information about the diagnosed anti-
pattern and data from the APM tool to inform the user, with different visualization types,
about the anti-patterns. The specific goals are listed in the following.

Visualization techniques research

Heger et al. [HHMO17] already mention that APM information needs to be presented in
a meaningful and comprehensible way and can be categorized in business and technical
scopes with different levels of abstraction. We will focus on the technical scope and a
lower level of abstraction, because only on lower levels anti-pattern can be detected. A
presentation of the server health, a higher abstract level, is useless to understand anti-
patterns. Moreover, data types must be analyzed to exclude unrealizable visualization
techniques on the one hand and to use existing techniques categorized by data types on
the other hand.

The visualization techniques will also be analyzed and categorized. The categorization is
based on the types of goals, which the performance visualization techniques can address
[IGJG14].

Anti-pattern Visualization

Before we can start implementing the prototype we have to find a mapping between the
visualization techniques, which we have collect before, and the anti-pattern. The goal
is to find visualization techniques, which visualize the behavior of the anti-pattern and
support the root cause detection. Therefore, two aspect are necessary. The first aspect is

2

1.2. Goal

the performance problem, which causes the anti-patterns. The second is the root cause,
which caused the anti-pattern. Both aspect should be presented in one report.

Developing prototype

To generate a visualization report out of a detected anti-pattern, we have to develop a
prototype. Existing implementations are used to support large amount of visualization
techniques, which can adjust to the circumstances. Therefore, the prototype should use
web frameworks, because the web is the most common way to present data and there
are the most existing visualization libraries. We receive the measurement data from the
APM. This data will be saved as execution traces or time series database systems. To
receive data from database systems and other data formats, an interface is required.

Evaluation

After the implementation, the result is then evaluated in a user study. The selected
visualization techniques and the benefits should be rated for each individual anti-pattern.
Therefore, the participants should have fundamentals of anti-patterns or at least a
description of the anti-patterns.

Thesis Structure

This thesis is structured as follows:

Chapter 2 – Foundations and State of the Art: In this chapter, the foundations for
this thesis are described. This includes related work and the state of art according to
this thesis. For a better understanding of the anti-pattern detection, an introduction
to the Software Performance Anti-Patterns (SPAs) and APM are given. A more
detailed description is given for the visualization foundations and the different
data types.

Chapter 3 – Anti-pattern Visualization: The combining of visualization and anti- pat-
tern are presented in this chapter. In the following, suitable visualization ap-
proaches are investigated for each analyzed anti-pattern.

Chapter 4 – Implemented Visualization Tool: The implementation of the framework
prototype and the integration in the existing environment are outlined in this
Chapter. The used tools and technology are also presented.

3

1. Introduction

Chapter 5 – Evaluation: To evaluate the prototype, a user study is used, which is
described in this chapter. Participants will be presented the prototype and be asked
questions.

Chapter 6 – Conclusion: In the last chapter, we will sum up the outcomes of this thesis
and outline the future work.

4

Chapter 2

Foundations and State of the Art

This chapter introduces the used technologies and the environment, which are related
to the work of the thesis. Section 2.1 provides how APM tools work and in Section
2.2 what are performance anti-patterns. To better understand important terms, in the
state of the art part an overview about visualization techniques (Section 2.4) and data
types (Section 2.3) is given. In the next part, Section 2.5, related work to this thesis is
provided.

2.1. Application Performance Management

An APM tool “aims to achieve an adequate level of performance during operations”
[HHMO17]. It covers two main functions. The first one is to continuously monitor the
current state of the software system. The second is to detect, diagnose and resolve
performance related problems [HHMO17]. It collects data from different system levels,
e.g. application or hardware, and uses therefore different techniques, e.g. injected
code or log analysis. Two data types are commonly used: time series (Section 2.1.2)
and execution traces (Section 2.1.3). These data can be used to extract architectural
information, including logical and physical deployments. APM uses different views to
represent the information in a meaningful way. The storage data can be interpreted and
used to solves following goals: problem detection and alerting, problem diagnosis and root
cause isolation (Section 2.1.1) and system refactoring and adaptation.

2.1.1. diagnoseIT

diagnoseIT [HHO+16] is an APM tool and focused on problem diagnosis and root cause
isolation. It receives execution traces and uses expert knowledge for analysis. Due

5

2. Foundations and State of the Art

to the use of OPEN.xtrace, detailed in Section 2.1.3, diagnoseIT is independent from
specific monitoring tools. After diagnoseIT receives traces, it uses expert created rules
to analyze each trace. Based on the insights diagnoseIT obtains by applying rules, it
detects potential anti-patterns. The result of this process is the problem instance, which
holds the performance problem, and proposes solutions in natural language.

2.1.2. Time Series

Time series data is a two dimensioned data type and consist of a series of data points.
Each data point describes one measurement and contains a timestamp, as an independent
variable, and a dependent value, e.g. response time. Due to the constant continual time
variable, time series are used in any domain of applied science and engineering, which
involve temporal measurements. Often, time series databases are used to store time
series and are optimized for this type of data.

2.1.3. Execution Traces

Execution traces capture information on a software system’s. They contain runtime
behavior, data on system-internal software control flows, performance, as well as request
parameters and values [OHH+16]. Moreover, these are used for dynamic program
analysis and, in its simplest form, the representation of the control flow of a method
execution. Simple execution traces can be stored in a hierarchical data structure, except
traces with loops. Therefore, common visualization types are tree-based types, e.g.
dendrogram. Open Execution Trace Exchange (OPEN.XTRACE) is a data format for
simplification of data interoperability and exchange between APM tools [OHH+16].
Furthermore, it serves as an abstraction layer between diagnoseIT and the APM tool.

2.2. Software Performance Anti-Patterns

In this Section, we describe Software Performance Anti-Patterns (SPAs). SPAs are
documented design mistakes, that are consistently made by developers. These are
similar to software design patterns, which document in contrast best practices [Par07].
Because some SPAs have similar symptoms and causes, Wert [Wer13] derived a taxonomy.
Through the similar symptoms, the visualization of these SPAs are almost identical and
the SPAs will be merge in this chapter, shown in Figure 2.1, based on Wert’s taxonomy.

6

2.2. Software Performance Anti-Patterns

Performance
Problem

Application
Hiccups

The Ramp

Single User
Problem

The KnotChatty Service

More is Less Traffic Jam

Unbalanced
Proccesing

Pipe and Filter
Architectur

Singlethreaded
Code

CPU-Intensive
Application

Spin Wait Tower of Babel

Database Con-
gestion

The Stifle
Expensive
Database Call

One Lane
Bridge

Excessive Mes-
saging

The Blob
Empty Semi
Truck

Figure 2.1.: Anti-pattern Taxonomy

Application Hiccups

The Application Hiccups anti-pattern describes recurring phases with high response time.
To detect the anti-pattern, the observation time must be long enough to spot more than
one hiccup. Hiccups caused by garbage collection are a typical cause for the Application
Hiccups anti-pattern [Wer13].

7

2. Foundations and State of the Art

The Ramp

The behavior of the Ramp anti-pattern is that the response time increases with the
operation time of the system under test (SUT). Causes of the Ramp are often data
storages,e.g. database or caches, which grow with the uptime of the SUT [Smi02].

Single User Problem

The Single User Problem comprises all types of performance problems that exhibit high
response times under single-user load. The number of users does not influence the
performance. The Knot and Chatty Service are two anti-pattern specifications. Potential
root causes are, big amounts of service calls (Chatty Service) or expensive external
service calls to perform a simple task (the Knot) [Wer13].

More is Less

The More is Less anti-pattern occurs, when too much processes run on the system and
the system resources are exhausted. The operation system is busy with communicating
with the hard disk, rather than processing requests [Smi02].

Traffic Jam

The Traffic Jam anti-pattern describes performance problems with wide variability
response times caused by overloaded situations. The following anti-patterns can also be
the causes for the Traffic Jam [SW02].

Unbalanced Processing

In case of The Unbalanced Processing anti-pattern, the workload of available CPUs is, in
contrast to the performance, low. Typical root cause of the performance problem can be
single-threaded code and an unevenly distribute Pipe and Filter Architecture with one
filter becoming the bottleneck [Wer13].

8

2.3. Data Types

CPU-intensive Application

The CPU-intensive Application anti-pattern groups all types of performance problems
that lead to a high CPU utilization on the SUT [Wer13].Tower of Babel is one of this and
its cause are too many data transformations into an exchange format [SW03]. Another
one is Spin Wait and this anti-pattern describes the misuse of an empty loop for thread
synchronization.

Database Congestion

The Stifle is one of the anti-patterns Database Congestion summed up. Database
Congestion describes performance problems which are created by the communication
and usage of the database system. For example, the cause of the Stifle is the sending of
too many fine-grained database statements [Wer13].

One Lane Bridge

The One Lane Bridge anti-pattern is caused by a bottleneck service (e.g. database access,
not multi-threaded processes, etc.) [SW00]. The symptoms are like the Traffic Jam
anti-pattern.

Excessive Messaging

Excessive Messaging summed up the Blob and the Empty Semi Truck anti-pattern and
describes inefficient communication between components and system nodes [Wer13]. If
the SUT contains one single complex controller class that does most of the work, then
the anti-pattern is called the Blob or the God Class [SW00]. The Empty Semi Truck
occurs in systems where an excessive number of small messages are transmitted. The
amount of additional overhead and preparation time outweigh a real task.

2.3. Data Types

The basic of each visualization is the data that is to be displayed. Because data comes
from many and different sources and for various use cases we classify data types in
this section. Data can be raw or it can be filtered, scaled or interpolated. Each data set
can be defined as a list of n records, (r1, r2, ..., rn). Record ri consists of m independent

9

2. Foundations and State of the Art

(mi) or dependent (md) variables, (iv1, iv2, ...ivmi
, dv1, dv2, ...dvmd

). A variable can be a
number, a string or a complex structure. An independent variable ivi consists a value
which is not controlled or affected by another variable, e.g. time. Contrary to that, the
value of a dependent variable dvi, e.g., response time, is affected by other variables such
as time [WGK10]. Furthermore, data set can be categorized in the following seven types
[Kei02] and Shneiderman laid the foundations for this [Shn96].

2.3.1. One-Dimensional

In one-dimensional data sets each record has only one variable (m = 1). A typical record
example is an array.

2.3.2. Two-Dimensional

Most of the time-series data are two-dimensional data. They have two variables (m = 2)
and they can be dependent, e.g., time and response time, or independent, e.g., longitude
and latitude.

2.3.3. Multidimensional

If a record has more than two variables (m ≥ 3), it is a multidimensional data record.
Each system with a database has one or mostly more multidimensional data sets. Every
column in an entry is one dependent or independent variable.

2.3.4. Hierarchies data

The hierarchies data structure is equal to the multidimensional except for the links
between two records. The tree data structure is a good example, each record has one
parent record, except for the root record, and none or more children records. It follows,
that the root record is in the highest hierarchy level and its children are one level lower
and so on.

10

2.4. Visualization Techniques

2.3.5. Text and Hypertext

Because not all information can be stored in numbers or other data structures, it is
necessary to save information as text or hypertext. In the age of the world wide web,
hypertext is becoming more and more important. The difference between text and
hypertext is, that hypertext is not linear and has references to other texts.

2.3.6. Graphs

Graphs have similarities to Hierarchies data structure. A graph has nodes as variables
and edges for the connections. The data structure can be used for large networks or the
interaction between components in a software system.

2.3.7. Algorithms and Software

Algorithms and software data are not only texts or hypertexts. Every algorithm and
software is in an context and fulfilling a purpose.

2.4. Visualization Techniques

Due to the big amount of visualization techniques, it is important to categorize and
find a taxonomy for the different types. Our approach is to focus on the thesis problem
[WL90] and organize the techniques in context-based groups. The context refers to
anti-pattern detection strategies. Other approaches are to categorize based on the data
structures types [WGK10] or fields of research.

Software Visualization techniques cover visualization types related to source code. This
includes static (architecture) and dynamic data, such as call graphs and program flows
[IGJG14].

Visualization types in the hardware context visualize data from performance indicators,
like CPU usage or network traffic.

Task visualization consists of closer examination at individual task circumstances. Task
are performed by higher level processes, threads and jobs.

11

2. Foundations and State of the Art

Figure 2.2.: EXTRAVIS Call relations within a program shown using linear edges (left)
and using hierarchical edge bundles (right) [CHZ+07]

2.4.1. Software Visualization

Software visualization techniques are often used for debugging and education, such as
HeapViz [AKG10] or Data Structure Visualizations [Gal]. Though these techniques are
not applied for performance visualization, features can be adopted.

Serial Trace Visualization

Serial Trace Visualization shows a sequence of events. Particularly, execution traces from
sizable programs are not easily understood, because the efficient visualization of both
the structures and the many interrelationships is far away from trivial. There are some
different approaches to visualize traces. The common practice is time based, one of the
axis represents the time variable while the other shows different methods, processes
or instructions. Pauw and Heisig et al. [PHD10] mapped system trace events, which
contains time, event type, event subtype, event specific information, process id and
system area, in the Event Flow View into two dimensions. Firstly, they mapped the time
to the vertical dimension. This allows a user to see different phases of behavior over
time (proceeding downward). Then they position each event based on the associated
component on the horizontal dimension [PHD10].

Another approach is EXTRAVIS [CHZ+07]. As shown in Figure 2.2, the circular bundle
view offers a detailed visualization of the system’s structural entities and them interrela-
tionships. The edges represent the method calls and the methods are placed in a circular
layout.

12

2.4. Visualization Techniques

lviz [WYH10] is another approach to visualize serial traces. This technique based on
dot plots and each dot represent one or many events, if they are close to each other. It
can be used for solving performance problems, program failure diagnosis and finding
execution patterns/anomalies.

Call Graph Visualization

Call Graph Visualization is often used in debugging and helps to understand caller-
callee relationships. Combined with other techniques call graphs can also be used for
performance analysis.

The most common technique is to use nodes, which represent the function and the links
between the nodes represent the function calls, known as node-link metaphor.

There are several tools that use an indented tree layout [ABF+10]. The colors of the
nodes are often used to visualize duration time. Therefore, the horizontal space can be
used to add tabular data or visualize the function.

The conventional tree visualization technique is also used. Due to the hierarchies
data structure (Section 2.3.4) the nodes sorted from top, root call, to bottom. Some
approaches, e.g. [LTOB10a], use also different abstraction levels to visualize large call
graphs.

The Flame Graph is a new Approach to visualize a collection of stack traces [Gre16].
Each function in the stack trace is represented as a column of boxes. The y-axis shows the
stack depth and the x-axis spans only the stack trace. The width of each box is relevant
and shows the frequency at which that function was present in the stack traces.

Sunburts [AH10] and Treemaps [OJHS04] have also been used to represent call graphs.
This visualization techniques are often implemented as interactive types and they use
colored nodes to visualize the performance data.

Code and Code Structure Visualization

Code and Code Structure Visualization is often included in other approaches and shows
the code on demand. For example, if a user clicks on a node in the call graph. The code
is an important part to detect potential performance problems.

Seesoft [ES92] displays source code by representing files as rectangles whose height
corresponds to the size of the file. Each code line is shown as row in the rectangles.
They colored this rows in shade of red to visualize the hot spots.

13

2. Foundations and State of the Art

Figure 2.3.: SynchroVis [Döh12]

Another approach is to visualize software systems as cities. Wettel and Lanza describe the
approach to visualize software with a 3D city metaphor [WL07]. SynchroVis [WWF+13]
adopted the approach and added the visualization of the dynamic properties by moni-
toring the program traces. In Figure 2.3 SynchroVis is shown, the districts (dark cyan)
represent the packages or components, the buildings are the classes (purple) and their
instances (blue), and the links visualize the operation calls.

2.4.2. Hardware Visualization

To understand the behavior of the system, we should also visualize the hardware on
which the code is running.

Large software systems are not running on one physical device, but on several nodes
which are connected via network. Boxfish [LLB+12] uses 2- and 3-dimensional meshes
for displaying network performance data, with nodes are vertices and links as edges.
The 3D view is a simplified planar projection of the network traffic, so that edges do not
overlap. This view is designed to allow a user to identify easily trends and patterns in
the network traffic.

Processor-based techniques using typically histograms, bar or line charts to visualize
performance data per processor. Line charts, bar charts and scatter plots are the most
common data graphics [HBO10]. The simple line chart technique is based on the original

14

2.4. Visualization Techniques

1.

2.

3.

Figure 2.4.: Horizon Chart: 1) Filled line chart. 2) Flipped negative values over x-axis
and colored red. 3) Divided into bands and overlaid, again halving the
height [HKA09]

chart by Playfair [Pla86]. Time is mapped on the x axis horizontal and the value, of the
two-dimension data, on thy x axis vertical. The mapped data points are connected by
straight line segments. To smooth the line curve-fitting methods are used. Scatter plots
are similar to line chart, but without a line.

An approach which break with conventional line charts Heer et al. [HKA09] create a
space-efficient time-series visualization technique. The transformation from a filled line
chart to a horizon chart is shown in Figure 2.4.

To represent the memory, the usage techniques can be adopted from the CPU usage
techniques. There are several approaches that depict the allocations and deallocations
over time [CFA+06] or depict the migration to the different cache levels [CR11]

2.4.3. Task Visualization

Execution traces and system logs are the main data source for task visualization. These
data mostly contain timestamps, function calls, message receives and job initiations
[IGJG14].

The majority of approaches assigns the time to the x- or y axis, represents the event of
each task according to a row or column and cluster the events.

The De Pauw et al. visualization technique [DWB13] clusters the jobs by users and
how the jobs consume the shared resources over time. They also mention, that their

15

2. Foundations and State of the Art

Figure 2.5.: SyncTrace [KTD13]

technique “shows trends in multiple variables over time much more clearly than standard
time-based graphs” [DWB13].

SyncTrace create a visualization design to analysis threads runtime behavior and inter-
relationship [KTD13], shown in Figure 2.5. The upper part gives an overview of the
trace data, to identify the main synchronization relationships between two threads. At
the bottom is a sunburst-like view which draws multiple threads as sectors of a circle
and connect upper thread bars with the sectors.

Sigovan et al. [SMM13] present a visual analysis method for parallel communication
traces. They are displaying concurrent function calls as particles moving on trajectories
parallel to each other. With this approach they aim to make it easier to detect potential
communication slowdowns, when particles that should be aligned fall out of synch
[SMM13].

2.5. Related Work

Related work is every work which deals with data visualization. Some specific work
which focuses on performance visualization is already mentioned in Section 2.4.

16

2.5. Related Work

VAMPIR [WH96] is a visualization environment with similar functions as our prototype.
It translates a given trace file into a variety of graphical views, e.g., state diagrams,
activity charts, time-line displays, and statistics. Moreover, it can be used to locate
performance bottlenecks and support interaction and filtering to reduce the amount
displayed information.

PAVO [WKK16] is a framework for the visualization of performance analyses results.
It provides the following features: generic visualization for all stages of quantitative
analysis, automated selection, slicing and diagram switching. Moreover, PAVO supports
line chart, bar chart, box plot, differences chart and pie chart. The main goal is that “the
user specifies what he wants to know [...] and PAVO automates how two visualize it”
[WKK16].

Most of the APM tools are also using visualization techniques to visualize there measure-
ments or using monitoring platforms, like Grafana [Gra] or Datadog [Dat]. They using
mostly time-series visualization techniques, e.g., line charts, stacked charts or heatmaps.
Functions like overreaching zooming and details on demand are solid components.
Furthermore, they support customize views, time-series database management system
integration and open APIs.

17

Chapter 3

Anti-pattern Visualization

In this chapter, we would like to find visualization-types for all described Software
Performance Anti-Patterns (SPAs) in Section 2.2.
First of all, we need to understand how diagnoseIT (Section 2.1.1) detected the SPAs and
primarily which data the tool or a human needs to detect the root cause. Furthermore,
the effects of the SPAs are also important. The users have to understand why the
performance is impaired by the anti-pattern.
According to the most common visualization pipeline [PD10], shown in Figure 3.1, the
data analysis on the raw data is done by the diagnoseIT rule engine. The filtering task is
to collect the data from different sources and to prepare it for the mapping task. The
preparation consist to cut the data to the significant part, e.g. the hiccup parts on the
response time. In the mapping task, the data will be assigned to a visualization type.
The last part of the pipeline is the rendering part, which mostly third-party frameworks,
e.g., d3.js, MATLAB and Excel, does. From this follows that the main parts are filtering
and mapping.

Raw data

Data Analysis

Prepared data

Filtering

Focus data

Mapping

Geometric data

Rendering

Image data

Figure 3.1.: Visualization Pipeline

19

3. Anti-pattern Visualization

Anti-pattern Data Types Visualization Techniques
Application Hiccups time-series line chart, horizon chart,

spirals chart
The Ramp time-series line chart, stacked chart
Single User Problem time-series, two-dimension line chart, chrod (EX-

TRAVIS), dot plot (lviz)
More is Less time-series line chart
Traffic Jam time-series, hierarchy line-chart, icicle, sunburst
Unbalanced Processing time-series, hierarchy line-chart, stacked chart,

call graph
CPU-intensive Application time-series, text, multidi-

mensional
matrix, line chart, text

Database Congestion hierarchy, two dimensional sankey, indented tree,
flamegraph

One Lane Bridge time-series, two-dimension line chart, chrod, SyncTrace,
flamegraph

Excessive Messaging two-dimension call graph, SynchroVis,
graph

Table 3.1.: Anti-pattern overview

3.1. Application Hiccups

Temporarily system overloads by periodic tasks, e.g. garbage collector, increased the
system response time. This behavior is called Application Hiccups anti-pattern and can
be detect by monitoring the response time.

To detect the anti-pattern, only the response time is needed. There are two important
variables. The first one is the highest response time, during the hiccup, which must be
higher than a threshold. The second one is the duration of the hiccup, which does not
exceed the specified proportion of the experiment duration. [Wer13].

We already mention that the response time is the most important identifier for the
Application Hiccups SPAs. The response time is a two-dimensional (Section 2.3.2)
data type with n records. Each record ri has two variables, one independent and one
dependent. The independent one is the time, given as timestamp. The dependent one is
the response time, which depends on the time and is given as time unit.

Based on the data type we can adopt visualization techniques from processor and
memory usage techniques in the hardware visualization section 2.4.2. Histograms or
bar charts are not optimal for sequence data, e.g. timestamps, on the x-axis. Line charts

20

3.2. The Ramp

Figure 3.2.: Spiral Chart [TS08]

are in this case better, because they are used for detecting trends and patterns and, do
not really intended to give people exact numbers.

Otherwise, we know that observation time can be long, so that the scaling is too high
to visualize the anomalies significant. We can use the Horizon Chart and expanding
the x-axis length by stacking the charts to reduce the scaling. Christian Tominski et al.
[TS08] expand also the x-axis by using spirals. Shown in Figure 3.2, it is particularly
useful for spotting seasonal patterns in time series data. The cycle length is configurable
and can be set to time interval between two raises.

3.2. The Ramp

The Ramp anti-pattern occurs, when the processing time constant rises with the operation
time. It may take several weeks until an increase reveals. Root causes are mostly growing
databases or data structures.

Similar to the Application Hiccups anti-pattern the Ramp can be detect by monitoring
the response time. A regression line can be laid through the data points and if the slope
of the line is positive and higher than a threshold, the Ramp is detected [HN16].

21

3. Anti-pattern Visualization

Figure 3.3.: Stacked Chart visualization for 4-time series [JME10]

Due to the same detection data, the data type of the visualization data are similar to the
Application Hiccups anti-pattern. However, the difference is that dot or line charts are
optimal, because the rise is also visible independent of the scaling. If we use a dot chart
a possibility would be to visualize the regression line to underline the rise. Through that
the Sisyphus Database Retrieval anti-pattern can be the cause of the Ramp it can be
important to visualize the database and the database interaction. The Sisyphus Database
Retrieval anti-pattern describes the grows of the time for processing the database queries,
because of the big amount of data in the database. Therefore, it would be exciting to
also present the query processing time and the database size over time. This data can be
visualized in separate line charts or combined in one chart.

Javed [JME10] et al. evaluate shared-space techniques and small multiples graphs based
on time series data. Their results show that the small multiples graphs are efficient for
data with a large visual span. On the other hand, shared-space techniques are more
efficient for data where the impact of overlap is reduced.

Based on this and the possibility to scaling the x-axis we prefer to use a shared-space
technique, like the standard line chart or stacked chart (Figure 3.3).

3.3. Single User Problem

The Single User Problem describes an anti-pattern which is not influenced by the amount
of users. Both root causes the Knot and the Chatty Service are based on bad service calls.
The consequences of this anti-patterns, like the most, are high response time, but even
in cases of low load on the system under test (SUT).

These anti-patterns can be detected by monitoring external service calls. In Section 2.4.1
we describe techniques to visualize a sequence of events, which are in this context service
calls. By the fact that time is of no importance for understanding the problem, we can
exclude the time-based approaches. Furthermore, lviz [WYH10] the dot plots approach
is a common used technique for representation of behavior of the persistent actions
of an application, interactions between multiple applications, and the functioning of
the system as a whole. The approach, by Cornelissen et al. EXTRAVIS [CHZ+07], to
visualize the events as edges and receiver or sender on a circular bundle, can be used
to represent the service calls. The view has two more variables which can be used for
visualize more information. The first one is edge color, or rather color gradient, and can

22

3.4. More is Less

be used for indicating the direction or the response time of each call. The second one
is the thickness of a spline, which indicates the number of calls between two elements.
Another function we can adopt is the zooming. In EXTRAVIS the user can select an
interval and thus reduce the timeframe under consideration. Because the Knot and
the Chatty Service anti-patterns perform under single and simple tasks, we can use the
zooming to focus on individual tasks.

The second interesting data we can present is the independence of load and response
time over time. Already described in Section 3.2 we would use a simple line chart
visualization for two time-series, number of users and response time.

3.4. More is Less

The More is Less anti-pattern describes a performance decrease, when the SUT tries to
accomplish more work than the resources allow. A cause can be, too many database
connections, allowing too many request or creating to many pooled resources.

Response time and CPU time are required data points from the database to analyze
the performance problem. The decisive factor here is the ratio. If the response time
higher than the average, but the ratio is lower than the average ratio, we can assume an
overload situation. By the fact that the CPU time can be only one cause, it is interesting
to have a look at the memory and the running threads.

The data types of the memory and the running threads are also two dimensions and the
independent variable is time. Therefore, we can adopt the already described line chart
techniques by Waqas Javed et al. [JME10].

3.5. Traffic Jam

The Traffic Jam anti-pattern describes high variance of response time. On overload
situations some request get stuck in "traffic" and others are not effected.

To detect the Traffic Jam, the coefficient of variation is used [HN16]. The coefficient of
variation is often expressed as a percentage, and is defined as the ratio of the standard
deviation to the mean. When the value exceeds the threshold, the Traffic Jam anti-
pattern is detected.

Similar to the other anti-pattern response time techniques, we can use a line chart again.
To focus on the variance, we can manipulate the x-axis and set it to the response time
average or set different colors depending on the ratio to the average. This underlines the

23

3. Anti-pattern Visualization

Figure 3.4.: Sunburst [HBO10]

high response time fluctuations. Based on the anti-pattern description, different request
have different response time, we can use a filter to visualize response time course per
tasks. The user can interact and limit the causes.

Parallel to the singe request we visualize the depending execution trace. Common
visualization types for hierarchy data (Section 2.3.4) are adjacency diagrams [HBO10],
like sunbursts or icicle tree layouts. Nodes are drawn as solid areas and their placement
is relative to the adjacent nodes, shown in Figure 3.4. Moreover, in contrast to other
hierarchies data visualization techniques, we can encode the response time to the length
of areas and get an additional dimension.

3.6. Unbalanced Processing

The Unbalanced Processing occurs when the work is not evenly distributed among
available processors [Wer13]. Single-threaded Code and Pipe and Filter Architecture are
two root causes of the Unbalanced Processing symptom.

By monitoring the utilization of the CPUs and analyzing the distribution, this pattern
can be detected. To detect the single-threaded code anti-pattern the amount of active
threads have to be analyzed. For the Pipe and Filter Architecture it is important to
separate the information for each filter and monitor the execution of the individual
filters.

24

3.7. CPU-intensive Application

Figure 3.5.: 1) expanded call graph 2) low level abstract level [LTOB10b]

The simple visualization technique is to represent each CPU core as line in a line chart.
But if we use the stack graph, the graph represents all the cores utilization and the
complete CPU utilization [JME10]. Because each time series in the graph is drawn
sequentially, and one time series uses the value of the previous series as a baseline and
the sum of each core is the complete CPU. To prevent the case where single-threaded
code is the root cause we represent the amount of running thread in a separate graph.

If the Pipe and Filter Architecture is the root cause, we need a technique or techniques
which can represent the structure to visualize the Pipe and Filter architecture and can
monitor each filter execution behavior separated. Lin et al. [LTOB10c] have a method
to exploits the structural information present in profiling call trees to selectively raise
or lower the local abstraction level of the performance data. Shown in Figure 3.5, the
approach generate a call graph based on execution traces. The nodes can be compacted
to reduce the amount of shown nodes. Furthermore, the size of the nodes represents the
amount of executions. Due to one filter is mostly the bottleneck, we can use the color or
the size for visualize the execution time. Therefore, the user gets shown the structure,
the separate execution behavior and with interaction different abstract levels.

3.7. CPU-intensive Application

The CPU-intensive Application anti-pattern groups all anti-patterns with a have high
CPU utilization as result. All this anti-patterns are resulting from an implementation
failure, e.g., like excessive allocation, not required operations or insufficient caching.

25

3. Anti-pattern Visualization

To detect these anti-patterns human interaction is required. Measurements can be
applied to identify code fragments with high CPU usage, but for the root cause extraction
humans are necessary. An exception is the Insufficient Caching Introducing anti-pattern.
It can be detected by identifying repeated, CPU-intensive methods which produce unique
results for given inputs [Wer13].

It is obvious that we have to visualize firstly the CPU utilization. The visualization
technique for CPU usage should be, like already mentioned, a line chart. The analyzed
code fragments can be selected and information like CPU utilization are displayed. To
reduce the effort to find the fragment in the code, we also displayed the code fragment
as text (Section 2.3.5).

If the cause is Insufficient Caching it can be helpful to show the in and outputs of the
detected method. The data type is Two-Dimensional with one independent variable
(input) and one dependent variable (output). To visualize the data, we expand the
variable structure to a vector. Each vector represent one input and each index represents
one possible method output. Due to the vector structure, we can map the records on
a matrix and visualize it in a matrix view [HBO10]. Shown in Figure 3.6, the y axis
represents the outputs, the x axis represents the inputs and we can use the color the
visualize the amount of calls with the same in and outputs. If it is Insufficient Caching the
matrix looks random or has vertical lines, that means that the method returns different
outputs for the same or different inputs. But if there are horizontal lines or colored dots,
that means that caching can be a good option.

3.8. Database Congestion

The Database Congestion summarized all performance problems of communication and
usage of databases. In case of N+1, the Stifle or Circuitous Treasure Hunt, an application
performs an unnecessary high amount of database calls. The cause of the Expensive
Database Call anti-pattern is on query which is unnecessarily complex or returns not
entirely used data.

To detect these anti-patterns with high amount of database calls, only the analysis of a
single trace is sufficient. It has to be checked if one database statement is followed by
many similar statements. In case one statement is the cause, manual analysis is the only
way of detecting these anti-patterns. Measurements are required to decide whether a
corresponding query has a negative impact on performance [Wer13].

First of all, we have to visualize the trace, in detail the database statements. Traces are
typically hierarchy data (Section 2.3.4), with parents and child as functions, and links
as calls. To allow efficient interaction for exploring the trace, we will use basic indented

26

3.8. Database Congestion

Figure 3.6.: Matrix View [HBO10]

tree layout (often used in operation system to represent file directories). A further
advantage is we can already expand nodes, which directs to the databases calls.

Another approach is to use sankey diagrams [RB10] to visualize all database statements
in ones. As shown in Figure 3.7, we have node and links. In this approach the nodes are
the key words (SELECT, FROM, WHERE and GROUP BY) and the links are the expressions.
For example in the SQL statment "SELECT name FROM student WHERE id = ’1’;" SELECT,
FROM and WHERE are the nodes and name, student and id = ’1’ are the links. An
extension would be a zoom for the links to add more nodes like AND, OR or =. Through
this visualization type the user gets a good overview of all statements and sees similar
statements due to the thickness of the links.

Flamegraphs [Gre16] are also a good technique for visualizing this types of anti-patterns.
In case of N+1, a bunch of spikes, that are all about the same height, span over the
graph.

27

3. Anti-pattern Visualization

Figure 3.7.: Sankey Diagram [Med14]

Flame Graph Search

test_bu..

x..

d..

s..

gener..

S..

_..

unary_..

execute_command_internal

x..

bash

shell_expand_word_list
red..

execute_builtin

__xst..

__dup2

main

_.. do_redirection_internal
do_redirections

do_f..

ext4_f..

__GI___li..

__..

expand_word_list_internal

unary_..

expan..tra..

path..

execute_command

two_ar..

cleanup_redi..

execute_command

do_sy..

trac..

__GI___libc_..

posixt..

execute_builtin_or_function

_..

[unknown]

tra..

expand_word_internal
_..

tracesys

ex..

_..

vfs_write

c..

test_co..

e..

u..
v..
SY..

i..

execute_simple_command

execute_command_internal

p.. gl..

s..sys_write

__GI___l..

expand_words

d..

__libc_start_main

d..

do_sync..

generi..

e..

reader_loop

sy..

execute_while_command

do_redirecti..

sys_o..

g..

__gene..

__xsta..

tracesys

c..

_..

execute_while_or_until

Figure 3.8.: Flamegraph [Gre16]

28

3.9. One Lane Bridge

3.9. One Lane Bridge

The symptoms for the One Lane Bridge anti-pattern are similar to the Traffic Jam anti-
pattern (Section 3.5). Causes are synchronization implementation failures, database
looking or services are bottlenecks.

The detection is similar to the Traffic Jam, by conducting measurements. The coefficient
of variation of response time is the key factor. The exact bottleneck, like method
or service, can be detected by analyzing the relationship between load and response
times.

Because the One Lane Bridge anti-pattern is similar to the Traffic Jam, the same line chart
can be used to visualize the main symptom. Equivalent to the Single User Problem 3.3,
EXTRAVIS is an option to visualize calls between service or method and their response
times. This technique can cover two causes. The first one is that the service or method
has too high response time. This is visible on the color of the edges. The second cause is
that the load on the single service or method is too high and this is displayed by means
of the amount of incoming edges.

If the root cause is the Dispensable Synchronization Dispensable anti-pattern [Wer13],
we can use the SyncTrace [KTD13] visualization design. It shows us threads and the
relationships between each other. They use attribute mapping to colors and shape of the
edge bundles to encode important runtime meta-data [KTD13]. Therefore, the user can
see where threads need to wait because of unnecessarily long locking areas.

Similar to the Database Congestion anti-patterns 3.8, Flamegraphs are an option to
visualize bottlenecks. Because the x-axis represents time, the part where the SUT getting
bogged down is presented clearly. The widest layers take the longest to run.

3.10. Excessive Messaging

Excessive Messaging occurs when the SUT communicated inefficient between compo-
nents and system nodes. The Blob and the Empty Semi Truck are two causes. The Empty
Semi Truck describes an unnecessarily high amount of small messages. The Blob is a
single class either performs all of the work or holds all data [Smi02].

To detect the Blob static code analysis has to detect the single god class and measure-
ments have to analyze extreme message traffic between the single class and other classes.
The Empty Semi Truck detection strategy uses the message size and the payload size to
analyzing the messages.

29

3. Anti-pattern Visualization

To visualize messages, we can use approaches from Call Graph Visualization techniques
(Section 2.4.1). Traces can be mapped to Graphs data type (Section 2.3.6) and visualized
in the common techniques with nodes and edges. The nodes represent the components
or classes and the edges the messages. Therefore, the amount of edges represents the
amount of calls. The extension would be SynchroVis (Section 2.4.1) to visualize the code
structure. This allows the user to see single god classes and the excessive messaging to
the class. An abstraction of SynchroVis is a graph with nodes as classes and the number
of instances is represent by the size of the node.

30

Chapter 4

Implemented Visualization Tool

Our prototype, called VoP (Visualization of Performance), implement the above de-
scribed visualization techniques and the integration in the application performance
management (APM) life cycle. We implemented, in this thesis, the front-end part and
using therefore D3.js [Mik]. D3 is a JavaScript library for manipulating documents
based on data. It combines powerful visualization and interaction techniques with a
data-driven approach to Document Object Model (DOM) manipulation. We integrated
this in Angular [Goo]. Angular is a web application platform and combines declarative
templates, dependency injection, end to end tooling, and integrated best practices to
solve development challenges. Moreover, it supports npm as JavaScript package man-
ager and we could integrated D3 and D3 plugins easily. In the following, we describe in
Section 4.1 the general functions, in Section 4.2 the individual visualization techniques
in detail and in the last Section 4.3 the possible integration in APM environments.

4.1. Features

Independent to the individual visualization techniques the prototype has overarching
features. Each detected anti-pattern result is visualized in a separated tab. The tech-
niques are independent to the anti-pattern and can reused in other anti-patterns. Due to
the loose coupling, the anti-pattern representation can be changed without additional
expense. The layout of the visualized report is stored in JSON format, example see in
Listing 4.1. In the same way we stored the chart layout, see in Listing 4.2. Due to that,
the size, the arrangement, and the data is easily and individual customizable.

31

4. Implemented Visualization Tool

Listing 4.1 Example JSON for tab layout
1 {

2 "name": "CPU-intensive Application",

3 "cols": 2,

4 "rowHeight": 450,

5 "charts": []

6 }

Listing 4.2 Example JSON for chart layout
1 {

2 "name": "sankey",

3 "data": "../assets/database-congestion/sankey.json",

4 "height": 350,

5 "width": 1200,

6 "colspan": 2,

7 "rowspan": 1,

8 "optional": null

9 }

4.2. Visualization Techniques

For the visualization techniques we followed some interaction rules, like Overview and
Detail or Extraction and Comparison [CMS09]. Foundations, like tool-tips and labeled
axis, would also be considered [PD10]. To give the user a good feel and look we include
new trends [ZAL14] and paid attention to color perception. For each implemented
visualization technique we provide a description and describe the particularities.

Adjacency Matrix

The adjacency matrix (m × n) visualizes inputs (n) and outputs (m) of components, e.g.
methods. The x axis (j) represents the inputs and the y axis (i) the outputs. A field (aij)
is filled, if in the monitored time the component j had i as output. The color of the field
represents the amount of appears (green=rare, red=frequent).

Line Chart

The line chart is the most used visualization technique in our prototype anti-pattern
layouts. It visualizes data with a timestamp and a value. The value is represented on

32

4.2. Visualization Techniques

the y axis and the date on the x axis. We can configure the time format, to visualize
short time intervals (seconds) or longer (hours). If required, the user can view details by
hovering the mouse over the line. The y axis is labeled, if only one dataset is presented,
otherwise the user can see the units in the tooltip.

Spiral Chart

The spiral chart is equal to the line chart. The difference is that x axis is circular and we
used bars instance of lines. In order to get the benefits, the cycle length for each cycle
must be the same long. Only than can the user detect patterns. The bar hight and color
is dependent to the value, higher and redder means a higher value.

Stacked Chart

The stacked chart has the same functionality than the line chart. The only different is
that each time series in the graph is drawn sequentially, and one time series uses the
value of the previous series as a baseline.

Call Graph

The call graph is implemented as hierarchical data. Each node has name, value and
children. The value represents the amount of calls or the duration time and is visualized
as size of the node or the color. Furthermore, all nodes are linked with their children
nodes.

Chord

In chord we also use the D3 hierarchical data type to get the functionality of nodes and
links. The generate a root node in central of the circle and adding all components as
children. After this, we create out of the data links between the nodes. The links can
represent a second variable, e.g. response time between components, with their style.
Moreover, to get details about incoming and outgoing links, the user has to hover over
the component names. The incoming links change the color to green and the outgoings
to red.

33

4. Implemented Visualization Tool

Flame Graph

For the flame graph we use the d3-flame-graph plugin [Spi]. It needs hierarchical data as
input and generates a flame graph with functions like filtering and details on demand.

Sankey

The sankey visualization in our prototype database management statements. Each node
represents one key word (WHERE, FROM, SELECT, ...). The width of the links presents
the amount of recurring parts.

Sunburst, Icicle Chart and Indented Tree

Sunbursts, icicle charts and indented trees are visualizing all the same type of data. They
visualizing execution trace with different techniques. Indented trees can expand and
collapse independently parts. In contrast to this, sunburst an icicle charts can only focus
isolated. However, they can visualize an other variable with the width of the boxes. The
difference between the sunburst and the icicle chart is that the sunburst using polar
coordinates.

Horizon Chart

For the horizon chart we are using the d3-horizon-chart plugin [Kir]. The input data are
standard time series and colors or heights are configurable.

Graph

For the graph visualization we are using force-directed graphs to reduce crossing edges.
The color and the size of the nodes are variable and are depending on a variable in the
record.

Code

To visualize code snippets, we are using angular2-highlight-js [Jon]. Therefore, we can
highlighting code snippets and supporting numerous languages.

34

4.3. Integration

4.3. Integration

The integration in a APM environment is given by a open interface. The layouts of the
anti-pattern reports and the data are stored in JSON format and can be received by a
REST interface. To receive time-series data from databases we implemented a proof of
concept connection via the JavaScript InfluxDB client [Ben]. InfluxDB is a time series
database management system [Inf].

35

Chapter 5

Evaluation

We conducted a small user study to evaluate the quality of the visualized report, which
our prototype reports tool generated. With regard to root cause detection and perfor-
mance problem understanding, we add a task to analyzing the usefulness.

5.1. Evaluation Goal

The research question we seek to answer is How visualized anti-pattern detection report
are perceived by practitioners? and Can the report contribute to better anti-pattern and root
causes understanding?. Furthermore, we want to evaluate the individual visualization
techniques and find out which technique is better, for given anti-pattern and data, than
other.

5.2. Evaluation Design

We designed a user study composed in three parts. The first part is about the personal
experience and background about anti-patterns. The second is a task to evaluate
the report functionality. The last part is a survey to evaluate the usability and the
single visualization techniques. The question we ask in the first part, covers the level
of expertise in anti-pattern, performance problems detection and human computer
interaction areas. The task, the participants have to solve, is to detect the anti-patterns
based only on the presented data. Each of the ten anti-patterns are visualized separated
and use different visualization techniques (see Appendix A for example reports). The
participants receive the possible anti-patterns, with a short description, in advance. This
part is necessary to analyze the usefulness of the visualization techniques combinations.

37

5. Evaluation

Experience
Participants Education Anti-pattern PPD HCI
P1 Master Student Intermediate Beginner Intermediate
P2 Master Student Beginner Intermediate Intermediate
P3 Bachelor Student Intermediate Beginner Expert
P4 Bachelor Student Beginner Beginner Intermediate
P5 Industry No knowledge Beginner Beginner
P6 Master Student Beginner Intermediate Intermediate
P7 Industry Beginner No knowledge Beginner
P8 Bachelor Student Beginner Beginner Expert
P9 Bachelor Student Beginner Beginner Intermediate

Table 5.1.: User study participants (PPD = Performance Problem Detection, HCI =
Human Computer Interaction)

The performance data and the combinations are manually created and not measured on
existing systems. But the data represent the behavior of real systems with performance
problems. The third part poses a set of questions about the report content, the interaction,
preferred techniques and improvement suggestions (see Appendix B for question form).
All participants received the same informations about anti-patterns and the prototype.

5.3. Results

Figure 5.1 shows the results of the task. The x axis groups the tabs and the y axis
represents the amount of answers. The correct answers are in the legend order (One
Lane Bridge = Tab1, Application Hiccups = Tab2). In the most cases the highest bar is the
correct answer, e.g. Tab2 every participants had the correct solution. For example, the
cause for the variation in Tab9 is that Traffic Jam is a symptom from other anti-patterns
and is sometimes difficult to speculate more precisely. Although the most participants
are beginner in the anti-pattern area and only had a short descriptions of the anti-pattern
behaviors, the results are positive. Moreover, we asked which visualization technique
was most useful for each anti-pattern. Unfortunately, based on the result we can not say
that some techniques are better than any other.

The results of the feedback indicate that all participants agreed that visualization reports
will help to understand performance problems. They also agreed that visualization
reports help to find root causes.

38

5.3. Results

0

2

4

6

8

Tab1 Tab2 Tab3 Tab4 Tab5 Tab6 Tab7 Tab8 Tab9 Tab10

One Lane Bridge

Application Hiccups

Database Congestion

Single User Problem

Excessive Messaging

Unbalanced Processing

More is Less

Traffic Jam

The Ramp

Absolute no Idea

Figure 5.1.: Evaluation task results

0 0

2

7

0Strongly Disagree Disagree Neutral Agree Strongly Agree

(a) Question: Do you think that this visu-
alization report will help you to under-
stand performance problems?

0 0

3 3 3

Strongly Disagree Disagree Neutral Agree Strongly Agree

(b) Question: Do you think that this visu-
alization report will help you to find
easier root causes?

Figure 5.2.: Evaluation question results

39

5. Evaluation

All participants gave positive remarks on using the visualization report. They gave use
some improvements, like P8 suggested that adding a overarching interaction feature to
zoom out and in all data at once can improve the root cause detection. P9 said better
axis labeling can help to understand measurements. Participant P2 liked the tooltips,
but self-explanatory views would be preferable.

40

Chapter 6

Conclusion

In this chapter, we summarize the work we did throughout this thesis, discuss it further
and recommend the work for the future.

6.1. Summary

In this work, we presented a approach to visualize performance anti-pattern detection
results. The approach is based on existing visualization techniques and connect this
with APM tools measurements. The main part deals with analyzing anti-pattern and
finding visualization techniques to improve the performance problem understanding
and root cause detection. Furthermore, we considered data types to map the monitored
measurements on potential techniques. To evaluate the approach we implemented
the prototype VoP. It can handle different data types and visualize them in different
visualization techniques.

Finally, we evaluated the implemented prototype and the potential anti-pattern result
visualizations. We used a user study to receive feedback and evaluate the usefulness.
The evaluation showed that performance problem comprehensibility and the root cause
isolation are improved. Moreover, the improvement possibilities of the prototype are
presented.

6.2. Discussion

In Section 1.2, we described the goals for this thesis. Now we will discuss whether we
have achieved the goals.

41

6. Conclusion

The first goal was to find and categorize visualization techniques. We have decided
that we categorize the techniques based on the goals of the performance visualization
technique. We described many different communed and more specialized techniques
and have successfully found categorizes in Section 2.4.

The second goal was to find a mapping between anti-patterns and visualization tech-
niques. For some anti-patterns it was easier to find techniques, which visualized the
anti-pattern behavior. On the other hand, some anti-pattern need more specific knowl-
edge about the system and for this reason the detection result can not be visualized that
easy.

The third goal was to implement a prototype. We have implemented a prototype, called
VoP, which can visualize anti-pattern detection results. It also supports a variety of
visualization techniques. The opportunity to receive measurements data from APM tools
was considered, but not completely implemented.

The last goal of this thesis was the evaluation. A user study was successfully executed.
Both the prototype and the report layouts were evaluated. The feedback was mostly
positive and the participants had good improvement ideas.

6.3. Future Work

In this section, we discuss potential enhancements of our work.

The first recommended work is to connect existing APM tools with our prototype. Fur-
thermore, the functionality and the variety of visualization techniques can be extended.
To improve the details on demand, overreaching filtering can be integrated to focus in
larger software system on performance weak components. To guarantee the indepen-
dence to APM tools, (OPEN.XTRACE) and a interface to communed time series database
management systems should be integrated. Visualization techniques, like SyncTrace or
SynchroVis are good approaches, but the implementation in the prototype exceed our
possibilities.

The literature can also be researched further for visualization techniques. New ap-
proaches are constantly emerging, which facilitate the understanding of performance
data.

42

Appendix A

VoP Example

(a) Tab 1

(b) Tab 2

Figure A.1.: VoP Example

43

Appendix B

Evaluation Form

General Questions
1. In which environment do you work?

◦ Bachelor Student

◦ Master Student

◦ University

◦ Industry

◦ Other

2. What is your level of expertise in following area?

No knowledge Beginner Intermediate Expert
Anti-pattern ◦ ◦ ◦ ◦
Performance Problems Detection ◦ ◦ ◦ ◦
Human Computer Interaction ◦ ◦ ◦ ◦

Task
Now we have a task for you. Please visit this web page: http://62.75.211.42:4200/ You
can see 10 anti-pattern detection reports (everyone in a separated tab). Each report
visualize one anti-pattern and in the following we will ask you which tab visualize which
anti-pattern. If your a beginner in anti-patterns or need a refresher feel free to take a
look in the anti-pattern description: http://euve258746.serverprofi24.de/index.php/s/
mQwb5ixwQitD1D2

45

http://62.75.211.42:4200/
http://euve258746.serverprofi24.de/index.php/s/mQwb5ixwQitD1D2
http://euve258746.serverprofi24.de/index.php/s/mQwb5ixwQitD1D2

B. Evaluation Form

4. Which anti-pattern is visualized by Tab i? (i from 1 to 10)

5. And which visualization technique helped you the most in Tab i? (i from 1 to 10)

Feedback Questions
6. Do you think that this visualization report will help you to understand performance
problems?

Strongly Disagree ◦ ◦ ◦ ◦ ◦ Strongly Agree

7. Do you think that this visualization report will help you to find easier root causes?

Strongly Disagree ◦ ◦ ◦ ◦ ◦ Strongly Agree

8. Did you need more hints to understand the visualization techniques?

9. What kind of interaction do you missed?

10. Did you missed some features or have some improvements?

46

Appendix B

Bibliography

[ABF+10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, N. R. Tallent. “HPCTOOLKIT: Tools for performance analysis of
optimized parallel programs.” In: Concurrency Computation Practice and
Experience 22.6 (Apr. 2010), pp. 685–701 (cit. on p. 13).

[AH10] A. Adamoli, M. Hauswirth. “Trevis.” In: Proceedings of the 5th international
symposium on Software visualization - SOFTVIS ’10 (2010), p. 73 (cit. on
p. 13).

[AKG10] E. Aftandilian, S. Kelley, C. Gramazio. “Heapviz: interactive heap visualiza-
tion for program understanding and debugging.” In: Software visualization
(2010), pp. 53–62 (cit. on p. 12).

[Ben] C. P. Ben Evans. node-influx | An InfluxDB Client for JavaScript. URL:
https://node-influx.github.io/ (visited on 12/24/2017) (cit. on p. 35).

[CFA+06] A. M. Cheadle, A. J. Field, J. W. Ayres, N. Dunn, R. A. Hayden, J. Nystrom-
Persson. “Visualising dynamic memory allocators.” In: Proceedings of the
2006 international symposium on Memory management - ISMM ’06. New
York, New York, USA: ACM Press, 2006, p. 115 (cit. on p. 15).

[CHZ+07] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. Van Wijk, A. Van
Deursen. “Understanding execution traces using massive sequence and
circular bundle views.” In: IEEE International Conference on Program Com-
prehension. 2007, pp. 49–58 (cit. on pp. 12, 22).

[CMS09] S. K. Card, J. D. Mackinlay, B. Shneiderman. “Information Visualization.”
In: Human-computer interaction: Design issues, solutions, and applications
181 (2009) (cit. on p. 32).

47

https://node-influx.github.io/

Bibliography

[CR11] A. N. M. I. Choudhury, P. Rosen. “Abstract visualization of runtime mem-
ory behavior.” In: Proceedings of VISSOFT 2011 - 6th IEEE International
Workshop on Visualizing Software for Understanding and Analysis. IEEE,
Sept. 2011, pp. 1–8 (cit. on p. 15).

[Dat] Datadog. Datadog - Modern monitoring & analytics. URL: https://www.
datadoghq.com/ (visited on 12/27/2017) (cit. on p. 17).

[Döh12] P. Döhring. “Visualisierung von Synchronisationspunkten in Kombination
mit der Statik und Dynamik eines Softwaresystems.” Master thesis. Kiel
University, 2012 (cit. on p. 14).

[DWB13] W. De Pauw, J. Wolf, A. Balmin. “Visualizing jobs with shared resources
in distributed environments.” In: 2013 1st IEEE Working Conference on
Software Visualization - Proceedings of VISSOFT 2013. IEEE, Sept. 2013,
pp. 1–10 (cit. on pp. 15, 16).

[ES92] S. G. Eick, J. L. Steffen. “Visualizing code profiling line oriented statistics.”
In: IEEE Conference on Visualization. IEEE Comput. Soc. Press, 1992,
pp. 210–217 (cit. on p. 13).

[Gal] D. Galles. Data Structure Visualizations. URL: https://www.cs.usfca.edu/
%7B~%7Dgalles/visualization/Algorithms.html (cit. on p. 12).

[Goo] Google ©2010-2017. Angular. URL: https : / / angular. io/ (visited on
12/22/2017) (cit. on p. 31).

[Gra] Grafana Labs. Grafana - The open platform for analytics and monitoring.
URL: https://grafana.com/ (visited on 12/27/2017) (cit. on p. 17).

[Gre16] B. Gregg. “The flame graph.” In: Communications of the ACM 59.6 (2016),
pp. 48–57 (cit. on pp. 13, 27, 28).

[HBO10] J. Heer, M. Bostock, V. Ogievetsky. “A tour through the visualization zoo.”
In: Communications of the ACM 53.6 (June 2010), p. 59 (cit. on pp. 14,
24, 26, 27).

[HHMO17] C. Heger, A. van Hoorn, M. Mann, D. Okanović. “Application Performance
Management : State of the Art and Challenges for the Future.” In: Pro-
ceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering. ACM, 2017, pp. 429–432 (cit. on pp. 1, 2, 5).

[HHO+16] C. Heger, A. van Hoorn, D. Okanović, S. Siegl, A. Wert. “Expert-Guided
Automatic Diagnosis of Performance Problems in Enterprise Applications.”
In: 2016 12th European Dependable Computing Conference (EDCC). IEEE,
2016, pp. 185–188 (cit. on p. 5).

48

https://www.datadoghq.com/
https://www.datadoghq.com/
https://www.cs.usfca.edu/%7B~%7Dgalles/visualization/Algorithms.html
https://www.cs.usfca.edu/%7B~%7Dgalles/visualization/Algorithms.html
https://angular.io/
https://grafana.com/

Bibliography

[HKA09] J. Heer, N. Kong, M. Agrawala. “Sizing the horizon.” In: Proceedings of the
27th international conference on Human factors in computing systems - CHI
09. 2009, p. 1303 (cit. on p. 15).

[HN16] A. Hidiroglu, NovaTec Consulting GmbH. “Detecting Performance Anti-
Patterns in Enterprise Applications by Analyzing Execution Traces Founda-
tions and state of the art.” In: (2016), pp. 1–21 (cit. on pp. 21, 23).

[IGJG14] K. Isaacs, A. Giménez, I. Jusufi, T. Gamblin. “State of the Art of Perfor-
mance Visualization.” In: Proc. of Eurographics on Visualization (EuroVis)
(2014) (cit. on pp. 2, 11, 15).

[Inf] Influxdata. InfluxDB. URL: https://www.influxdata.com/time- series-
%20platform/influxdb/ (visited on 12/24/2017) (cit. on p. 35).

[JME10] W. Javed, B. McDonnel, N. Elmqvist. “Graphical perception of multiple
time series.” In: IEEE Transactions on Visualization and Computer Graphics
16.6 (2010), pp. 927–934 (cit. on pp. 22, 23, 25).

[Jon] Jonathan Chase. angular2-highlight-js. URL: https://github.com/jaychase/
angular2-highlight-js (visited on 12/23/2017) (cit. on p. 34).

[Kei02] D. A. Keim. “Information visualization and visual data mining.” In: IEEE
Transactions on Visualization and Computer Graphics 8.1 (2002), pp. 1–8
(cit. on p. 10).

[Kir] Kiril Mandov. D3 Horizon Chart. URL: http://kmandov.github.io/d3-
horizon-chart/ (visited on 12/23/2017) (cit. on p. 34).

[KTD13] B. Karran, J. Trümper, J. Döllner. “SYNCTRACE: Visual thread-interplay
analysis.” In: 2013 1st IEEE Working Conference on Software Visualization -
Proceedings of VISSOFT 2013 (2013) (cit. on pp. 16, 29).

[LLB+12] A. G. Landge, J. A. Levine, A. Bhatele, K. E. Isaacs, T. Gamblin, M. Schulz,
S. H. Langer, P. T. Bremer, V. Pascucci. “Visualizing network traffic to
understand the performance of massively parallel simulations.” In: IEEE
Transactions on Visualization and Computer Graphics 18.12 (Dec. 2012),
pp. 2467–2476 (cit. on p. 14).

[LTOB10a] S. Lin, F. Taïani, T. C. Ormerod, L. J. Ball. “Towards anomaly comprehen-
sion: using structural compression to navigate profiling call-trees.” In:
Proceedings of the 5th international symposium on Software visualization.
Section 7. 2010, pp. 103–112 (cit. on p. 13).

[LTOB10b] S. Lin, F. Taïani, T. C. Ormerod, L. J. Ball. “Towards anomaly comprehen-
sion: using structural compression to navigate profiling call-trees.” In:
Proceedings of the 5th international symposium on Software visualization
Section 7 (2010), pp. 103–112 (cit. on p. 25).

49

https://www.influxdata.com/time-series-%20platform/influxdb/
https://www.influxdata.com/time-series-%20platform/influxdb/
https://github.com/jaychase/angular2-highlight-js
https://github.com/jaychase/angular2-highlight-js
http://kmandov.github.io/d3-horizon-chart/
http://kmandov.github.io/d3-horizon-chart/

Bibliography

[LTOB10c] S. Lin, F. Taïani, T. C. Ormerod, L. J. Ball. “Towards anomaly comprehen-
sion: using structural compression to navigate profiling call-trees.” In:
Proceedings of the 5th international symposium on Software visualization.
Section 7. 2010, pp. 103–112 (cit. on p. 25).

[Med14] D. S. Media. Visualizing Categorical Data as Flows with Alluvial Diagrams |
Digital Splash Media. 2014. URL: http://digitalsplashmedia.com/2014/
06/visualizing-categorical-data-as-flows-with-alluvial-diagrams/ (visited
on 12/14/2017) (cit. on p. 28).

[Mik] Mike Bostock. D3.js - Data-Driven Documents. URL: https://d3js .org/
(visited on 12/22/2017) (cit. on p. 31).

[OHH+16] D. Okanović, A. van Hoorn, C. Heger, A. Wert, S. Siegl. “Towards perfor-
mance tooling interoperability: An open format for representing execution
traces.” In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9951
LNCS. Springer, Cham, Oct. 2016, pp. 94–108 (cit. on p. 6).

[OJHS04] A. Orso, J. Jones, M. J. Harrold, J. Stasko. “GAMMATELLA: visualization
of program-execution data for deployed software.” In: Proceedings of the
1st ACM symposium on Software visuallization. 2004, pp. 699–700 (cit. on
p. 13).

[Par07] T. Parsons. “Automatic detection of performance design and deployment
antipatterns in component based enterprise systems.” PhD thesis. 2007
(cit. on p. 6).

[PD10] B. Preim, R. Dachselt. Interaktive Systeme: Band 1: Grundlagen, Graphical
User Interfaces, Informationsvisualisierung. Springer-Verlag, 2010 (cit. on
pp. 19, 32).

[PHD10] W. D. Pauw, S. Heisig, W. De Pauw. “Zinsight: a visual and analytic en-
vironment for exploring large event traces.” In: Proceedings of the 5th
international symposium on Software visualization. 2010, pp. 143–152
(cit. on p. 12).

[Pla86] W. Playfair. The Commercial and Political Atlas: Representing, by Means of
Stained Copper-Plate Charts, the Progress of the Commerce, Revenues, Ex-
penditure and Debts of England during the Whole of the Eighteenth Century.
1786 (cit. on p. 15).

[RB10] M. Rosvall, C. T. Bergstrom. “Mapping change in large networks.” In: PLoS
ONE 5.1 (2010) (cit. on p. 27).

[Shn96] B. Shneiderman. “The eyes have it: a task by data type taxonomy for
information visualizations.” In: Proceedings 1996 IEEE Symposium on
Visual Languages. 1996, pp. 336–343 (cit. on p. 10).

50

http://digitalsplashmedia.com/2014/06/visualizing-categorical-data-as-flows-with-alluvial-diagrams/
http://digitalsplashmedia.com/2014/06/visualizing-categorical-data-as-flows-with-alluvial-diagrams/
https://d3js.org/

Bibliography

[Smi02] L. G. Smith, Connie U and Williams. “New Software Performance An-
tiPatterns: EvenMore Ways to Shoot Yourself in the Foot.” In: Computer
Measurement Group Conference (2002), pp. 667–674 (cit. on pp. 8, 29).

[SMM13] C. Sigovan, C. W. Muelder, K. L. Ma. “Visualizing large-scale parallel com-
munication traces using a particle animation technique.” In: Computer
Graphics Forum 32.3 PART2 (June 2013), pp. 141–150 (cit. on p. 16).

[Spi] M. Spier. d3-flame-graph. URL: https://github.com/spiermar/d3-flame-
graph (visited on 12/23/2017) (cit. on p. 34).

[SW00] C. U. Smith, L. G. Williams. “Software Performance AntiPatterns.” In: Com-
puter Measurement Group Conference December (2000), pp. 717–725 (cit.
on p. 9).

[SW02] C. Smith, L. Williams. “Software Performance AntiPatterns; Common
Performance Problems and their Solutions.” In: Cmg-Conference- 2 (2002),
pp. 797–806 (cit. on p. 8).

[SW03] C. U. Smith, L. G. Williams. “More New Software Performance AntiPatterns:
EvenMore Ways to Shoot Yourself in the Foot.” In: Computer Measurement
Group Conference (2003), pp. 717–725 (cit. on p. 9).

[TS08] C. Tominski, H. Schumann. “Enhanced Interactive Spiral Display.” In: The
Annual SIGRAD Conference Special Theme: Interaction. 2008, pp. 53–56
(cit. on p. 21).

[Wer13] A. Wert. “Performance problem diagnostics by systematic experimenta-
tion.” In: Proceedings of the 18th international doctoral symposium on
Components and architecture - WCOP ’13. WCOP ’13. New York, NY, USA:
ACM, 2013, p. 1 (cit. on pp. 6–9, 20, 24, 26, 29).

[WGK10] M. O. Ward, G. Grinstein, D. Keim. Interactive data visualization: foun-
dations, techniques, and applications. CRC Press, 2010 (cit. on pp. 10,
11).

[WH96] M. W. Wolfgang E. Nagel, Alfred Arnold, K. S. Hans-Christian Hoppe.
“VAMPIR: Visualization and analysis of MPI resources.” In: Supercomputer
63 XII (1996), pp. 69–80 (cit. on p. 17).

[WKK16] J. Walter, M. König, S. Kounev. “PAVO: A Framework for the Visualization
of Performance Analyses Results.” In: (2016) (cit. on p. 17).

[WL07] R. Wettel, M. Lanza. “Visualizing Software Systems as Cities.” In: (2007),
pp. 92–99 (cit. on p. 14).

51

https://github.com/spiermar/d3-flame-graph
https://github.com/spiermar/d3-flame-graph

[WL90] S. Wehrend, C. Lewis. “A Problem-oriented Classification of Visualization
Techniques.” In: Proceedings of the 1st Conference on Visualization ’90. VIS
’90. Los Alamitos, CA, USA: IEEE Computer Society Press, 1990, pp. 139–
143 (cit. on p. 11).

[WWF+13] J. Waller, C. Wulf, F. Fittkau, P. Dohring, W. Hasselbring. “Synchrovis: 3D
visualization of monitoring traces in the city metaphor for analyzing con-
currency.” In: 2013 First IEEE Working Conference on Software Visualization
(VISSOFT). IEEE, Sept. 2013, pp. 1–4 (cit. on p. 14).

[WYH10] Y. Wu, R. Yap, F. Halim. “Visualizing Windows system traces.” In: Proceed-
ings of the 5th international symposium on Software visualization. 2010,
pp. 123–132 (cit. on pp. 13, 22).

[ZAL14] E. Zudilova-Seinstra, T. Adriaansen, R. van Liere. Trends in Interactive
Visualization: State-of-the-Art Survey. Springer Publishing Company, Incor-
porated, 2014 (cit. on p. 32).

All links were last followed on January 02, 2018.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Goal

	2 Foundations and State of the Art
	2.1 Application Performance Management
	2.2 Software Performance Anti-Patterns
	2.3 Data Types
	2.4 Visualization Techniques
	2.5 Related Work

	3 Anti-pattern Visualization
	3.1 Application Hiccups
	3.2 The Ramp
	3.3 Single User Problem
	3.4 More is Less
	3.5 Traffic Jam
	3.6 Unbalanced Processing
	3.7 CPU-intensive Application
	3.8 Database Congestion
	3.9 One Lane Bridge
	3.10 Excessive Messaging

	4 Implemented Visualization Tool
	4.1 Features
	4.2 Visualization Techniques
	4.3 Integration

	5 Evaluation
	5.1 Evaluation Goal
	5.2 Evaluation Design
	5.3 Results

	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Future Work

	A VoP Example
	B Evaluation Form
	Bibliography

