

EXPLORING CLASSIFICATION ALGORITHMS AND DATA

FEATURE SELECTION FOR DOMAIN SPECIFIC

INDUSTRIAL TEXT DATA

Master Thesis IMSE

Student:

Alejandro Gabriel Villanueva Zacarias

Academic Supervisors:

Prof. Dr.-Ing. Habil. Bernhard Mitschang – University of Stuttgart

Prof. Dr. Kostas Magoutis – University of Crete

Prof. Dr. Willem-Jan van den Heuvel– Tilburg University

M.A. Laura Bernadette Kassner – University of Stuttgart

http://www.tilburguniversity.edu/nl/

Abstract

Unstructured text data represents a valuable source of information that nonetheless remains sub utilised

due to the lack of efficient methods to manipulate it and extract insights from it. One example of such

deficiencies is the lack of suitable classification solutions that address the particular nature of domain-

specific industrial text data. In this thesis we explore the factors that impact the performance of

classification algorithms, as well as the properties of domain-specific industrial text data, to propose a

framework that guides the design of text classification solutions that can achieve an optimal trade-off

between accuracy and processing time. Our research model investigates the effect that the availability

of data features has on the observed performance of a classification algorithm. To explain this

relationship, we build a series of prototypical Naïve Bayes algorithm configurations out of existing

components and test them on two role datasets from a quality process of an automotive company. A key

finding is that properly designed feature selection techniques can play a major role in achieving optimal

performance both in terms of accuracy and processing time by providing the right amount of meaningful

features. We test our results for statistical significance, proceed to suggest an optimal solution for our

application scenario and conclude by describing the nature of the variable relationships contained in

our research model.

Keywords: text mining, unstructured text data, classification algorithms.

TABLE OF CONTENTS

Abstract .. 2

1 INTRODUCTION ... 3

1.1 Research Motivation .. 3
1.2 Research Problem .. 5
1.3 Research Questions .. 7
1.4 Research Method ... 8
1.5 Thesis Structure ... 11

2 METHODOLOGY .. 12

2.1 Knowledge Base Creation ... 12
2.2 Conceptual Architecture for Text Document Classification 13
2.3 Data Exploration .. 13
2.4 Study Object Characterisation ... 13
2.5 Method to Select Optimal Classification Algorithm Configuration and Features13
2.6 Experiments ... 13
2.7 Evaluation .. 14
2.8 Limitations ... 14

3 THEORETICAL FRAMEWORK ... 15

3.1 Feature Extraction Mechanisms... 17
3.2 Feature Selection Strategies ... 20
3.3 Classification Algorithms .. 23
3.4 Related Technologies ... 26

4 FRAMEWORK TO OPTIMISE DATA FEATURES AND CLASSIFICATION

ALGORITHMS ... 28

4.1 Conceptual Architecture for Text Classification ... 28
4.2 Data Exploration .. 30
4.3 Study Object Characterisation ... 56
4.4 Method to Select Optimal Classification Algorithm Configuration and Features59

5 EXPERIMENTS AND EVALUATION ... 63

5.1 Classification Algorithm Selection .. 63
5.2 Technical Setup ... 64
5.3 Extract All Data Features ... 66
5.4 Choose Document Representation and Weight Scheme 66
5.5 Data Exploration .. 66
5.6 Coverage .. 67
5.7 Naïve Bayes Algorithm Configurations .. 67
5.8 Algorithm Configuration Results... 68
5.9 Algorithm Configurations Evaluation ... 77
5.10 Artefacts Evaluation .. 84

6 CONCLUSIONS AND FUTURE RESEARCH .. 87

References .. 89

7 APPENDICES ... 92

7.1 Function Words Lists for English and German ... 92
7.2 Design Matrices and Analysis Of Variance (ANOVA) for 2k Experiments 99

1

TABLE OF FIGURES

FIGURE 1 SIMPLIFIED QUALITY INSPECTION PROCESS (ADAPTED FROM (KASSNER & MITSCHANG 2016)) 5
FIGURE 2 SEVEN GUIDELINES OF DESIGN SCIENCE RESEARCH (HEVNER ET AL. 2004). 9
FIGURE 3 DESIGN EVALUATION METHODS (HEVNER ET AL. 2004). 11
FIGURE 4 RESEARCH MODEL BASED ON THE CONCEPTS OF (COOPER & SCHINDLER 2011) 12
FIGURE 5 APPLAUDING CONCEPTUAL ARCHITECTURE (KASSNER ET AL. 2014) 15
FIGURE 6 COMPARISON BETWEEN THE ORIGINAL AND DETAILED CONCEPTUAL ARCHITECTURES. ADAPTED

FROM (KASSNER ET AL. 2014) 16
FIGURE 7 EXAMPLE OF SUPPORT VECTOR MACHINES CLASSIFICATION 25
FIGURE 8 FULL DETAIL VIEW OF THE CONCEPTUAL ARCHITECTURE FOR TEXT-DOCUMENT CLASSIFICATION 29
FIGURE 9 RELEVANT STRUCTURED DATA FOR EVERY CAR PART 30
FIGURE 10 PLOT OF THE 150 MOST FREQUENT ERROR CODE FOR THE SUPPLIER ROLE (FILTERED DATASET) 32
FIGURE 11 DISTRIBUTION OF ERROR CODES PER PART CODE IN THE ORIGINAL SUPPLIER DATASET 33
FIGURE 12 DISTRIBUTION OF ERROR CODES PER PART CODE IN THE FILTERED SUPPLIER DATASET 33
FIGURE 13 OBSERVATIONS PER TYPE OF PART FOR THE FILTERED SUPPLIER DATASET 34
FIGURE 14 AVERAGE NUMBER OF OBSERVATIONS FOR EVERY ERROR CODE OF EACH PART TYPE FOR THE

FILTERED SUPPLIER DATASET 35
FIGURE 15 BOX PLOTS OF MILEAGE VALUES PER PART TYPE FOR THE FILTERED SUPPLIER DATASET 36
FIGURE 16 ORDERED MEDIAN MILEAGE VALUES PER PART TYPE FOR THE FILTERED SUPPLIER DATASET 36
FIGURE 17 ERROR CODES GROUPED BY THEIR MONTH OF REPAIR FOR THE FILTERED SUPPLIER DATASET 37
FIGURE 18 MONTHS OF THE REPAIR DATE GROUPED BY PART TYPE FOR THE FILTERED SUPPLIER DATASET 38
FIGURE 19 MONTHS OF THE ADMISSION-TO-DRIVE DATE GROUPED BY PART TYPE FOR THE FILTERED SUPPLIER

DATASET 38
FIGURE 20 BOX PLOTS OF DRIVING TIMES PER PART TYPE FOR THE FILTERED SUPPLIER DATASET 39
FIGURE 21 TOP 30 MOST FREQUENT TERMS FOR LANGUAGE BLIND (LEFT), ENGLISH (CENTRE) AND GERMAN

(RIGHT) PRE-PROCESSING FOR THE SUPPLIER DATASET 41
FIGURE 22 CORRELATION RELATIONSHIPS AMONG THE 20 MOST FREQUENT TERMS (SUPPLIER DATASET,

LANGUAGE-BLIND PRE-PROCESSING) 41
FIGURE 23 CORRELATION RELATIONSHIPS AMONG THE 20 MOST FREQUENT TERMS (SUPPLIER DATASET,

ENGLISH PRE-PROCESSING) 42
FIGURE 24 CORRELATION RELATIONSHIPS AMONG THE 20 MOST FREQUENT TERMS (SUPPLIER DATASET,

GERMAN PRE-PROCESSING) 42
FIGURE 25 ZIPF PLOT FOR THE TERM FREQUENCY OF FEATURES IN THE SUPPLIER CORPUS (LANGUAGE BLIND)

 43
FIGURE 26 ZIPF PLOT FOR THE TERM FREQUENCY OF FEATURES IN THE SUPPLIER CORPUS (ENGLISH) 44
FIGURE 27 ZIPF PLOT FOR THE TERM FREQUENCY OF FEATURES IN THE SUPPLIER CORPUS (GERMAN) 44
FIGURE 28 PLOT OF THE 150 MOST FREQUENT ERROR CODE FOR THE MECHANIC ROLE (FILTERED DATASET) 45
FIGURE 29 DISTRIBUTION OF ERROR CODES PER PART CODE IN THE ORIGINAL MECHANIC DATASET 45
FIGURE 30 DISTRIBUTION OF ERROR CODES PER PART CODE IN THE FILTERED MECHANIC DATASET 46
FIGURE 31 AVERAGE NUMBER OF OBSERVATIONS FOR EVERY ERROR CODE OF EACH PART TYPE FOR THE

FILTERED MECHANIC DATASET 46
FIGURE 32 ORDERED MEDIAN MILEAGE VALUES PER PART TYPE FOR THE FILTERED MECHANIC DATASET 47
FIGURE 33 MONTHS OF THE REPAIR DATE GROUPED BY PART TYPE FOR THE FILTERED MECHANIC DATASET 48
FIGURE 34 MONTHS OF THE ADMISSION-TO-DRIVE DATE GROUPED BY PART TYPE FOR THE FILTERED

MECHANIC DATASET 48
FIGURE 35 BOX PLOTS OF DRIVING TIMES PER PART TYPE FOR THE FILTERED MECHANIC DATASET 49
FIGURE 36 TOP 30 MOST FREQUENT TERMS FOR LANGUAGE BLIND (LEFT), ENGLISH (CENTRE) AND GERMAN

(RIGHT) PRE-PROCESSING FOR THE MECHANIC DATASET 50
FIGURE 37 CORRELATION RELATIONSHIPS AMONG THE 20 MOST FREQUENT TERMS (MECHANIC DATASET,

LANGUAGE BLIND PRE-PROCESSING) 51
FIGURE 38 CORRELATION RELATIONSHIPS AMONG THE 20 MOST FREQUENT TERMS (MECHANIC DATASET,

ENGLISH PRE-PROCESSING) 51
FIGURE 39 CORRELATION RELATIONSHIPS AMONG THE 20 MOST FREQUENT TERMS (MECHANIC DATASET,

GERMAN PRE-PROCESSING) 52
FIGURE 40 ZIPF PLOT FOR THE TERM FREQUENCY OF FEATURES IN THE MECHANIC CORPUS (LANGUAGE BLIND)

 52

2

FIGURE 41 ZIPF PLOT FOR THE TERM FREQUENCY OF FEATURES IN THE MECHANIC CORPUS (ENGLISH) 53
FIGURE 42 ZIPF PLOT FOR THE TERM FREQUENCY OF FEATURES IN THE MECHANIC CORPUS (GERMAN) 53
FIGURE 43 MONTHS OF THE REPAIR DATE GROUPED BY PART TYPE FOR THE FILTERED OEM DATASET 54
FIGURE 44 COMPARISON OF THE SUPPLIER AND MECHANIC DOCUMENT COLLECTIONS (LANGUAGE-BLIND PRE-

PROCESSING) 55
FIGURE 45 COMPARISON OF LANGUAGE STATISTICS FOR EACH ROLE 55
FIGURE 46 METHOD TO SELECT THE BEST CLASSIFICATION ALGORITHM CONFIGURATION AND FEATURE SUBSET

GIVEN THE SELECTED CLASSIFICATION ALGORITHM 61
FIGURE 47 TECHNICAL SETUP FOR THE IMPLEMENTATION OF THE NAIVE BAYES CLASSIFIERS 65
FIGURE 48 COVERAGE OF OCCURRENCES IN DIFFERENT CONFIGURATION TYPES FOR DIFFERENT SUB SETTING

CRITERIA 67
FIGURE 49 RESULTS FOR THE ALGORITHM CONFIGURATIONS WITH SUPPLIER DATA 69
FIGURE 50 ACCURACY AND PROCESSING TIME PLOTS FOR THE SUPPLIER SET WITH TF WEIGHTS 70
FIGURE 51 ACCURACY AND PROCESSING TIME PLOTS FOR THE SUPPLIER SET WITH TF-IDF WEIGHTS 72
FIGURE 52 RESULTS FOR THE ALGORITHM CONFIGURATIONS WITH MECHANIC DATA 74
FIGURE 53 ACCURACY AND PROCESSING TIME PLOTS FOR THE MECHANIC SET WITH TF WEIGHTS 75
FIGURE 54 ACCURACY AND PROCESSING TIME PLOTS FOR THE MECHANIC SET WITH TF-IDF WEIGHTS 77
FIGURE 55 EFFECT ESTIMATES WITH SUPPLIER DATA FOR ACCURACY AT 1 79
FIGURE 56 EFFECT ESTIMATES WITH SUPPLIER DATA FOR ACCURACY AT 25 80
FIGURE 57 VARIATIONS IN ACCURACY LEVELS AT 1 BY FACTOR (SUPPLIER DATA) 81
FIGURE 58 VARIATIONS IN ACCURACY LEVELS AT 25 BY FACTOR (SUPPLIER DATA) 81
FIGURE 59 EFFECT ESTIMATES WITH MECHANIC DATA FOR ACCURACY AT 1 82
FIGURE 60 EFFECT ESTIMATES WITH MECHANIC DATA FOR ACCURACY AT 25 83
FIGURE 61 VARIATIONS IN ACCURACY LEVELS AT 1 BY FACTOR (MECHANIC DATA) 83
FIGURE 62 VARIATIONS IN ACCURACY LEVELS AT 25 BY FACTOR (MECHANIC DATA) 84
FIGURE 63 2K DESIGN MATRIX WITH SUPPLIER DATA FOR ACCURACY AT 1 99
FIGURE 64 2K DESIGN MATRIX WITH SUPPLIER DATA FOR ACCURACY AT 25 100
FIGURE 65 2K DESIGN MATRIX WITH MECHANIC DATA FOR ACCURACY AT 1 101
FIGURE 66 2K DESIGN MATRIX WITH MECHANIC DATA FOR ACCURACY AT 25 102

3

1 Introduction

As data grows, so does the need to design new ways to manage and process its ever increasing volume.

For years public and private organizations have collected data in an electronic format concerning

multiple issues, from technology-enabled processes to automated monitoring via sensors. In this context,

unstructured data, in particular text data, represent a challenge not just to manage it in an efficient

manner, but also to integrate it in an effective way. This means combining structured and unstructured

data sources so the latter can provide depth and insight to queries for which the former only gives

shallow (but wide) answers.

From a scientific standpoint, this challenge derives into an equally ambitious problem. Unstructured text

data by nature requires new processing and analytic models which are not immediately compatible with

the traditional structured ones. Moreover, these structured processing and analytic models are in

comparison more efficient in terms of time and computational resources; something to consider given

the current size and projected growth of unstructured data.

In this work we explore one possible solution to these organizational challenge and scientific problem

in the context of automated text classification. We explore the various ways in which unstructured text

data properties impact the performance of this kind of task. For this we focus on text classification

algorithms and the selection of features used by them.

We start by defining the nature of the unstructured data we are concerned with. As a result of this we

characterise the concept of “messy data” defined by (Kassner & Mitschang 2016) to adequately meet

the context of a real business scenario in an automotive company from which this research topic

originates (see (Kassner & Mitschang 2016)).

With this characterisation in mind we devise a method to select the appropriate text data features to test

different classification algorithm configurations (variants in the inner workings of the same selected

basic classification algorithm) and as a result, identify the one that yields the optimal performance in

terms of accuracy and processing time. This method relies on a conceptual architecture developed to

identify the elements from various disciplines that need to be taken into consideration when choosing a

classification algorithm. In addition to this, we define a list of requirements that the ideal classification

algorithm should have.

As a result of applying our method, we proceed to test the Naïve Bayes algorithm with different

configurations and feature sets applied to the above mentioned business scenario/process from an

automotive company. We benchmark their performance and discuss how these algorithm configurations

perform compared to configurations from an adapted k Nearest Neighbours algorithm. This allows us

not only to discuss the relevance of the solutions proposed regarding the defined problem, it also enables

the definition of future research lines to generate a more optimal solution.

1.1 Research Motivation

The pervasive use of information technology in all aspects of society has led in the last decades to an

ever-accelerating growth in the creation and manipulation of data. By 2012, (Turek 2012) estimated that

from the beginning of recorded time until 2003, mankind had created 5 Exabytes of information,

whereas in 2011 that same amount was created every two days (Turek 2012). Based on a study by

(Turner et al. 2014) from IDC, in 2013 that same amount of data took a little less than 10 hours to be

created or copied, and by 2020 it is predicted to take a little less than one. This data explosion is of

particular importance for companies, since they already had liability or responsibility for 85% of the

data in 2013 (Turner et al. 2014).

This phenomenon has become widely recognized since 2011 as Big Data (Gandomi & Haider 2014).

Even though the concept has been open to discussion, there are certain characteristics that can define it

in terms of data management challenges. In addition to the standard three V’s of Big Data (Volume,

Variety and Velocity), (Gandomi & Haider 2014) also mention additional challenges such as Veracity,

Variability, and Value.

4

In many cases, these challenges are derived from the fact that 95% of all data is unstructured and cannot

be processed with traditional tools and techniques (i.e. relational databases) (Gandomi & Haider 2014).

This has led to the creation of new technologies that can deal with vast amounts of data (Volume),

coming from different sources (Variety) at different flow rates (Variability). Additionally they have to

be prepared to process it at the required speed (Velocity), despite of the presence of unreliable sources

(Veracity) and the low density of value relative to the volume (Gandomi & Haider 2014).

One area were the challenge is particularly significant for companies is data analytics. Although this

area has been traditionally dominated by structured data techniques (Lang et al. 2009), the growth of

unstructured data has brought the opportunity to enrich the structured analysis by providing insights

hidden in it. This is relevant because organizations have been collecting both kinds of data (Gandomi &

Haider 2014), but have struggled to properly integrate them.

There have been different approaches to address this integration problem. (Lang et al. 2009) consider

the integration of unstructured text data into data warehouse applications via Unstructured Business

Intelligence. This term comprises three steps that aim to enrich the existing ETL flow, warehouse

schema, and BI infrastructure. (Gandomi & Haider 2014) points out a process by Labrindis and Jagadish

with five stages organised in two main sub-processes: data management and analytics. “Data

management involves processes and supporting technologies to acquire and store data and to prepare

and retrieve it for analysis. Analytics, on the other hand, refers to techniques used to analyse and acquire

intelligence (…)” (Gandomi & Haider 2014). Aside from specific examples, (Kassner & Mitschang

2016) mention that normally “approaches to automatically analyzing (sic) these unstructured data with

traditional analytics for structured data are either very specific and case-based or too generic.”

As we see, there is a valid research interest in further exploring ways to do unstructured data analytics.

In the particular context of this work, this interest can be described both from a scientific and an industry

perspective.

1.1.1 Scientific Perspective

From a research standpoint, there are several challenges that structured analytics do not have to face.

(Lang et al. 2009) mentions on one side the need to deal with misspellings, domain-specific, company-

specific or even employee-specific acronyms and on the other side advanced data cleansing, to pre-

process data beyond the capabilities of traditional cleansing. On top of that, text analysis technology

typically requires an adaption to the domain where it is applied to work correctly (Lang et al. 2009),

which makes this technology hard to apply and maintain in different scenarios. (Lang et al. 2009) also

point out that unstructured text data involves term disambiguation based on the context, something that

is rarely leveraged by traditional analytics.

In a similar way, (Gandomi & Haider 2014) highlight the problems that result from applying traditional

statistical methods to big volumes of unstructured data.

There are two problems in particular that originate from the inherent properties of unstructured text data.

Firstly, since this data can be obtained from multiple sources, it can actually represent different sub-

populations instead of a single one. If this is not recognised, small populations may be discarded under

the assumption that they are outliers. Secondly, because of the sheer amount of data, independent

random variables or features, may show false correlations.

In addition to this, some statistical methods may not be good enough in terms of computational

efficiency to be feasible in the scale we are dealing with (Gandomi & Haider 2014).

1.1.2 Industry Perspective

For companies, achieving an effective integration of unstructured data means achieving time reductions

to discover failures or complains, and as a result being able to react before it is too late. This is key in

avoiding losing customers in favour of the competition and to maintain a good reputation with the

existing and potential customers (Lang et al. 2009). Not only that, whenever failure or error happen, an

effective use of unstructured data can also improve the quality of the detection by providing direct

insight to the causes (Lang et al. 2009).

5

This is all the more important “in the face of ever larger amounts of data, faster innovation cycles and

higher product customization (…)” (Kassner & Mitschang 2016).

1.2 Research Problem

This thesis is a continuation of the work of (Kassner & Mitschang 2016) in collaboration with a large

automotive original equipment manufacturer (OEM). As such, the problem it addresses as well as the

environment where it occurs are the same. In the following subsections there are reference descriptions

of these two elements.

1.2.1 Process Description

The research problem occurs in a business environment, specifically in a quality inspection process in

an automotive OEM. In this process, parts removed from cars already owned by customers are analysed

to inspect the quality issues involved in their potential failure. This analysis involves three different

roles, each one inspecting the part and writing a report until an error code is assigned. It is this error

code the one that categorises each text report into 1 of 1271 possibilities (for the purposes of our

scenario; total classification categories are actually more). The flow of data as the process progresses is

shown in Figure 1.

Figure 1 Simplified quality inspection process (adapted from (Kassner & Mitschang 2016))

To assign the final error code, all reports written up to that moment (second participation of the OEM

worker) are considered and a decision is made by a human quality expert at the OEM. In addition to the

text reports being created, other structured data is also recorded for every car part that goes through this

process.

To support the work of the quality expert in this classification task, a system should receive as input

several texts in unstructured format related to each faulty or damaged car part along with their related

structured data (see Figure 9), set that we will call a data bundle (Kassner & Mitschang 2016). Every

data bundle has then to be processed to suggest a list of possible error codes to the quality expert.

From an academic perspective, this can be thought then as a text analytics task, in particular a specific

application of automated text classification. As such, this task has to pick some features out of the

unstructured dataset that allow executing a suitable classification algorithm. The “technical” process

(the execution of the text classification task) begins with the reports to be classified located into a single

source ready to be processed and finishes when the reports are given a list of error code classifications.

1.2.2 Problem Description

There are particular characteristics of the process and the dataset that give the research problem a

different nature from purely academic ones.

Concerning the process, the fact that it is a quality management process and not a manufacturing one

makes its behaviour less predictable. This because there is no a priori estimation that can be made about

the process load or performance beyond the fact that the quality process is to some extent related to the

manufacturing volume at a previous moment in time.

Regarding the dataset, there several characteristics that make it different from traditional approaches.

First, the wide amount of categories to classify a text, exemplified by the existence of more than 1200

error codes in a dataset of 7500 instances; second, what (Kassner & Mitschang 2016) describe as messy

data: “Text which consists of non-standard, domain-specific language, riddled with spelling errors,

Mechanic OEM Supplier

Mechanic
report

OEM preliminary
report (optional)

OEM final reportSupplier report

OEM
Final
error
code

Reference
number

6

idiosyncratic and non-idiomatic expressions and OEM-internal abbreviations.”. On top of this already

identified challenges, other important issues such as multilingualism, incompleteness of records, and a

very big amount of possible classification categories (see section 4.3) complete a data profile that

contradicts almost every good practice in traditional information systems. In addition to this, the fact

that not every car part has the same amount of reports also adds to the dataset heterogeneity.

Previously, (Kassner & Mitschang 2016) have implemented several prototypical classifiers based on an

adaptation of the k-Nearest-Neighbours (k-NN) algorithm (see sub section 3.3.6). In it, the result

consists of a list of up to 25 suggested error codes instead of just one code assignation per data bundle.

This enables the authors to evaluate the algorithm accuracy at different cut off levels (1, 5, 10, 15, 20

and 25 elements) and aligns with the goal of supporting the work of the human expert instead of

replacing him.

They run this adapted k-NN algorithm in 12 different configurations (or variants) considering the

following factors:

 Data abstraction model: using all words in the text as classification features (bag of words) or

the identified mentions of error and parts (bag of concepts).

 Similarity measure: Used to delimit the scope of the majority vote to assign error codes. Either

Jacquard similarity coefficient (the absolute value of the intersection of feature sets A and B

over the absolute value of the union of feature sets A and B) or Overlap similarity (the absolute

value of the intersection of feature sets A and B over the absolute value of the smallest feature

set, either A or B)

 Roles: Using the reports of the Mechanic role only, using the reports of the Supplier role only,

and using all data available to the human expert to assign the error code (mechanic report,

optional initial report, supplier report, part description).

In all cases the pre-processing consists of tokenisation (based on punctuation and whitespaces) and

language detection.

When analysing the accuracy results, they are compared (among others) to the accuracy of a so called

code frequency baseline, which consists of retrieving all error codes available for the part type

considered, ranking them by frequency and returning the desired cut off level. This baseline accuracy

has values of (approximately) 35% at 1, 76% at 5, 88% at 10, 90% at 15, 94% at 20, and 100% at 25,

which is assumed to be “an artifact (sic) of our randomly selected data set.” (Kassner & Mitschang 2016)

In their results, all configurations tend to converge to a similar (high) value when the cut off is made at

25. This makes the lower cut off levels the ones of interest. The best configuration is the “bag of words

with Jacquard similarity on all available text” with accuracies of 81% at 1 and 94% at 5, closely

followed by the configuration “bag of words with Jacquard similarity on the Supplier report only” with

accuracies of 78% at 1 and 93% at 5.

On the opposite side the worst configurations are those using only the Mechanic report, with accuracies

of 16% to 29% at 1, below the code frequency baseline. This makes it clear that in terms of roles, text

data coming from the Supplier can be assumed more useful than that of the Mechanic. This, the authors

observe, can be attributed to the quality of each data source: “Mechanic reports tend to be poor in detail,

focused on superficial problem description and often error-riddled, such that even human experts cannot

draw conclusions about the detailed nature of the problem, whereas supplier reports tend to contain more

detail and include descriptions of potential causes.” (Kassner & Mitschang 2016)

Also, when it comes to the data abstraction model, the bag of words configurations show most of the

time better accuracy levels than those of the bag of concepts, especially in lower cut off levels. This

however, comes with a price. Given the fact that every word is a feature in this approach, it is easy to

encounter memory and processing time issues even at this reduced experimental level. In the bag of

words approach classification takes about 11 minutes for ca. 1250 data bundles, resulting in approx. 0.5

seconds of processing time per data bundle. In contrast, the bag of concepts approach classifies the same

amount of data bundles in three minutes, or 0.14 seconds per unit. This turns the bag of words approach

inviable for a real implementation.

7

As we can see, there is a trade-off between accuracy and processing time. While it is clear that features

and the way they are represented plays a significant role in the final outcome, there is no certainty on

how all these variables interact, and whether this is the case with other classification algorithms.

To investigate this matters, we can think of the bag of words and bag of concepts approaches as opposite

ends in a continuous spectrum of features usage for text classification. On one side, the bag of words

approach proposes to use all words in a document collection as features for classification, ensuring in

this way that even the least significant of the terms is taken into account, albeit at the expense of bigger

training sets, and prolonged execution times. On the other side, the bag of concepts approach aims to

use only a carefully selected set of words that represent relevant concepts in the domain at hand (parts,

failures, errors, symptoms in our case), based on the premise that those are the truly meaningful words

upon which the classification should be run. However, as (Kassner & Mitschang 2016) suggest, having

a reduced knowledge coverage of the applicable concepts in our domain can translate into a less than

optimal accuracy.

Framing the accuracy vs. processing time trade-off in this spectrum hints a possible way to discover the

optimal middle point. In this thesis we direct the research efforts towards the bag of words approach by

exploring the kind of relationship that features (and subsets thereof) have with the performance of

classification algorithms both in terms of accuracy and execution time. By doing this, we can help

understand how can someone identify a good subset of classification features as well as its optimal use

with a suitable classification algorithm.

1.2.3 Goal Description

To understand the effects of text features on an algorithm`s accuracy regarding the classification of car

part data bundles in one of several error code categories. This should be done via the implementation of

a different classification algorithm, whose performance can then be compared to the performance of the

(previously) adapted k-NN algorithm. As part of this goal, there has to be a selection of the most useful

features to perform the classification.

Additionally, improvements in the processing time of the classification algorithm in comparison to the

baseline performance achieved by the derived k-NN algorithm are also desirable.

1.2.4 Goal Metrics Definition

Derived from the description above, the following metrics were defined:

 Accuracy: Number of instances (data bundles of text reports) assigned the correct error code

over the total number of instances being classified. This assignation is measured at different

positions in a list of error code suggestions (1, 5, 15 and 25).

 Processing time: Total amount of time elapsed for the classification to complete. Time spent per

instance (text report).

1.3 Research Questions

Throughout this thesis, the answers to the following questions are explored. They are meant to

decompose the research problem and goal into more manageable tasks. Relevant sections that answer

these questions are referred as well.

1. How to conceptualize the process of Automated Classification based on features of unstructured

text data? (see Figure 8 in Chapter 3)

2. What are the best features to classify unstructured text data? (see section 5.9)

3. What characteristics make classification algorithms more suitable for this problem? (see section

5.1)

4. What factors and/or features affect the performance and accuracy of a classification task? (see

section 5.9)

8

5. How do unstructured text data features relate to a classification algorithm’s performance? (see

Figure 4 Research model and section 5.9)

1.4 Research Method

So far, the nature of the process and problem have made clear that this study is focused on what (Hevner

et al. 2004) consider addressing a problem in an organizational context, so that “the analysis, design,

implementation, management, and use of information systems can be effectively and efficiently

accomplished”. This sets the direction of this thesis to that of Information Systems (IS) research.

Moreover, the objective of prototyping a new technical solution to the defined problem in section 1.2

can be seen as designing and implementing “innovations that define the ideas, practices, technical

capabilities, and products” to “extend the boundaries of human problem solving and organizational

capabilities” (Hevner et al. 2004). Because of this, Design Science Research is a valid and meaningful

methodological framework to design the research method of this work.

According to (Hevner et al. 2004), Design Science is a paradigm in IS research that is based in the

pragmatic principle of utility, according to which research contributions “should be evaluated in light

of its practical implications”.

When performing research based on this methodology, the authors suggest to avoid its direct application,

advising instead to use “creative skills and judgment to determine when, where, and how to apply each

of the guidelines in a specific research project.” (Hevner et al. 2004). Supported on this, we present in

the remaining sections the concepts that are of particular importance for this work.

1.4.1 Design Science Process

As a research process, (Hevner et al. 2004) describe Design Science as an iterative set of activities

concerned with the creation and application of an artefact. The iteration derives from the fact that the

artefact is artificial in nature, an abstraction of reality. As such, there is a need to evaluate it against the

problem it is intended to solve, both to improve the effectiveness of the artefact design and to gain

understanding of the problem. As a result, there are two main activities to distinguish in this loop,

namely: build and evaluate.

For a solution to be considered valid, it has to observe the means, ends and laws imposed by the

environment. “Means are the set of actions and resources available to construct a solution. Ends

represent goals and constraints on the solution. Laws are uncontrollable forces in the environment.”

(Hevner et al. 2004). The set of solutions that meet these three conditions can be represented

mathematically, even though that hardly occurs in IS research (Hevner et al. 2004).

Once a solution is found, it is more relevant to delimit the exact conditions and cases for which the

solution works, instead of finding out why it works (Hevner et al. 2004). Additionally, to determine how

good a solution is, it can be compared to a pre-defined optimal solution or against existing solutions.

1.4.2 Guidelines

While carrying out the process described in the previous subsection, (Hevner et al. 2004) describe some

guidelines to assess the adherence to the Design Science paradigm. These are shown in Figure 2 Seven

guidelines of Design Science ResearchFigure 2 along with a brief description.

9

Guideline Description

Guideline 1: Design as an
Artifact

Design-science research must produce a viable artifact in the
form of a construct, a model, a method, or an instantiation.

Guideline 2: Problem
Relevance

The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

Guideline 3: Design
Evaluation

The utility, quality, and efficacy of a design artifact must be
rigorously demonstrated via well-executed evaluation
methods.

Guideline 4: Research
Contributions

Effective design-science research must provide clear and
verifiable contributions in the areas of the design artifact,
design foundations, and/or design methodologies.

Guideline 5: Research Rigor
Design-science research relies upon the application of
rigorous methods in both the construction and evaluation of
the design artifact.

Guideline 6: Design as a
Search Process

The search for an effective artifact requires utilizing available
means to reach desired ends while satisfying laws in the
problem environment.

Guideline 7: Communication
of Research

Design-science research must be presented effectively both
to technology-oriented as well as management-oriented
audiences.

Figure 2 Seven guidelines of Design Science Research (Hevner et al. 2004).

Guidelines 1, 3 and 6 are covered in more detail in other points of this work and as a result, they are not

commented here but instead discussed in subsections 1.4.3, 1.4.4 and 1.4.1 respectively.

In the context of guideline 2 and in general for this methodology, a problem is defined as a difference

between the current and intended states of a system. The actions to go from the former to the latter are

driven by goals given by the problem’s context, which is composed of the business needs. This may be

expressed as profit maximization, cost reduction, resource consumption, performance optimizations,

etc. Because IS target those same goals, the research problem is relevant as long as its solution

contributes to their fulfilment by IS (Hevner et al. 2004). The details on how this work is relevant

according to this guideline is presented in sections 1.1 to 1.3.

In guideline 4 (Hevner et al. 2004) distinguish among three main kinds of contribution: the design

artefact, the foundation knowledge or the methodologies. The first is the most common since it is the

product of the design science methodology (see subsection 1.4.3); the second refers to extensions or

improvements of the knowledge base; the third focuses on evaluation methods and metrics being

invented or creatively used. In all cases, the contribution is deemed valid or not in terms of what the

authors call representational fidelity (to the business environment and technology environment) and

implementability (sic) (to actually solve the business need). The contributions of this thesis are detailed

in chapters 4 and 5.

Concerning research rigor, guideline 5 advocates for the effective application of the knowledge base

both in the creation and evaluation of artefacts. This ensures rigor in research, particularly during the

artefact creation. However, rigor should also be balanced against relevance, because formalism may

decrease the degree in which an artefact can be applied or generalized (Hevner et al. 2004). Taken into

the evaluation part of the process, this means ensuring that subject groups used for evaluation should

aim “to determine how well an artifact (sic) works, not to theorize about or prove anything about why

the artifact (sic) works.” (Hevner et al. 2004)

Finally, guideline 7 advises to provide technology and management-oriented audiences with relevant

information about the research based on their profiles. The first “need sufficient detail to enable the

described artefact (sic) to be constructed (implemented) and used within an appropriate organizational

context.” (Hevner et al. 2004), while the second need information “to determine if the organizational

10

resources should be committed to constructing (or purchasing) and using the artifact (sic) within their

specific organizational context.” (Hevner et al. 2004)

1.4.3 Design Artefact

Considered the main result of design science research, “IT artifacts (sic) are broadly defined as

constructs (vocabulary and symbols), models (abstractions and representations), methods (algorithms

and practices), and instantiations (implemented and prototype systems).” (Hevner et al. 2004) In all four

cases, the authors emphasize their definition of an IT artefact does not “include people or elements of

organizations (…) nor (…) the process by which such artifacts (sic) evolve (…)” (Hevner et al. 2004).

Constructs are the vocabulary to define problems and solutions. As a result, they enable the creation of

models. Models then employ those constructs to represent a real world situation where the design

problem, the solution space and the way these two connect can be identified. As such, models are useful

to explore “the effects of design decisions and changes in the real world.” (Hevner et al. 2004).

Methods are guidelines for the solution of problems, in other words they advise on how to improve the

construction process of a design artefact. Depending on the scenario (as defined by the model and

constructs, and within them, the problem and environment) they can be “formal, mathematical

algorithms that explicitly define the search process” or “informal, textual descriptions of ‘best practice’

approaches, or some combination.” (Hevner et al. 2004)

Artefacts of the type instantiation are the demonstration of a design and of the process that led to it.

Thanks to this is that they are considered significant IS research. According to (Hevner et al. 2004), it

is fundamental that this instantiation occurs after an initial assumption of uncertainty, in other words,

that the artefacts proves possible something that has not been done before.

It is important to mention that instantiations can be thought as precursors of the other artefacts, since

they are proof of feasibility for otherwise purely theoretical concepts. Therefore, once an instantiation

is made, constructs and models can be elaborated to properly define the problem being solved and the

possible solutions that can be further developed. This then triggers future research involving defining or

using methods to explore the solution space.

Artefacts produced in this thesis are presented, even if they are covered elsewhere, in chapter 4.

1.4.4 Evaluation Methods

(Hevner et al. 2004) summarize the available evaluation methods as shown in Figure 3. They

acknowledge that these methods are meant to be applied on the basis of suitability to the artefact. In

other words, considering both the requirements of the problem the artefact is intended to solve and the

knowledge base employed in the design of the artefact, one must select the most appropriate method.

11

Figure 3 Design Evaluation Methods (Hevner et al. 2004).

Taken this observation into consideration, the corresponding evaluation methods for the artefacts

presented in this thesis depend on the knowledge base discussed on Chapter 3.

1.5 Thesis Structure

The rest of this thesis is organized in the following manner. Chapter 2 elaborates on the adaption of the

Design Science methodology to the specific environment of this work, starting with the presentation of

the research model to be explored. Chapter 3 describes the relevant concepts that conform the theoretical

foundation that can serve as knowledge base for artefact creation and evaluation. These theoretical

concepts set the context to define the contributions of this thesis in relationship with relevant previous

efforts. Chapter 4 presents the resulting artefacts and contributions. Chapter 5 then proceeds to present

the results of applying the designed artefacts into a real scenario as described in subsections 2.6 and 2.7.

And chapter 6 finally discusses some directions to continue the research along with the final concluding

thoughts.

Methodologies Methods

1. Observational Case Study: Study artifact in depth in business environment

Field Study: Monitor use of artifact in multiple projects

Static Analysis: Examine structure of artifact for static qualities

(e.g., complexity)

Architecture Analysis: Study fit of artifact into technical IS

architecture

Optimization: Demonstrate inherent optimal properties of artifact

or provide optimality bounds on artifact behavior

Dynamic Analysis: Study artifact in use for dynamic qualities (e.g.,

performance)

Controlled Experiment: Study artifact in controlled environment for

qualities (e.g., usability)

Simulation – Execute artifact with artificial data

Functional (Black Box) Testing: Execute artifact interfaces to

discover failures and identify defects

Structural (White Box) Testing: Perform coverage testing of some

metric (e.g., execution paths) in the artifact implementation

Informed Argument: Use information from the knowledge base

(e.g., relevant research) to build a convincing argument for the

artifact’s utility

Scenarios: Construct detailed scenarios around the artifact to

demonstrate its utility

2. Analytical

3. Experimental

4. Testing

5. Descriptive

12

2 Methodology

In this chapter we describe the stages considered to carry out the research for this topic. Each section

briefly describes the main activities, focus and goals of the corresponding stage as well as the adaptation

of the Design Science concepts presented in section 1.4 to the particular context of this work. Finally in

section 2.8 we mention the limitations of this study as a way to delimit its scope.

Based on the problem environment described in the previous chapter and based on the concepts of

(Cooper & Schindler 2011), we establish the research model in Figure 4 that serves as a starting point

for the adaption of the Design science research methodology.

In this model we define Availability of Data Features as the presumed cause, operationalized by the

variables Quantity of data features and Quality of data features.

As presumed effect we establish Classification Algorithm Performance as defined by Classification

algorithm accuracy and Classification processing time. Both of these operational variables are defined

in sub section 1.2.4.

As moderating variables (MV) in this model we identify the following constructs: first and foremost the

Classification Algorithm, along with Feature Selection Strategy and Feature Extraction Mechanism.

As confounding variable we designate the Amount of categories, whereas the Availability of

complementary structured data is considered a control variable.

With this model we aim to explore the effect that the presence (or absence) of relevant data features has

on the performance of a classification algorithm as to determine a method to optimize the selection of

the best algorithm configuration and features; but without focusing on the effects that the amount of

categories or the availability of structured data may have.

Figure 4 Research model based on the concepts of (Cooper & Schindler 2011)

2.1 Knowledge Base Creation

The first step to build a series of artefacts that can provide information about the effect of interest in our

research model is to build a knowledge base. Based on the previous work by (Kassner & Mitschang

2016) and the execution of a literature survey, we compile a collection of theoretical concepts coming

from four main disciplines: Natural Language Processing (NLP), Text mining, Machine Learning, and

Statistics. We also cover the working principles of the required technologies to implement a solution

based on those concepts. The goal is to generate a solid theoretical foundation that can be referred to at

different points later in this work.

Availability of Data Features

*Quality of data features: IV
*Quantity of data features: IV

Classification Algorithm
Performance

*Classification algorithm
accuracy: DV

*Classification algorithm
processing time: DV

*Classification
Algorithm: MV
*Feature Selection
Strategy: MV
*Feature Extraction
Mechanism: MV

Amount of categories
(classification space): CFV

Availability of complementary
(structured) data: CV

13

2.2 Conceptual Architecture for Text Document Classification

The focus on this step is to arrange the concepts gathered in the previous step in such a way that it allows

us to distinguish the function and contribution of each element to the intended solution. As such, we aim

to build a conceptual architecture that abstracts from the knowledge base the relevant concepts needed

to address our problem. In doing so, we define the solution space with the intention to better understand

both the problem and the potential solutions. Because of this, the resulting conceptual architecture is a

model artefact (Hevner et al. 2004).

2.3 Data Exploration

At this stage of the work, the focus is to discover the properties, patterns, and assumptions that best

describe domain-specific unstructured text data, particularly in the context of our application scenario

(see section 4.3). To do so, different visual and statistical techniques are applied to a sample dataset of

up to 7500 data points provided by an automotive company (OEM).

This dataset is analysed from the perspectives of the roles involved in the process that created it

(Functional organization). They are the Supplier, Mechanic and the OEM itself. Inside of every role, we

examine the data as a collection of data points and as a set of text documents.

The goal of this step is to delimit the characteristics that characterise our particular object of study. This

would provide the necessary evidence to identify the specific problems to be considered in this work

and constitutes the first step to define a list of “empirical” requirements (as opposed to the theoretical

aspects covered by the conceptual architecture) to develop a solution.

2.4 Study Object Characterisation

Based on characteristics collected during the data exploration, this stage aims to characterise the study

object within the context of our application scenario. Starting from the original definition of messy data

by (Kassner & Mitschang 2016), this step focuses on bringing evidence for the characteristics present

in the original definition as well as for the new ones introduce as part of the characterisation to justify

their inclusion, identifying the underlying theoretical concepts that underpin the characteristics

identified during the data exploration results, and framing this new definition within our research model.

2.5 Method to Select Optimal Classification Algorithm Configuration and
Features

In this step we design an appropriate method artefact that guides the creation of an instantiation artefact

to search for an optimal solution. Such a method considers all possible factors that can affect accuracy

and processing time according to our research model and conceptual architecture. The goal for this

method is to obtain evidence on why is a configuration and feature set combination better than others.

We focus on creating a list of requirements for the classification algorithm that could in theory best fulfil

the goal and metrics described in sections 1.2.3 and 1.2.4. This is then used as reference to evaluate

some candidate algorithms in order to select one to be tested with an instantiation artefact and a series

of experiments.

2.6 Experiments

To evaluate the utility of the conceptual architecture and method to help design solutions to our research

problem, in this step we build and instantiation artefact with the selected classification algorithm. We

do so by applying our method artefact starting from the selection of the algorithm itself, and continuing

with the design of the algorithm configurations, the execution of each configuration as an experiment,

and conclude by presenting the results. We use our application scenario data to test its performance, in

terms of accuracy and elapse time, so as to render it comparable to the previous k-NN implementation.

14

2.7 Evaluation

In the final step, we proceed to evaluate the results of running the experiments on our instantiation

artefact as well as the other two artefacts. As a consequence, our evaluation comprises two levels. Firstly,

we focus on the evaluation of the instantiation artefact in terms of the goals, questions and metrics

proposed in sections 1.2 and 1.3. Secondly, we proceed to evaluate the other artefacts (conceptual

architecture and optimal method) in the terms of the Design Science Evaluation Methods (see sub

section 1.4.4).

2.8 Limitations

Along the process of developing this work, there are certain areas that are considered out of scope due

to their distant relation to the research model or because of the magnitude of work they would entail.

They are mentioned in this section as a way to delimit the scope.

The main interest in this thesis is to explore effects and relationships of certain variables on end results,

not to implement software components meant for others do that explorations. As such, we aim to reuse

existing (open source) tools and components whenever possible. This not only speeds up the prototyping

process, it also makes the exploration rely on proven software.

Despite of this, it would be innocent to assume that existing software for text mining, natural language

processing, machine learning or statistics is free of errors. Since the early stages, this was evident with

language detection components. A sort of classification problem on its own, improving the performance

of this kind of component is beyond the efforts of this work. Instead, we simply mention the cases when

the performance of language detection affects the execution of our own analysis (e.g. by losing reports).

A similar situation occurs with spelling mistakes. While it is clear that this represents a source of error

in text classification, the implementation of a bilingual spell checker exceeds the reach of our goal.

Regarding the business environment in which our research problem exists, there are a set of constraints

derived from it that affect the reach of our efforts. Although they are transparent for the most part of this

work, they may become notorious when analysing the dataset on which we work. Therefore it is

important to point out that the nature of this dataset, the assumptions under which it was created, and

the conditions for its use are all given characteristics that cannot be altered.

Finally, concerning the Conceptual Architecture for Text Classification introduced in section 4.1, it is

important to emphasise that this architecture is supposed to work as definition of the solution space for

this problem and exhausting the possibilities it offers to design alternative solutions, even in the best of

scientific interests is beyond the scope of this work. Still, we do present an instantiation that makes use

of representative components of each layer as a way to prove its adequacy.

15

3 Theoretical Framework

In order to give theoretical foundations to the solutions proposed in chapter 4, a literature survey was

conducted. An academic enterprise on its own, the exploration of existing work is organised according

to an extension of the preceding work of (Kassner et al. 2014) (from which this thesis derives) with the

overview on text classification by (Khan et al. 2010). This allows to have a more detailed conceptual

framework that enables better-focused research of related work.

By looking at the study object characterisation in section 4.3, it is clear that there is more than one way

to address this text-document classification problem and as a matter of fact, each candidate solution may

require different disciplines to come to fruition. (Kassner et al. 2014) already recognise this fact and in

their conceptual architecture they propose a modularised separation of activities to analyse structured

and unstructured data. Specifically, they propose in their middle layer Analyse a two-level structured

composed of Core Analytics and Value-Added Analytics as shown in Figure 5.

Figure 5 ApPLaUDING Conceptual Architecture (Kassner et al. 2014)

The upper level is meant to generate complex value-adding analytic capabilities based on the results

obtained from a composition of modular core analytics components. Meanwhile, the lower level is

concerned with tools for both unstructured and structured data, respectively depicted on the left and

right sides of the layer.

This thesis focuses on the components for unstructured data of the Analyse layer, namely Domain-

specific text analytics, Domain-Specific Resources and Advanced Text Analytics.

The first two elements are considered part of the same analytics toolbox, which uses “domain-specific

NLP resources such as taxonomies, wordlists / dictionaries and schemas (…)” and domain-specific text

analytic tools for “the recognition of entities or expressions from a particular domain (…)” (Kassner et

al. 2014). The third element and toolbox, Advanced Text Analytics, “contains advanced analytics

drawing on both the domain-specific resources and on analytics techniques from the domain-specific

16

toolbox.” (Kassner et al. 2014). Examples for this are topic detection, and clustering and classification

algorithms.

However as the enriched concept of messy data in section 4.3 highlights, there are equally important

components involved in the generation of meaningful data and that are nonetheless not represented on

the ApPLaUDING architecture. Prior to any analytics activity, there are certain pre-processing steps

that are needed to handle unstructured data. Examples of these are: tokenisation, fundamental to

transform unstructured text into a feature vector and language detection, to be able to apply other pre-

processing steps like stop word removal or stemming correctly.

At the same time, (Khan et al. 2010) suggest that in every text document classification endeavour, three

disciplines are required: Text Mining, Natural Language Processing, and Machine Learning. Even more,

regardless of the technique employed, they tend follow a particular order.

Text mining begins with the application of two kinds of methods: Information Extraction and

Information Retrieval. The first one is meant “(…) to extract specific information from text documents.”

while the second employs statistical methods “for automatic processing of text data (…)” (Khan et al.

2010).

Natural Language Processing aims to analyse the data on a syntactical level so as to improve the

classification process and to enable the usage of taxonomies or similar complementary resources, such

as ontologies. Properly speaking, syntactical analysis aims to parse “sentences and paragraphs into key

concepts, verbs and proper nouns.” (Khan et al. 2010).

Finally, Machine Learning involves all supervised approaches to document classification. This is

particularly useful for our study subject since “supervised learning techniques are used for automatic

text classification, where pre-defined category labels are assigned to documents based on the likelihood

suggested by a training set of labelled documents.” (Khan et al. 2010)

If we then expand the original architecture by (Kassner et al. 2014) in order to distinguish the

participation of the three above mentioned disciplines, we find a again a three-layered structured instead

of the original pair of Core and Advanced Analytics. This is represented in Figure 6.

Figure 6 Comparison between the original and detailed conceptual architectures. Adapted from (Kassner

et al. 2014)

This detailed conceptual architecture divides the classification of text documents into three layers. The

first one consists of feature extraction techniques. This is therefore related to knowledge from Data

Feature Extraction: Data mining

Feature Selection: NLP+Statistics

Classification Algorithm: Machine Learning

Domain-specific text
analytics

Generic Unstructured Text Analytics

Supervised classification algorithms

Domain-specific
resources

Domain-Specific
Text Analytics

Advanced Text Analytics

Domain-Specific
Resources

Original section of the ApPLaUDING Architecture
for Unstructured Core Analytics

Detailed Conceptual Architecture for Unstructured
Text Classification

17

Mining, in other words, the pre-processing techniques that can be applied to “make clear the border of

each language structure and to eliminate as much as possible the language dependent factors,

tokenization, stop words removal, and stemming.” (Khan et al. 2010).

Then, the feature selection layer is used “to select subset of features from the original documents (…)

by keeping the words with highest score according to predetermined measure of the importance of the

word.” (Khan et al. 2010). This is intended to make the existing set of available features manageable

and scalable so that the selected classification algorithm can be applied on the dataset. To achieve this,

it is composed of Natural Language Processing and Statistics components.

Finally, the classification algorithm layer contains Machine Learning algorithms which can be selected

according to their performance when handling certain kinds of data.

The following sections in this chapter present the theoretical concepts behind the (potential) components

in each of these three layers.

3.1 Feature Extraction Mechanisms

In this section we refer to the different steps that transform unstructured text data into more structured

formats that can be later used by algorithms to analyse it. In this respect, we consider these steps as

techniques from text mining. In this context we understand text mining from the perspectives of Data

Mining and the Knowledge Discovery Process as described by (Hotho et al. 2005). As such, we see text

mining simply as a process with sub components that perform certain pre-processing tasks to extract

useful patterns for document analysis.

3.1.1 Term

Also known as feature, it represents the smallest meaningful unit of text with which a document can be

represented. Depending on the approach taken, a term can refer to a word or a phrase (Sebastiani 2002).

According to (Khan et al. 2010), other alternatives include N-Gram and RDR, this last one representing

document as logical predicates (Khan et al. 2010). On the other hand, an N-Gram is “(…) a string-based

representation with no linguistic processing" (Khan et al. 2010).

3.1.2 Feature Vector

This is the cornerstone of the Vector Space Model (VSM). It represents a text document as a vector

composed of term weights, is a feature vector (Khan et al. 2010). When all distinct terms m from all

documents to be analysed are merged into a single collection, this is called the dictionary of the

document collection (Hotho et al. 2005). This dictionary represents the m-dimensional space in which

feature vectors are expressed (Sebastiani 2002). Unfortunately, it is often the case that the amount of

features considerably outnumber the number of documents available, something known as high-

dimensionality (Khan et al. 2010).

This high dimensionality brings many challenges when it comes to text classification, such as prolonged

execution times both in training and testing, the need for bigger samples to train the algorithm and

difficulties in visualising the dataset (Rafeeque & Sendhilkumar 2011).

3.1.3 Bag of Words

A model to represent text documents for text classification in which every word is considered a term

(Sebastiani 2002). Each position of a feature vector contains the occurrence of a word, with the total

amount of words usually overcoming the total amount of training documents by more than an order of

magnitude (Forman 2003). It does not preserve the semantic context (Rafeeque & Sendhilkumar 2011).

3.1.4 Bag of Concepts

A text document representation model based on the identification in text documents of mentions to

domain-specific concepts (Kassner & Mitschang 2016). It requires the mapping of words in text to

concepts stored in a semantic resource via named entity recognition (Kassner & Mitschang 2016). For

18

this to work, the semantic resource should be aware of synonymy relationships among its concepts

(Kassner & Mitschang 2016).

3.1.5 Term-Weighting Techniques

They comprise the different ways to calculate the contribution of a term (or feature) to the semantics of

a document, or to the semantics of the whole document collection (Sebastiani 2002), in other words, the

representation of a term’s value (Forman 2003). In their most basic form, weights reflect the presence

of a term within a document, but different approaches may use take into consideration other aspects,

depending on the needs of a classification algorithm (Sebastiani 2002). According to (Forman 2003),

this basic form is a binary representation, which should be enough for short texts since terms hardly

repeat. It also enables the use of other feature selection metrics, such as Odds Ratio.

For the cases when weights are not binary, (Bank 2013) discusses three common components that can

be used, namely the local, global and normalisation components. The first one refers to the importance

of a term in the document where it is contained. The second is based on the importance of the document

in the whole document collection. The third component is employed to negate the influence of very

different document lengths in the weight of a term.

A technique with focus on the local component is term frequency, understood as the number of times N

a term i is mentioned in document j (Ruotsalo 2012), expressed in the formula:

𝑡𝑓𝑖,𝑗 = 𝑁𝑖,𝑗

For the global component, inverse document frequency is a common way to calculate it. It is based on

the number of documents n where term i appears in the document collection N (Ruotsalo 2012),

expressed in the formula:

𝑖𝑑𝑓𝑖 = log(
𝑁

𝑛𝑖 + 1
)

These two components combined derive in the creation of a major calculation method known as TF-

IDF (Sebastiani 2002) with the formula:

𝑡𝑓𝑖𝑑𝑓𝑖,𝑗 = 𝑁𝑖,𝑗 ∙ log(
𝑁

𝑛𝑖 + 1
)

TF-IDF captures two notions. The first one is that the more often a term appears in a document, the more

it represents the content of the document. The second one is that the more often a term is present across

multiple documents, the less useful it is to discriminate among them (Sebastiani 2002). The TF-IDF

approach then weights terms according to how unique they are among terms, documents and particular

categories (Khan et al. 2010). It is important to note however, that his formula does not take into account

the order in which terms may appear inside of documents (Sebastiani 2002).

A variant of the TF-IDF formula also considers the thirds normalisation component identified by (Bank

2013) in the form of a cosine normalisation, which is the square root of the sum of square TF-IDF

weights for all terms i from 1 to m as shown in the formula:

√∑ (𝑡𝑓𝑖,𝑗 ∙ 𝑖𝑑𝑓𝑖)2
𝑚

𝑖=1

This then turns the TF-IDF formula into the expression

𝑡𝑓𝑖𝑑𝑓𝑖,𝑗 =
𝑁𝑖,𝑗 ∙ log(

𝑁
𝑛𝑖 + 1)

√∑ (𝑡𝑓𝑖,𝑗 ∙ 𝑖𝑑𝑓𝑖)2𝑚
𝑖=1

3.1.6 Document Term Matrix

A Document Terms Matrix (DTM) is the aggregation of all document vectors describing the term

frequencies of all terms considered in the document collection, also known as the collection dictionary.

It contains document IDs as rows and terms as columns, and every resulting intersection contains

19

weighted-term frequency of term i in document j. It is one of the most common ways to represents texts

in text mining (Feinerer et al. 2008).

As (Damljanovic et al. 2012) mention, there are issues concerning the scalability of DTMs with large

corpora. This is due to the fact that the matrix grows every time additional documents or terms are added.

3.1.7 Tokenization

The process of breaking a text document into a sequence of words or terms, each of them separated by

nothing else than a whitespace (Hotho et al. 2005). It is fundamental preliminary step for text mining

that renders the document in a compact format in order for subsequent tasks to be performed on it (Khan

et al. 2010).

If certain components require it, this process can also partition documents into sentences instead of doing

it by words (Khan et al. 2010). However, this document representation has not yielded significantly

better performance (Sebastiani 2002).

3.1.8 Stop Word Filtering

A processing task to remove stop words, which are words with little significance for text classification,

because they are both too frequent across documents and they have no discriminating effect across

documents (Hotho et al. 2005). Examples of these stop words are articles, conjunctions and prepositions.

The goal of doing this filtering is to reduce the size of the dictionary and as a result mitigate, albeit

partly, the typical high dimensionality problem (see sub section 3.1.2).

Stop words can be both language-specific and domain-specific (Forman 2003).

3.1.9 Stemming

It refers to the process of reducing words to their morphological root (Sebastiani 2002). This root, also

called stem, is the one that groups words with equal or very similar meaning (Hotho et al. 2005). Since

all words from a group are now represented by their stem, the overall number of terms present in a

document decreases, which in turn helps address the problem of high dimensionality (see sub section

3.1.2). As it can be inferred, this process requires knowledge of the language used in the document.

3.1.10 Part Of Speech Tagging

One type of linguistic pre-processing methods (Hotho et al. 2005) that tags every term in a document

with the role they perform as part of the speech, the so called Part of Speech tag.

3.1.11 Named Entity Recognition (NER)

An information extraction task that deals with the identification of entities in natural language text and

their classification according to their entity type (Freire et al. 2012). The identification of entities usually

requires identifying one or two adjacent terms that textually refer to them (Schierle 2011). The possible

categories typically considered are people, organizations, locations, expressions of time, quantities, etc.

(Freire et al. 2012). This implies that the identification of domain-specific entities is normally outside

of the scope of classical NER approaches and needs to be implemented on its own (Hänig 2012).

This fact already hints that for a NER system to be successful, there is a strong need for manually created

rules, manually created dictionaries or manually labelled training data, which makes the implementation

in new domains or languages complicated (Schierle 2011). Current solutions already reach near human

performance when applied to grammatically well-formed text (Freire et al. 2012).

3.1.12 Concept Recognition

Beyond the identification of entities in textual data, in domain-specific scenarios it is also necessary to

identify the relevant concepts. This is due to the fact that concepts may be contained in more than nouns.

Actions or properties can be expressed in adjectives, verbs and adverbs which are not identified by NER

systems (Schierle 2011; Schierle & Trabold 2008).

20

Therefore concept recognition is a task focused on identifying concepts (entities, actions, properties or

symptoms) in domain-specific textual data. This can involve the identification across different languages

(despite of a potential lack of one to one term mappings), handling of synonyms and word sense

disambiguation (Schierle & Trabold 2008).

Because of this transformation of the different terms referring to the same concept into a single identifier,

Concept recognition can be seen as another kind of document representation that lies between phrase

and single word representations.

3.1.13 Content and Function Words

Two major lexical classes to group words (Pulvermüller 1999). Content words (or open class words),

which usually refer to more concrete meanings, include nouns, verbs and adjectives. Function words (or

closed class words) can include articles, pronouns, auxiliary verbs, conjunctions and in general any word

that contributes to the meaning of sentences by fulfilling a certain grammatical purpose, (Pulvermüller

1999).

3.2 Feature Selection Strategies

Defined by (Dasgupta et al. 2007) as the process of “selecting a subset of the features available for

describing the data before applying a learning algorithm”, the main focus is to reduce the number of

features extracted from a document collection to a number that can be managed by a classification

algorithm. While traditionally there are two main types of feature selection methods, wrappers and

filters, in this work we focus only in the latter. This is not only due to the fact that wrappers are in

general not suitable for text classification (Khan et al. 2010), but also, as (Blum & Langley 1997)

mention, because filters are independent of the algorithm that will use their output, which turns them

into ideal methods for our proposed conceptual framework.

3.2.1 Dimensionality Reduction

A preliminary step before applying a classification algorithm, it reduces the amount of terms that

comprise the feature space so that algorithms do not face high-dimensionality issues (see sub section

3.1.2). The new set of features is called a reduced term set (Sebastiani 2002).

Besides of enabling algorithms to handle bigger feature sets, performing dimensionality reduction also

helps to avoid overfitting the classification model due to having a small amount of training data

(Sebastiani 2002).

There are two main ways to perform dimensionality reduction: either by selecting a subset of the original

term space (term selection) or transforming the original terms to obtain fewer (and new) ones (term

extraction) (Sebastiani 2002). Within the term selection techniques we can find wrappers and filters,

whereas in the term extraction approach Term Clustering and Latent Semantic Indexing are good

examples (Sebastiani 2002).

3.2.2 Wrapper

It consists of creating successive new term sets, either by adding or removing terms to the original term

set, to apply the classifier algorithm until the most effective set is found. It implies using the same

algorithm for both the classification and term selection (Sebastiani 2002). As a consequence, this

approach is time consuming when the number of original terms is very high (Khan et al. 2010).

The logic behind using the same algorithm for both tasks is that in this way, the effectiveness of the

resulting reduced term set is guaranteed, since it was calculated with the actual algorithm that will

perform the classification, instead of using any other measure geared towards other purposes (Blum &

Langley 1997).

Common algorithms used in the wrapper approach are Naïve Bayes and k-Nearest Neighbours (Blum

& Langley 1997).

21

3.2.3 Filter

It refers to a feature selection approach where a mechanism different (and independent) from the

intended classification algorithm is used to subset the total number of features (Blum & Langley 1997).

The filter decides which terms to keep based on a feature scoring metric that assesses the usefulness of

the term for the classification (Khan et al. 2010).

A simple metric can be term frequency, which can for example keep only the most frequent terms. This

seemingly simplistic action can nonetheless achieve a reduced set 10 times smaller than the original one

with no loss in effectiveness, given that stop words are first filtered (Sebastiani 2002). Other ways to

select terms based on term frequency is to remove terms with minimal occurrences over the whole

training set, or those appearing in a minimal amount of documents (regardless of how many times they

appear inside the document) (Sebastiani 2002).

3.2.4 Feature Selection Metrics

They measure the ability of a feature to help differentiate the target classification categories (Khan et al.

2010). While originally conceived as the core of filter approaches to term selection, they can also be

used as heuristics to improve the performance of wrapper methods (Forman 2003).

Common metrics according to (Forman 2003) are Chi-Square, a measure of divergence from a statistic

distribution (thus prone to failure with small frequencies); Information Gain, measuring the decrement

in entropy when a feature is considered; Odds Ratio, measuring the chances a term appears in one

category over the chances of appearing in other categories; and Document Frequency, or how many

documents contain a word.

3.2.5 Language Statistics

These are statistical measures that help characterise and understand language datasets (or corpora) (Bank

et al. 2012). With them, datasets used in research projects can be compared in a fair manner, and by

assessing their differences, it is possible to evaluate the transferability of the natural language processing

methods or algorithms applied on them.

Among the statistics proposed by (Bank et al. 2012), we focus on four: Shannon’s entropy, relative

vocabulary size, vocabulary concentration, and vocabulary dispersion.

Shannon’s entropy H for language engineering represents the mean amount of information of a term ti.

High entropy means there are many words with low frequencies. It is given by the formula:

𝐻 = − ∑ 𝑝(𝑡𝑖) log|𝑉| 𝑝(𝑡𝑖)

𝑡𝑖∈𝑉

Where V is the vocabulary size (all terms comprised in the dataset) and p(ti) is the probability of the

term in the corpus. Moreover, (Hofmann & Chisholm 2016) estimate the probability of terms following

a power-law distribution according to the formula:

𝑝𝑟 ≈ [𝑟𝑙𝑛(1.78𝑁)]−1

Where pr is the probability of the word in rank r (the typical frequency-based rank used for example in

Zipf-plots, see sub section 3.2.6) and N is the total number of terms.

The relative vocabulary size RVoc is a ratio of the vocabulary size V over the total number of occurrences

of meaningful words Nm, where Nm refers to words that are not function words (see sub section 3.1.13):

𝑅𝑉𝑜𝑐 =
|𝑉|

𝑁𝑚

Vocabulary concentration CVoc is understood as the ratio of the number of occurrences of the most

frequent terms in the vocabulary Ntop, over the total number of occurrences of all terms in the dataset N:

𝐶𝑉𝑜𝑐 =
𝑁𝑡𝑜𝑝

𝑁

22

The vocabulary dispersion DVoc expresses the ratio of terms with low frequency Vlow (terms whose

number of occurrences is less or equal to 10) over the vocabulary size V (total number of terms in the

dataset):

𝐷𝑉𝑜𝑐 =
|𝑉𝑙𝑜𝑤|

|𝑉|

3.2.6 Power-Law Distribution

It is a type of cumulative distribution that is commonly found both in natural and man-made systems,

including the frequency of words used in human language (Newman 2005). In it, the distribution of the

quantities being measured, in this case the frequency of words, is proportional to the rank of the word

(Newman 2005). We can express this in the formula:

𝑃(𝑥) = 𝐶𝑥−𝑎

Where P(x) is the fraction of words with frequency greater or equal than x, x is the frequency with which

a word occurs (or a quantity in general), and both C and a (exponent or scaling parameter) are constant

parameters that are estimated in a case by case basis. Also 𝐶 = 𝑒𝑐. It is important to notice that the

estimation of the exponent a requires choosing a minimum x value above which the power law is valid.

This points to the fact that in real life scenarios, distributions often present power-law behaviours in

certain ranges, and not across the whole dataset (Newman 2005).

Power-law distributions can be visually represented in different ways. The most common include the

rank/frequency plots or CDF plots, which include Zipf-law plots (with P(x) on the y axis) and Pareto-

distribution plots (P(x) on the x axis); histograms on logarithmic scales, or a simple histogram (Newman

2005). Examples of these are found in Figure 10 for the simple histogram and Figure 40 for the Zipf

plot.

It is also called a scale-free distribution due to the fact that regardless of the units in which x is measured,

the power-law distribution remains present, albeit with a change of value at the constant C(Newman

2005).

Power-law distributions can easily induce high-dimensionality problems over time as data grows and

frequencies of very rare terms increase, even if it is in marginal levels. This is of particular relevance in

scenarios like the one that (Liu et al. 2013) point out, where multi-category classification is performed

on an open text collection (new items are added over time). They also highlight that in real-life

applications, this represents a challenge in terms of storage-time-cost sensitivity that needs to be

controlled. After all, in many scenarios many features will be useless for classification because of their

comparatively low frequency, thus supporting the need of reducing the total number of features. They

propose a method that takes advantage of the power-law distribution to achieve this with low storage,

computing time and cost.

For this (Liu et al. 2013) define the uselessness ratio Ru “as the ratio of the number of token features

with less frequency to the total number of token features”, where less frequency is considered to be less

or equal to two. The complement to Ru is then the random sampling ratio Rrs that can be used to reduce

the size of the power law distribution without altering its overall distribution.

Additionally, very frequent terms can also present an obstacle for proper classification. (Cavnar et al.

1994) point out that a power-law distribution implies the dominance of a small set of words in a given

language both in general and in particular subjects. Empirically, they discovered that around the top 300

terms in a language, there is a high correlation among those terms regardless of the subjects covered in

the composing texts. Beyond this point, terms are more specific to the subjects of each document. While

they discover this around the 300th rank for a collection of short texts, they mention that this tipping

point was discovered manually, and could change for other collections.

Finally, (Newman 2005) and (Clauset et al. 2009) raise a warning to avoid identifying power-law

behaviour in any distribution that graphically presents some exponential trend. This is particularly

relevant since a very common way to check for power-law behaviour is visually inspecting a plot of

term frequencies with a logarithmic scale in both axes (Clauset et al. 2009). When the distribution seems

23

to resemble a straight line, the dataset is considered to follow a power-law. However this offers

erroneous results and inaccurate parameter estimations.

Instead, (Clauset et al. 2009) propose to estimate the scaling parameter with a maximum-likelihood

method (MLE for Maximum-Likelihood Estimator) and the minimum x value with a Kolmogorov-

Smirnov statistic (KS statistic or test), the most common statistic used for non-normal data. The MLE

method is based on the Hill Estimator, while the KS test measures the distance between two

distributions: the one fitted by the parameters and the actual data distribution. The adequacy of this

estimations is then verified with a p-value test on the hypothesis of data being drawn from a different

distribution. Lower values for the KS Statistic evidence better fit while values higher than 0.05 for the

p-value reject the hypothesis of data being drawn from other distributions.

3.3 Classification Algorithms

3.3.1 Levels of Supervision

Machine learning algorithms can be classified according to the amount of preliminary human effort

needed to use them. According to (Hänig 2012), this effort refers to the creation of a train input set and

to the specification of the expected output (regarding for example the amount of categories). The

supervision is then this initial labelled dataset (Gupta 2011). Depending on the amount of supervision

needed, there are three distinct categories.

Supervised methods, which can achieve very accurate results when their conditions are properly met,

require a fully annotated training set; this is an initial set of data with labels describing the particular

attribute by which all data has to be classified (Hänig 2012). They also require to specify the number of

categories in which data has to be classified. Their main drawback is precisely the amount of effort

required to label the training set, which in some cases may not even be possible to do, because the data

refers to subjects or phenomena no longer available. Traditional classification algorithms such as Naïve

Bayes, Support Vector Machines, K-Nearest Neighbours and Artificial Neural Networks are supervised

algorithms (Gupta 2011).

Unsupervised methods on the other side, are very easy to apply on new data sets because they neither

require a previously annotated train set nor the specification of the output (Hänig 2012). On the positive

side, this means that they are an efficient alternative to obtain some structure out of a new data set even

if that structure is not that accurate (Hänig et al. 2008). Instead, they cluster data based on some measure

of differences or distance between observations. This can lead to classifications that do not match the

problem at hand, because they do not consider the categories in place, resulting in unpredictable results

with both useful and useless patterns (Gupta 2011). Some examples of unsupervised algorithms are K-

Means, Latent Dirichlet Allocation Topic and Expectation-Maximization for mixture of Gaussians.

The final category of algorithm incorporates characteristics of the previous two. Semi-supervised

algorithms do begin with a set of labelled data. This is used to classify data unless a certain abort

condition is met (Hänig 2012). The classified results can be then reused as additional train data if a

human expert confirms the correctness of the classification (Hänig 2012).

3.3.2 Multiclass Text Classification

It refers to the process of labelling each document (written in natural language) in a document collection

with a single category (or class) out of a set of predefined thematic categories (Giorgetti & Sebastiani

2003).

The process begins with a document corpus already labelled with categories from its predefined category

set. This is split into training and testing sets to be used at different stages of the process. Afterwards,

an algorithm, also called learner, builds a classification model for the target categories using the

documents in the training set. The model’s effectiveness is then measured by running classifying the

documents on the testing set using the same model (Giorgetti & Sebastiani 2003). Effectiveness is

calculated in terms of accuracy, understood as the proportion of correct classifications over the total

number of classifications (Giorgetti & Sebastiani 2003).

24

3.3.3 Naïve Bayes

It is a classification algorithm based a probabilistic model that aims to select the category with the

highest probability for a document based on the words the document has (Giorgetti & Sebastiani 2003).

Given a document training set or corpus D, where each document can be represented with a feature

vector wj, the probability of a document represented by vector wj to belong to a category ci is calculated

by applying the Bayes theorem in the following manner:

𝑃(𝑐𝑖|𝑤𝑗) =
𝑃(𝑐𝑖)𝑃(𝑤𝑗|𝑐𝑖)

𝑃(𝑤𝑗)

The assumption that gives this algorithm the quality of Naïve, and also simplifies the calculation

probability, is applied to the calculation of P(wj|ci), because normally the number of vectors (or

documents) to consider is too high (Sebastiani 2002). It is simply assumed that each element of the

feature vector (typically words) are independent from each other and from the order in which they

appear. Instead, the document is considered a sort of “bag of words” without any contextual or semantic

information about the feature vectors (Gupta 2011). This is represented in the following equation:

𝑃(𝑤𝑗|𝑐𝑖) = ∏ 𝑃(𝑡𝑘|𝑐𝑖)

𝐾

𝑘=1

Where tk represents the kth term t and ci the ith category.

Although this assumption can be considered unrealistic in particular for the text classification domain,

the accuracy it yields, along with its ease to be implemented and its efficient computation use (Khan et

al. 2010), has led Naïve Bayes to be a foundation algorithm upon which many improvements are

proposed (Hotho et al. 2005). Moreover, this algorithm can be trained with a small amount of training

data without affecting the performance of the classifier, proving its robustness despite of miscalculations

in the probability model (Khan et al. 2010).

There are two common variants, the more performant multinomial, where all documents are considered

a single document to do the calculations (Khan et al. 2010), and multi-variate Bernoulli method

(Giorgetti & Sebastiani 2003).

Still it is worth mentioning that Naïve Bayes is not considered one of the best performers, especially

when compared against the SVM algorithm. It also sees its performance reduced when features are

highly correlated (Khan et al. 2010).

3.3.4 Support Vector Machines

A supervised machine learning algorithm that is commonly among the top performers in classification

tasks. At its basic form, it is a binary classification model that aims to optimise the separation between

two opposite category datasets, which can then be considered as positive and negative categories, each

one requiring its own training data (Khan et al. 2010).

In the space in which document vectors are represented (see Figure 7), a hyperplane can be defined as

the linear separation between the two classes for which the distance between itself (the hyperplane), and

the closest elements from either class (distance called the margin), is maximised. In such space,

documents are represented as vectors of real numbers (i.e. with term frequency weights) (Chih-Wei Hsu,

Chih-Chung Chang 2008).

Documents located at the limits of the margin constitute the support vector. Once these are created, all

training data not being part of the support vector can be removed without altering performance (Khan

et al. 2010).

25

Figure 7 Example of Support Vector Machines Classification

Because of the linear representation it needs, finding the optimal hyperplane can be calculated in terms

of a maximization problem for the Euclidean distance between the support vectors and the hyperplane

(Hänig 2012). This is a “constrained quadratic optimization problem which can be solved efficiently for

a large number of input vectors” (Hotho et al. 2005).

SVM was originally conceived as a binary classification algorithm, which means that it requires

modifications to handle more classes (Zhang et al. 2011). These multi-class classification problems are

approached by applying the algorithm as many times as there are classes (Hänig 2012). If the data is

also represented in a highly-dimensional space, then using kernel functions allows the application of

SVM by mapping the multidimensional space into a higher dimensional feature space where linear

separation is possible (Hänig 2012). Options for kernel functions are linear, polynomial, radial basis

function (RBF) and sigmoid (Chih-Wei Hsu, Chih-Chung Chang 2008). Another possibility to address

this issue is to use a slack variable (Hänig 2012).

Even though SVM can indeed handle high-dimensional input, complex training and categorising

algorithms are a problem (Khan et al. 2010). Another consequence of this complexity is the processing

time of O(N2) for a training data set of size N makes it unsuitable for large datasets (Kyriakopoulou

2008). Also, in contrast to other algorithms, SVM reduces its effectiveness when feature selection

techniques are applied to the dataset (Giorgetti & Sebastiani 2003).

3.3.5 Decision Trees

This classification algorithm builds its logic into a tree data structure where leaves are the classification

categories and branches are sequences of selection tests that decide to which category a document should

belong. Each document goes through a series of queries based on selected terms starting from the root

node (Khan et al. 2010). To achieve this, algorithm is built using a “divide and conquer” principle (Hotho

et al. 2005). Moreover, since most of the variants of this algorithm are based on binary document

representations, and each node on the tree usually queries a single term (or feature), the resulting trees

are binary (Sebastiani 2002). Therefore, they can also be seen as an organised set of if-then rules

(Schierle 2011).

The creation of a decision tree starts with a set of labelled documents. From them, the term (or feature)

that can better predict the documents’ labels (categories) is selected to split the set into two groups: those

with the selected term and those without it. This logic is recursively applied until all documents in a

group (or subset) belong to the same category (Hotho et al. 2005). How to choose the first and successive

features to continue building branches, the key step in this algorithm, is based on different measures,

information gain being a common one (Schierle 2011).

Popular types of decision trees algorithms are Classification and Regression Tree (CART), ID3, and

C4.5 (Murty et al. 2012).

Decision trees are commonly used in Data Mining because of their speed and scalability when it comes

to the number of variables (features in our domain) and the size of the training set. However, these

26

advantages can become drawbacks for their performance in text mining, since they tend to employ only

a small amount of the available features (Hotho et al. 2005). This results in poor performance to classify

documents. However this can be overcome with the use of a few structured attributes (Khan et al. 2010).

Other challenges are its tendency to over fit the model to the training data, and the creation of overly

complicated trees when the dataset is very large (Khan et al. 2010).

The main advantage of decision trees is its ease to be interpreted by humans (Sebastiani 2002),

something that does not occur with probabilistic methods.

3.3.6 K Nearest Neighbours (k-NN)

An example-based classifier, it is also considered a lazy learner because of its lack of computation during

the train phase, performing it all during the actual classification (Sebastiani 2002). In fact, training

simply comprises storing documents as feature vectors along with their categories. The classification

phase then computes similarities between all train vectors and the new vector (document) in order to

choose the k most similar or “nearest” vectors. The most common category among those k vectors is

allocated to the new document (Khan et al. 2010).

Based on this description, we notice two are the main steps in the algorithm, namely estimating the

optimal k value and calculating the similarity between document vectors.

The optimal value for k can be obtained with additional training data using cross-validation (Hotho et

al. 2005). It is important to note that this estimation should also take into account the number of classes

and the size of the training set (Gupta 2011). Some authors argue the optimal values lie somewhere

between 30 and 45, even though increasing the value does not significantly degrade performance

(Sebastiani 2002). On large datasets, a classifier with k=1 has an error rate never larger than twice the

optimal error rate (Hotho et al. 2005).

Similarity or semantic relatedness of documents can be calculated in multiple ways. Normalised count

of common terms is one option (Hotho et al. 2005), others include cosine similarity, Euclidean distance,

and Kullback-Liebler distance measure (Gupta 2011). According to (Sebastiani 2002) this measure can

be probabilistic, or vector-based. In all cases, it is computed between a new document and all documents

in the train set (Hotho et al. 2005).

This algorithm is known for its good performance in terms of accuracy and fast training phase (Murty

et al. 2012). This is the case even for multi-categorised documents (Khan et al. 2010).

However, this does not come free of challenges. It takes a long time to be executed and is

computationally intensive given the fact that it uses all features in distance comparison (Khan et al.

2010). Its performance is degraded with noisy or irrelevant features in the training data (Murty et al.

2012). Finally, the estimation of an appropriate K value is complicated if data is not evenly distributed

or if there is noisy data (Murty et al. 2012).

3.4 Related Technologies

3.4.1 R

It is a functional programming language and environment for statistical computing and graphics

distributed under a GNU-style copy left (R Core Team 2001). Besides of its core functionality on

statistical procedures, R also has a package specification that allows to create purpose-specific modules.

Thanks to this, it is possible to extend the scope of the R methods to unstructured text data. One such

package that is relevant for text mining is the “tm” package.

The “tm” package provides a framework that integrates R statistical methods with advanced text mining

or natural language processing methods from other toolkits, such as Weka and OpenNLP (Feinerer et

al. 2008). This is done thanks to a modular design that can interface with the RWeka and Snowball

packages to offer stemming, tokenisation, sentence detection and part of speech tagging.

“tm” is designed around a typical three-step text mining process including: 1)importing text and

structuring it to be accessed in a uniform manner, 2) pre-processing text to obtain a convenient

27

representation (which may involve reformatting, whitespace removal or stemming), and 3) transforming

texts in a format useful for computation like clustering or classification (Feinerer et al. 2008). The

process starts with the creation of a corpus (or text document collection) as a data structure to manage

documents in a generic way, and ends with the generation of a document term matrix on which

computations can be performed.

Another package offering a stark different approach to supervised learning on text data is “RTextTools”.

This packages streamlines the process of pre-processing data, training several classification algorithms,

performing the classification, comparing teach algorithm’s performance, and exporting the results (Jurka

et al. 2013). This package goes through a nine-step process starting with a document term matrix and

finishing with a document summary to review accuracy of each of the nine classification algorithms

available, namely Support Vector Machines, glmnet, maximum entropy, scaled linear discriminant

analysis, bagging, boosting, random forest, neural networks and classification tree.

3.4.2 Weka

Standing for the Waikato Environment for Knowledge Analysis, it comprises a collection of machine

learning algorithms and data pre-processing tools implemented in Java and released as open source

software (Hall et al. 2009). It is built with a modular, extensible architecture that also provides an API

and a graphical interface.

Because of its Java implementation, Weka requires a Java Virtual Machine with enough heap space,

thus demanding to specify in advance the amount of needed memory. In addition to this, the amount

specified also has to be less than the total amount of physical memory available to avoid swapping.

These two conditions represent obstacles to its widespread use in practise (Hall et al. 2009).

It includes algorithms for regression, classification, clustering, association rule mining and attribute se-

lection. Data exploration capabilities include data visualisation and pre-processing tools (Hall et al.

2009).

3.4.3 Unstructured Information Management Architecture (UIMA)

A middleware architecture initially developed by IBM, it is designed to support the creation of

applications which process vast amounts of unstructured information with the use of structured data.

The final goal of such applications is to extract relevant knowledge from data sources like natural

language text, voice recordings, audio or video (Ferrucci & Lally 2004).

As discussed by (Ferrucci & Lally 2004), UIMA is meant to accelerate the creation of Unstructured

Information Management (UIM) solutions by facilitating the integration of different technologies within

a common framework. Moreover, it enables the reutilisation of existing software components, thus

increasing the solution’s flexibility as well.

At its very core, UIMA-based applications can be conceived as a sequence of Analysis Engines and or

Consumers that perform different kinds of analyses on documents (units of unstructured information

processing) and or Collections generating as a result a series of Annotations. A more structured overview

of UIMA groups the previously mentioned components along with others into 4 different kinds of

services: Acquisition, Unstructured Information Analysis, Structured Information Access and

Component Discovery (Ferrucci & Lally 2004).

It is important to mention that originally, UIMA requires file descriptors for the creation of Analysis

Engines where the input requirements, output specifications and external resources dependencies are

specified (Ferrucci & Lally 2004). According to (Ogren & Bethard 2009) this is to be expected because

of UIMA being a programming framework. However, in the long term this can become a burden due to

the additional effort needed to maintain the descriptor files consistent with the code. To circumvent this

problem, (Ogren & Bethard 2009) introduced what is known today as uimaFIT, a set of classes to

instantiate, run and test UIMA components easily and without descriptor files. It is particularly useful

to run Pipelines (sequences of analysis engines that process documents typically supplied by a

Collection Reader) in a simplified manner.

28

4 Framework to Optimise Data Features and Classification Algorithms

In this chapter we design a framework to create solutions to the problem described in 1.2.2. To achieve

this, we first refine the conceptual architecture for text classification presented at the beginning of

chapter 3, specifically in Figure 6, to detail how specific concepts are used in the design of text

classification solutions. We then explore the properties of our application scenario’s dataset to

characterise the concept of messy data to our particular context. With this enriched definition we then

proceed to devise a method that supports the creation of text classification solutions both by making use

of our conceptual architecture and being aware of the specific challenges present in this research

problem.

In terms of the Design Science methodology, this chapter introduces two artefacts: a model (the

conceptual architecture) and a method which are used to build an instantiation artefact in chapter 5.

4.1 Conceptual Architecture for Text Classification

There are multiple reasons to refine the detailed conceptual architecture introduced in chapter 3 and turn

it into a reference model that can help us develop our own text classification solution. First, and as

initially mentioned, with this detailed architecture we give equal importance to text mining pre-

processing techniques in the development of text analytics solutions. This is important to stress the fact

that the process of building text analytics solutions involves more than just parsing text and applying

algorithms into it. It is also necessary to decide the way text is processed, represented, and even

transformed to discover relevant features upon which algorithms can be applied. Underestimating this

choices, especially for the unexperienced practitioner, can result into considerable performance

degradations.

Second, by enforcing a clear distinction of three layers we clarify the way concepts from different

disciplines are combined to develop text classification solutions. In this way, the architecture can help

identify alternatives not only during development, but also when revisiting existing solutions by pointing

at other components on the same level that are worth considering.

In this sense, the conceptual architecture describes more than component aggregations. It delimits the

scope of possible solutions that can be developed to address our problem, something (Hevner et al. 2004)

refer to as the solution space. Solutions derived from the application of this architecture can then be

assumed comparable with each other, facilitating the evaluation of their respective performances in the

search of the optimal solution. Because this architecture is inspired by the same analysis and research

line that conceived the solution implemented by (Kassner & Mitschang 2016), comparisons can also be

made with it.

Figure 8 shows the refined version of the conceptual architecture for text classification. It classifies

components in three levels with the same amount of layers, without taking dependencies into account.

This is to remain flexible and reusable while still addressing this and other domain specific analytics

problems, one of the design goals conceived by (Kassner & Mitschang 2016). Components are thought

as modules that can be combined horizontally and vertically to build a text classification solutions. The

only constraints are consistency and the availability of features and structured data, thus encouraging

the possibility of developing multiple solutions.

In a basic scenario, different components on the first two layers can be combined following the needs

of a selected classification algorithm and the availability of the features in the dataset. As long as a

combination of elements from every layer produce meaningful results, the solution is considered valid.

It could also be possible to combine two or more algorithms and their necessary components from the

layers above to come up with more complex solutions, but this is an alternative we do not focus on.

29

Figure 8 Full detail view of the Conceptual Architecture for Text-Document Classification

In this architecture three kinds elements are contemplated. On the bottom, feature extraction components

refer to the generic unstructured text analytics that process the dataset to identify or help identify

potential features in it to be later employed by a classification algorithm. This layer contains then

components from Text Data Mining that can process unstructured textual data to identify terms, correct

spelling mistakes, identify concepts, detect the language, etc. The objective is to obtain a set of

potentially useful features contained in convenient data structures to be used by the following layer. An

important result here is a Document Term Matrix. A structured data layer is at the same level because

some of the components in the feature extraction layer may need access to structured resources to

perform their task. For example, a concept annotator needs to access a taxonomy to identify the concepts

in text.

The feature selection layer then focuses on choosing a subset with the most useful features out of all the

ones previously obtained. This enables the selected classification algorithm to work more efficiently

while still being able to describe the dataset in a reasonably accurate way. To fulfil this purpose, this

layer addresses the need to specify an appropriate filter (see sub section 3.2.3), evaluation metric (see

sub section 3.2.4), and weighting scheme (see sub section 3.1.5). The choice of including only filters

and not wrapper methods (see sub section 3.2.2) is based on the design goal of maintaining every

component in the layer modular and flexible to be used with as many different choices as it makes sense.

Since wrappers are directly related to the selected classification algorithm, they are not part of our

feature selection alternatives.

Based on the power-law nature commonly found in text, this layer also offers the use of statistic methods

based on the properties of this kind of distribution (see sub section 3.2.6). Taking into consideration the

fact that the data we study is framed in a domain-specific context (see section 4.3), the layer also

contemplates selection alternatives based on other kinds of dimensions that can be relevant in the

domain, like space, time or others based on business rules. As (Zhang et al. 2011) show and argue, this

is possible because text contains many times information related to these dimensions albeit in an

unstructured format. Examples of the information contained are names of places, spatial terms and

certain POS elements like orientation words, prepositions and verbs (Zhang et al. 2011). This kind of

techniques would infer the relevance of features based on, for example, how recently they were

generated, how close to one another were the authors who created their source text reports or whether a

pair of reports refer to similar car parts or not. Because of this, and in a similar way to the Feature

Extraction Layer, the execution of certain elements on this layer depends on the use of structured data,

this time to obtain relationships that can serve as input. Therefore, the structured data layer is also part

of this level.

Feature Extraction: Generic Unstructured Text Analytics

Feature Selection: Domain-specific Text Analytics

Classification Algorithm: Machine Learning

Evaluation metrics Weight
scheme

Dimension based
(Metadata) techniques

Structured data

Knowledge Structures

Relational DB

Filter
algorithm

Language
detection

Spellchecker

Concept-recognition

Statistical-based
Translation

Stemming

Tokenization
Name entity

detection

N-gram
extraction

TDM Creation

Naive Bayes
K-Nearest
Neighbor

Neural
Networks

Hierarchical
clustering

Gradient
boosting
machine

Decision Trees

Support
Vector

Machines

POS Tagging

Statistic
techniques

Stop words
filtering

Numbers and
punctuation removal

Lowercase
conversion

Sampling

Hypothesis
testing

Chi-Square

Accuracy

Information Gain

Document
Frequency

Term
Frequency

TF-IDF

Binary

Language
Statistics

Term cut-off
based on

correlation

Time

Domain-specific (business
rules, organisational)

Place

Taxonomy

Ontology

Thesaurus

30

The top layer simply points out the existence of several classification algorithms that can be applied

whenever an algorithm suits the target dataset’s conditions, for example being able to handle the required

number of classification categories. It should be noted that since there are multiple combinations of

feature selection techniques and feature extraction components that can be applied to every classification

algorithm, the elements on this top layer actually represent a family of algorithm configurations that

share the same logic but apply it on different feature sets.

4.2 Data Exploration

The dataset we study comes from the quality inspection process described in section 1.2.1. It is a

randomly sampled subset of the original dataset dealing with three major car part classes. It contains

7500 distinct data bundles or collections of text reports and structured data referring to an equal amount

of car parts that went through the process and have an error code assigned. Aside from other irrelevant

fields, the structured data that is created is shown on Figure 9. All data is stored in a relational database.

Text reports, error descriptions and part description are written either in English or German. All data

has been anonymised, so that no individual, organisation or vehicle can be identified.

Name Description Type Example

Reference number A 9–digits code to identify every part that is

processed. Generated at the beginning of the

process

Text 768192821

Error code An 11-characters long code to identify the

particular kind of failure the part suffered.

Assigned by the OEM at the end of the

process. This are the target categories for

classification of reports. In the studied dataset,

there are 1271 different codes.

Text 33107B61AV7

Part code A 7-characters-long code to identify the type

of part being analysed. It is part of the error

code. There are 31 different codes in our

subset.

Text 33107B6

Mileage Distance in kilometres that the car had by the

time it went to repair.

Numeric 13809

Production date Date when the car was finished. Date 2002-08-04

Admission-to-drive
date

Date when the car is authorized to drive in the

streets.

Date 2002-11-11

Repair date Date when the car is taken to repair. Date 2002-12-25

Figure 9 Relevant structured data for every car part

We focus our interest in the values of the error code, since they represent the categories in which the

text reports have to be classified. Since the whole dataset is annotated with an error code, we can use

part of it as a training test, and the rest as a testing set for our classification algorithm.

It is important to mention that not all data bundles contain the same information. When querying the

database to obtain a bundles containing all reports and structured data fields, the amount of records (or

rows) decreases up to 5538. This is due to the use of an INNER JOIN in order to obtain results with all

fields. Instead of using a LEFT OUTER JOIN to retrieve incomplete results on certain fields (either

missing text reports or structured data fields), we split the total dataset based on the roles involved in

the process, namely the Mechanic, Supplier and OEM. By doing this we obtain datasets with 5624, 7182

31

and 583 observations respectively. In the case of the OEM we consider only those with the optional

preliminary report, which is the only one available at the moment of classification.

Even though this decision reduces already the size of the initial dataset, it gives clarity about its

composition with regards to the real-life context where it belongs. Moreover, it allows to attribute

performance improvements or deficiencies to the quality of the data produced at each role, shedding

light at how each role’s contribution to the overall dataset should be treated.

As an initial step we do a visual exploration of each role’s dataset with the objectives of: characterising

the behaviour of each potential feature, finding patters in the interaction of different features, and

determining the suitability of each feature for the classification task. Every dataset is extracted from the

relational database and loaded into an R environment to explore. For each role we first look at its

structured data and then at the contents of its reports.

4.2.1 Supplier Role Dataset

From the original 7182 observations retrieved, we begin by verifying the usefulness of the data for the

classification task by looking at different criteria. Any observation that does not meet the requirements

is then removed from the dataset.

We first remove 180 elements due to inconsistent or erroneous production or admission-to-drive dates

(from years 1900 or 1997). Not only are these dates useless to locate the moment in time when these

observations occurred, they also represent outliers that bring noise to the analysis of data trends over

time. These elements with faulty dates constitute the totality of observations for 38 error codes. The

remaining 7002 observations span across a 10 year period from 2004 to 2014.

In these observations, there are 709 error codes that only have a single occurrence. This makes them

unsuitable for the classification, since it either adds a category to classify for which there is no way to

test the accuracy, or it brings observations that can only create misclassifications. We then remove them

from the dataset.

Still, the fact of having two occurrences of the same error code does not guarantee full utility for a

classification task. The lack of enough elements of the same error code restricts the possibilities to

perform statistical inference based on their structured data, a method that could otherwise help identify

relevant features to improve classification performance. For example, 480 of the remaining 519 error

codes have less than 30 occurrences. If we were to test significant differences of some structured data

feature between samples of two error codes, such a small number of elements per error code would leave

the t-distribution, especially designed for small samples (de Winter 2013), as the only option. Even then,

with 426 out of those 480 error codes having very small numbers of occurrences (below 13, what

(Johnson 1978) estimates enough elements for data with extremely asymmetrical distributions), the t-

distribution tests would have problems not to produce false positives or false negatives. The reason is

that for very small samples to produce accurate results, the effect of the variable (feature) involved has

to be very large (de Winter 2013), and this is not guaranteed.

All in all, considering the significance of the loss it would represent to give up some many error codes,

and the possibility to explore their utility for the classification task with other (less precise) methods,

we keep these observations.

After these considerations, we start our exploration with 6293 observations belonging to 519 error codes.

Figure 10 shows a little less than a third of all error codes ordered by the number of observations. Their

distribution seem to follow a power-law.

32

Figure 10 Plot of the 150 most frequent error code for the Supplier Role (filtered dataset)

We then test their fit using the KS tests (see sub section 3.2.6) and obtain a p-value of 0.4519 and a

statistic of 0.0377. The first value rejects the hypothesis of the data being drawn from a distribution

other than the power-law distribution, while the second one shows there is little distance between the

fitted and the actual distribution. We can then conclude that for a scaling parameter of 1.8334 and a

minimum frequency x of 2, the tests suggest the data indeed follows a power-law.

If we compare at Figure 11 and Figure 12, we see that after removing more than half of the error codes

(which were in 12.37 % of the observations), the distribution of error codes per type of part (which we

will error code families for clarity) does not change drastically. This suggests that the missing error

codes were more or less evenly distributed across all part codes. It also contributes to validate the

assertions made on the filtered dataset as a whole, since it resembles the original one. It is important to

note, however, that three car parts are no longer represented, going from 31 original car parts, to 28.

33

Figure 11 Distribution of error codes per part code in the original Supplier dataset

Figure 12 Distribution of error codes per part code in the filtered Supplier dataset

Looking at the size of error code families in the filtered data set, we see strong variations between them.

From the perspective of the original process, this shows that some parts have many distinct ways to

present failures, whereas others do not. This can represent a problem at the moment of evaluating the

performance of the classification algorithm because not all car parts have the same amount of possible

error codes to be assigned, thus making some accuracy values lack sense. After all, if a given part can

34

only have 6 different error codes (even in the original unfiltered scenario), how can we interpret accuracy

in the 10 most probable error codes?

Focusing only on the filtered dataset, if we plot how many observations does every part have (shown in

Figure 13), we see that their distribution is more or less similar to that of the error codes (Figure 12),

except for a few notable cases. The leftmost part type has a lot of observations for its total error codes,

averaging 36.5 observations per part, while “Part 22” has only an average of 7.49 observations per part.

This suggests that some error codes will have very well trained models and, as a consequence, very good

results while others will have more misclassifications because of the opposite scenario: very little

observations and a lot of error codes. Similarly, this could represent a challenge if we tried to classify

the observations of each part separately. In some cases the amount of data will be enough to build robust

train and test sets, while in some others it will not. Moreover, it is likely that we would need more than

one algorithm to perform the classification, just so we can address all the different behaviours present

in every error code family. Averages for each part type are shown in Figure 14.

Figure 13 Observations per type of part for the filtered Supplier dataset

35

Figure 14 Average number of observations for every error code of each part type for the filtered Supplier

dataset

4.2.1.1 Structured data in the dataset

We now take a look at different structured data fields that can be used to complement the features

extracted from the text reports and as a result improve accuracy. We aim to find features whose values

are heterogeneous enough to help discriminate among error codes.

4.2.1.1.1 Regarding mileage

To see the distribution of the mileage values we present these values as box plots in Figure 15. We see

that for some part types there are many outlier values and a very short interquartile ranges (IQR) while

for others the opposite is true. Yet in all cases the median values (thick lines inside the boxes) seem to

remain low, somewhere beneath the 50,000 km mark. This is not particularly helpful, since across the

range of values that mileage has, there does not seem to be a clear pattern to allocate a new observation

to a particular part type. However, because of the scale distortion provoked by the presence of outliers,

it is hard to determine how similar the median values really are. This is important because it indicates

that half of the observations for every part type have values below that of the median. If these values are

indeed different enough, it could serve as a good discriminating feature.

To verify this, we plot the median values in Figure 16. In this case it is clear that they progressively

grow from almost 150 to a little more than 28000 km. We can expect difficulties in predicting to which

error code does a part belong to, based on the mileage. Moreover, let us not forget these are median

values which do not represent the full variability of mileage within every part type. As a consequence it

is very likely that values close to the limits of the 1st or 3rd quartile in one part type (or error code family)

could be mistakenly taken as belonging to another error code family where they also fit. As a conclusion,

it can be expected to contribute very little to the overall performance of the classification algorithm.

36

Figure 15 Box plots of mileage values per part type for the filtered Supplier dataset

Figure 16 Ordered median mileage values per part type for the filtered Supplier dataset

4.2.1.1.2 Regarding time

Figure 17 shows the observations grouped by the 519 error codes considered in the filtered Supplier

dataset on the y axis and grouped by the months in their repair dates on the x axis. Therefore, horizontal

lines on the plot show the apparition of error codes during the whole time considered in our dataset.

37

Figure 17 Error codes grouped by their month of repair for the filtered Supplier dataset

Despite of the big amount of observations, a clear trend is present. As we move over the error codes

ordered in alphabetical order (as they are in the plot), the more likely it is that the error code was

identified at a later month. Following this logic, error codes with an earlier alphabetical position are

more likely to be assigned earlier in time. The exceptions to this trend are the first 50 error codes or so,

since they seem to be present across all the time period, albeit less frequently as time goes by. In a

similar vein, observations around years 2009 and 2011 can be particularly difficult to categorise, given

the fact that almost all error codes have some elements present at that moment in time.

To gain more clarity on this pattern, Figure 18 shows the same data (repair date months) as box plots

grouped by part type. Here we see the variability we expected among part types if we look at the

distribution of IQRs over the total time span. The length of IQRs varies as well, something that indicates

that the discrimination problem we expected to see around years 2009 and 2011 may not be as tough as

originally thought, as observations from each part type tend to concentrate at slightly different moments

in time within this particular period.

38

Figure 18 Months of the repair date grouped by part type for the filtered Supplier dataset

A similar situation occurs if we examine the distribution of observations according to the admission-to-

drive dates they have registered. This is shown in Figure 19. The IQRs for each part type are just as

spread over the whole period of study as in the case of repair dates. In some case the IQRs are also

shorter, favoring the concentration of observations around a particular point in time, and as a

consequence avoiding overlaps with other part types, thus helping classification. Examples of this are

parts 8 and 11, 4 and 5 or 14 and 15.

Figure 19 Months of the admission-to-drive date grouped by part type for the filtered Supplier dataset

39

All in all, these features can prove useful to increase the performance of the classification algorithm.

Even though this is due to the particular way observations spread over time for our specific scenario, it

highlights the importance that temporal data can have to improve the classification of unstructured text

data.

A more revealing feature comes from calculating the amount of days from the day a car is first admitted

to circulate until the day it is taken to repair, which we will call “driving time”. Figure 20 shows the

quartile distributions of this calculation arranged by part type. Contrary to what happens with mileage,

here observations are very similar to one another within their part type (shown in the more or less

compact IQRs) and different enough in comparison to observations from other parts (median values

vary more or less evenly over a range of 500 days).

Figure 20 Box plots of driving times per part type for the filtered Supplier dataset

Based on these observations, and even though this feature does not promise to add much as much

discrimination as the previous one, we can also consider the driving time as an additional feature. It is

safe to include this feature along with the repair date because, despite of being a derived calculation

between the admission-to-drive and repair dates, it has low correlation with their effects (-20% and 12%

respectively).

4.2.1.2 Text reports in the dataset

In order to explore the nature of the texts in the dataset and the effects of different pre-processing

sequences, we represent each report as a feature vector made of single-word terms. Based on this

representation we perform two types of pre-processing. One that is blind to the language of the texts and

another one that applies additional processing steps based on the identified language in each report (only

English and German are valid options). Both pre-processing sequences are implemented in R, in a setup

described in section 5.2.

The simpler language-blind approach takes every text report (document) in the dataset (collection or

corpus) and 1) turns it into lowercase letters, 2) filters English and German stop words, 3) removes all

numbers, and 4) removes all punctuation signs.

The language-oriented pre-processing approach takes every text report (document) in the dataset

(collection or corpus) and 1) turns it into lowercase letters, 2) identifies the document’s language, 3)

filters only the stop words of the identified language, 4) removes all numbers, 5) removes all punctuation

signs, and 6) stems the remaining terms in the document according to the identified language. The reason

40

to apply lowercasing before anything else is to improve the language detection rate, since the

corresponding component is based on character n-gram frequencies where only a subset s is used (known

as the Cavnar and Trenkle approach (Hornik et al. 2013)), probably leaving out many n-grams with

uppercase letters.

Applying the simpler pre-process we obtain a document term matrix (DTM) with 8219 terms coming

from all 6293 documents. Documents have a median sequence length of 33 terms, with a maximum of

95 and a minimum of 8 terms. As expected, we have high dimensionality issues despite of filtering stop

words.

Meanwhile, the language-oriented pre-processing yields two separate document terms matrices which

combined provide 9307 terms out of 5198 documents, more than in the language-blind pre-processing

scenario, both in absolute terms and per document. This occurs even though terms are stemmed and the

language detection discarded some documents that due to their spelling errors and high-content of

abbreviations could not be identified either as English or German. As a consequence, we still have high-

dimensionality. 3794 English-identified documents contribute 5365 terms, while the German matrix has

only 1404 documents from which we obtain 3942 terms. We see then more English documents than

German ones and consequently, more English terms than German terms.

In terms of length, English documents have a median sequence length of 27 terms, with a maximum of

90 terms and a minimum of 2. German documents have a median of 22 terms with a maximum length

of 69 terms and a minimum of 5. These numbers show that at most, reports are approximately as long

as this paragraph, with English documents being longer. This difference can be attributed to the fact that

English typically needs more words to express what German can with just one compound word. An

example could be the German (nevertheless grammatically incorrect) term

“diebstahlschutzaktivierungsfehler” which in English would be written as “Anti-theft alarm activation

error”. It is also worth noting that stop word removal is significantly more effective in German

documents.

Figure 21 shows the thirty most frequent terms from each DTM. We see that based on the language

detection and stemming, results vary significantly. While in the language-blind case the rank is topped

by internal terms and abbreviations with unclear meaning, in the language-focused scenarios we find

stems that do belong to each language and are easier to interpret, even if their meaning appears to be

vague in the context of a quality process. They revolve around the terms or stems “problem”,

“customer”, “complain”, “failure” and “defect”.

On top of this lack of specificity, we also find big levels of correlation between the top terms, as shown

by the ample interconnectedness among them (Figure 22, Figure 23, and Figure 24). This suggests two

things. First, top terms are not particularly useful to discriminate among different categories of error

codes since they tend to appear together over more documents than there are for each error code. This

can be estimated considering that the highest average of observations per error code shown in Figure 14

is far smaller than, let’s say, the 1527 observations where the terms customer and complaint correlate.

Secondly, stemming seems to mitigate some of this high correlation. Terms in the language-oriented

cases do not show as much correlations as in the language-blind case. In fact some show no correlation

at all (at least with these terms). This can be perhaps attributed to the fact that abbreviations are not as

present as in the language-blind case. These also suggest that correlation in general is less present in the

language-oriented version of the dataset, making it more useful for the classification task.

If we compare the terms extracted for this role to the ones found for the Mechanic role, we see there is

little overlap. In the language-blind pre-processing datasets we find 25.12% of the Supplier terms also

present in the Mechanic dataset. On the language-oriented side, despite stemming, the Supplier terms

in English also appear 18.54% of the times among the Mechanic English terms, whereas in the German

case, this occurs 20.16% of the times. This confirms the notion that in general each role refers to the

same observations in very different terms.

41

Figure 21 Top 30 most frequent terms for Language Blind (left), English (centre) and German (right) Pre-

Processing for the Supplier dataset

Figure 22 Correlation relationships among the 20 most frequent terms (Supplier dataset, language-blind

pre-processing)

Rank Term Occurrences

1 <internal term 1> 9374

2 <internal term 2> 6809

3 bedienteil 4446

4 high 4072

5 <internal term 3> 4054

6 mid 3123

7 usa 2980

8 fehler 2441

9 control 2297

10 navi 2206

11 customer 2026

12 steering 1914

13 noise 1858

14 entry 1774

15 issue 1610

16 complaint 1527

17 gerät 1359

18 yoke 1326

19 failure 1310

20 dvdwechsler 1265

21 see 1145

22 test 1125

23 confirmed 1084

24 power 1067

25 dvdchanger 1063

26 found 1060

27 lhd 1054

28 like 1051

29 dvd 1034

30 confirm 1011

Rank Term Occurrences

1 custom 1835

2 confirm 1783

3 nois 1586

4 test 1486

5 issu 1405

6 complaint 1360

7 failur 1144

8 yoke 1042

9 like 1000

10 found 936

11 part 891

12 close 889

13 check 884

14 due 826

15 caus 811

16 problem 810

17 rack 713

18 greas 687

19 see 678

20 play 669

21 bench 657

22 judg 656

23 bar 637

24 unit 611

25 acoust 568

26 clearanc 546

27 slave 519

28 defect 518

29 report 518

30 without 501

Rank Term Occurrences

1 fehl 2041

2 gerat 924

3 sieh 507

4 bestatigt 455

5 gepruft 405

6 ried 389

7 allgemein 383

8 gca 378

9 qec 367

10 bekannt 366

11 analys 325

12 funktion 307

13 stna 291

14 wurd 247

15 bitt 246

16 befund 241

17 <internal term 2> 216

18 mid 213

19 defekt 205

20 spindl 199

21 festgestellt 195

22 festgestelltna 185

23 laufwerk 180

24 verlang 171

25 beim 166

26 cds 163

27 dvd 144

28 motor 143

29 ergebnis 141

30 japan 136

42

2 : Correlation graph of the 20 most frequent terms for Supplier data (English), cor= 0.25

custom

confirm

nois

test

issu complaint

failur

yoke

like

found

part

close

check

due

caus problem

rack

greas

see play

Figure 23 Correlation relationships among the 20 most frequent terms (Supplier dataset, English pre-

processing)

Figure 24 Correlation relationships among the 20 most frequent terms (Supplier dataset, German pre-

processing)

To better understand each dataset, we test for the existence of a power-law distribution using a term

frequency weighting scheme.

43

Figure 25 shows both a power-law estimation based on the fitted linear model (black line) and the

Maximum-Likelihood Estimation method (see sub section 3.2.6) (orange line). We see as we approach

the tail of the distribution that the fitted linear model estimation diverges from the MLE estimation as a

result of the noise in the area. This is due to the fact that the estimation is based on the least-square error

calculation of a linear regression method, which according to (Clauset et al. 2009) is inaccurate. The

MLE estimation does not suffer with this and thus let us determine whether the data follows the power-

law distribution in a more reliable way. Using KS tests to probe this assumption, we obtain a p-value of

0.003613, which cannot reject the possibility of data being drawn from other (exponential) distributions.

On the other hand, the statistic of 0.035542 suggests a good fit between the fitted and actual distributions.

There are multiple ways to interpret these results, and looking at the estimations made for the data

coming from a language-oriented pre-process helps to shed some light on the matter.

Testing the estimations made with MLE method for both the English and German sub sets (orange lines

in Figure 26 and Figure 27), we find notable differences between languages. The English results (p-

value of 0.046017 and statistic of 0.052702) contrast with the German ones (p-value of 0.518804 and

statistic of 0.012992). They indicate that the frequency of terms identified as English terms could follow

a distribution other than the power-law, while the so identified German terms are more likely to follow

the power-law. In both cases however, the fit of an estimated power-law distribution is good. As we

show later, because there are more English terms than German terms in the original dataset, it is expected

that the behaviour of the language-blind pre-processed dataset resembles more the English subset than

the German one. A simple inspection to the curvature at the beginning of the plots in all three cases

easily confirms it.

Going deeper into the details of the Zipf plots, the curvatures just mentioned represent lower-than-

expected frequencies of the most frequent terms, while the noise in the tails can be attributed to sudden

changes in frequency values as we go down the rank. These deviations are in accordance to the claims

of (Newman 2005) that power-law behaviour is not observed over the whole range of values. The

reasons for this are beyond the scope of this thesis, but despite of these deviations, the values of the KS

statistics suggest we can assume power-law behaviour in terms of ranks, but not in frequencies.

0 2 4 6 8

0
2

4
6

8

1 : Power-Law fit for log(Term Frequencies) in the Supplier dictionary (Blind)

log(rank)

lo
g

(f
re

q
u

e
n

c
y
)

Figure 25 Zipf plot for the term frequency of features in the Supplier corpus (Language Blind)

44

0 2 4 6 8

0
2

4
6

2 : Power-Law fit for log(Term Frequencies) in the Supplier dictionary (English)

log(rank)

lo
g

(f
re

q
u

e
n

c
y
)

Figure 26 Zipf plot for the term frequency of features in the Supplier corpus (English)

0 2 4 6 8

0
2

4
6

3 : Power-Law fit for log(Term Frequencies) in the Supplier dictionary (German)

log(rank)

lo
g

(f
re

q
u

e
n

c
y
)

Figure 27 Zipf plot for the term frequency of features in the Supplier corpus (German)

4.2.2 Mechanic Role Dataset

We process this dataset in a similar way as we did with that of the Supplier role, so as to remove the

observations with invalid dates or those with an error code that only appears once. From the initial 5624

observations corresponding to 1068 error codes, we remove 178 with invalid dates and 610 that have

error codes appearing just once. This leaves us with a filtered dataset of 4836 observations that

correspond to 428 error codes. Once again, we see that 393 out of these 428 error codes have less than

30 observations, thus preventing us from removing them.

In general, these numbers already show a significant decrement in the amount of categories that can be

classified by only using the mechanics data. However, it is interesting to see that despite of this, the

behaviours observed in the supplier dataset remain present here. Figure 28 shows the 150 most frequent

error codes for this dataset, which now represents a bit more than a third of all error codes considered.

We see again the potential behaviour of a power-law distribution.

The KS tests show again that for a scaling parameter a of 1.8338 and a minimum frequency x of 2, both

the distance between fitted and actual distribution is small (KS statistic of 0.0344) and the hypothesis of

data being drawn from another distribution is rejected (p-value of 0.6907). This let us conclude again

45

that despite of being considerably smaller than the supplier dataset, the mechanic data also follows a

power-law distribution.

Figure 28 Plot of the 150 most frequent error code for the Mechanic Role (filtered dataset)

When comparing the distribution of error codes among part types before and after filtering the dataset

(Figure 29 and Figure 30), we see that this time 4 part types are no longer represented in the filtered

dataset. Aside from this change, the variance among part types remains. Again despite of removing 14%

of the observations corresponding to 59% of all originally available error codes.

Figure 29 Distribution of error codes per part code in the original Mechanic dataset

46

Figure 30 Distribution of error codes per part code in the filtered Mechanic dataset

When it comes to the amount of observations belonging to each part type and how many of those

observations on average can be assigned to each error code, we find the same pattern as with the supplier

dataset. Up to four part types have very few observations to produce good classification results, while

the leftmost part type in the graph has plenty of data to train and test the classification algorithm. For

the sake of brevity while still supporting the argument, we present only the average observations per

error code for every part type in Figure 31.

Figure 31 Average number of observations for every error code of each part type for the filtered Mechanic

dataset

47

4.2.2.1 Structured data in the dataset

Since many of the characteristics of the Supplier dataset are also present in this dataset, in this sub

section we provide only the key graphics to support the argument and briefly mention their relevance

for the classification algorithm. Additional material can be found in chapter 7: Appendices.

4.2.2.1.1 Regarding mileage

Figure 32 shows the median values arranged by part types according to the Mechanic dataset. For most

of the part types (except for the last four part types) the continuous behavior shown in the Supplier

dataset is also present here. This means that in most cases, the first half of the observations belonging

to a part type have mileage values very similar to those of other part types, providing very little

variability to easily discriminate among part types. As a consequence, mileage is not a suitable feature

to add to the classification.

Figure 32 Ordered median mileage values per part type for the filtered Mechanic dataset

4.2.2.1.2 Regarding time

Looking at the way observations are distributed over time in the Mechanic dataset, we see a similar

behaviour as the one present in the Supplier role. As the box plots in Figure 33 show, error codes are

heterogeneously distributed across the total time period with IQRs for every part type having a compact

length, few outliers (in most cases), and almost no alignment of their median values. This means that

the first 50% of the observations of every part type are dated earlier than different points in time. This

holds to the pattern seen previously and supports the idea of using the repair date as an additional feature

for the classification.

48

Figure 33 Months of the repair date grouped by part type for the filtered Mechanic dataset

In a similar vein, Figure 34 shows that the distribution of observations according to their admission-to-

drive dates also mimics the distribution of repair dates in this dataset. This holds even to the point of

having shorter IQRs that avoid overlap, as it can be seen with between parts 6 and 7, or 13 and 14. As a

result, the admission-to-drive date also constitutes a good supporting feature in this dataset.

Figure 34 Months of the admission-to-drive date grouped by part type for the filtered Mechanic dataset

Concerning the derivative feature we presented in the Supplier dataset, driving time, Figure 35 shows

again a similar situation for the Mechanic role. However, a closer examination and analysis suggest

mixed results as a classification feature. On one side, the six part types on the leftmost side of the graph

49

show less overlapping of their IQRs, as well as more compact lengths. This is positive to increase

variability among part types. However, the correlation values between driving time and their original

features, admission-to-drive date and repair date, increase to 1.71% and 37.75%. While still far from a

range of high correlation, this may bring slight overestimation of effects which may in turn decrease

performance.

Figure 35 Box plots of driving times per part type for the filtered Mechanic dataset

4.2.2.2 Text reports in the dataset

As with the Supplier dataset, the Mechanic data was pre-processed with two different sequence of tasks.

One that is language-blind to language and another who adds stemming based on the identified language

(either English or German).

In the language-blind case, 8989 terms are found out of 4836 documents, while the English DTM

contains 3556 terms coming from 1572 documents. Finally, the German DTM has 3023 terms from

2671 documents. This sums up to 6579 terms from 4243 documents from the language-oriented pre-

processing, which means slightly less terms both overall and per document compared to language-blind

pre-processing. Also, contrary to the case in the Supplier dataset, here we have more German documents

than English ones and yet the number of English terms continues to be bigger.

Regarding document word counts, the language-blind-pre-processed documents have a median

sequence length of 18 terms, with a maximum of 48 and a minimum of 3 terms. English documents have

a median length of 23 terms, with a maximum of 39 terms and a minimum of 1. German documents

have a median length of 7 terms, with a maximum of 33 terms and a minimum of 1. We see overall very

short documents in this dataset, approximately half the size of their counterparts in the Supplier dataset

(using the maximum lengths as reference). Moreover, the minimum value for the English hints to the

misidentification of certain reports as English documents. This is confirmed when we see the smallest

English document contains the stem “totalausfal”, German for “general failure”.

Figure 36 shows the top 30 terms as obtained from either of the pre-processing approaches. We see

again the presence of abbreviations on the top of the language-blind results. Meanwhile in the English

terms, we see the presence of two stems “command” and “comand”, which evidences the presence of

spelling mistakes in the dataset. Something similar occurs in the German rank with stems “imm” and

“immer”. Another notable difference is the presence of more terms related to parts in comparison to the

ranks of the Supplier dataset. Here we see over all three ranks terms or stems related to radio, dvd,

display or audio components.

50

Additionally, there is again little overlap between the terms or stems found in the Mechanic dataset and

those found in the Supplier one. In the language-blind pre-processing approach we find a 22.97%

overlap, while in the language-oriented results overlap ratios are of 27.98% for English and 26.29% for

German. The slight increments are due to the fact that overall the Supplier language-oriented datasets

have more terms than the Mechanic datasets, thus increasing the chances of every term to be found. This

relation also explains the decreased overlap in the language-blind results.

When looking at the correlations among the top terms (with values of at 0.1) as depicted by lines in

Figure 37, Figure 38, and Figure 39, we see similar patterns to those found in the Supplier dataset, even

though overall the strength of the correlations (as shown by the thickness of the lines) is not a big. This

is particularly noticeable with the German case, where four of the terms have no correlation at all. Still,

the fact that top terms tend to appear together in documents across different error codes (as evidenced

by the presence of big groups of interconnected terms) suggests that the most frequent terms are not

suitable for classification.

In the end, all the differences between Mechanic and Supplier terms make it clear that each role has

different perspectives about the same observations.

Figure 36 Top 30 most frequent terms for Language Blind (left), English (centre) and German (right) Pre-

Processing for the Mechanic dataset

Rank Term Occurrences

1 <internal term 2> 5702

2 <internal term 1> 4601

3 bedienteil 4458

4 <internal term 3> 3775

5 high 2594

6 usa 2503

7 control 2265

8 unit 1229

9 entry 1224

10 mid 1195

11 comand 1136

12 navi 1135

13 radio 1074

14 dvdwechsler 980

15 states 922

16 command 897

17 test 821

18 gelesen 789

19 <internal term 4> 781

20 audio 696

21 <internal term 5> 652

22 <internal term 6> 626

23 dvd 614

24 cds 523

25 defekt 502

26 found 472

27 short 472

28 laufwerk 440

29 <internal term 7> 402

30 fault 372

Rank Term Occurrences

1 state 906

2 unit 896

3 test 880

4 command 871

5 comand 812

6 radio 757

7 code 545

8 custom 514

9 perform 491

10 found 468

11 will 467

12 short 466

13 fault 379

14 replac 366

15 client 335

16 inop 327

17 check 293

18 intern 280

19 screen 257

20 function 255

21 player 241

22 time 228

23 work 219

24 system 212

25 edac 210

26 verifi 205

27 audio 198

28 display 196

29 changer 193

30 eject 192

Rank Term Occurrences

1 geles 744

2 dvd 541

3 navi 455

4 defekt 405

5 cds 386

6 laufwerk 384

7 fallnr 348

8 radio 340

9 comand 298

10 fehl 282

11 gerat 282

12 audio 250

13 ztw 222

14 lasst 210

15 display 190

16 standig 188

17 funktion 185

18 moglich 177

19 mehr 157

20 zeitweis 155

21 fahrt 151

22 geht 141

23 ausgeworf 138

24 navigation 130

25 beim 122

26 erkannt 121

27 imm 119

28 reset 116

29 immer 103

30 intern 102

51

Figure 37 Correlation relationships among the 20 most frequent terms (Mechanic dataset, language blind

pre-processing)

2 : Correlation graph of the 20 most frequent terms for Mechanic data (English), cor= 0.1

state

unittest

command comand

radio

code

custom

perform

foundwill

short

fault

replac

client inop

check intern

screen

function

Figure 38 Correlation relationships among the 20 most frequent terms (Mechanic dataset, English pre-

processing)

52

3 : Correlation graph of the 20 most frequent terms for Mechanic data (German), cor= 0.1

geles

dvd

navi

defektcds

laufwerk fallnr

radio comand

fehl

gerat

audio

ztw

lasst

display

standig

funktion

moglich

mehrzeitweis

Figure 39 Correlation relationships among the 20 most frequent terms (Mechanic dataset, German pre-

processing)

To explore the existence of power-law behaviour in the Mechanic data, Figure 40, Figure 41, and Figure

42 show the estimations using the fitted linear model in black and the MLE estimations in green.

Opposite to the case of the Supplier data, differences between each line are not that significant since all

distributions resemble more a straight line. At the same time this alone already indicates that data in all

cases follows a power-law. KS tests confirm this intuition. In all cases the KS statistic shows very close

resemblance between the data distribution and the estimated power-law distribution (0.010203 for the

language-blind pre-processing, 0.018839 for English data, 0.019112 for German data). Similarly, the

hypothesis tests do not support the fact that data could be drawn from another distribution by a good

margin (p-value 0.898385 for the language-blind data, 0.777331 for the English data and 0.803988 for

the German data)

0 2 4 6 8

0
2

4
6

8

1 : Power-Law fit for log(Term Frequencies) in the Mechanic dictionary (Blind)

log(rank)

lo
g

(f
re

q
u

e
n

c
y
)

Figure 40 Zipf plot for the term frequency of features in the Mechanic corpus (Language Blind)

53

0 2 4 6 8

0
1

2
3

4
5

6
7

2 : Power-Law fit for log(Term Frequencies) in the Mechanic dictionary (English)

log(rank)

lo
g

(f
re

q
u

e
n

c
y
)

Figure 41 Zipf plot for the term frequency of features in the Mechanic corpus (English)

0 2 4 6 8

0
1

2
3

4
5

6

3 : Power-Law fit for log(Term Frequencies) in the Mechanic dictionary (German)

log(rank)

lo
g

(f
re

q
u

e
n

c
y
)

Figure 42 Zipf plot for the term frequency of features in the Mechanic corpus (German)

4.2.3 OEM Role Dataset

The dataset with preliminary reports from the OEM begins with 583 observations, a considerably

smaller size in comparison with the datasets from the other two roles. After removing observation with

invalid dates or error codes that only appear once, we retain 469 observations corresponding to only 40

error codes. As with the other datasets, we cannot remove error codes with few observations since 36

out of the final 40 error codes have less than 30 occurrences. Regardless of this common issue, the

dataset of preliminary reports from the OEM as it is represents only 3.14% of all classification categories

(error codes), which definitely makes it unsuitable to obtain meaningful results.

As expected, the visual exploration of the same features for the OEM role showed significant differences

in the way observations are distributed. For the sake of brevity, we present a few representative plots in

this sub section, while the rest of the material can be found in chapter 7: Appendices.

While overall the OEM dataset is not consistent with the other two, the frequency of its observations

still follow a power-law distribution for a scaling parameter of 1.864 and a minimum frequency x of 2.

The values of the KS tests (statistic of 0.0924, p-value of 0.8839) support this assertion. Despite of this,

the KS statistic shows less fit to the power-law distribution than in the other two datasets, most likely

because of the small number of observations.

54

Regarding the derived feature driving time, correlation values among it and its parent features are still

acceptable with -14.61% of correlation with the admission-to-drive date and 30.03% of correlation with

the repair date.

Beyond of the data that it actually depicts, Figure 43 summarises all the limitations that disqualify the

OEM dataset as a useful one. The first major disadvantage is how little categories of the original set are

covered. The 40 error codes contained in this dataset belong to only 9 part types and their 469

observations span over a six years period instead of over a decade as it happens in the other role datasets.

On top of that, the observations that are part of the dataset describe very different behaviours. The IQRs

of the parts shown in Figure 43 show a very different distribution to those of the other datasets. Their

lengths are very short, their medians tend to align on the same point in time, there are practically no

outliers, and the part types that seem to be most prominent do not match the findings in the other roles.

We know from the process description (see sub section 1.2.1) that preliminary reports are optional, and

as such, the differences in distribution can be explained at least partially by this condition. Consequently,

the differences in behaviour of this dataset can be either for real reasons or simply because of missing

data. Without knowing the reason why experts from the OEM Company would create a preliminary

report or not, we can only conclude that using this data to classify text reports can mean unrelated effects

to the model, ultimately hurting the overall performance.

Figure 43 Months of the repair date grouped by part type for the filtered OEM dataset

4.2.4 Summary of the Two Main Roles

Throughout the examination of the three different datasets both on their unstructured text data and the

structured fields, we find that the datasets from the Supplier and Mechanic worker seem to be more

appropriate for classification purposes since they have a good coverage of the original dataset, have a

similar distribution of observations across the part types and their observations span over the whole time

frame consistently, enabling the algorithm to be trained with data from the whole period.

When it comes to the text collections from each dataset, these datasets do not look so similar anymore.

As Figure 44 shows, Supplier reports are usually longer than their Mechanic counterparts. Despite of

this, and the fact of having less reports, the Mechanic dataset has a slightly larger quantity of distinct

terms to use in the classification. This can be seen as mechanics writing considerably shorter reports

which nonetheless include a bigger variety of words. As a consequence, we can also expect more terms

having low frequencies, something that seems to be confirmed with the Zipf plot in Figure 40, since the

curvature at the most frequent terms (deviation from the fitted power-law distribution, caused by top

55

terms that “accumulate” more occurrences than they should according to their rank) is not as strong as

in the case of the Supplier dataset (Figure 25).

Figure 44 Comparison of the Supplier and Mechanic document collections (Language-blind pre-

processing)

Figure 45 Comparison of language statistics for each role

Figure 45 shows an additional perspective about the differences and similarities between our two

relevant datasets (in their language-blind variants). By looking at the different values of these selected

language statistics (see sub section 3.2.5), we can confirm the patterns observed so far either visually or

by quantitatively analysing the text corpora.

Starting with entropy, we notice that both datasets have similarly high values. This indicates that both

datasets contain mostly words with small frequencies, instead of a few that are very frequent (Bank et

al. 2012). This is to be expected given the identified power-law distribution we find in both datasets.

Looking at the relative vocabulary size, we find low values in both cases, albeit with a slight increment

in the case of the mechanic dataset. These values indicate a simple language (Bank et al. 2012), probably

due in this case to the very specific domain in which text documents were created. Extending a bit more

the interpretation of this very domain-specific vocabulary, the slight increase in the case of the mechanic

dataset could be attributed to the fact that this role tends to refer more to technical parts than the supplier,

as shown in the analysis of the top terms (see sub section 4.2.2.2). However, it is important to notice

that because of the stop word removal applied during the pre-processing step, these values may be under

estimated (see formula in sub section 3.2.5). Yet, considering the length of the documents and the high

average content rate, it is likely these values are not that distant from those of the unprocessed texts. All

in all, this supports the document representation as a bag of words, where terms are considered by

themselves the main source of information to classify documents.

When it comes to vocabulary concentration, high values would indicate that the vocabulary consists of

a few words (Bank et al. 2012). In our case, we see that both the supplier and mechanic dataset have

low concentrations, meaning that their 10 most frequent terms have relatively low frequencies. We can

confirm this by looking at the Zipf plots for both datasets (Figure 25 and Figure 40). The curvature on

the left-most side of the plot falls below the adjusted estimated power-law (straight lines in orange and

green, respectively). Moreover, the difference in concentration values can also be explained by the same

curvatures, since it is less pronounced in the case of the mechanic dataset, meaning their frequencies are

comparatively higher (they represent a bigger share of the total amount of occurrences). According to

(Bank et al. 2012) this complicates the usage of dictionary and rule-based methods for Natural language

processing.

Regarding vocabulary dispersion, we see high levels in both cases with a 10% difference in favour of

the Mechanic dataset. Despite of what could be inferred, these metrics are not complementary to

vocabulary concentration because vocabulary dispersion does not take term occurrences directly into

Metric Supplier blind Mechanic blind

Vocabulary size 8219 8989

Number of documents 6293 4836

Maximum report length (tokens) 33 23

Median report length (tokens) 95 39

Language Statistics Supplier Mechanic

Shannon's entropy for language

engineering
71,99% 71,88%

Relative vocabulary size 4,27% 9,91%

Vocabulary concentration 21,34% 32,27%

Vocabulary dispersion 82,15% 92,08%

Average content rate 98,49% 98,94%

Functional words 124 95

56

account (see sub section 3.2.5). High dispersion values indicate considerable amounts of spelling errors,

which in turn can affect named entity recognition or part-of-speech tagging efforts and require the use

of feature selection techniques to cope with the noise and burden of unnecessary features (Bank et al.

2012). Beyond confirming the known performance degradation provoked by the use of the mechanic

dataset (see sub section 1.2.2), this metric brings a clear measurement of how different the two datasets

actually are. This also sheds some light on how significant can be the improvement of data feature

quality by applying some spelling correction step during pre-processing.

In conclusion, the different metrics and statistics are consistent with the observations made by (Kassner

& Mitschang 2016), regarding the superiority of the supplier dataset to achieve higher accuracy in the

classification task. We expect this to be the case as well in our instantiation.

In addition to the selected language statistics suggested by (Bank et al. 2012) and discussed so far, a

lexical classification of each dataset brings attention to the potential gains that could be made when

looking for additional concepts to enrich an existing taxonomy in the terms of each role.

Based on lists of function words for each language (shown in section 7.1 of the Appendix) we can

identify a very high proportion of content words (see sub section 3.1.13), suggesting there are almost

only meaningful terms. Function words on the other hand, account in both cases for less than 2% of the

total terms considered, which translates into roughly 100 terms in each case. Upon closer inspection,

these function words are also mostly uncommon, with only 32 (in the supplier dataset) and 21 (in the

mechanic dataset) of them being among the top 1000 most frequent terms.

A possible explanation for this lack of function words is the overlap between the lists used to filter stop

words and function words. In the case of English, 77.88% of the terms considered function words are

also part of the stop words list. In German, 53.52% of the terms belonging to the function words list also

appear in the stop words list. This means that several words that would be identified as function words

in the lexical classification, are removed in the pre-processing of text corpora to build DTMs.

4.3 Study Object Characterisation

As we see from the previous results, the data that we focus on is different in many aspects to traditional

structured data. This translates into several challenges to achieve a successful classification. To properly

address them, we describe the properties that constitute a problem for traditional methods, conceptualise

them and incorporate them into a study object characterisation.

We begin with the definition of “messy data” provided by (Kassner & Mitschang 2016):

“Text which consists of non-standard, domain-specific language, riddled with spelling errors,

idiosyncratic and non-idiomatic expressions and OEM-internal abbreviations.”

The properties we can extract from this definition are:

 Non-standard content

Text does not always follow standard grammar or syntax rules or conventions in terms of

punctuation. This translates to challenges for concept recognition based on context identification

(see sub section 3.1.12).

 Full of abbreviations/ technicalities

It is common to find abbreviations in the reports which are understood by human experts but not by

standard parsing software, thus reducing the amount of knowledge that can be extracted from this.

Evidence of this are the most frequent terms in the language-blind pre-processing data for both the

Supplier and Mechanic roles. This also represents an issue for certain pre-processing methods such

as stemming, which depend on standard vocabulary (see sub section 3.1.9). At the same time the

solution may involve named entity recognition or concept recognition techniques (see sub sections

3.1.11 and 3.1.12).

 Domain oriented (even sub-domain)

57

The text reports come from the automotive domain and quality sub domain. As a consequence, most

of the terms revolve around car parts, problems, and customer complaints. It can also be expected

that these context limitation makes certain terms change the meaning they normally have in a general

context. This again is shown in the top terms ranks for both datasets.

Again this requires the use of concept recognition techniques (see sub section 3.1.12).

 Misspelled

This reflects the notion of data coming from free text under certain conditions that make its quality

degrade. Text has typing errors or orthographic mistakes that difficult the pre-processing stage. This

is noticeable when looking at term ranks with two versions of the same word, one with some spelling

mistake and the correct one. This can represent a problem to properly calculate terms frequencies,

which in excess can affect the data distribution on which certain feature selection metrics may

depend (see sub sections 3.2.4, 3.2.5, and 3.2.6).

In addition to these, the data exploration shows other characteristics worth-adding to the base definition.

 Brief

We deal with very short text pieces whose maximum length never goes over the 100 words.

Depending on the type of pre-processing applied and the dataset in question, this can decrease up to

32 words. On one side, this reduces the complexity of the text, since there is a limit to the depth of

expression a text can achieve in so little space. On the other side, interpreting the intended meaning

of words becomes more difficult because fewer terms that can serve as cues means it is harder to

determine the context in which a word is used, a basic requirement to identify concepts (Schierle

& Trabold 2008). Additionally, these differences in length can present a challenge for the weighting

scheme employed when it comes to long documents that contain the same term many times (see sub

section 3.1.5).

 From different perspectives

Texts are not only written in a particular context but also by different roles in the process. While

they are not extremely different from one another, they do present significant differences in several

aspects. As shown in the data exploration, documents from the Supplier role are significantly longer

than those of the Mechanic. They refer to the same observations in different terms, as shown by the

small overlap of terms between the two datasets and the inclination of each role to compose reports

based on parts and symptoms or customers and complaints. Additionally, languages have different

dominance in each dataset, with English being more common in the Supplier data, and German

being slightly more common in the Mechanic data (both in terms of documents). These two

phenomena combined induce by themselves a high-dimensionality problem (see sub section 3.1.2).

We can also expect a difference in relevance. For example, since mechanics are the first role in the

process, many of the observations here are expected to be preliminary in nature. Symptoms and

conditions described here may be superficial consequences of deeper causes to be determined by

other roles later in the process. As a result, to avoid providing an algorithm with potentially

contradictory input that can reduce its performance, it is better to consider data from different roles

as independent inputs that can be provided to different instances of the same algorithm.

 Incomplete components

Data, understood as the combination of text data and the complementary structured data, has missing

values that considerably decrease the amount of useful data for classification. This can even lead to

redesigns of the modelling approach for the sake of not losing more records. The most notorious

example in our data has to do with the dataset from the OEM. Representing 7.45% of the biggest

dataset (both after filtering) and with a clearly visible concentration in a particular moment in time,

this dataset would unbalance the data of other datasets if combined. Therefore, this role dataset is

impossible to compare in a meaningful way to the other two.

58

Other examples of incompleteness occur at the moment of pre-processing. Reports without a valid

date, with text whose language is hard to identify, and whose error code does not occur elsewhere

in the dataset need to be removed.

 In one or two languages

Text written in multiple languages presents additional challenges in terms of its pre-processing, be

it stemming, stop word filtering, or part of speech tagging. In all these cases, the fact of having to

distinguish between English and German requires an additional step where records can be lost

because of the inability to properly identify them. We see this happening in the language-oriented

pre-processing results.

Moreover, the before mentioned tasks as well as others like name entity detection or concept

recognition can be more difficult to implement because of the differences in logic they need to adapt

to the nature of each language. A clear example is given by (Schierle & Trabold 2008): concepts

that are expressed with one word in German may require multiple words in English.

 Many classification categories possible

Moreover, the amount of potential classes available make the classification difficult. This is because

many multi classification algorithms were not designed to work with so many categories and despite

of modifications to address this issue, they are not efficient enough to scale up to this order of

magnitude (see sub section 3.3.4). A notable exception to this case is the Naïve Bayes algorithm,

thanks to the Naïve assumption it takes to estimate the probability of a document represented by its

feature vector to be part of a given category (see sub section 3.3.3). This assumption which

originated from the fact that usually there are many documents to classify, also addresses the

problem of having multiple categories. This leads to either looks for ways to reduce the amount of

categories to use in the classification algorithm or to use only algorithms that are able to handle this

many categories.

 Classification categories do not distribute evenly

As shown in the data exploration section, not all classification categories are equally likely to be

used. The first reason is that by design, the error codes that can be allocated to each part type vary

significantly, as shown in either Figure 12 or Figure 30. This means that when an error code belongs

to a big error code family (part type), all other things being equal, the chances it has to be selected

are lower than those of an error code from a smaller error code family.

The second reason has to do with time. As Figure 18 shows, there does not seem to be a clear pattern

in the way error codes are assigned at any given point of time, let alone to present signs of

seasonality. An example for this is that at the beginning of the time period, all observations can only

have an error code belonging to one part type, but later on around year 2011, there are multiple

options possible, making the classification in this period of time a lot harder than in the early years

of the records. Finally, because of external unknown reasons, certain error codes may have more

observations to be trained and tested, as it can be inferred from Figure 13 , Figure 14, Figure 31,

and Figure 33.

These three conditions represent a difficult scenario for algorithms based on probabilities, since very

common categories can affect the probabilities of very rare ones to be selected (see sub section

3.3.3). Moreover, this requires an elaborate sampling process that random selection cannot fulfil.

This could be a problem as well for algorithms where positive and negative training data is needed

(see sub section 3.3.4). This skewness is a problem that according to (Forman 2003), only worsens

as data grows.

Considering all these properties we can arrive at a definition of messy data that more closely resembles

the situation we deal with in our business scenario:

“Short texts written by different individuals about a single event in non-standard form, in

multiple languages and with spelling mistakes; containing domain-specific language, and

jargon abbreviations for the purpose of classifying each event in one many multiple categories.”

59

Based on the characteristics mentioned in this definition, we can develop a better understanding of the

independent variables that operationalise the presumed cause in our research model Availability of data

features: 1) quantity of data features and 2) quality of data features (see Figure 4 in chapter 2). We can

expect characteristics like misspelling, incompleteness, abbreviations and the lack of proper grammar

or syntax to affect the quality of data features, just as shown in sub section 4.2.4 with the values of

vocabulary dispersion shown in Figure 45, whereas bilingualism, the increased diversity of categories,

the existence of multiple roles, and the reduced length may influence the quantity of data features, also

evidenced by the entropy and vocabulary concentration figures in the same Figure 45.

Knowing in detail the properties and challenges we need to deal with to perform our classification task,

we can design a custom method that properly addresses them and as a result provides us with an optimal

feature set to explore the effect relationship depicted in our research model (see Figure 4 in chapter 2).

4.4 Method to Select Optimal Classification Algorithm Configuration and
Features

A complement to the conceptual architecture in section 4.1, the method to arrive at the feature set that

results in the highest accuracy (as defined in sub section 1.2.4) when used with a particular classification

algorithm configuration is shown in Figure 46. It covers the course of action taken to build a

classification solution (instantiation artefact described in chapter 5) from a generic perspective that can

be applied to all possible solutions derived from the use of our conceptual architecture. The steps go

from the bottom layer (Feature Extraction) to the top one (Classification algorithm) to review the

decisions and actions to go from the selection of a classification algorithm, to the algorithm

configuration and feature set that provide the best results in the specified performance metrics.

Eventually, a logical formulation of this method could be implemented in a (semi) automated algorithm

explorer to standardise the way this process is performed, facilitating fair comparisons and reducing the

time required to do it. This could also be extended to target problems with a similar study object to the

one we focus on here (unstructured domain-specific text data).

The steps are:

1. Select classification algorithm. Based on a list of requirements derived from the study object

characterisation and the chosen metrics to evaluate the classification performance (one which is

typically accuracy), a set of candidate algorithms is chosen. We assume there is not perfect

match between any basic algorithm and the requirements of the study object. This asks for a

comparison regarding their advantages and disadvantages to discard all but one, which will

serve as base for the design of configurations later on.

2. Extract all data features. This involves retrieving the dataset from its source to then use different

components from the Feature Extraction layer in our conceptual architecture to obtain as many

features as possible both from the text and structured data parts. On the text part, this requires

the use of tokenisation to generate feature vectors (to work in the Vector Space Model) and

applying different levels of pre-processing to transform the original unstructured text into a

more manageable format. Examples are removing stop words, punctuation signs, lowercasing,

or spellchecking. Since the structured data is considered by definition to be in a convenient

format, no pre-processing is applied to it.

3. Choose document representation and weight scheme. As part of the fundamental choices that

needed in the Vector Space Model, the use of representation and weight schemes predisposes

the suitability of applying certain feature selection techniques and classification algorithms.

While we begin with a term frequency weighting scheme and a single-word-as-term

representation, other options can be explored when coming to this step in a second iteration.

Options for weights include TF-IDF or binary schemes found in the Feature Selection layer,

while document representations could be n-grams of different sizes, phrases or concepts, all of

which involve the use of a certain component from the Feature Extraction layer. In both cases,

the choice is enacted in the creation of a Document Term Matrix with these characteristics.

60

4. Explore data features. A less concrete step than the previous two, this involves the creation of

several graphical representations to look for patterns in their distribution over time, statistical

distribution, value ranges and other quantitative aspects that can be observed by grouping the

datasets under different perspectives. Using domain-specific notions or combining structured

data is also encouraged, e.g. verification of valid dates, meaningful amount of observations, etc.

The purpose is to find feature behaviours that can help discriminate between the classification

categories and to identify challenges that the selected algorithm needs to deal with. In addition

to this, a quantitative exploration may consists in the calculation of relevant metrics that

summarise the text content in particular and the data set in general concerning certain aspects,

e.g. term correlation, distribution fit, median document lengths, vocabulary size, vocabulary

dispersion, etc.

5. Assess possibility to derive features and calculate derivative features. In combination with the

feature exploration, this step aims to obtain additional features by integrating some of the

original features. This includes calculating intervals between dates, averages or variances of

certain values, normalised values based on other certain structured data (per kilometre, per day)

and any other measure that makes sense in the domain context. The resulting new feature should

be tested for correlation with its source features to avoid overestimating effects when building

the classification model.

6. Analyse features’ utility for the algorithm. This step is meant to deal with the problems of high

dimensionality. Based on the patterns observed and the values obtained in the data exploration,

and the application of one or multiple feature selection techniques (filters with evaluation

metrics, statistical or dimension-based techniques), a decision must be taken regarding how

many features should be considered and how will they be selected. While it still involves a

certain amount of trial and error, the correct interpretation of the findings made so far should

help to narrow down the feature selection techniques attempted.

7. Assess dataset coverage. Before making a final decision on which features to preserve to train

a classification model, it is important to verify that the intended feature subset still covers most

of the observations in the dataset. If this is not the case, and the amount of observation cannot

be used to classify the majority of the categories, it is necessary to rethink the way data is

processed starting from the document representation and weighting scheme.

8. Select most suitable feature subset. If the feature subsets are representative of the dataset and

significant to support the execution of the classification algorithm, the feature selection

techniques used to arrive to them are applied definitively to proceed. The plural form in the

previous sentences is intentional, because at this point there is still reasonable doubt about which

one is the feature selection technique that can contribute to the best performance results,

something to be discovered later on in the method.

9. Design algorithm configurations. Algorithm configurations are built around k binary design

choices concerning the selection, use, or way to use any of the elements considered in the

Feature Extraction and Feature Selection layers of the conceptual architecture and that can affect

the classifier’s performance. Every choice becomes then a factor with two levels, high or low,

present or absent. This results in 2k configurations to be tested representing all possible

combinations of factors’ levels.

10. Compare algorithm configurations’ performance. Every configuration is run at least twice to

obtain performance metrics’ values for each one of them. Doing so not only enables the

statistical testing of the observed performance levels, it also reduces the likelihood of accepting

inaccurate performance levels obtained by chance, since the inconsistency of each trial is easy

to detect. This however, does not substitute proper sampling methods, such as cross-validation

or stratification, to protect against “lucky sampling” effects.

11. Choose final configuration. The collected performance data can be used as input of a 2k

experiment design to evaluate the magnitude and significance that every factor (or architectural

choice) has on the performance metric values. In this way it is possible to identify the

components that improve the most the final result to focus more on them and how they do it at

61

the expense of others which make little difference. It is important to remember, that this results

suggest a best configuration based only on the two levels each factor has, not on all the possible

levels the factor can actually have. An example for this would be choosing between two weight

schemes, even though our conceptual architecture considers at least three.

Figure 46 Method to select the best classification algorithm configuration and feature subset given the

selected classification algorithm

62

63

5 Experiments and Evaluation

In this chapter we exemplify the application of the framework proposed in chapter 4 to build a

classification solution for our application scenario. We go through each of the steps described in the

method introduced in section 4.4 while also explaining additional details regarding this instantiation

whenever necessary. We present the results obtained with our solution and discuss their performance in

comparison to the previously implemented solution from (Kassner & Mitschang 2016). Finally, we

evaluate the artefacts that led to the creation of our solution in light of the Design Science methodology.

5.1 Classification Algorithm Selection

As the first step from our method, we create a list of requirements that an algorithm should fulfil to

handle the particular properties of our study object as identified by both the characterisation in section

4.3 and the problem description in sub section 1.2.2.

We look for an algorithm with the following characteristics

1. Time efficient. We look for an algorithm that can be comparable to the processing time per report

of the equivalent k-NN implementation. This means having values around the 0,14 seconds per

report of the bag of words approach from the k-NN implementation.

2. Can handle many features. A consequence of the bag of words approach, where every word is

considered a feature, there is a considerable amount of features even in brief texts as ours to

build a feature vector. While feature selection techniques can help partly address this abundance

of features, the selected algorithm should still be able to deal with enough features as to keep

the subset representative of the original reports.

3. Can handle many classification categories. The selected algorithm should be able to perform

multi class text classification (see sub section 3.3.2) with hundreds of categories.

4. Robust to data skewness. Despite the evident skew of data towards some categories, the selected

algorithm should be able to maintain a reasonable performance and to overcome the expectable

errors in estimations to classify very uncommon categories.

5. Easy integration of unstructured and structured features. The selected algorithm should be able

to combine structured and unstructured features in the same classification model with little or

no transformation of either kind of data.

6. Generation of multiple category suggestions. Instead of just offering a single most likely

category, the selected algorithm should provide several category alternatives to classify each

document. This is to support the work of a human expert as described in sub section 1.2.2.

5.1.1 Algorithm Selection Rationale

(Khan et al. 2010) describe the k-NN, Naïve Bayes and Support Vector Machines as the typical

algorithms of choice for text classification. However, since the k-NN is already implemented for our

application scenario, we replace it with the decision trees algorithm to make our comparison. We discuss

each algorithm’s advantages and disadvantages.

5.1.1.1 Naïve Bayes

This model is known for its simple implementation, for which no adaptation of the document term

matrices is needed. The composing feature vectors of the matrix are used directly to calculate

probabilities for each classification category. Moreover, thanks to its Naïve assumption when

calculating the conditional probability of belonging to a category given the document vectors (see sub

section 3.3.3), it can scale to handle big amounts of data and categories. Additionally, the algorithm is

robust to failures in the calculation of probabilities due to small training sets, a useful property

64

considering the limited amount of observations some error codes have (see sub sections 4.2.1.1 and

4.2.2.1). Finally, according to (Liu et al. 2013), the use of token (or term) frequency is an effective

scheme for statistical algorithms, such as this one.

On the negative side, we can consider its average performance in terms of accuracy compared to other

algorithms, something that nevertheless can be improved with multiple adaptations (Khan et al. 2010).

Perhaps the integration of structured data as just another feature among a myriad others obtained from

text can lead to a weak influence of the structured data features, but this is to be seen in experimentation.

5.1.1.2 Support Vector Machines

Known as a top performer for text classification, this algorithm can handle a big amount of testing/ input

data efficiently thanks to its hyperplane representation of positive and negative category spaces (see sub

section 3.3.4). Also, when dataset are highly dimensional, it is possible for this algorithm to transform

this highly dimensional feature space into a simpler representation using kernel functions.

However, its greatest weakness appears when dealing with extreme multi class classification problems

such as ours. Since it is designed as a binary classification algorithm, it needs to run as many times as

there are categories, thus leading to an inefficient execution time and complex adaptations to provide

the necessary positive and negative training data without skewing the samples towards the negative side

(since at any given moment all categories are negative training data except one). Using feature selection

mechanisms to address this result in performance degradation.

In addition to this, configuring additional components to enable the algorithm to deal with high-

dimensionality data (such as kernel functions or a slack variable) represent an additional burden that is

not needed with other algorithms.

5.1.1.3 Decision trees

Known for its speed and scalability, this algorithm can easily integrate structured data features

(something that also helps address overfitting), given the fact that in essence it works as a chain of if-

then rules (see sub section 3.3.5). It however has the risk of either being too efficient to classify by using

a small amount of features and overfitting the training data or being very complicated as it keeps growing

along with the dataset. This last option also sacrifices its main advantage: intelligibility by humans.

Moreover, by design it is supposed to assign just one category to each report. Adapting it to provide a

list of suggested categories (as needed by our application scenario) entails then additional complexity.

5.1.2 Final Selection

As we can see, given the particular characteristics of our study object and application scenario,

specifically that 1) this is an extreme multi class classification, and that 2) we aim to provide a list of

suggested categories instead of a single one, the Naïve Bayes algorithm stands out as the most

straightforward alternative to test our method and conceptual architecture. By choosing it, we can

redirect the focus from the classification algorithm alone, to the complementary feature extraction

components and feature selection techniques that also form part of our conceptual architecture.

5.2 Technical Setup

Figure 47 shows the environment where the experiments run. In white we show the necessary software

components that serves as foundation for our instantiation, while the created components are coloured

in grey. Arrows indicate the flow of data from its source to the classifier logic. We describe this setup

in a bottom-up fashion.

Our environment is a 64-bit Lubuntu server version 4.8.2-19 with a quad-core CPU running at 3.2 Ghz,

100 Gb of storage and 46 Gb of RAM. It hosts all our components and is available exclusively for these

65

experiments. Data is stored in several tables in a Postgres database (version 9.5.3). It is loaded to the R

environment with the RPostgresql interface package.

Figure 47 Technical Setup for the implementation of the Naive Bayes classifiers

We run an R environment in version 3.3.0 with the following additional packages installed

(dependencies not included):

1. RTextTools: To test multiple classifiers in a simplified manner. Version 1.4.2

2. igraph: To check for power-law fit of text data. Version 1.0.1

3. Rgraphviz: To plot correlations of terms as a graph with links of different strengths. Version

2.14.0

4. tm: To pre-process the text reports corpora (stop words removal, stemming, removing numbers).

Version 0.6-2

5. textcat: For language detection. Version 1.0-4

6. RWeka: Interface to use the Weka Naïve Bayes classifier. Version 0.4-27

7. RPostgresql: To retrieve data rows from the source database. Version 0.4

8. qdap: To make lexical classification. Version 2.2.4

9. sampling: To do stratified sampling. Version 2.7

10. qualityTools: To run the 2k Experiments and plot effects. Version 1.55

Weka toolkit in version 3.9.0. Classes are accessed with the RWeka interface package.

We also have a Java virtual machine version 1.8.0_91 to support the execution of the Weka toolkit.

The Naïve Bayes classification solution is composed of several R scripts that perform some part of the

steps to arrive at the classification train and execution. They follow a “pipeline” design where a script

can be replaced with other similar ones, for example to create feature vectors with terms made of two

words, or to perform different kinds of pre-processing. The scripts in the solution include:

1. Data extraction script: Retrieves data for each role from the database and stores it into a

corresponding data frame (R data structure).

2. Role data building script: It filters observations with invalid dates, removes observations whose

error codes appear only once (singletons), builds explicit labels of the error codes, aggregates

Lubuntu

PostgreSQL

R
P

o
stgre

SQ
L

R
W

ek
a

JVM

Weka
Toolkit

R Runtime

Data Extraction Script

Role Data Building Script

Role Pre-Processing Script

Role DTM Processing Script

Plotting
Script

Naive Bayes
Classifier

Scripts

Data
Exploration

Scripts

66

text reports into a single field (for the roles whose reports are split in multiple fields), and

calculates the derivative features standard mileage (mileage per day) and driving time (days

elapsed from the moment a car is first admitted to drive to the moment when it is taken to repair).

3. Role pre-processing script: It creates a text corpus (data structure from the tm package) and

performs the two kinds of pre-processing. The language-blind pre-processing which 1) turns it

into lowercase letters, 2) filters English and German stop words, 3) removes all numbers, and

4) removes all punctuation signs. Meanwhile, the language-oriented pre-processing 1) turns it

into lowercase letters, 2) identifies the document’s language, 3) filters only the stop words of

the identified language, 4) removes all numbers, 5) removes all punctuation signs, and 6) stems

the remaining terms in the document according to the identified language.

4. Role DTM processing script: It builds document term matrices, tests for the existence of power-

law behaviour, and obtains lists of all terms ordered by frequency to ease further calculations.

The last three scripts all depend on the results of the previous scripts to achieve different purposes, they

are independent from each other.

5. Naïve Bayes classifier script: Performs the classification task with the given parameters for role,

use of structured data, weighting scheme, pre-processing, and number of terms. It also calculates

accuracies with lists of 1, 5, 15 and 25 suggested categories.

6. Plotting script: Generates graphics of each role dataset based on their document term matrix

representations. It plot correlation among top terms, Zipf plots of term frequencies and simple

plots of terms ordered by frequency.

7. Data exploration scripts: Generates graphics of each role dataset regarding structured data and

the distribution of reports across categories and time.

5.3 Extract All Data Features

We begin by retrieving records for each role from the Postgres database and loading them into R. At

this point, data is organised into rows of results from an SQL query in the form of a R data frame. The

extraction of features from this data frame occurs at different stages of the script pipeline depending on

the kind of feature. Structured data is obtained at the role data building script, simply parsing extracted

text strings into date formats or mileage values into numeric formats. Text features are obtained in the

role DTM processing script by default using a single-word-as-term representation and term frequency

weights.

5.4 Choose Document Representation and Weight Scheme

The document representation in all cases is set to single words as terms since we are exploring the

spectrum of feature selection in the bag of words approach. For the weight scheme we use both term

frequency and term frequency- inverse document frequency (TF-IDF) to account for the differences in

documents’ lengths. These two weighting schemes indicate more than just the presence of a word in a

document, they also account for multiple mentions, thus allowing more fine-grained probability

calculations, a feature selection technique based on frequencies, and the use of language statistics to

explore the dataset (as shown in sub section 4.2.4).

5.5 Data Exploration

In this step we include the complementary steps derivation of features and feature assessment for the

classification task. Data exploration is covered in detail in section 4.2. Based on this exploration we

determine to use only the supplier and mechanic datasets. As structured data features we decide to

employ the admission-to-drive date and driving time for both roles, for reasons covered in the same

section.

Regarding the vast amount of unstructured data features (those obtained from text), we select features

according to their frequency values and the power-law distribution they follow. Based on the assumption

that neither very frequent features (since they tend to be present in many documents) nor very

uncommon ones (since they appear in a few documents) help discriminate among the various categories

67

available, we select one thousand features (or terms) following a 80/20 Pareto principle. We exclude the

first top terms that account for 20% of the total occurrences in the dataset and use the following

thousand. With this we also expect to avoid the common correlation issues at the head of a power-law

distribution that can difficult classification (see sub section 3.2.6).

When it comes to sub setting the language-oriented matrices, we also begin our selection after the top

terms accounting for 20% of the occurrences in each language, but the thousand features are obtained

in proportional rates from each language to preserve their original representation: 58%/42% in favour

of English for the Supplier dataset and 54%/46% in favour of English in the Mechanic dataset.

In addition to this subset selection, we employ the whole set of features to have reference values in

accuracy and processing time to compare against.

5.6 Coverage

The feature selection technique just described in the previous section allows us to achieve a good

coverage in terms of occurrences while drastically reducing the processing time. As Figure 48 shows,

while the thousand terms chosen represent 10% to 15% of all distinct terms in their respective document

term matrices, they account for 63% to 75% of all term occurrences in the reports. Even though these

values can still be optimised to obtain a better trade-off between the number of distinct terms and the

number of occurrences included, the selection is considered sufficient to exemplify the utility of a

power-law based selection.

Configuration type Feature space (total

number of terms)

1000 terms share as

distinct terms

1000 terms

share as per

occurrences

Supplier Language-blind 8219 12,17% 70,64%

Supplier Language-oriented 9307 10,74% 63,05%

Mechanic Language-blind 8989 11,12% 75,24%

Mechanic Language-oriented 6579 15,20% 66,98%

 Figure 48 Coverage of occurrences in different configuration types for different sub setting criteria

It is worth mentioning that there seems to be a clear distinction in coverage between the two kinds of

pre-processing in favour of the language-blind variant.

5.7 Naïve Bayes Algorithm Configurations

There are five different choices that we consider to design the configurations, given the fact that they

can alter the accuracy performance if we choose one of the two proposed levels for each of them. They

are:

1. Role: Using text reports from the supplier or mechanic datasets. While the difference in

performance due to role data already has evidence from the previous k-NN implementation, we

keep this factor to be able to observe the effects of other factors in each dataset.

2. Weight scheme: We compare the term frequency and term frequency – inverse document

frequency schemes to verify the effectiveness of the latter in giving more relevance to

uncommon features.

3. Pre-processing type: We compare the language-blind and the language-oriented approaches to

estimate the effect of different degrees of pre-processing in the classification results.

4. Use of structured data: We evaluate the impact of using structured data (driving time and

admission-to-drive date) in the classification results.

68

5. Number of terms: To assess the effectiveness of the power-law based selection technique

compared to executing the classification with all terms.

These factors result in 32 (2k, with k=5) configurations to run our Naïve Bayes classifier, comprising all

possible combinations of factors’ levels.

5.8 Algorithm Configuration Results

As a result of the first four scripts in the “R pipeline” (see section 5.2) we have 12 Document Term

Matrices to serve as input for the 32 configurations. Each role has 6 DTMs with the following differences

among them:

1. Language-blind pre-processing, term frequency weights.

2. Language-blind pre-processing, TF-IDF weights.

3. English-oriented pre-processing, term frequency weigths.

4. English-oriented pre-processing, TF-IDF weights.

5. German-oriented pre-processing, term frequency weights.

6. German-oriented pre-processing, TF-IDF weights.

We run each configuration with its corresponding DTM (or DTMs for the language-oriented

configurations). 80% of the documents are used to train the model (training) and the rest is used for

testing. This split is made with a stratified sample based on the total amount of documents labelled in

each category. In the case the amount of documents for the error code is too small to allow a 4:1 split

(only two reports), one document was used for training and the other one for testing.

Due to the language detection step, some error codes in the language-oriented DTMs may have only

one document; this despite of the singleton removal made by the role data building script (see section

5.2). This is the combination of two phenomena: 1) the language detector component may assign the

two reports of the same error code to different languages or simply may not assign one of them to any

language, and 2) the removal of singletons occurs before the language detection step. Since the solution

to this report loss heavily relies on the improvement of language detection components, we proceed with

these datasets and leave enhancements for a future time (see section 2.8). In these cases the only report

available is used for training the classifier.

We present results according to the role dataset used, starting with summary tables containing the exact

values for all configurations. Then, to improve readability and analysis, we present graphs grouping

configurations by weight scheme and subset used.

5.8.1 Supplier Dataset

Figure 49 shows accuracy levels and processing times (considering only the testing time) of all 16

configurations corresponding to the supplier role. In addition, the code frequency baseline used in the

k-NN implementation (see sub section 1.2.2) is also shown for comparability.

One of the first differences that stand out is the remarkable variance in processing time of the

configurations using a subset of a thousand terms compared to those that use the whole feature set. While

all configurations with a subset have processing times below 0.2 seconds per report, times for the rest

of configurations are above two minutes. These values make the subset configurations comparable to

the bag of concepts approach from the k-NN implementation with regards to processing time but not in

terms of accuracy.

Concerning the accuracy levels and how they fare against the code frequency baseline, we see that the

classifier performs better than the baseline in all configurations only for the first suggestion of error

codes (accuracy at 1). With a list of 5 suggestions, 10 out 16 configurations still perform better. However

with lists of 10 suggestions or more, the baseline outperforms all configurations.

69

Figure 49 Results for the algorithm configurations with Supplier data

Feature

Selection Weight Scheme Pre-Processing

Use of Structured

Data

Accuracy

at 1

Accuracy

at 5

Accuracy

at 15

Accuracy

at 25

Total

classification

time (minutes)

Time per report

(secs or min)

kNN Baseline

Code Frequency
35% 76% 90% 100% NA NA

1000 Terms Term Frequency Language-blind With Structured Data 67,0% 81,7% 86,2% 87,4% 4,68 0,19

1000 Terms Term Frequency Language-blind No Structured Data 67,6% 83,5% 88,7% 90,8% 4,08 0,17

1000 Terms Term Frequency Language-Oriented With Structured Data 52,0% 74,7% 79,9% 81,9% 3,37 0,14

1000 Terms Term Frequency Language-Oriented No Structured Data 52,5% 74,2% 79,9% 82,2% 3,37 0,14

1000 Terms TF-IDF Language-blind With Structured Data 61,5% 79,4% 83,8% 86,0% 4,09 0,17

1000 Terms TF-IDF Language-blind No Structured Data 61,8% 82,3% 88,4% 90,6% 4,05 0,16

1000 Terms TF-IDF Language-Oriented With Structured Data 53,0% 73,8% 79,4% 81,0% 3,43 0,14

1000 Terms TF-IDF Language-Oriented No Structured Data 52,0% 73,2% 78,4% 80,3% 3,42 0,14

All terms Term Frequency Language-blind With Structured Data 68,4% 80,4% 85,6% 86,9% 54,94 2,22

All terms Term Frequency Language-blind No Structured Data 68,7% 83,5% 88,2% 89,9% 55,28 2,24

All terms Term Frequency Language-Oriented With Structured Data 55,2% 74,5% 79,1% 80,8% 51,75 2,10

All terms Term Frequency Language-Oriented No Structured Data 55,3% 76,6% 81,9% 83,4% 52,86 2,14

All terms TF-IDF Language-blind With Structured Data 70,3% 82,6% 87,1% 88,5% 55,30 2,24

All terms TF-IDF Language-blind No Structured Data 71,0% 85,0% 89,1% 90,4% 56,62 2,29

All terms TF-IDF Language-Oriented With Structured Data 54,8% 75,9% 80,7% 82,4% 52,78 2,14

All terms TF-IDF Language-Oriented No Structured Data 55,0% 76,4% 80,8% 82,4% 52,96 2,14

70

Figure 50 Accuracy and processing time plots for the Supplier set with TF weights

71

Looking at a graphical representation of the term frequency part of the Supplier results (Figure 50), we

can see a clear distinction between language-blind and language-oriented configurations, both in terms

of accuracy and time. While language-oriented configurations take less time to classify the same amount

of reports, they do so with a consistently lower accuracy.

Accuracy at the first suggestion varies in this group of configurations (both graphs) between 52% and

almost 69%. With the largest list of suggestions, accuracy ranges between roughly 82% and 90%. While

the range of variation decreases steadily as the list of suggestions grows, the more remarkable change

occurs as the list grows from 1 to 5 elements. All configurations strongly raise their accuracy in this

interval, particularly the language-oriented configurations that raise approximately 20%.

When looking at the effects of using structured data, contrary to expectations, it tends to lessen accuracy,

with its negative effect growing as the list of suggested error codes (categories) increases. From the

processing time perspective, the effect is unclear, given that otherwise identical configurations can

increase, decrease or maintain their processing time with the use of structured data. However, regarding

pre-processing, language-blind configurations seem to take slightly longer to complete. Also interesting

to point out, the use of a feature selection technique (upper graph) seems to neutralise the effect in

accuracy of structured data in the language-oriented configurations, something that does not occur with

the language-blind counterparts.

72

Figure 51 Accuracy and processing time plots for the Supplier set with TF-IDF weights

The portion of results with TF-IDF weights, shown in Figure 51, presents a similar behaviour to that of

the TF configurations in many respects: the performance distinction between language-blind and

language-oriented configurations remains, so does the processing time difference between

configurations with a term subset (upper graph) and those using all terms (lower graph), and the sharper

accuracy increment from 1 to 5 recommendations in all configurations, with particularly higher values

for the language-oriented kinds. Finally, when looking at processing times, the difference between

language-blind and language-oriented configurations remains visible.

However, we can also appreciate several differences. With this weight scheme, language-blind

configurations achieve a slightly higher accuracy using all terms in the feature set (lower graph), but

also see a greater loss when using only a thousand terms instead (upper graph). Moreover, the effects of

structured data seem to be neutralised for all language-oriented configurations, not just those with a

feature sub set.

In conclusion, we see that the best configurations tend to be those with a language-blind pre-processing

and with no use of structured data, regardless of the weight scheme and feature subset. However, with

just one suggested category (accuracy at 1), there are losses in their accuracies when using a feature

subset (upper graphs in both figures Figure 50 and Figure 51), which may be as big as 9.2% or as small

as 1.1% depending on the weight scheme used. This strongly contrasts with the situation observed at

accuracies with the longest list of suggestions (of the same configurations), where the use of a feature

subset actually increases values up to 0.9%. Since our goal is to provide overall good lists of suggestions

to human experts, this supports the idea of selecting a portion of all available features to perform

classification.

73

5.8.2 Mechanic Dataset

Figure 52 shows accuracy levels and processing times (considering only the testing time) of all 16

configurations corresponding to the mechanic role, along with the code frequency baseline from the k-

NN implementation for ease of comparison.

When comparing accuracy levels to the baseline, we immediately notice the stark difference in quality

of the mechanic dataset compared to its supplier counterpart. Only three configurations have better

accuracies when suggesting a single error code. Every other scenario is dominated by the baseline. Even

if their processing times are overall better than those of the supplier dataset (with some configurations

even crossing the 2 minutes threshold), their bad accuracy performance make this dataset unsuitable for

classification.

74

Figure 52 Results for the algorithm configurations with Mechanic data

Feature

Selection Weight Scheme Pre-Processing

Use of Structured

Data

Accuracy

at 1

Accuracy

at 5

Accuracy

at 15

Accuracy

at 25

Total

classification

time (minutes)

Time per

report

(seconds)

kNN Baseline

Code Frequency
35% 76% 90% 100% NA NA

1000 Terms Term Frequency Language-blind With Structured Data 38,2% 62,4% 75,9% 79,7% 2,66 0,14

1000 Terms Term Frequency Language-blind No Structured Data 30,9% 59,2% 76,2% 81,7% 2,62 0,14

1000 Terms Term Frequency Language-Oriented With Structured Data 20,9% 41,5% 55,7% 62,0% 2,38 0,12

1000 Terms Term Frequency Language-Oriented No Structured Data 12,4% 31,2% 47,6% 54,4% 2,35 0,12

1000 Terms TF-IDF Language-blind With Structured Data 33,5% 53,2% 67,2% 72,1% 2,62 0,14

1000 Terms TF-IDF Language-blind No Structured Data 27,5% 48,3% 63,1% 68,7% 2,55 0,13

1000 Terms TF-IDF Language-Oriented With Structured Data 21,2% 40,5% 55,7% 63,0% 2,38 0,12

1000 Terms TF-IDF Language-Oriented No Structured Data 13,1% 31,1% 45,2% 55,0% 2,38 0,12

All terms Term Frequency Language-blind With Structured Data 39,1% 62,4% 76,2% 80,1% 39,57 2,08

All terms Term Frequency Language-blind No Structured Data 33,4% 62,2% 77,8% 83,0% 40,08 2,10

All terms Term Frequency Language-Oriented With Structured Data 21,3% 43,5% 56,7% 63,8% 25,89 1,36

All terms Term Frequency Language-Oriented No Structured Data 14,7% 33,3% 47,9% 54,9% 25,60 1,34

All terms TF-IDF Language-blind With Structured Data 38,6% 62,2% 74,9% 79,4% 39,73 2,08

All terms TF-IDF Language-blind No Structured Data 33,5% 59,5% 76,2% 81,7% 39,16 2,05

All terms TF-IDF Language-Oriented With Structured Data 21,4% 41,2% 55,3% 60,6% 25,74 1,35

All terms TF-IDF Language-Oriented No Structured Data 15,3% 32,6% 47,8% 53,2% 25,18 1,32

75

Figure 53 Accuracy and processing time plots for the Mechanic set with TF weights

76

When looking at the visual representation of the mechanic results with term frequency weights (Figure

53), we can appreciate different patterns to those in the supplier dataset. Beyond the generalised

accuracy fall, the use of structured data seems to have totally different effects, this time making a clear

contribution to accuracy in language-oriented configurations and twisting performance in language-

blind ones. With suggestion lists of just one element, the use of structured data in language-oriented

configurations can mean improvements from 6.6% to 8.9%, in favour of the configurations using a

feature subset (upper graph). With 25 suggested categories, the improvements go from 7.6% to 8.9%,

but this time in favour of the configurations using all features (lower graph).

As mentioned earlier, the impact of structured data in the language-blind configurations is more

complex. At suggestions of a single category, using structured data improves accuracy from 5.7% to

7.3% in favour of the configurations using a feature subset (upper graph). However, when looking at

accuracies with suggestions of 25 elements, the effect is the opposite: using structured data now

decreases values by 2% to 2.9% also in favour of the configurations using a feature subset (upper graph),

meaning less accuracy loss.

Overall, this behaviour seems to benefit most of the time the configurations using a feature subset (upper

graph), showing them as more stable options across the different accuracy cut-offs, even though their

performance is slightly worse than those using all features available (lower graph).

Considering the elapsed time to execute each configuration, although the two patterns found in the

Supplier dataset still hold (1. language-oriented configurations being faster than language-blind ones,

2. Configurations with feature subsets (upper graph) being faster than configurations using all features

(lower graph)), the difference between the language-blind and language-oriented configurations seems

to be smaller. Possibly because of the reduced size of the dataset compared to the Supplier one.

All in all, the mechanic dataset does yield worse results than the supplier dataset. We can imagine that

having less documents (that also happen to contain less words), in addition to the many other

characteristics summarised in sub section 4.2.4 are the causes behind this reduced performance.

Determining whether this is true or not, is left to future research.

77

Figure 54 Accuracy and processing time plots for the Mechanic set with TF-IDF weights

Finally, Figure 54 shows the results for the configuration with TF-IDF weights. In this group, the

language-blind configurations using a feature subset (upper graph) suffer a sharp loss in accuracy

compared to their full feature set counterparts (lower graph). This results in all configurations using a

feature subset (upper graph) to perform below the level of the code frequency baseline. This strong

reduction does not happen however with the language-oriented configurations that also use a feature

subset (upper graph).

Concerning the use of structured data, all configurations with TF-IDF weights tend to be benefited by

its use, with the sole exception of the language-blind configuration using all features in the set (lower

graph), which loses its advantage over the similar configuration without structured data at 25

suggestions.

When it comes to processing time, the behaviours observed in the mechanic configurations with term

frequency weights (Figure 53) are still observed, implying that weight schemes do not have an impact

on processing time.

5.9 Algorithm Configurations Evaluation

As evidenced by the results analysis of the previous section, it is hard to determine the real significance

of using one configuration instead of another very similar. Accuracy values do not have a clear trend

variation over different configurations, with the most problematic factors being the use of structured

data and the use of a feature selection technique to subset the feature set. Depending on the dataset used,

the accuracy cut-off specified or the kind of pre-processing used, these two factors can have increased,

reduced, or inverse effects on the accuracy levels. Besides, by analysing execution data of just one run,

we are exposed to attribute significance to variations due to chance.

78

To address these issues and to be able to more effectively determine the way each factor affects accuracy,

and even whether a factor has a real effect at all, we run four 2k experiments with two replicates each.

Two experiments deal with the supplier dataset and accuracy cut-offs at 1 and 25, whereas the other two

use the mechanic dataset and the same cut-off levels. By targeting accuracy at the two extreme cut-offs

we can appreciate changes in the way each factor affects the classification performance.

The 2k design is useful for this particular situation, as it provides an efficient way to test effects and

interactions of multiple factors (Montgomery 2013). In it, every factor is given an uppercase letter and

every level is arbitrarily considered high or low. For our particular application scenario, as stated in

section 5.7, we maintain the distinction of role data as a way to clearly differentiate the impact of other

factors in accuracy, not to estimate the impact of the dataset itself. The reason for this is that both the

results of the previous k-NN implementation and the results shown in section 5.8 provide plenty of

evidence to support the notion that the supplier data is indeed better for the report classification than the

mechanic data. This leads us then to consider four factors: A) Weight schemes, with term frequency as

high level and TF-IDF as low; B) Pre-processing, with language-blind as high level and language-

oriented as low; C) Structured data use, with “usage” as high level and “no usage” as low; and D) Feature

selection technique (Subset) with 1000 terms subset as high level and no subset (use all terms) as low.

With each of the four experiments we can estimate the effects of each factor and the significance of

these effects, in other words, how much variability in accuracy can be attributed to changes in a given

factor (Montgomery 2013). For this (test significance) we run an analysis of variance (ANOVA) on an

linear model that we assume factors follow at least in the range considered within their levels, something

safe to do since the linear model can hold even if the assumption is very approximate (Montgomery

2013).

For each experiment, we mention the statistically significant factors as well as their estimated effects.

We then take a look at the way these factors change depending on the accuracy cut-off considered.

Additional support material for each experiment can be found in section 7.2 of the Appendix.

5.9.1 Supplier Data Experiments

For the accuracy cut-off at 1, with an adjusted r-square of 98.5% (the amount of variability that can be

explained by the model, adjusted for the number of factors), we find that pre-processing and subset are

the most significant factors, followed by weight. Language-blind pre-processing is estimated to augment

accuracy by 6.87%, while selecting 1000 terms is estimated to reduce accuracy by 2.28%. Using term

frequency weights is estimated to increase accuracy 0.63%, something that is already negligible.

If we look at Figure 55 Effect estimates with Supplier data for Accuracy at 1Figure 55 we can see there

are some factor interactions that are also significant, however, their effects are so small that for practical

purposes they can also be neglected. If we consider the kind of contributions our significant factors do,

we can find that the best configuration for accuracy at 1 cut-off is that with language-blind pre-

processing, using all terms with term frequency weights, regardless of the use of structured data. We

can confirm this by looking at the corresponding results on Figure 49. Yet if we take the processing time

into account, we see that for a net loss in accuracy of 1.6% (selecting the feature subset and using term

frequency as weight scheme), we can classify every report in at least 632.73 times less time, going from

2 minutes 13 seconds to only 0.19 seconds.

79

Figure 55 Effect estimates with Supplier data for Accuracy at 1

For the accuracy cut-off at 25, with an adjusted r-square of 96.72% (the amount of variability that can

be explained by the model, adjusted for the number of factors), we find that pre-processing and

structured data are strongly significant factors, subset is significant and weight is a little significant.

Language-blind pre-processing is estimated to augment accuracy 3.58%. Using structured data is

estimated to decrease accuracy by 1.03%. Selecting a 1000 terms is estimated to reduce accuracy by

0.46%, while using term frequency weights is estimated to increase accuracy only 0.22%, making the

last two factors practically negligible.

Interactions between pre-processing and structured data, and weight and subset, while significant (as

shown in Figure 56) have again negligible effects to be considered. Using the same graph to find the

best configuration for the accuracy cut-off at 25, we conclude that a language-blind configuration,

without using structured data, selecting 1000 terms, regardless of the weight scheme used should bring

the best results. We can confirm this in Figure 49. Moreover, the processing time per report remains low

in 0.17 seconds.

B D

A
:B

:D

A
:D A

A
:B

B
:D

B
:C

C
:D

A
:B

:C
:D

A
:C

A
:B

:C C

B
:C

:D

A
:C

:D

Pareto plot for Effects for Accuracy@1 Supplier

C
o

n
tr

ib
u

ti
o

n
 t
o

 v
a

ri
a

b
il
it
y
 (

%
)

0

10

20

30

40

50

42.015

-13.979

5.5115.046
3.855

2.583-2.346-1.7280.831-0.686-0.5940.491-0.332-0.316-0.035 2.12

A

B

C

D

Weight

Pre.processing

Structured.Data

Subset

80

Figure 56 Effect estimates with Supplier data for Accuracy at 25

Examining Figure 57 and Figure 58 is possible to compare which effects are most relevant when trying

to achieve higher accuracies with just 1 or 25 category suggestions. The first thing to notice is that in

both cases, the most decisive factor is pre-processing, with a clear preference for the language-blind

kind. In contrast, weighting schemes seem to have overall very little impact to improve accuracy,

remaining steadily in favour of term frequency weights by a very little margin.

On the other end of the spectrum, the use of structured data and feature selection techniques have a very

different effect depending on the accuracy we strive for. In traditional classification scenarios, where

the objective is to obtain a single classification category per element (Figure 57), the effect of structured

data is minimal and the reduced processing times achieved by using a subset of the total amount of

features comes with a high price.

In our application scenario (Figure 58), the objective is different and so are the options to achieve it.

The negative and now moderate effect of using a subset of all features can be easily compensated by

properly configuring the pre-processing of text data, selecting the right weight scheme and including

useful structured data. By doing this we can achieve a nearly optimal trade-off between accuracy and

processing time. To further improve it, it would be necessary to refine the choices made in every factor

that contributes to accomplish this trade-off, following the direction of the most useful level (as long as

there are still options available). In this case, it means exploring configurations with even lighter pre-

processing and looking for better ways to select the 1000 terms considered in the subset.

B C

B
:C D

A
:D

B
:C

:D A

A
:C

A
:B

:C

B
:D

C
:D

A
:B

A
:B

:C
:D

A
:B

:D

A
:C

:D

Pareto plot for Effects for Accuracy@25 Supplier
C

o
n

tr
ib

u
ti
o

n
 t
o

 v
a

ri
a

b
il
it
y
 (

%
)

0

5

10

15

20

25

30

35

28.531

-8.197

-4.076-3.718
2.52 -1.9821.781-1.3531.152 0.968-0.366-0.2390.181 0.096 0.02 2.12

A

B

C

D

Weight

Pre.processing

Structured.Data

Subset

81

Figure 57 Variations in Accuracy levels at 1 by factor (Supplier data)

Figure 58 Variations in Accuracy levels at 25 by factor (Supplier data)

5.9.2 Mechanic Data Experiments

For the accuracy cut-off at 1, with an adjusted r-square of 99.2%, we find that all factors (weight, pre-

processing, structured data and subset) are strongly significant. Language-blind pre-processing is

estimated to augment accuracy by 8.61%. Using structured data is estimated to increase accuracy by

3.11%. Selecting 1000 terms is estimated to reduce accuracy by 1.26%, and using term frequency

weights is estimated to augment accuracy by 0.63%, once more a negligible gain. Once more,

A: Weight

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
1

-1 1

0
.5

4
0
.5

6
0
.5

8
0
.6

0
0
.6

2
0
.6

4
0
.6

6

Effect Plot for Accuracy@1 Supplier

B: Pre.processing

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
1

-1 1

Effect Plot for Accuracy@1 Supplier

C: Structured.Data

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
1

-1 1

Effect Plot for Accuracy@1 Supplier

D: Subset

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
1

-1 1

Effect Plot for Accuracy@1 Supplier

A: Weight

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
2
5

-1 1

0
.8

2
0
.8

3
0
.8

4
0
.8

5
0
.8

6
0
.8

7
0
.8

8

Effect Plot for Accuracy@25 Supplier

B: Pre.processing

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
2
5

-1 1

Effect Plot for Accuracy@25 Supplier

C: Structured.Data

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
2
5

-1 1

Effect Plot for Accuracy@25 Supplier

D: Subset

m
e
a
n
 o

f
 y

ie
ld

.li
e
f.
2
5

-1 1

Effect Plot for Accuracy@25 Supplier

82

interactions among factors, although significant, are discard on the basis of their negligible

contributions.

According to Figure 59, the best configuration for the accuracy cut-off at 1 uses language-blind pre-

processing, structured data, and all terms regardless of the weighting scheme. This can be confirmed in

Figure 52. Although, similar to the supplier case, if we consider the processing time it is better to use

term frequency as the weighting scheme and to select 1000 terms, achieving a net loss in accuracy of

0.63%, and reducing the processing time per report from 2 minutes 4 seconds to only 0.14 seconds.

Figure 59 Effect estimates with Mechanic data for Accuracy at 1

For the accuracy cut-off at 25, with and adjusted r-square of 99.49%, we find that all factors are strongly

significant. Language-blind pre-processing is estimated to augment accuracy by 10%, using structured

data is estimated to augment accuracy by 1.97%, using term frequency weights does the same by 1.43%

and selecting a feature subset of 1000 terms reduces accuracy by 1.32%.

In addition, all interactions except that involving all factors are significant to various degrees.

Considering only those with non-negligible contributions, the interaction pre-processing-structured

data is estimated to decrease accuracy by 2.21%, the interaction weight-pre-processing is estimated to

increase accuracy by 1.21%, the interaction weight-subset is estimated to increase accuracy by 1.12%,

the interaction pre-processing-subset is estimated to decrease accuracy by 1.38%, and the interaction

weight-pre-processing-subset is estimated to increase accuracy by 1.39%.

Based on Figure 60, the best configuration for the accuracy cut-off at 25 (considering the effects of

factors and interactions) uses language-blind pre-processing, no structured data, and all terms with term

frequency weights. This can be confirmed in Figure 52. Once more, however, by taking a loss of 1.32%

in accuracy at this cut-off level, the processing time per report is reduced 857.85 times, passing from 2

minutes 6 seconds to 0.14 seconds.

B C D A

A
:D

A
:B

B
:D

C
:D

A
:B

:D

B
:C

A
:B

:C
:D

A
:C

A
:C

:D

B
:C

:D

A
:B

:C

Pareto plot for Effects for Accuracy@1 Mechanic

C
o

n
tr

ib
u

ti
o

n
 t
o

 v
a

ri
a

b
il
it
y
 (

%
)

0

10

20

30

40

50

60

70

57.322

20.714

-8.437

4.2063.7383.567-3.4042.4192.219-1.899-1.2350.941-0.4360.3420.222
2.12

A

B

C

D

Weight

Pre.processing

Structured.Data

Subset

83

Figure 60 Effect estimates with Mechanic data for Accuracy at 25

With Figure 61 and Figure 62 it is possible to understand how the effect that each factor has on accuracy

changes depending on the cut-off we consider. Contrary to the situation with the supplier dataset, effects

remain more or less the same at 1 and at 25, letting pre-processing prevail as the dominant factor, and

the language-blind type as the best choice. This confirms the finding in the supplier experiments of

aiming to find lighter pre-processing approaches that nonetheless improve the effectiveness of feature

selection techniques.

Aside from this, it is interesting to note that for the mechanic dataset the use of structured data does

increase accuracy at both cut-off levels, whereas for the supplier dataset, it is either irrelevant or

counterproductive. Determining the reason for this inverse behaviour is beyond the scope of this work.

Figure 61 Variations in Accuracy levels at 1 by factor (Mechanic data)

B

B
:C C A

A
:B

:D

B
:D D

A
:B

A
:D

A
:C

:D

C
:D

A
:B

:C

A
:C

B
:C

:D

A
:B

:C
:D

Pareto plot for Effects for Accuracy@25 Mechanic
C

o
n

tr
ib

u
ti
o

n
 t
o

 v
a

ri
a

b
il
it
y
 (

%
)

0

20

40

60

80
71.098

-15.75114.043
10.1999.946-9.877-9.45 8.6627.983

-4.0673.299-3.171-2.5732.445-1.677
2.12

A

B

C

D

Weight

Pre.processing

Structured.Data

Subset

A: Weight

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
1

-1 1

0
.2

0
0
.2

5
0
.3

0

Effect Plot for Accuracy@1 Mechanic

B: Pre.processing

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
1

-1 1

Effect Plot for Accuracy@1 Mechanic

C: Structured.Data

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
1

-1 1

Effect Plot for Accuracy@1 Mechanic

D: Subset

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
1

-1 1

Effect Plot for Accuracy@1 Mechanic

84

Figure 62 Variations in Accuracy levels at 25 by factor (Mechanic data)

5.9.3 Selection of the Classification Algorithm Configuration and Features

Using only the information obtained by applying our framework to optimise data features and

classification algorithms (see chapter 4), it is possible to select the algorithm configuration and features

that attain the best performance for our application scenario.

From the performance results shown in section 5.8, it is clear that the supplier dataset contains higher

quality features than the mechanic dataset, thus reducing the selection of algorithm configurations to

those using the former. As for the corresponding experiments (see sub section 5.9.1), each one suggested

slightly different configurations, encouraging the use of all terms on one side and suggesting the same

for the 1000 terms subset on the other. One experiment disregards the specific choice of structured data

while the other does something similar with the weighting schemes.

However, when considering processing time (excluded by design from the experiment, since there

cannot be two response variables for the same model), there is only one configuration that both

experiments recommend. It is that with language-blind pre-processing, no use of structured data and the

feature subset with term frequency weights. This configuration achieves 90.8% of accuracy with 25

suggestions and processes each report in 0.17 seconds.

5.10 Artefacts Evaluation

In terms of the Design Science methodology, the contributions of this research work comprise three

artefacts: 1) the Conceptual Architecture for Text Classification (model artefact), 2) the optimisation

method for classification algorithm configurations and features (method artefact), and 3) the Naïve

Bayes-based classification configurations (instantiation artefact). In this section we evaluate each one

of them to assess their utility, quality, and efficacy (Hevner et al. 2004).

5.10.1 Instantiation Artefact Evaluation

The collection of classification algorithm configurations can be evaluated from three different

perspectives: 1) In relation to its performance as a classification solution (dynamic analysis), 2) in

A: Weight

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
2
5

-1 1

0
.6

0
0
.6

5
0
.7

0
0
.7

5
Effect Plot for Accuracy@25 Mechanic

B: Pre.processing

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
2
5

-1 1

Effect Plot for Accuracy@25 Mechanic

C: Structured.Data

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
2
5

-1 1

Effect Plot for Accuracy@25 Mechanic

D: Subset

m
e
a
n
 o

f
 y

ie
ld

.m
o
n
t.
2
5

-1 1

Effect Plot for Accuracy@25 Mechanic

85

comparison to other classification solutions (optimisation), 3) as a tool to identify the way factors and

features affect accuracy (controlled experiment).

As a classification solution, the instantiation is subject to the metrics defined in sub section 1.2.4. At its

best, the instantiation can provide a relevant error code within a list of 25 elements to a human expert in

a little more than 90% of the cases, spending 0.17 seconds in the process (see sub section 5.9.3).

Although there surely is room for improvement in terms of accuracy, we can consider the artefact useful

enough to satisfy the needs of the application scenario.

When compared to similar solutions, the criterion used is that of optimisation. In other words, to verify

if the artefact can provide a better solution than previous instantiations. If we compare the current

instantiation with the corresponding (bag of words) configurations of the previous k-NN implementation

by (Kassner & Mitschang 2016), we notice a combination of results. Using the mechanic dataset, our

instantiation performs overall better with an accuracy cut-off at 1, however it underperforms with any

higher accuracy cut-off. Results on the supplier dataset are no better. This time the instantiation

underperforms the bag-of-words configurations of the k-NN implementation in all accuracy cut-offs.

However, the trend reverses when considering processing time. The instantiation’s configurations using

a feature subset of 1000 terms have processing times ranging from 0.12 to 0.19 seconds per report,

overcoming the k-NN implementation’s reference values of 0.5 seconds per report and 0.3 seconds per

report for configurations with stop word removal.

Finally, as a tool to test the effects of factors and features (in combination with a 2k experimental

design), the artefact’s utility derives from its pipeline design that favours modularity. This modularity,

represented by the composing scripts, enables the replacement of one file for another that performs the

same processing steps (e.g. pre-processing, document term matrix building), although with a slightly

different logic (e.g. different weight schemes, other pre-processing components). Thanks to this, it is

possible to run similar configurations based on the same data processing scripts, speeding up the process

of creating very similar configuration that vary just in one design choice.

5.10.2 Model Artefact Evaluation

The first evidence of the ability of the Conceptual Architecture to help design solutions for the particular

problem of our application scenario is the existence of the instantiation artefact and its ability to classify

documents in an accurate and time efficient manner. As such, the instantiation provides what (Hevner

et al. 2004) call proof by construction about the utility of the conceptual architecture.

We can also evaluate the completeness of this artefact by examining the way the architecture addresses

each of the variables considered in our research model, which is at the core of the solutions we design

for our problem.

The most straightforward relationship happens between the architecture’s three layers and the

moderating variables for Feature Extraction, Feature Selection and Classification Algorithm. The

components in each layer offer alternatives to explore a wide range of pre-processing approaches,

feature selection strategies, and algorithm configurations so that the impact of each of these variables

can be tracked across their full range of values, other things held equal.

The availability of structured data is also acknowledged by the conceptual architecture in that it

integrates structured data sources as a complement to extract features or to select them. Examples of

components making use of this integration could be the concept recognition component or the dimension

based selection techniques.

When it comes to the independent variables quantity of data features and quality of data features,

although they are not depicted as elements of the architecture, it is clear that they are closely related to

the selection of components in the feature extraction and feature selection layers. Components like

spellchecking or punctuation removal are included based on the need to increase feature quality as part

of the process of designing a solution. Something similar occurs between filters in the feature selection

layers and feature quantity, albeit with a different focus based on the way feature quantity affects

accuracy and processing time (see chapter 6).

86

Finally, the associations presented so far make it clear the conceptual architecture’s orientation towards

the improvement of the dependent variables classification algorithm accuracy and classification

algorithm processing time. Without it, the purpose and utility of the architecture cannot be understood.

This orientation can be demonstrated by the existence of several redundant components (weighting

schemes, evaluation metrics, n-gram extraction or tokenisation) in every layer that perform the same

kind of processing step, but whose presence is meant to provide flexibility in their use. This redundancy

allows the construction of a configuration that can overall optimise for the target dependent variables

by choosing complementary components that compensate the affectations of other components towards

accuracy in favour of benefiting processing time, and vice versa.

5.10.3 Method Artefact Evaluation

Analogous to the case of the conceptual architecture, a compelling argument about the method’s utility

to guide the building process of a classification solution is the fact that it already did. The evidence for

this proof by construction is shown in sections 5.1 to 5.9.

In addition to this, it is possible to imagine some additional application scenarios where the application

of this method (along with the conceptual architecture) can also prove useful without any modification.

We refer to scenarios where a business process is designed around the classification of text data, with

text containing domain-specific vocabulary.

The first one is an insurance policy management process where an expert analyst needs to read

customers’ change requests to the terms of their contracted policy, which can lead to changing the

policy’s amount coverage, the scope of assets it protects, or even the insurance company (in the scenario

of an insurance broker). One can think of simple “approved” or “rejected” categories that classify each

customer request based on the contents of the text. More refined alternatives can include more specific

categories detailing instead the degree of attention the request needs, so as to bring the most delicate

cases to the attention of the expert analyst instead of letting him or her find them among all requests.

While this may require more effort in labelling enough documents to train for all potential categories,

the method is expected to handle this multi-class classification task as well, since it does not depend on

the amount of categories to provide useful results. Moreover, structured data like the value of the assets

covered by the policy, the customer’s financial standing and the amount of years he or she has been

renovating the policy are good examples of additional features that could be used in combination with

text features.

Another scenario can be identified in a support desk process with phone conversation transcripts as

input. In it, the text can be commented by a call centre executive to specify (using domain-specific

jargon) the problem and symptoms discussed in the conversation. These two pieces of text would

constitute a data bundle which can then be classified according to a priority scale so that the case (or

support ticket) be assigned to one of different escalation support levels. The training data would need

labels concerning the different priority levels, which depending on the company’s policies may involve

several categories. Complementary structured data that can be used in this scenario would be customer

details retrieved from a CRM system using the customer’s number, which is typically registered in a

support phone call as part of the conversation protocol.

87

6 Conclusions and Future Research

At the beginning of chapter 2 we introduced a research model (see Figure 4) to explore the creation of

classification solutions that could address the problem of our application scenario (see sub section 1.2.2).

Given that our goal (see sub section 1.2.3) is to understand the way elements in the research model relate

to one another, we present in this chapter the conclusions we can draw about these relationships based

on the results and evaluation presented in sections 5.8 and 5.9. Additional remarks concerning how to

continue studying any of these relationships are presented right after the relevant relationship.

Quality of data features can be perceived through visual and statistical exploration as shown throughout

section 4.2. We find that a good summary for these data exploration, and as a consequence a good

measure for feature quality are the language statistics suggested by (Bank et al. 2012) (e.g. vocabulary

concentration, vocabulary dispersion, vocabulary relative size, and entropy) as well as others, like

correlation. As expected, the relation of feature quality to classification performance is directly

proportional: the higher the quality of the data features, the better the classification performance.

Moving into quantity of data features, we find this independent variable can be measured in terms of

the number of distinct terms (vocabulary size) or in terms of the occurrences each term has. This leads

to two corresponding measures of dataset coverage. However, as our feature selection technique shows,

it is better to opt for the occurrence based coverage, as it allows to subset the amount of features with

consideration to the power-law distribution their frequencies show. This proves to be of key importance

to remove highly correlated terms that can lower classification performance. This also infers that the

relation of data quantity with classification performance is not a linear one. It does not have to do only

with providing the least amount of terms that account for the most amount of occurrences, but also with

choosing a subset with this characteristics that also deals with correlation. In other words, objective is

to have a middle point, with not so few features that they do not describe the dataset correctly (thus

degrading accuracy) but also with not that many that it increases processing time.

Concerning feature extraction mechanisms, the pre-processing approaches proved to be the single most

significant factor to alter accuracy, with minimal affectations to performance. Supporting evidence are

the similar times between language-blind and language-oriented configurations shown in section 5.8.

The difference in their effects seems to dictate that less complex pre-processing leads to better accuracy

with marginally longer processing times.

It is important to remember that each of these approaches is an aggregation of several components.

Therefore changes in accuracy attributed to either approach tell us more about the components that

differentiate each approach than about the common components (e.g. stop word removal, lowercasing).

As a result, it is worth pursuing further analysis of the effect each separate component has or even better,

ways to estimate this without performing all the required classifications.

The effects of Feature selection can be controlled by using different techniques, such as the statistical

sub setting described in section 5.5. In general this moderating variable tends to degrade accuracy but

sharply increase performance, thus highlighting the need to use it appropriately and in combination with

feature extraction and feature selection components that compensate for this and positively impact

overall classification performance.

Another aspect of feature selection are (the confirmation of) weight schemes. These however showed

little impact on accuracy, at least when it comes to the two schemes tested. Because of this, the choice

of term frequency weights (the better choice in terms of accuracy) mostly plays a compensating function

to handle the accuracy drop caused by selecting a sub set of all available features.

The classification algorithm as a moderating variable seems to set the limits for the effects of the other

moderating variables, the upper limits in particular. For example, not even the best configuration of the

Naïve Bayes algorithm shown in section 5.9.3, can surpass the equivalent configurations (bag-of-words)

from the k-NN algorithm. Further exploration of the Naïve Bayes variant with similar pre-processing

choices to those of the k-NN implementation could confirm this assumption.

When looking at the impact of using available structured data on the algorithm performance, we do see

an effect, however results do not provide a clear direction for it, as in combination with supplier data it

88

tends to degrade accuracy, while the opposite occurs when the mechanic data is used. Possible causes

for this can be related to 1) the dataset used, 2) the way the algorithm integrates structured data into

calculations, or 3) the nature of the structured data itself. Concerning the dataset employed, the cause

could either lie on the quality or quantity of the dataset in question, since we know the mechanic dataset

is both smaller and of lesser quality. This view is the one supported by our results. However it could

also be that the impact of structured data heavily depends on the way an algorithm ponders different

kinds of features into its calculations, for example giving more weight to features that have more

importance in the context of the application scenario. Finally, there is also the possibility that the

structured data features used in this work were not of sufficient quality to really impact classification

performance. Finding mechanisms to assess the quality of structured data features, or augmenting the

share of features coming from structured data could shed light on the truth this hypothesis may hold.

Finally, while the amount of categories (our only confounding variable) is given as part of the

requirements and conditions of our application scenario, it does represent an indirect limitation to

increasing classification performance. This is because it restricts the classification algorithms that can

be employed.

This work has brought attention to the way the different variables in our research model can be

configured to design increasingly performing solutions. A key observation in this respect is that although

the dataset used, the feature extraction and feature selection choices can all have sound effects on the

final accuracy and processing time of a classification solution, they cannot overcome the performance

range established by the classification algorithm in use. This stresses the need for future research on this

topic to delve into the broad scope of possible solutions based on different classification algorithms.

Suffice to mention one example of this future work:

The SVM algorithm can be adapted to multi-class classification problems, turning it into a set of binary

classification tasks as numerous as there are categories to classify. This decomposition of the

classification problem can in theory enable the algorithm to be run in a distributed computing network,

where each node processes a classification category as a standard SVM algorithm (see sub section 3.3.4).

Each node requires observations labelled for its category to serve as positive train data, whereas every

other observation in the dataset can be used as negative train data. This split can be expected to lead to

skewed training sets, which may need to be resolved as a feature selection problem, using the necessary

elements from our Framework to Optimise Data Features and Classification Algorithms (comprising the

Conceptual Architecture and Optimisation Method). While this implementation is certainly expensive

in terms of computing power and possibly processing time, the potential accuracy gains make it an

interesting research endeavour.

Additionally, as stated in the beginning of this document (see sub section 1.2.2), the focus when

exploring the effects of the different elements of our research model has remained on the side of the bag

of words approach. Yet, a complementing element to this research is the exploration of a bag of concepts

approach that can provide information about a particular feature extraction component: the concept

annotation. While the emphasis is this work has been to count existing words in every document to do

calculations with them, a concept annotator identifies the relevant word or set of words that represent a

concept in this particular domain and replaces them with a concept identifier. This implies a

representation of text reports as a collection of identifiers. This significant transformation brings the

advantage of discovering relationships previously hidden across languages and behind synonyms.

Previously implemented resources (needed to implement this approach) are based on the UIMA

framework (see sub section 3.4.3), which then sets the context for further work to be done in this

direction.

In a nutshell, it is through the exploration of alternative classification algorithms and additional feature

extraction and feature selection components that the work of quality experts in our application scenario

can be better supported. The aim in all cases is to raise the existing 90% of accuracy with 25 suggested

categories to higher ratios needing less suggestions and the same or shorter execution times. The better

this conditions are satisfied, the more useful and transparent our technological solution becomes in the

great scheme of things, along with the benefits for employees and customers this entails.

89

References

Bank, M., 2013. AIM - A Social Media Monitoring System for Quality Engineering. Available at:

http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-115894.

Bank, M. et al., 2012. Textual Characteristics for Language Engineering. In N. Calzolari et al., eds.

Proceedings of the Eight International Conference on Language Resources and Evaluation

(LREC’12). Istanbul: European Language Resources Association (ELRA), pp. 515–519. Available

at: http://www.lrec-conf.org/proceedings/lrec2012/pdf/182_Paper.pdf.

Blum, A.L. & Langley, P., 1997. Selection of relevant features and examples in machine learning.

Artificial Intelligence, 97(1-2), pp.245–271.

Cavnar, W.B., Trenkle, J.M. & Mi, A.A., 1994. N-Gram-Based Text Categorization. In Proceedings of

SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, pp.161–175.

Chih-Wei Hsu, Chih-Chung Chang, and C.-J.L., 2008. A Practical Guide to Support Vector

Classification. BJU international, 101(1), pp.1396–400. Available at:

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

Clauset, A., Rohilla Shalizi, C. & Newman, M.E.J., 2009. Power-law Distributions in Empirical Data.

SIAM Review, 51(4), pp.661–703.

Cooper, D. & Schindler, P.S., 2011. Thinking Like a Researcher. In Business Research Methods.

McGraw-Hill/Irwin, pp. 52–77.

Damljanovic, D., Stankovic, M. & Laublet, P., 2012. Linked Data-Based Concept Recommendation :

Comparison of Different Methods. In E. Simperl et al., eds. 9th Extended Semantic Web

Conference, ESWC 2012. Heraklion: Springer, pp. 24–38.

Dasgupta, a et al., 2007. Feature selection methods for text classification. Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining, pp.230–239.

Available at: papers2://publication/uuid/666861F4-34A5-45D1-ABD9-50768335A4E1.

Feinerer, I., Hornik, K. & Meyer, D., 2008. Text Mining Infrastructure in R. Journal Of Statistical

Software, 25(5), pp.1–54. Available at: http://www.jstatsoft.org/v25/i05.

Ferrucci, D. & Lally, A., 2004. UIMA: an architectural approach to unstructured information processing

in the corporate research environment. Natural Language Engineering, 10(3-4), pp.327–348.

Forman, G., 2003. An Extensive Empirical Study of Feature Selection Metrics for Text Classification.

Journal of Machine Learning Research, 3, pp.1289–1305.

Freire, N., Borbinha, J. & Calado, P., 2012. An Approach for Named Entity Recognition in Poorly

Structured Data. In E. Simperl et al., eds. The Semantic Web: Research and Applications. 9th

Extended Semantic Web Conference, ESWC 2012. Heraklion: Springer, pp. 718–732.

Gandomi, A. & Haider, M., 2014. Beyond the hype: Big data concepts, methods, and analytics.

International Journal of Information Management, 35(2), pp.137–144. Available at:

http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007.

Giorgetti, D. & Sebastiani, F., 2003. Multiclass Text Categorization for Automated Survey Coding. In

SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing. ACM, pp. 798–802.

Gupta, A., 2011. New Framework for Cross-Domain Document Classification. Naval Postgraduate

School.

Hall, M. et al., 2009. The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1),

p.10. Available at: http://portal.acm.org/citation.cfm?doid=1656274.1656278.

Hänig, C., 2012. Unsupervised Natural Language Processing for Knowledge Extraction from Domain-

specific Textual Resources. University of Leipzig.

Hänig, C., Bordag, S. & Quasthoff, U., 2008. Unsuparse: Unsupervised parsing with unsupervised part

of speech tagging. In N. Calzolari et al., eds. Proceedings of the Sixth International Conference on

Language Resources and Evaluation (LREC’08). Marrakech: European Language Resources

Association (ELRA), pp. 1109–1114. Available at: http://www.lrec-

conf.org/proceedings/lrec2008/pdf/286_paper.pdf.

Hevner, a. R., March, S.T. & Park, J., 2004. Design Science in Information Systems Research. MIS

Quarterly, 28(1), pp.75–105. Available at: http://dl.acm.org/citation.cfm?id=2017217.

Hofmann, M. & Chisholm, A., 2016. Text Mining and Visualization: Case Studies Using Open-Source

90

Tools, CRC Press. Available at: https://books.google.de/books?id=JfQYCwAAQBAJ.

Hornik, K. et al., 2013. The textcat Package for n-Gram Based Text Categorization in R. Journal of

Statistical Software, 52(6), pp.1–17. Available at: http://www.jstatsoft.org/v52/i06.

Hotho, A., Nürnberger, A. & Paaß, G., 2005. A Brief Survey of Text Mining. LDV Forum - GLDV

Journal for Computational Linguistics and Language Technology, 20, pp.19–62. Available at:

http://www.kde.cs.uni-kassel.de/hotho/pub/2005/hotho05TextMining.pdf.

Johnson, N.J., 1978. Modified t Tests and Confidence Intervals for Asymmetrical Populations. Journal

of the American Statistical Association, 73(363), pp.536–544.

Jurka, T.P. et al., 2013. RTextTools: A Supervised Learning Package for Text Classification. R Journal,

5(1), pp.6–12. Available at:

http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawle

r&jrnl=20734859&AN=90616103&h=50cyR6MarAY9WE/sMi2d4KY2rxKU7dzzMDzuuThqp

Fgz4Zxe3x3+d7WcPDSIcW+g0t7yaqx3AXpG8xNmnd35Jg==&crl=c.

Kassner, L. et al., 2014. Product Life Cycle Analytics – Next Generation Data Analytics on Structured

and Unstructured Data. In 9th CIRP Conference on Intelligent Computation in Manufacturing

Engineering. pp. 35–40.

Kassner, L. & Mitschang, B., 2016. Exploring Text Classification for Messy Data : An Industry Use

Case for Domain-Specific Analytics Industrial Paper Categories and Subject Descriptors. In 19th

International Conference on Extending Database Technology (EDBT). Bourdeaux.

Khan, A. et al., 2010. A Review of Machine Learning Algorithms for Text-Documents Classification.

Journal of Advances in Information Technology, 1(1), pp.4–20.

Kyriakopoulou, A., 2008. Text classification aided by clustering: a literature review. Tools in Artificial

Intelligence, pp.233–252. Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Text+Classification+Aided+b

y+Clustering:+A+Literature+Review#0.

Lang, A., Ortiz, M.M. & Abraham, S., 2009. Enhancing Business Intelligence with unstructured data.

In J.-C. Freytag et al., eds. Datenbanksysteme in Business, Technologie und Web, BTW 2009 - 13th

Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS), Proceedings.

pp. 469–485.

Liu, W., Wang, L. & Yi, M., 2013. Power Law for Text Categorization. Chinese Computational

Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, 8208,

pp.131–143. Available at: <Go to ISI>://WOS:000358605100013.

Montgomery, D.C., 2013. Design and Analysis of Experiments 8th ed., Tempe: John Wiley & Sons, Inc.

Available at: http://cataleg.uab.cat/record=b1764873~S1*cat.

Murty, M.R. et al., 2012. A survey of cross-domain text categorization techniques. 2012 1st

International Conference on Recent Advances in Information Technology, RAIT-2012, pp.499–

504.

Newman, M.E.J., 2005. Power laws, Pareto distributions and Zipf’s law. Power laws, Pareto

distributions and Zipf’s law. Contemporary physics, 46(5), pp.323–351. Available at:

http://arxiv.org/abs/cond-mat/0412004\nhttp://dx.doi.org/10.1016/j.cities.2012.03.001.

Ogren, P. V. & Bethard, S.J., 2009. Building test suites for UIMA components. Proceedings of the

Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language

Processing (SETQA-NLP 2009), Proceeding(June), pp.1–4. Available at:

http://dl.acm.org/citation.cfm?id=1621947.1621948.

Pulvermüller, F., 1999. Words in the brain’s language. Behavioral and Brain Sciences, 22, pp.253–336.

Available at: http://kops.uni-konstanz.de/handle/123456789/10734.

R Core Team, 2001. What is R? R News, 1(January), pp.2–3.

Rafeeque, P.C. & Sendhilkumar, S., 2011. A survey on Short text analysis in Web. In 2011 Third

International Conference on Advanced Computing. Chennai: IEEE, pp. 365–371. Available at:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6165203.

Ruotsalo, T., 2012. Domain Specific Data Retrieval on the Semantic Web BT - The Semantic Web:

Research and Applications. In E. Simperl et al., eds. 9th Extended Semantic Web Conference,

ESWC 2012. Heraklion: Springer, pp. 422–436. Available at: http://dx.doi.org/10.1007/978-3-642-

30284-8_35\npapers2://publication/livfe/id/95124.

Schierle, M., 2011. Language Engineering for Information Extraction. Universität Leipzig.

91

Schierle, M. & Trabold, D., 2008. Multilingual knowledge based concept recognition in textual data. In

Proceedings of the 32nd Annual Conference of the GfKl. pp. 1–10.

Sebastiani, F., 2002. Machine learning in automated text categorization. ACM Computing Surveys,

34(1), pp.1–47. Available at: http://portal.acm.org/citation.cfm?doid=505282.505283.

Turek, D., 2012. The Case Against Digital Sprawl. Bloomberg Business. Available at:

http://www.bloomberg.com/news/articles/2012-05-02/the-case-against-digital-sprawl [Accessed

March 23, 2016].

Turner, V. et al., 2014. The Digital Universe of Opportunities: Rich Data and Increasing Value of the

Internet of Things, Framingham. Available at: http://www.emc.com/leadership/digital-

universe/index.htm.

de Winter, J.C.., 2013. Using the Student’s t -test with extremely small sample sizes. Practical

Assessment, Research & Evaluation, 18(10), pp.1–12.

Zhang, X. et al., 2011. SVM based extraction of spatial relations in text. ICSDM 2011 - Proceedings

2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge

Services, pp.529–533.

92

7 Appendices

7.1 Function Words Lists for English and German

7.1.1 English Function Words List

1. a

2. about

3. above

4. after

5. again

6. ago

7. all

8. almost

9. along

10. already

11. also

12. although

13. always

14. am

15. among

16. an

17. and

18. another

19. any

20. anybody

21. anything

22. anywhere

23. are

24. aren't

25. around

26. as

27. at

28. back

29. else

30. be

31. been

32. before

33. being

34. below

35. beneath

36. beside

37. between

38. beyond

39. billion

40. billionth

41. both

42. each

43. but

44. by

45. can

46. can't

47. could

48. couldn't

49. did

50. didn't

51. do

52. does

53. doesn't

54. doing

55. done

56. don't

57. down

58. during

59. eight

60. eighteen

61. eighteenth

62. eighth

63. eightieth

64. eighty

65. either

66. eleven

67. eleventh

68. enough

69. even

70. ever

71. every

72. everybody

73. everyone

74. everything

75. everywhere

76. except

77. far

78. few

79. fewer

80. fifteen

81. fifteenth

82. fifth

83. fiftieth

84. fifty

85. first

86. five

87. for

88. fortieth

89. forty

90. four

91. fourteen

92. fourteenth

93. fourth

94. hundred

95. from

96. get

97. gets

98. getting

99. got

93

100. had

101. hadn't

102. has

103. hasn't

104. have

105. haven't

106. having

107. he

108. he'd

109. he'll

110. hence

111. her

112. here

113. hers

114. herself

115. he's

116. him

117. himself

118. his

119. hither

120. how

121. however

122. near

123. hundredth

124. i

125. i'd

126. if

127. i'll

128. i'm

129. in

130. into

131. is

132. i've

133. isn't

134. it

135. its

136. it's

137. itself

138. just

139. last

140. less

141. many

142. me

143. may

144. might

145. million

146. millionth

147. mine

148. more

149. most

150. much

151. must

152. mustn't

153. my

154. myself

155. near

156. nearby

157. nearly

158. neither

159. never

160. next

161. nine

162. nineteen

163. nineteenth

164. ninetieth

165. ninety

166. ninth

167. no

168. nobody

169. none

170. noone

171. nothing

172. nor

173. not

174. now

175. nowhere

176. of

177. off

178. often

179. on

180. or

181. once

182. one

183. only

184. other

185. others

186. ought

187. oughtn't

188. our

189. ours

190. ourselves

191. out

192. over

193. quite

194. rather

195. round

196. second

197. seven

198. seventeen

199. seventeenth

200. seventh

201. seventieth

202. seventy

203. shall

204. shan't

205. she'd

206. she

207. she'll

208. she's

209. should

210. shouldn't

211. since

212. six

213. sixteen

94

214. sixteenth

215. sixth

216. sixtieth

217. sixty

218. so

219. some

220. somebody

221. someone

222. something

223. sometimes

224. somewhere

225. soon

226. still

227. such

228. ten

229. tenth

230. than

231. that

232. that

233. that's

234. the

235. their

236. theirs

237. them

238. themselves

239. these

240. then

241. thence

242. there

243. therefore

244. they

245. they'd

246. they'll

247. they're

248. third

249. thirteen

250. thirteenth

251. thirtieth

252. thirty

253. this

254. thither

255. those

256. though

257. thousand

258. thousandth

259. three

260. thrice

261. through

262. thus

263. till

264. to

265. towards

266. today

267. tomorrow

268. too

269. twelfth

270. twelve

271. twentieth

272. twenty

273. twice

274. two

275. under

276. underneath

277. unless

278. until

279. up

280. us

281. very

282. when

283. was

284. wasn't

285. we

286. we'd

287. we'll

288. were

289. we're

290. weren't

291. we've

292. what

293. whence

294. where

295. whereas

296. which

297. while

298. whither

299. who

300. whom

301. whose

302. why

303. will

304. with

305. within

306. without

307. won't

308. would

309. wouldn't

310. yes

311. yesterday

312. yet

313. you

314. your

315. you'd

316. you'll

317. you're

318. yours

319. yourself

320. yourselves

321. you've

95

7.1.2 German Function Words List

1. als

2. am

3. an

4. auch

5. auf

6. aus

7. bei

8. bin

9. bis

10. bist

11. da

12. dann

13. darf

14. das

15. dein

16. dem

17. den

18. der

19. die

20. du

21. durch

22. ein

23. eine

24. einen

25. er

26. es

27. euch

28. euer

29. fragt

30. für

31. haben

32. hat

33. hinter

34. ich

35. ihr

36. im

37. in

38. ist

39. ja

40. kann

41. kein

42. los

43. mein

44. meine

45. mich

46. mir

47. mit

48. muss

49. nein

50. nicht

51. nun

52. nur

53. oder

54. oft

55. ruft

56. sagt

57. sein

58. sie

59. sind

60. so

61. soll

62. um

63. und

64. uns

65. unser

66. unten

67. von

68. vor

69. wann

70. war

71. was

72. wenn

73. wer

74. wie

75. will

76. wir

77. wo

78. zu

79. du

80. er

81. es

82. ich

83. man

84. sie

85. wir

86. an

87. auf

88. aus

89. durch

90. für

91. gegen

92. hinter

93. in

94. nach

95. neben

96. unter

97. vor

98. zu

99. über

100. aber

101. damit

102. ob

103. oder

104. und

96

105. weil

106. wenn

107. warum

108. was

109. wer

110. wie

111. wo

112. woher

113. wohin

114. dein

115. mein

116. unser

117. aber

118. bei

119. da

120. ein

121. für

122. ganz

123. alle

124. bis

125. dann

126. eine

127. gegen

128. als

129. das

130. einem

131. am

132. dass

133. einen

134. an

135. dem

136. einer

137. auch

138. den

139. eines

140. auf

141. denn

142. einzelnen

143. aus

144. der

145. er

146. des

147. es

148. die

149. diese

150. dieser

151. doch

152. du

153. durch

154. habe

155. ich

156. kann

157. man

158. nach

159. oder

160. haben

161. ihm

162. können

163. mehr

164. nicht

165. ohne

166. hat

167. ihn

168. meine

169. noch

170. hatte

171. ihnen

172. mich

173. nun

174. hier

175. ihr

176. mir

177. nur

178. ihre

179. mit

180. im

181. muss

182. in

183. ist

184. schon

185. über

186. vom

187. war

188. Zeit

189. sehr

190. um

191. von

192. was

193. zu

194. sein

195. und

196. vor

197. welche

198. zum

199. sein

200. uns

201. wenn

202. zur

203. seine

204. unter

205. werden

206. seiner

207. wie

208. selbst

209. wieder

210. sich

211. wir

212. sie

213. wird

214. sind

97

215. wo

216. so

217. zum

218. also

219. weiterhin

220. ergänzend

221. und

222. sicherlich

223. nochmals

224. wesentlich

225. ausdrücklich

226. nachdrücklich

227. letztlich

228. etwas

229. wenig

230. eher

231. kaum

232. fast

233. wenig

234. teilweise

235. ziemlich

236. nur

237. bloß

238. ziemlich

239. einigermaßen

240. viel

241. sehr

242. beträchtlich

243. ganz

244. höchst

245. völlig

246. gerade

247. ausschließlich

248. genug

249. überaus

250. sehr

251. gar

252. völlig

253. gänzlich

254. höchst

255. zu

256. allzu

257. übermäßig

258. über

259. generell

260. ausnahmsweise

261. offensichtlich

262. andererseits

263. jedoch

264. aber

265. wie

266. als

267. ebenso

268. häufig

269. oft

270. sehr

271. viel

272. weit

273. wenig

274. wohl

275. ähnlich

276. desgleichen

277. gleichfalls

278. einen

279. zwar

280. aber

281. gleichfalls

282. eine

283. beides

284. und

285. überdies

286. außerdem

287. dazu

288. insbesondere

289. erstens

290. zweitens

291. übrigens

292. auch

293. sogar

294. einschließlich

295. samt

296. nebst

297. inklusive

298. schließlich

299. sobald

300. als

301. während

302. bevor

303. bis

304. nachdem

305. darauf

306. dabei

307. zuvor

308. danach

309. währenddessen

310. daraufhin

311. unterdessen

312. damals

313. früher

314. zuvor

315. gleichzeitig

316. zuerst

317. zunächst

318. sodann

319. schließlich

320. endlich

321. später

322. seit

323. während

324. nach

98

325. vor

326. beispielsweise

327. ähnlich

328. deutlich

329. aber

330. sondern

331. doch

332. jedoch

333. während

334. währenddessen

335. indessen

336. dagegen

337. wohingegen

338. wogegen

339. dennoch

340. hingegen

341. vielmehr

342. jedoch

343. doch

344. zuwider

345. gegen

346. umgekehrt

347. obwohl

348. denn

349. weil

350. da

351. zumal

352. deswegen

353. dadurch

354. darum

355. weshalb

356. weswegen

357. also

358. eben

359. doch

360. nämlich

361. durch

362. dank

363. mangels

364. wegen

365. dass

366. somit

367. mithin

368. also

369. folglich

370. so

371. demzufolge

372. darum

373. daher

374. infolgedessen

375. infolge

376. deshalb

377. deswegen

378. aber

379. obgleich

380. wenngleich

381. obschon

382. obzwar

383. obwohl

384. trotz

385. allem

386. trotzdem

387. gleichwohl

388. doch

389. selbstverständlich

390. aber auch

391. natürlich

392. andererseits

393. sicherlich

394. trotzdem

395. allerdings

396. immerhin

397. zusammenfassend

398. zusammengefasst

399. kurz

400. kurzum

401. abschließend

402. schließlich

403. letztlich

404. schlussendlich

405. laut

406. entsprechend

407. offenbar

408. offensichtlich

409. ebenso

410. sowie

411. soweit

412. gleichsam

413. anscheinend

414. offenkundig

415. augenscheinlich

416. dies

417. bedenkend

418. voraussetzend

99

7.2 Design Matrices and Analysis Of Variance (ANOVA) for 2k Experiments

7.2.1 Design Matrix and ANOVA for Supplier Dataset with Accuracy At 1

Figure 63 2k design matrix with supplier data for accuracy at 1

Call:
lm(formula = yield.lief.1 ~ A * B * C * D, data = fdacc.lief.1)

Residuals:
 Min 1Q Median 3Q Max
-0.01381 -0.00328 0.00000 0.00328 0.01381

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.009e-01 1.637e-03 367.141 < 2e-16 ***
A 6.309e-03 1.637e-03 3.855 0.001402 **
B 6.877e-02 1.637e-03 42.015 < 2e-16 ***
C -5.434e-04 1.637e-03 -0.332 0.744190
D -2.288e-02 1.637e-03 -13.979 2.19e-10 ***
A:B 4.227e-03 1.637e-03 2.583 0.020030 *
A:C -9.728e-04 1.637e-03 -0.594 0.560585
B:C -2.828e-03 1.637e-03 -1.728 0.103248
A:D 8.259e-03 1.637e-03 5.046 0.000119 ***
B:D -3.840e-03 1.637e-03 -2.346 0.032177 *
C:D 1.361e-03 1.637e-03 0.831 0.417998
A:B:C 8.042e-04 1.637e-03 0.491 0.629844
A:B:D 9.020e-03 1.637e-03 5.511 4.74e-05 ***
A:C:D -5.691e-05 1.637e-03 -0.035 0.972690
B:C:D -5.178e-04 1.637e-03 -0.316 0.755800
A:B:C:D -1.123e-03 1.637e-03 -0.686 0.502407

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.009259 on 16 degrees of freedom

A (Weight)

B (Pre-

processing)

C (Structured

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + + 1000 Terms, Term Frequency, Language-blind, With

Structured Data 67,03% 66,35%

+ + - +
1000 Terms, Term Frequency, Language-blind, No

Structured Data 67,57% 67,36%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With

Structured Data 51,99% 51,58%

+ - - + 1000 Terms, Term Frequency, Language-Oriented, No

Structured Data 52,48% 49,72%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 61,50% 61,29%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 61,77% 61,50%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured

Data 53,05% 50,28%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 51,99% 49,39%

+ + + -
All terms, Term Frequency, Language-blind, With Structured

Data 68,37% 68,91%

+ + - -
All terms, Term Frequency, Language-blind, No Structured

Data 68,71% 69,86%

+ - + -
All terms, Term Frequency, Language-Oriented, With

Structured Data 55,16% 55,16%

+ - - -
All terms, Term Frequency, Language-Oriented, No

Structured Data 55,32% 55,97%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 70,26% 69,32%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 71,00% 70,67%

- - + -
All terms, TF-IDF, Language-Oriented, With Structured Data 54,75% 55,56%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 55,00% 54,02%

100

Multiple R-squared: 0.9923, Adjusted R-squared: 0.985
F-statistic: 136.6 on 15 and 16 DF, p-value: 5.522e-14

7.2.2 Design Matrix and ANOVA for Supplier Dataset with Accuracy At 25

Figure 64 2k design matrix with supplier data for accuracy at 25

Call:
lm(formula = yield.lief.25 ~ A * B * C * D, data = fdacc.lief.25)

Residuals:
 Min 1Q Median 3Q Max
-0.01056 -0.00319 0.00000 0.00319 0.01056

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.509e-01 1.257e-03 677.103 < 2e-16 ***
A 2.239e-03 1.257e-03 1.781 0.093856 .
B 3.586e-02 1.257e-03 28.531 3.78e-15 ***
C -1.030e-02 1.257e-03 -8.197 4.04e-07 ***
D -4.673e-03 1.257e-03 -3.718 0.001870 **
A:B -3.000e-04 1.257e-03 -0.239 0.814372
A:C -1.700e-03 1.257e-03 -1.353 0.194870
B:C -5.123e-03 1.257e-03 -4.076 0.000879 ***
A:D 3.167e-03 1.257e-03 2.520 0.022747 *
B:D 1.217e-03 1.257e-03 0.968 0.347327
C:D -4.596e-04 1.257e-03 -0.366 0.719363
A:B:C 1.447e-03 1.257e-03 1.152 0.266332
A:B:D 1.205e-04 1.257e-03 0.096 0.924817
A:C:D 2.488e-05 1.257e-03 0.020 0.984448
B:C:D -2.490e-03 1.257e-03 -1.982 0.064963 .
A:B:C:D 2.280e-04 1.257e-03 0.181 0.858329

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

A (Weight)

B (Pre-

processing)

C (Structured

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + + 1000 Terms, Term Frequency, Language-blind, With

Structured Data 87,39% 86,65%

+ + - +
1000 Terms, Term Frequency, Language-blind, No

Structured Data 90,76% 90,63%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With

Structured Data 81,88% 79,77%

+ - - + 1000 Terms, Term Frequency, Language-Oriented, No

Structured Data 82,21% 82,05%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 85,97% 85,97%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 90,63% 88,67%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured

Data 80,99% 79,77%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 80,26% 80,42%

+ + + -
All terms, Term Frequency, Language-blind, With Structured

Data 86,92% 88,27%

+ + - -
All terms, Term Frequency, Language-blind, No Structured

Data 89,89% 90,49%

+ - + -
All terms, Term Frequency, Language-Oriented, With

Structured Data 80,83% 81,23%

+ - - -
All terms, Term Frequency, Language-Oriented, No

Structured Data 83,43% 82,70%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 88,47% 87,46%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 90,42% 90,29%

- - + -
All terms, TF-IDF, Language-Oriented, With Structured Data 82,37% 81,07%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 82,37% 82,78%

101

Residual standard error: 0.007109 on 16 degrees of freedom
Multiple R-squared: 0.9831, Adjusted R-squared: 0.9672
F-statistic: 61.96 on 15 and 16 DF, p-value: 2.707e-11

7.2.3 Design Matrix and ANOVA for Mechanic Dataset with Accuracy At 1

Figure 65 2k design matrix with mechanic data for accuracy at 1

Call:
lm(formula = yield.mont.1 ~ A * B * C * D, data = fdacc.mont.1)

Residuals:
 Min 1Q Median 3Q Max
-0.017771 -0.003864 0.000000 0.003864 0.017771

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2566519 0.0015028 170.783 < 2e-16 ***
A 0.0063209 0.0015028 4.206 0.00067 ***
B 0.0861428 0.0015028 57.322 < 2e-16 ***
C 0.0311284 0.0015028 20.714 5.57e-13 ***
D -0.0126798 0.0015028 -8.437 2.76e-07 ***
A:B 0.0053603 0.0015028 3.567 0.00257 **
A:C 0.0014137 0.0015028 0.941 0.36083
B:C -0.0028533 0.0015028 -1.899 0.07579 .
A:D 0.0056167 0.0015028 3.738 0.00179 **
B:D -0.0051150 0.0015028 -3.404 0.00363 **
C:D 0.0036352 0.0015028 2.419 0.02785 *
A:B:C 0.0003330 0.0015028 0.222 0.82743
A:B:D 0.0033353 0.0015028 2.219 0.04126 *
A:C:D -0.0006551 0.0015028 -0.436 0.66873

A (Weight)

B (Pre-

processing)

C (Structured

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + +
1000 Terms, Term Frequency, Language-blind, With

Structured Data 38,17% 37,29%

+ + - +
1000 Terms, Term Frequency, Language-blind, No

Structured Data 30,92% 31,88%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With

Structured Data 20,94% 20,17%

+ - - +
1000 Terms, Term Frequency, Language-Oriented, No

Structured Data 12,39% 12,97%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 33,54% 33,97%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 27,51% 26,72%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured

Data 21,23% 17,68%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 13,06% 11,91%

+ + + -
All terms, Term Frequency, Language-blind, With Structured

Data 39,13% 39,21%

+ + - -
All terms, Term Frequency, Language-blind, No Structured

Data 33,45% 33,54%

+ - + -
All terms, Term Frequency, Language-Oriented, With

Structured Data 21,33% 20,17%

+ - - -
All terms, Term Frequency, Language-Oriented, No

Structured Data 14,70% 14,51%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 38,60% 36,94%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 33,54% 34,06%

- - + - All terms, TF-IDF, Language-Oriented, With Structured Data 21,42% 20,65%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 15,27% 14,41%

102

B:C:D 0.0005132 0.0015028 0.342 0.73715
A:B:C:D -0.0018558 0.0015028 -1.235 0.23469

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.008501 on 16 degrees of freedom
Multiple R-squared: 0.9959, Adjusted R-squared: 0.992
F-statistic: 257.3 on 15 and 16 DF, p-value: 3.66e-16

7.2.4 Design Matrix and ANOVA for Mechanic Dataset with Accuracy At 25

Figure 66 2k design matrix with mechanic data for accuracy at 25

Call:
lm(formula = yield.mont.25 ~ A * B * C * D, data = fdacc.mont.25)

Residuals:
 Min 1Q Median 3Q Max
-0.012008 -0.004585 0.000000 0.004585 0.012008

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.682857 0.001407 485.481 < 2e-16 ***
A 0.014345 0.001407 10.199 2.09e-08 ***
B 0.100004 0.001407 71.098 < 2e-16 ***
C 0.019753 0.001407 14.043 2.04e-10 ***
D -0.013292 0.001407 -9.450 6.00e-08 ***
A:B 0.012183 0.001407 8.662 1.95e-07 ***
A:C -0.003619 0.001407 -2.573 0.020431 *
B:C -0.022154 0.001407 -15.751 3.67e-11 ***
A:D 0.011228 0.001407 7.983 5.70e-07 ***
B:D -0.013892 0.001407 -9.877 3.26e-08 ***
C:D 0.004640 0.001407 3.299 0.004532 **
A:B:C -0.004460 0.001407 -3.171 0.005934 **
A:B:D 0.013990 0.001407 9.946 2.96e-08 ***

A (Weight)

B (Pre-

processing)

C (Structured

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + +
1000 Terms, Term Frequency, Language-blind, With

Structured Data 79,65% 79,74%

+ + - +
1000 Terms, Term Frequency, Language-blind, No

Structured Data 81,75% 81,83%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With

Structured Data 61,96% 62,73%

+ - - +
1000 Terms, Term Frequency, Language-Oriented, No

Structured Data 54,37% 54,08%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 72,05% 73,10%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 68,73% 67,69%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured

Data 63,02% 62,92%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 55,04% 52,64%

+ + + -
All terms, Term Frequency, Language-blind, With Structured

Data 80,09% 80,09%

+ + - -
All terms, Term Frequency, Language-blind, No Structured

Data 82,97% 81,40%

+ - + -
All terms, Term Frequency, Language-Oriented, With

Structured Data 63,78% 62,63%

+ - - -
All terms, Term Frequency, Language-Oriented, No

Structured Data 54,85% 53,60%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 79,39% 80,26%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 81,75% 82,10%

- - + - All terms, TF-IDF, Language-Oriented, With Structured Data 60,61% 62,15%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 53,22% 54,95%

103

A:C:D -0.005720 0.001407 -4.067 0.000897 ***
B:C:D 0.003439 0.001407 2.445 0.026440 *
A:B:C:D -0.002358 0.001407 -1.677 0.113048

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.007957 on 16 degrees of freedom
Multiple R-squared: 0.9974, Adjusted R-squared: 0.9949
F-statistic: 405.4 on 15 and 16 DF, p-value: < 2.2e-16

	Ch 1 Intro
	Ch 2 Methodology
	Ch 3 Theoretical Framework
	3.1 Feature Extraction
	3.2 Feature Selection
	3.3 Classification Algorithms
	Ch 4 Framework to optimise Features
	4.2 Data Exploration
	4.3 Study Object Characterisation
	4.4 Method to Select Optimal Classification Algo

	Ch 5 Experiments and Evaluation
	5.1 Algorithm Selection
	5.2 Tech Setup

	Ch 6 Conclusions and Future Research
	References
	Appendices

