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Abstract  

Unstructured text data represents a valuable source of information that nonetheless remains sub utilised 

due to the lack of efficient methods to manipulate it and extract insights from it. One example of such 

deficiencies is the lack of suitable classification solutions that address the particular nature of domain-

specific industrial text data. In this thesis we explore the factors that impact the performance of 

classification algorithms, as well as the properties of domain-specific industrial text data, to propose a 

framework that guides the design of text classification solutions that can achieve an optimal trade-off 

between accuracy and processing time. Our research model investigates the effect that the availability 

of data features has on the observed performance of a classification algorithm. To explain this 

relationship, we build a series of prototypical Naïve Bayes algorithm configurations out of existing 

components and test them on two role datasets from a quality process of an automotive company. A key 

finding is that properly designed feature selection techniques can play a major role in achieving optimal 

performance both in terms of accuracy and processing time by providing the right amount of meaningful 

features. We test our results for statistical significance, proceed to suggest an optimal solution for our 

application scenario and conclude by describing the nature of the variable relationships contained in 

our research model. 

Keywords: text mining, unstructured text data, classification algorithms. 
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1  Introduction 

As data grows, so does the need to design new ways to manage and process its ever increasing volume. 

For years public and private organizations have collected data in an electronic format concerning 

multiple issues, from technology-enabled processes to automated monitoring via sensors. In this context, 

unstructured data, in particular text data, represent a challenge not just to manage it in an efficient 

manner, but also to integrate it in an effective way. This means combining structured and unstructured 

data sources so the latter can provide depth and insight to queries for which the former only gives 

shallow (but wide) answers. 

From a scientific standpoint, this challenge derives into an equally ambitious problem. Unstructured text 

data by nature requires new processing and analytic models which are not immediately compatible with 

the traditional structured ones. Moreover, these structured processing and analytic models are in 

comparison more efficient in terms of time and computational resources; something to consider given 

the current size and projected growth of unstructured data.  

In this work we explore one possible solution to these organizational challenge and scientific problem 

in the context of automated text classification. We explore the various ways in which unstructured text 

data properties impact the performance of this kind of task. For this we focus on text classification 

algorithms and the selection of features used by them.  

We start by defining the nature of the unstructured data we are concerned with. As a result of this we 

characterise the concept of “messy data” defined by (Kassner & Mitschang 2016) to adequately meet 

the context of a real business scenario in an automotive company from which this research topic 

originates (see (Kassner & Mitschang 2016)). 

With this characterisation in mind we devise a method to select the appropriate text data features to test 

different classification algorithm configurations (variants in the inner workings of the same selected 

basic classification algorithm) and as a result, identify the one that yields the optimal performance in 

terms of accuracy and processing time. This method relies on a conceptual architecture developed to 

identify the elements from various disciplines that need to be taken into consideration when choosing a 

classification algorithm. In addition to this, we define a list of requirements that the ideal classification 

algorithm should have.  

As a result of applying our method, we proceed to test the Naïve Bayes algorithm with different 

configurations and feature sets applied to the above mentioned business scenario/process from an 

automotive company. We benchmark their performance and discuss how these algorithm configurations 

perform compared to configurations from an adapted k Nearest Neighbours algorithm. This allows us 

not only to discuss the relevance of the solutions proposed regarding the defined problem, it also enables 

the definition of future research lines to generate a more optimal solution. 

 

1.1 Research Motivation 

The pervasive use of information technology in all aspects of society has led in the last decades to an 

ever-accelerating growth in the creation and manipulation of data. By 2012, (Turek 2012) estimated that 

from the beginning of recorded time until 2003, mankind had created 5 Exabytes of information, 

whereas in 2011 that same amount was created every two days (Turek 2012). Based on a study by 

(Turner et al. 2014) from IDC, in 2013 that same amount of data took a little less than 10 hours to be 

created or copied, and by 2020 it is predicted to take a little less than one. This data explosion is of 

particular importance for companies, since they already had liability or responsibility for 85% of the 

data in 2013 (Turner et al. 2014). 

This phenomenon has become widely recognized since 2011 as Big Data (Gandomi & Haider 2014). 

Even though the concept has been open to discussion, there are certain characteristics that can define it 

in terms of data management challenges. In addition to the standard three V’s of Big Data (Volume, 

Variety and Velocity), (Gandomi & Haider 2014) also mention additional challenges such as Veracity, 

Variability, and Value.  
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In many cases, these challenges are derived from the fact that 95% of all data is unstructured and cannot 

be processed with traditional tools and techniques (i.e. relational databases) (Gandomi & Haider 2014). 

This has led to the creation of new technologies that can deal with vast amounts of data (Volume), 

coming from different sources (Variety) at different flow rates (Variability). Additionally they have to 

be prepared to process it at the required speed (Velocity), despite of the presence of unreliable sources 

(Veracity) and the low density of value relative to the volume (Gandomi & Haider 2014).  

One area were the challenge is particularly significant for companies is data analytics. Although this 

area has been traditionally dominated by structured data techniques (Lang et al. 2009), the growth of 

unstructured data has brought the opportunity to enrich the structured analysis by providing insights 

hidden in it. This is relevant because organizations have been collecting both kinds of data (Gandomi & 

Haider 2014), but have struggled to properly integrate them. 

There have been different approaches to address this integration problem. (Lang et al. 2009) consider 

the integration of unstructured text data into data warehouse applications via Unstructured Business 

Intelligence. This term comprises three steps that aim to enrich the existing ETL flow, warehouse 

schema, and BI infrastructure. (Gandomi & Haider 2014) points out a process by Labrindis and Jagadish 

with five stages organised in two main sub-processes: data management and analytics. “Data 

management involves processes and supporting technologies to acquire and store data and to prepare 

and retrieve it for analysis. Analytics, on the other hand, refers to techniques used to analyse and acquire 

intelligence (…)” (Gandomi & Haider 2014). Aside from specific examples, (Kassner & Mitschang 

2016) mention that normally “approaches to automatically analyzing (sic) these unstructured data with 

traditional analytics for structured data are either very specific and case-based or too generic.” 

As we see, there is a valid research interest in further exploring ways to do unstructured data analytics. 

In the particular context of this work, this interest can be described both from a scientific and an industry 

perspective. 

1.1.1 Scientific Perspective 

From a research standpoint, there are several challenges that structured analytics do not have to face. 

(Lang et al. 2009) mentions on one side the need to deal with misspellings, domain-specific, company-

specific or even employee-specific acronyms and on the other side advanced data cleansing, to pre-

process data beyond the capabilities of traditional cleansing. On top of that, text analysis technology 

typically requires an adaption to the domain where it is applied to work correctly (Lang et al. 2009), 

which makes this technology hard to apply and maintain in different scenarios. (Lang et al. 2009) also 

point out that unstructured text data involves term disambiguation based on the context, something that 

is rarely leveraged by traditional analytics. 

In a similar way, (Gandomi & Haider 2014) highlight the problems that result from applying traditional 

statistical methods to big volumes of unstructured data.  

There are two problems in particular that originate from the inherent properties of unstructured text data. 

Firstly, since this data can be obtained from multiple sources, it can actually represent different sub-

populations instead of a single one. If this is not recognised, small populations may be discarded under 

the assumption that they are outliers. Secondly, because of the sheer amount of data, independent 

random variables or features, may show false correlations.  

In addition to this, some statistical methods may not be good enough in terms of computational 

efficiency to be feasible in the scale we are dealing with (Gandomi & Haider 2014). 

1.1.2 Industry Perspective 

For companies, achieving an effective integration of unstructured data means achieving time reductions 

to discover failures or complains, and as a result being able to react before it is too late. This is key in 

avoiding losing customers in favour of the competition and to maintain a good reputation with the 

existing and potential customers (Lang et al. 2009). Not only that, whenever failure or error happen, an 

effective use of unstructured data can also improve the quality of the detection by providing direct 

insight to the causes (Lang et al. 2009). 
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This is all the more important “in the face of ever larger amounts of data, faster innovation cycles and 

higher product customization (…)” (Kassner & Mitschang 2016). 

1.2 Research Problem 

This thesis is a continuation of the work of (Kassner & Mitschang 2016) in collaboration with a large 

automotive original equipment manufacturer (OEM). As such, the problem it addresses as well as the 

environment where it occurs are the same. In the following subsections there are reference descriptions 

of these two elements. 

1.2.1 Process Description 

The research problem occurs in a business environment, specifically in a quality inspection process in 

an automotive OEM. In this process, parts removed from cars already owned by customers are analysed 

to inspect the quality issues involved in their potential failure. This analysis involves three different 

roles, each one inspecting the part and writing a report until an error code is assigned. It is this error 

code the one that categorises each text report into 1 of 1271 possibilities (for the purposes of our 

scenario; total classification categories are actually more). The flow of data as the process progresses is 

shown in Figure 1. 

 

 

Figure 1 Simplified quality inspection process (adapted from (Kassner & Mitschang 2016)) 

 

To assign the final error code, all reports written up to that moment (second participation of the OEM 

worker) are considered and a decision is made by a human quality expert at the OEM. In addition to the 

text reports being created, other structured data is also recorded for every car part that goes through this 

process. 

To support the work of the quality expert in this classification task, a system should receive as input 

several texts in unstructured format related to each faulty or damaged car part along with their related 

structured data (see Figure 9), set that we will call a data bundle (Kassner & Mitschang 2016). Every 

data bundle has then to be processed to suggest a list of possible error codes to the quality expert. 

From an academic perspective, this can be thought then as a text analytics task, in particular a specific 

application of automated text classification. As such, this task has to pick some features out of the 

unstructured dataset that allow executing a suitable classification algorithm. The “technical” process 

(the execution of the text classification task) begins with the reports to be classified located into a single 

source ready to be processed and finishes when the reports are given a list of error code classifications.  

1.2.2 Problem Description 

There are particular characteristics of the process and the dataset that give the research problem a 

different nature from purely academic ones.  

Concerning the process, the fact that it is a quality management process and not a manufacturing one 

makes its behaviour less predictable. This because there is no a priori estimation that can be made about 

the process load or performance beyond the fact that the quality process is to some extent related to the 

manufacturing volume at a previous moment in time. 

Regarding the dataset, there several characteristics that make it different from traditional approaches. 

First, the wide amount of categories to classify a text, exemplified by the existence of more than 1200 

error codes in a dataset of 7500 instances; second, what (Kassner & Mitschang 2016) describe as messy 

data: “Text which consists of non-standard, domain-specific language, riddled with spelling errors, 

Mechanic OEM Supplier

Mechanic
report

OEM preliminary
report (optional)

OEM final reportSupplier report

OEM
Final 
error
code

Reference 
number
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idiosyncratic and non-idiomatic expressions and OEM-internal abbreviations.”. On top of this already 

identified challenges, other important issues such as multilingualism, incompleteness of records, and a 

very big amount of possible classification categories (see section 4.3) complete a data profile that 

contradicts almost every good practice in traditional information systems. In addition to this, the fact 

that not every car part has the same amount of reports also adds to the dataset heterogeneity. 

Previously, (Kassner & Mitschang 2016) have implemented several prototypical classifiers based on an 

adaptation of the k-Nearest-Neighbours (k-NN) algorithm (see sub section 3.3.6). In it, the result 

consists of a list of up to 25 suggested error codes instead of just one code assignation per data bundle. 

This enables the authors to evaluate the algorithm accuracy at different cut off levels (1, 5, 10, 15, 20 

and 25 elements) and aligns with the goal of supporting the work of the human expert instead of 

replacing him. 

They run this adapted k-NN algorithm in 12 different configurations (or variants) considering the 

following factors: 

 Data abstraction model: using all words in the text as classification features (bag of words) or 

the identified mentions of error and parts (bag of concepts). 

 Similarity measure: Used to delimit the scope of the majority vote to assign error codes. Either 

Jacquard similarity coefficient (the absolute value of the intersection of feature sets A and B 

over the absolute value of the union of feature sets A and B) or Overlap similarity (the absolute 

value of the intersection of feature sets A and B over the absolute value of the smallest feature 

set, either A or B) 

 Roles: Using the reports of the Mechanic role only, using the reports of the Supplier role only, 

and using all data available to the human expert to assign the error code (mechanic report, 

optional initial report, supplier report, part description). 

In all cases the pre-processing consists of tokenisation (based on punctuation and whitespaces) and 

language detection. 

When analysing the accuracy results, they are compared (among others) to the accuracy of a so called 

code frequency baseline, which consists of retrieving all error codes available for the part type 

considered, ranking them by frequency and returning the desired cut off level. This baseline accuracy 

has values of (approximately) 35% at 1, 76% at 5, 88% at 10, 90% at 15, 94% at 20, and 100% at 25, 

which is assumed to be “an artifact (sic) of our randomly selected data set.” (Kassner & Mitschang 2016) 

In their results, all configurations tend to converge to a similar (high) value when the cut off is made at 

25. This makes the lower cut off levels the ones of interest. The best configuration is the “bag of words 

with Jacquard similarity on all available text” with accuracies of 81% at 1 and 94% at 5, closely 

followed by the configuration “bag of words with Jacquard similarity on the Supplier report only” with 

accuracies of 78% at 1 and 93% at 5. 

On the opposite side the worst configurations are those using only the Mechanic report, with accuracies 

of 16% to 29% at 1, below the code frequency baseline. This makes it clear that in terms of roles, text 

data coming from the Supplier can be assumed more useful than that of the Mechanic. This, the authors 

observe, can be attributed to the quality of each data source: “Mechanic reports tend to be poor in detail, 

focused on superficial problem description and often error-riddled, such that even human experts cannot 

draw conclusions about the detailed nature of the problem, whereas supplier reports tend to contain more 

detail and include descriptions of potential causes.” (Kassner & Mitschang 2016) 

Also, when it comes to the data abstraction model, the bag of words configurations show most of the 

time better accuracy levels than those of the bag of concepts, especially in lower cut off levels. This 

however, comes with a price. Given the fact that every word is a feature in this approach, it is easy to 

encounter memory and processing time issues even at this reduced experimental level. In the bag of 

words approach classification takes about 11 minutes for ca. 1250 data bundles, resulting in approx. 0.5 

seconds of processing time per data bundle. In contrast, the bag of concepts approach classifies the same 

amount of data bundles in three minutes, or 0.14 seconds per unit. This turns the bag of words approach 

inviable for a real implementation. 
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As we can see, there is a trade-off between accuracy and processing time. While it is clear that features 

and the way they are represented plays a significant role in the final outcome, there is no certainty on 

how all these variables interact, and whether this is the case with other classification algorithms. 

To investigate this matters, we can think of the bag of words and bag of concepts approaches as opposite 

ends in a continuous spectrum of features usage for text classification. On one side, the bag of words 

approach proposes to use all words in a document collection as features for classification, ensuring in 

this way that even the least significant of the terms is taken into account, albeit at the expense of bigger 

training sets, and prolonged execution times. On the other side, the bag of concepts approach aims to 

use only a carefully selected set of words that represent relevant concepts in the domain at hand (parts, 

failures, errors, symptoms in our case), based on the premise that those are the truly meaningful words 

upon which the classification should be run. However, as (Kassner & Mitschang 2016) suggest, having 

a reduced knowledge coverage of the applicable concepts in our domain can translate into a less than 

optimal accuracy. 

Framing the accuracy vs. processing time trade-off in this spectrum hints a possible way to discover the 

optimal middle point. In this thesis we direct the research efforts towards the bag of words approach by 

exploring the kind of relationship that features (and subsets thereof) have with the performance of 

classification algorithms both in terms of accuracy and execution time. By doing this, we can help 

understand how can someone identify a good subset of classification features as well as its optimal use 

with a suitable classification algorithm. 

1.2.3 Goal Description 

To understand the effects of text features on an algorithm`s accuracy regarding the classification of car 

part data bundles in one of several error code categories. This should be done via the implementation of 

a different classification algorithm, whose performance can then be compared to the performance of the 

(previously) adapted k-NN algorithm. As part of this goal, there has to be a selection of the most useful 

features to perform the classification. 

Additionally, improvements in the processing time of the classification algorithm in comparison to the 

baseline performance achieved by the derived k-NN algorithm are also desirable. 

1.2.4 Goal Metrics Definition 

Derived from the description above, the following metrics were defined:  

 Accuracy: Number of instances (data bundles of text reports) assigned the correct error code 

over the total number of instances being classified. This assignation is measured at different 

positions in a list of error code suggestions (1, 5, 15 and 25). 

 Processing time: Total amount of time elapsed for the classification to complete. Time spent per 

instance (text report). 

1.3 Research Questions 

Throughout this thesis, the answers to the following questions are explored. They are meant to 

decompose the research problem and goal into more manageable tasks. Relevant sections that answer 

these questions are referred as well. 

1. How to conceptualize the process of Automated Classification based on features of unstructured 

text data? (see Figure 8 in Chapter 3) 

2. What are the best features to classify unstructured text data? (see section 5.9) 

3. What characteristics make classification algorithms more suitable for this problem? (see section 

5.1) 

4. What factors and/or features affect the performance and accuracy of a classification task? (see 

section 5.9) 
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5. How do unstructured text data features relate to a classification algorithm’s performance? (see 

Figure 4 Research model and section 5.9) 

 

1.4 Research Method 

So far, the nature of the process and problem have made clear that this study is focused on what (Hevner 

et al. 2004) consider addressing a problem in an organizational context, so that “the analysis, design, 

implementation, management, and use of information systems can be effectively and efficiently 

accomplished”. This sets the direction of this thesis to that of Information Systems (IS) research.  

Moreover, the objective of prototyping a new technical solution to the defined problem in section 1.2 

can be seen as designing and implementing “innovations that define the ideas, practices, technical 

capabilities, and products” to “extend the boundaries of human problem solving and organizational 

capabilities” (Hevner et al. 2004). Because of this, Design Science Research is a valid and meaningful 

methodological framework to design the research method of this work. 

According to (Hevner et al. 2004), Design Science is a paradigm in IS research that is based in the 

pragmatic principle of utility, according to which research contributions “should be evaluated in light 

of its practical implications”.  

When performing research based on this methodology, the authors suggest to avoid its direct application, 

advising instead to use “creative skills and judgment to determine when, where, and how to apply each 

of the guidelines in a specific research project.” (Hevner et al. 2004). Supported on this, we present in 

the remaining sections the concepts that are of particular importance for this work. 

1.4.1 Design Science Process 

As a research process, (Hevner et al. 2004) describe Design Science as an iterative set of activities 

concerned with the creation and application of an artefact. The iteration derives from the fact that the 

artefact is artificial in nature, an abstraction of reality. As such, there is a need to evaluate it against the 

problem it is intended to solve, both to improve the effectiveness of the artefact design and to gain 

understanding of the problem. As a result, there are two main activities to distinguish in this loop, 

namely: build and evaluate. 

For a solution to be considered valid, it has to observe the means, ends and laws imposed by the 

environment. “Means are the set of actions and resources available to construct a solution. Ends 

represent goals and constraints on the solution. Laws are uncontrollable forces in the environment.” 

(Hevner et al. 2004). The set of solutions that meet these three conditions can be represented 

mathematically, even though that hardly occurs in IS research (Hevner et al. 2004). 

Once a solution is found, it is more relevant to delimit the exact conditions and cases for which the 

solution works, instead of finding out why it works (Hevner et al. 2004). Additionally, to determine how 

good a solution is, it can be compared to a pre-defined optimal solution or against existing solutions. 

1.4.2 Guidelines 

While carrying out the process described in the previous subsection, (Hevner et al. 2004) describe some 

guidelines to assess the adherence to the Design Science paradigm. These are shown in Figure 2 Seven 

guidelines of Design Science ResearchFigure 2 along with a brief description. 
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Guideline Description 

Guideline 1: Design as an 
Artifact 

Design-science research must produce a viable artifact in the 
form of a construct, a model, a method, or an instantiation. 

Guideline 2: Problem 
Relevance 

The objective of design-science research is to develop 
technology-based solutions to important and relevant 
business problems. 

Guideline 3: Design 
Evaluation 

The utility, quality, and efficacy of a design artifact must be 
rigorously demonstrated via well-executed evaluation 
methods. 

Guideline 4: Research 
Contributions 

Effective design-science research must provide clear and 
verifiable contributions in the areas of the design artifact, 
design foundations, and/or design methodologies. 

Guideline 5: Research Rigor 
Design-science research relies upon the application of 
rigorous methods in both the construction and evaluation of 
the design artifact. 

Guideline 6: Design as a 
Search Process 

The search for an effective artifact requires utilizing available 
means to reach desired ends while satisfying laws in the 
problem environment. 

Guideline 7: Communication 
of Research 

Design-science research must be presented effectively both 
to technology-oriented as well as management-oriented 
audiences. 

Figure 2 Seven guidelines of Design Science Research (Hevner et al. 2004). 

Guidelines 1, 3 and 6 are covered in more detail in other points of this work and as a result, they are not 

commented here but instead discussed in subsections 1.4.3, 1.4.4 and 1.4.1 respectively.  

In the context of guideline 2 and in general for this methodology, a problem is defined as a difference 

between the current and intended states of a system. The actions to go from the former to the latter are 

driven by goals given by the problem’s context, which is composed of the business needs. This may be 

expressed as profit maximization, cost reduction, resource consumption, performance optimizations, 

etc. Because IS target those same goals, the research problem is relevant as long as its solution 

contributes to their fulfilment by IS (Hevner et al. 2004). The details on how this work is relevant 

according to this guideline is presented in sections 1.1 to 1.3. 

In guideline 4 (Hevner et al. 2004) distinguish among three main kinds of contribution: the design 

artefact, the foundation knowledge or the methodologies. The first is the most common since it is the 

product of the design science methodology (see subsection 1.4.3); the second refers to extensions or 

improvements of the knowledge base; the third focuses on evaluation methods and metrics being 

invented or creatively used. In all cases, the contribution is deemed valid or not in terms of what the 

authors call representational fidelity (to the business environment and technology environment) and 

implementability (sic) (to actually solve the business need). The contributions of this thesis are detailed 

in chapters 4 and 5. 

Concerning research rigor, guideline 5 advocates for the effective application of the knowledge base 

both in the creation and evaluation of artefacts. This ensures rigor in research, particularly during the 

artefact creation. However, rigor should also be balanced against relevance, because formalism may 

decrease the degree in which an artefact can be applied or generalized (Hevner et al. 2004). Taken into 

the evaluation part of the process, this means ensuring that subject groups used for evaluation should 

aim “to determine how well an artifact (sic) works, not to theorize about or prove anything about why 

the artifact (sic) works.” (Hevner et al. 2004) 

Finally, guideline 7 advises to provide technology and management-oriented audiences with relevant 

information about the research based on their profiles. The first “need sufficient detail to enable the 

described artefact (sic) to be constructed (implemented) and used within an appropriate organizational 

context.” (Hevner et al. 2004), while the second need information “to determine if the organizational 
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resources should be committed to constructing (or purchasing) and using the artifact (sic) within their 

specific organizational context.” (Hevner et al. 2004) 

1.4.3 Design Artefact 

Considered the main result of design science research, “IT artifacts (sic) are broadly defined as 

constructs (vocabulary and symbols), models (abstractions and representations), methods (algorithms 

and practices), and instantiations (implemented and prototype systems).” (Hevner et al. 2004) In all four 

cases, the authors emphasize their definition of an IT artefact does not “include people or elements of 

organizations (…) nor (…) the process by which such artifacts (sic) evolve (…)” (Hevner et al. 2004).  

Constructs are the vocabulary to define problems and solutions. As a result, they enable the creation of 

models. Models then employ those constructs to represent a real world situation where the design 

problem, the solution space and the way these two connect can be identified. As such, models are useful 

to explore “the effects of design decisions and changes in the real world.” (Hevner et al. 2004). 

Methods are guidelines for the solution of problems, in other words they advise on how to improve the 

construction process of a design artefact. Depending on the scenario (as defined by the model and 

constructs, and within them, the problem and environment) they can be “formal, mathematical 

algorithms that explicitly define the search process” or “informal, textual descriptions of ‘best practice’ 

approaches, or some combination.” (Hevner et al. 2004) 

Artefacts of the type instantiation are the demonstration of a design and of the process that led to it. 

Thanks to this is that they are considered significant IS research. According to (Hevner et al. 2004), it 

is fundamental that this instantiation occurs after an initial assumption of uncertainty, in other words, 

that the artefacts proves possible something that has not been done before. 

It is important to mention that instantiations can be thought as precursors of the other artefacts, since 

they are proof of feasibility for otherwise purely theoretical concepts. Therefore, once an instantiation 

is made, constructs and models can be elaborated to properly define the problem being solved and the 

possible solutions that can be further developed. This then triggers future research involving defining or 

using methods to explore the solution space. 

Artefacts produced in this thesis are presented, even if they are covered elsewhere, in chapter 4. 

1.4.4 Evaluation Methods 

(Hevner et al. 2004) summarize the available evaluation methods as shown in Figure 3. They 

acknowledge that these methods are meant to be applied on the basis of suitability to the artefact. In 

other words, considering both the requirements of the problem the artefact is intended to solve and the 

knowledge base employed in the design of the artefact, one must select the most appropriate method.  
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Figure 3 Design Evaluation Methods (Hevner et al. 2004). 

Taken this observation into consideration, the corresponding evaluation methods for the artefacts 

presented in this thesis depend on the knowledge base discussed on Chapter 3. 

1.5 Thesis Structure 

The rest of this thesis is organized in the following manner. Chapter 2 elaborates on the adaption of the 

Design Science methodology to the specific environment of this work, starting with the presentation of 

the research model to be explored. Chapter 3 describes the relevant concepts that conform the theoretical 

foundation that can serve as knowledge base for artefact creation and evaluation. These theoretical 

concepts set the context to define the contributions of this thesis in relationship with relevant previous 

efforts. Chapter 4 presents the resulting artefacts and contributions. Chapter 5 then proceeds to present 

the results of applying the designed artefacts into a real scenario as described in subsections 2.6 and 2.7. 

And chapter 6 finally discusses some directions to continue the research along with the final concluding 

thoughts. 

  

Methodologies Methods

1. Observational Case Study: Study artifact in depth in business environment 

Field Study: Monitor use of artifact in multiple projects

Static Analysis: Examine structure of artifact for static qualities 

(e.g., complexity)

Architecture Analysis: Study fit of artifact into technical IS 

architecture

Optimization: Demonstrate inherent optimal properties of artifact 

or provide optimality bounds on artifact behavior

Dynamic Analysis: Study artifact in use for dynamic qualities (e.g., 

performance)

Controlled Experiment: Study artifact in controlled environment for 

qualities (e.g., usability)

Simulation – Execute artifact with artificial data

Functional (Black Box) Testing: Execute artifact interfaces to 

discover failures and identify defects

Structural (White Box) Testing: Perform coverage testing of some 

metric (e.g., execution paths) in the artifact implementation

Informed Argument: Use information from the knowledge base 

(e.g., relevant research) to build a convincing argument for the 

artifact’s utility

Scenarios: Construct detailed scenarios around the artifact to 

demonstrate its utility

2. Analytical

3. Experimental 

4. Testing

5. Descriptive
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2 Methodology 

In this chapter we describe the stages considered to carry out the research for this topic. Each section 

briefly describes the main activities, focus and goals of the corresponding stage as well as the adaptation 

of the Design Science concepts presented in section 1.4 to the particular context of this work. Finally in 

section 2.8 we mention the limitations of this study as a way to delimit its scope. 

Based on the problem environment described in the previous chapter and based on the concepts of 

(Cooper & Schindler 2011), we establish the research model in Figure 4 that serves as a starting point 

for the adaption of the Design science research methodology.  

In this model we define Availability of Data Features as the presumed cause, operationalized by the 

variables Quantity of data features and Quality of data features. 

As presumed effect we establish Classification Algorithm Performance as defined by Classification 

algorithm accuracy and Classification processing time. Both of these operational variables are defined 

in sub section 1.2.4. 

As moderating variables (MV) in this model we identify the following constructs: first and foremost the 

Classification Algorithm, along with Feature Selection Strategy and Feature Extraction Mechanism. 

As confounding variable we designate the Amount of categories, whereas the Availability of 

complementary structured data is considered a control variable. 

With this model we aim to explore the effect that the presence (or absence) of relevant data features has 

on the performance of a classification algorithm as to determine a method to optimize the selection of 

the best algorithm configuration and features; but without focusing on the effects that the amount of 

categories or the availability of structured data may have. 

 

Figure 4 Research model based on the concepts of (Cooper & Schindler 2011) 

2.1 Knowledge Base Creation 

The first step to build a series of artefacts that can provide information about the effect of interest in our 

research model is to build a knowledge base. Based on the previous work  by (Kassner & Mitschang 

2016) and the execution of a literature survey, we compile a collection of theoretical concepts coming 

from four main disciplines: Natural Language Processing (NLP), Text mining, Machine Learning, and 

Statistics. We also cover the working principles of the required technologies to implement a solution 

based on those concepts. The goal is to generate a solid theoretical foundation that can be referred to at 

different points later in this work. 

Availability of Data Features

*Quality of data features: IV
*Quantity of data features: IV

Classification Algorithm
Performance

*Classification algorithm
accuracy: DV

*Classification algorithm
processing time: DV

*Classification
Algorithm: MV
*Feature Selection
Strategy: MV
*Feature Extraction
Mechanism: MV

Amount of categories
(classification space): CFV

Availability of complementary
(structured) data: CV
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2.2 Conceptual Architecture for Text Document Classification 

The focus on this step is to arrange the concepts gathered in the previous step in such a way that it allows 

us to distinguish the function and contribution of each element to the intended solution. As such, we aim 

to build a conceptual architecture that abstracts from the knowledge base the relevant concepts needed 

to address our problem. In doing so, we define the solution space with the intention to better understand 

both the problem and the potential solutions. Because of this, the resulting conceptual architecture is a 

model artefact (Hevner et al. 2004). 

2.3 Data Exploration 

At this stage of the work, the focus is to discover the properties, patterns, and assumptions that best 

describe domain-specific unstructured text data, particularly in the context of our application scenario 

(see section 4.3). To do so, different visual and statistical techniques are applied to a sample dataset of 

up to 7500 data points provided by an automotive company (OEM).  

This dataset is analysed from the perspectives of the roles involved in the process that created it 

(Functional organization). They are the Supplier, Mechanic and the OEM itself. Inside of every role, we 

examine the data as a collection of data points and as a set of text documents. 

The goal of this step is to delimit the characteristics that characterise our particular object of study. This 

would provide the necessary evidence to identify the specific problems to be considered in this work 

and constitutes the first step to define a list of “empirical” requirements (as opposed to the theoretical 

aspects covered by the conceptual architecture) to develop a solution.  

2.4 Study Object Characterisation 

Based on characteristics collected during the data exploration, this stage aims to characterise the study 

object within the context of our application scenario. Starting from the original definition of messy data 

by (Kassner & Mitschang 2016), this step focuses on bringing evidence for the characteristics present 

in the original definition as well as for the new ones introduce as part of the characterisation to justify 

their inclusion, identifying the underlying theoretical concepts that underpin the characteristics 

identified during the data exploration results, and framing this new definition within our research model. 

2.5 Method to Select Optimal Classification Algorithm Configuration and 
Features 

In this step we design an appropriate method artefact that guides the creation of an instantiation artefact 

to search for an optimal solution. Such a method considers all possible factors that can affect accuracy 

and processing time according to our research model and conceptual architecture. The goal for this 

method is to obtain evidence on why is a configuration and feature set combination better than others. 

We focus on creating a list of requirements for the classification algorithm that could in theory best fulfil 

the goal and metrics described in sections 1.2.3 and 1.2.4. This is then used as reference to evaluate 

some candidate algorithms in order to select one to be tested with an instantiation artefact and a series 

of experiments. 

2.6 Experiments 

To evaluate the utility of the conceptual architecture and method to help design solutions to our research 

problem, in this step we build and instantiation artefact with the selected classification algorithm. We 

do so by applying our method artefact starting from the selection of the algorithm itself, and continuing 

with the design of the algorithm configurations, the execution of each configuration as an experiment, 

and conclude by presenting the results.  We use our application scenario data to test its performance, in 

terms of accuracy and elapse time, so as to render it comparable to the previous k-NN implementation.  
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2.7 Evaluation 

In the final step, we proceed to evaluate the results of running the experiments on our instantiation 

artefact as well as the other two artefacts. As a consequence, our evaluation comprises two levels. Firstly, 

we focus on the evaluation of the instantiation artefact in terms of the goals, questions and metrics 

proposed in sections 1.2 and 1.3. Secondly, we proceed to evaluate the other artefacts (conceptual 

architecture and optimal method) in the terms of the Design Science Evaluation Methods (see sub 

section 1.4.4). 

2.8 Limitations 

Along the process of developing this work, there are certain areas that are considered out of scope due 

to their distant relation to the research model or because of the magnitude of work they would entail. 

They are mentioned in this section as a way to delimit the scope. 

The main interest in this thesis is to explore effects and relationships of certain variables on end results, 

not to implement software components meant for others do that explorations. As such, we aim to reuse 

existing (open source) tools and components whenever possible. This not only speeds up the prototyping 

process, it also makes the exploration rely on proven software. 

Despite of this, it would be innocent to assume that existing software for text mining, natural language 

processing, machine learning or statistics is free of errors. Since the early stages, this was evident with 

language detection components. A sort of classification problem on its own, improving the performance 

of this kind of component is beyond the efforts of this work. Instead, we simply mention the cases when 

the performance of language detection affects the execution of our own analysis (e.g. by losing reports). 

A similar situation occurs with spelling mistakes. While it is clear that this represents a source of error 

in text classification, the implementation of a bilingual spell checker exceeds the reach of our goal. 

Regarding the business environment in which our research problem exists, there are a set of constraints 

derived from it that affect the reach of our efforts. Although they are transparent for the most part of this 

work, they may become notorious when analysing the dataset on which we work. Therefore it is 

important to point out that the nature of this dataset, the assumptions under which it was created, and 

the conditions for its use are all given characteristics that cannot be altered. 

Finally, concerning the Conceptual Architecture for Text Classification introduced in section 4.1, it is 

important to emphasise that this architecture is supposed to work as definition of the solution space for 

this problem and exhausting the possibilities it offers to design alternative solutions, even in the best of 

scientific interests is beyond the scope of this work. Still, we do present an instantiation that makes use 

of representative components of each layer as a way to prove its adequacy. 
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3 Theoretical Framework 

In order to give theoretical foundations to the solutions proposed in chapter 4, a literature survey was 

conducted. An academic enterprise on its own, the exploration of existing work is organised according 

to an extension of the preceding work of (Kassner et al. 2014) (from which this thesis derives) with the 

overview on text classification by (Khan et al. 2010). This allows to have a more detailed conceptual 

framework that enables better-focused research of related work. 

By looking at the study object characterisation in section 4.3, it is clear that there is more than one way 

to address this text-document classification problem and as a matter of fact, each candidate solution may 

require different disciplines to come to fruition. (Kassner et al. 2014) already recognise this fact and in 

their conceptual architecture they propose a modularised separation of activities to analyse structured 

and unstructured data. Specifically, they propose in their middle layer Analyse a two-level structured 

composed of Core Analytics and Value-Added Analytics as shown in Figure 5. 

 

 

Figure 5 ApPLaUDING Conceptual Architecture (Kassner et al. 2014) 

 

The upper level is meant to generate complex value-adding analytic capabilities based on the results 

obtained from a composition of modular core analytics components. Meanwhile, the lower level is 

concerned with tools for both unstructured and structured data, respectively depicted on the left and 

right sides of the layer. 

This thesis focuses on the components for unstructured data of the Analyse layer, namely Domain-

specific text analytics, Domain-Specific Resources and Advanced Text Analytics. 

The first two elements are considered part of the same analytics toolbox, which uses “domain-specific 

NLP resources such as taxonomies, wordlists / dictionaries and schemas (…)” and domain-specific text 

analytic tools for “the recognition of entities or expressions from a particular domain (…)” (Kassner et 

al. 2014). The third element and toolbox, Advanced Text Analytics, “contains advanced analytics 

drawing on both the domain-specific resources and on analytics techniques from the domain-specific 
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toolbox.” (Kassner et al. 2014). Examples for this are topic detection, and clustering and classification 

algorithms. 

However as the enriched concept of messy data in section 4.3 highlights, there are equally important 

components involved in the generation of meaningful data and that are nonetheless not represented on 

the ApPLaUDING architecture. Prior to any analytics activity, there are certain pre-processing steps 

that are needed to handle unstructured data. Examples of these are: tokenisation, fundamental to 

transform unstructured text into a feature vector and language detection, to be able to apply other pre-

processing steps like stop word removal or stemming correctly. 

At the same time, (Khan et al. 2010) suggest that in every text document classification endeavour, three 

disciplines are required: Text Mining, Natural Language Processing, and Machine Learning. Even more, 

regardless of the technique employed, they tend follow a particular order. 

Text mining begins with the application of two kinds of methods: Information Extraction and 

Information Retrieval. The first one is meant “(…) to extract specific information from text documents.” 

while the second employs statistical methods “for automatic processing of text data (…)” (Khan et al. 

2010). 

Natural Language Processing aims to analyse the data on a syntactical level so as to improve the 

classification process and to enable the usage of taxonomies or similar complementary resources, such 

as ontologies. Properly speaking, syntactical analysis aims to parse “sentences and paragraphs into key 

concepts, verbs and proper nouns.” (Khan et al. 2010). 

Finally, Machine Learning involves all supervised approaches to document classification. This is 

particularly useful for our study subject since “supervised learning techniques are used for automatic 

text classification, where pre-defined category labels are assigned to documents based on the likelihood 

suggested by a training set of labelled documents.” (Khan et al. 2010) 

If we then expand the original architecture by (Kassner et al. 2014) in order to distinguish the 

participation of the three above mentioned disciplines, we find a again a three-layered structured instead 

of the original pair of Core and Advanced Analytics. This is represented in Figure 6. 

 

 

Figure 6 Comparison between the original and detailed conceptual architectures. Adapted from (Kassner 

et al. 2014) 

 

This detailed conceptual architecture divides the classification of text documents into three layers. The 

first one consists of feature extraction techniques. This is therefore related to knowledge from Data 

Feature Extraction: Data mining

Feature Selection: NLP+Statistics

Classification Algorithm: Machine Learning

Domain-specific text
analytics

Generic Unstructured Text Analytics

Supervised classification algorithms

Domain-specific
resources

Domain-Specific
Text Analytics

Advanced Text Analytics

Domain-Specific
Resources

Original section of the ApPLaUDING Architecture
for Unstructured Core Analytics

Detailed Conceptual Architecture for Unstructured
Text Classification
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Mining, in other words, the pre-processing techniques that can be applied to “make clear the border of 

each language structure and to eliminate as much as possible the language dependent factors, 

tokenization, stop words removal, and stemming.” (Khan et al. 2010). 

Then, the feature selection layer is used “to select subset of features from the original documents (…) 

by keeping the words with highest score according to predetermined measure of the importance of the 

word.” (Khan et al. 2010). This is intended to make the existing set of available features manageable 

and scalable so that the selected classification algorithm can be applied on the dataset. To achieve this, 

it is composed of Natural Language Processing and Statistics components. 

Finally, the classification algorithm layer contains Machine Learning algorithms which can be selected 

according to their performance when handling certain kinds of data. 

The following sections in this chapter present the theoretical concepts behind the (potential) components 

in each of these three layers. 

3.1 Feature Extraction Mechanisms  

In this section we refer to the different steps that transform unstructured text data into more structured 

formats that can be later used by algorithms to analyse it. In this respect, we consider these steps as 

techniques from text mining. In this context we understand text mining from the perspectives of Data 

Mining and the Knowledge Discovery Process as described by (Hotho et al. 2005). As such, we see text 

mining simply as a process with sub components that perform certain pre-processing tasks to extract 

useful patterns for document analysis. 

3.1.1 Term  

Also known as feature, it represents the smallest meaningful unit of text with which a document can be 

represented. Depending on the approach taken, a term can refer to a word or a phrase (Sebastiani 2002). 

According to (Khan et al. 2010), other alternatives include N-Gram and RDR, this last one representing 

document as logical predicates (Khan et al. 2010). On the other hand, an N-Gram is “(…) a string-based 

representation with no linguistic processing" (Khan et al. 2010). 

3.1.2 Feature Vector 

This is the cornerstone of the Vector Space Model (VSM). It represents a text document as a vector 

composed of term weights, is a feature vector (Khan et al. 2010). When all distinct terms m from all 

documents to be analysed are merged into a single collection, this is called the dictionary of the 

document collection (Hotho et al. 2005). This dictionary represents the m-dimensional space in which 

feature vectors are expressed (Sebastiani 2002). Unfortunately, it is often the case that the amount of 

features considerably outnumber the number of documents available, something known as high-

dimensionality (Khan et al. 2010). 

This high dimensionality brings many challenges when it comes to text classification, such as prolonged 

execution times both in training and testing, the need for bigger samples to train the algorithm and 

difficulties in visualising the dataset (Rafeeque & Sendhilkumar 2011). 

3.1.3 Bag of Words 

A model to represent text documents for text classification in which every word is considered a term 

(Sebastiani 2002). Each position of a feature vector contains the occurrence of a word, with the total 

amount of words usually overcoming the total amount of training documents by more than an order of 

magnitude (Forman 2003). It does not preserve the semantic context (Rafeeque & Sendhilkumar 2011). 

3.1.4 Bag of Concepts 

A text document representation model based on the identification in text documents of mentions to 

domain-specific concepts (Kassner & Mitschang 2016). It requires the mapping of words in text to 

concepts stored in a semantic resource via named entity recognition (Kassner & Mitschang 2016). For 
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this to work, the semantic resource should be aware of synonymy relationships among its concepts 

(Kassner & Mitschang 2016).  

3.1.5 Term-Weighting Techniques 

They comprise the different ways to calculate the contribution of a term (or feature) to the semantics of 

a document, or to the semantics of the whole document collection (Sebastiani 2002), in other words, the 

representation of a term’s value (Forman 2003). In their most basic form, weights reflect the presence 

of a term within a document, but different approaches may use take into consideration other aspects, 

depending on the needs of a classification algorithm (Sebastiani 2002). According to (Forman 2003), 

this basic form is a binary representation, which should be enough for short texts since terms hardly 

repeat. It also enables the use of other feature selection metrics, such as Odds Ratio.  

 

For the cases when weights are not binary, (Bank 2013) discusses three common components that can 

be used, namely the local, global and normalisation components. The first one refers to the importance 

of a term in the document where it is contained. The second is based on the importance of the document 

in the whole document collection. The third component is employed to negate the influence of very 

different document lengths in the weight of a term. 

 

A technique with focus on the local component is term frequency, understood as the number of times N 

a term i is mentioned in document j (Ruotsalo 2012), expressed in the formula: 

𝑡𝑓𝑖,𝑗 = 𝑁𝑖,𝑗 

For the global component, inverse document frequency is a common way to calculate it. It is based on 

the number of documents n where term i appears in the document collection N (Ruotsalo 2012), 

expressed in the formula: 

𝑖𝑑𝑓𝑖 = log(
𝑁

𝑛𝑖 + 1
) 

These two components combined derive in the creation of a major calculation method known as TF-

IDF (Sebastiani 2002) with the formula: 

𝑡𝑓𝑖𝑑𝑓𝑖,𝑗 = 𝑁𝑖,𝑗 ∙  log(
𝑁

𝑛𝑖 + 1
) 

TF-IDF captures two notions. The first one is that the more often a term appears in a document, the more 

it represents the content of the document. The second one is that the more often a term is present across 

multiple documents, the less useful it is to discriminate among them (Sebastiani 2002). The TF-IDF 

approach then weights terms according to how unique they are among terms, documents and particular 

categories (Khan et al. 2010). It is important to note however, that his formula does not take into account 

the order in which terms may appear inside of documents (Sebastiani 2002). 

 

A variant of the TF-IDF formula also considers the thirds normalisation component identified by (Bank 

2013) in the form of a cosine normalisation, which is the square root of the sum of square TF-IDF 

weights for all terms i from 1 to m as shown in the formula: 

√∑ (𝑡𝑓𝑖,𝑗 ∙ 𝑖𝑑𝑓𝑖)2
𝑚

𝑖=1
 

This then turns the TF-IDF formula into the expression 

𝑡𝑓𝑖𝑑𝑓𝑖,𝑗 =
𝑁𝑖,𝑗 ∙  log(

𝑁
𝑛𝑖 + 1)

√∑ (𝑡𝑓𝑖,𝑗 ∙ 𝑖𝑑𝑓𝑖)2𝑚
𝑖=1

 

3.1.6 Document Term Matrix 

A Document Terms Matrix (DTM) is the aggregation of all document vectors describing the term 

frequencies of all terms considered in the document collection, also known as the collection dictionary. 

It contains document IDs as rows and terms as columns, and every resulting intersection contains 
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weighted-term frequency of term i in document j. It is one of the most common ways to represents texts 

in text mining (Feinerer et al. 2008).  

As (Damljanovic et al. 2012) mention, there are issues concerning the scalability of DTMs with large 

corpora. This is due to the fact that the matrix grows every time additional documents or terms are added. 

3.1.7 Tokenization 

The process of breaking a text document into a sequence of words or terms, each of them separated by 

nothing else than a whitespace (Hotho et al. 2005). It is fundamental preliminary step for text mining 

that renders the document in a compact format in order for subsequent tasks to be performed on it (Khan 

et al. 2010).  

If certain components require it, this process can also partition documents into sentences instead of doing 

it by words (Khan et al. 2010). However, this document representation has not yielded significantly 

better performance (Sebastiani 2002). 

3.1.8 Stop Word Filtering 

A processing task to remove stop words, which are words with little significance for text classification, 

because they are both too frequent across documents and they have no discriminating effect across 

documents (Hotho et al. 2005). Examples of these stop words are articles, conjunctions and prepositions. 

The goal of doing this filtering is to reduce the size of the dictionary and as a result mitigate, albeit 

partly, the typical high dimensionality problem (see sub section 3.1.2). 

Stop words can be both language-specific and domain-specific (Forman 2003). 

3.1.9 Stemming 

It refers to the process of reducing words to their morphological root (Sebastiani 2002). This root, also 

called stem, is the one that groups words with equal or very similar meaning (Hotho et al. 2005). Since 

all words from a group are now represented by their stem, the overall number of terms present in a 

document decreases, which in turn helps address the problem of high dimensionality (see sub section 

3.1.2). As it can be inferred, this process requires knowledge of the language used in the document. 

3.1.10 Part Of Speech Tagging 

One type of linguistic pre-processing methods (Hotho et al. 2005) that tags every term in a document 

with the role they perform as part of the speech, the so called Part of Speech tag. 

3.1.11 Named Entity Recognition (NER) 

An information extraction task that deals with the identification of entities in natural language text and 

their classification according to their entity type (Freire et al. 2012). The identification of entities usually 

requires identifying one or two adjacent terms that textually refer to them (Schierle 2011). The possible 

categories typically considered are people, organizations, locations, expressions of time, quantities, etc. 

(Freire et al. 2012). This implies that the identification of domain-specific entities is normally outside 

of the scope of classical NER approaches and needs to be implemented on its own (Hänig 2012). 

This fact already hints that for a NER system to be successful, there is a strong need for manually created 

rules, manually created dictionaries or manually labelled training data, which makes the implementation 

in new domains or languages complicated (Schierle 2011). Current solutions already reach near human 

performance when applied to grammatically well-formed text (Freire et al. 2012). 

3.1.12 Concept Recognition 

Beyond the identification of entities in textual data, in domain-specific scenarios it is also necessary to 

identify the relevant concepts. This is due to the fact that concepts may be contained in more than nouns. 

Actions or properties can be expressed in adjectives, verbs and adverbs which are not identified by NER 

systems (Schierle 2011; Schierle & Trabold 2008). 
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Therefore concept recognition is a task focused on identifying concepts (entities, actions, properties or 

symptoms) in domain-specific textual data. This can involve the identification across different languages 

(despite of a potential lack of one to one term mappings), handling of synonyms and word sense 

disambiguation (Schierle & Trabold 2008). 

Because of this transformation of the different terms referring to the same concept into a single identifier, 

Concept recognition can be seen as another kind of document representation that lies between phrase 

and single word representations. 

3.1.13 Content and Function Words 

Two major lexical classes to group words (Pulvermüller 1999). Content words (or open class words), 

which usually refer to more concrete meanings, include nouns, verbs and adjectives. Function words (or 

closed class words) can include articles, pronouns, auxiliary verbs, conjunctions and in general any word 

that contributes to the meaning of sentences by fulfilling a certain grammatical purpose, (Pulvermüller 

1999). 

3.2 Feature Selection Strategies 

Defined by (Dasgupta et al. 2007) as the process of “selecting a subset of the features available for 

describing the data before applying a learning algorithm”, the main focus is to reduce the number of 

features extracted from a document collection to a number that can be managed by a classification 

algorithm. While traditionally there are two main types of feature selection methods, wrappers and 

filters, in this work we focus only in the latter. This is not only due to the fact that wrappers are in 

general not suitable for text classification (Khan et al. 2010), but also, as (Blum & Langley 1997) 

mention, because filters are independent of the algorithm that will use their output, which turns them 

into ideal methods for our proposed conceptual framework. 

3.2.1 Dimensionality Reduction 

A preliminary step before applying a classification algorithm, it reduces the amount of terms that 

comprise the feature space so that algorithms do not face high-dimensionality issues (see sub section 

3.1.2). The new set of features is called a reduced term set (Sebastiani 2002). 

Besides of enabling algorithms to handle bigger feature sets, performing dimensionality reduction also 

helps to avoid overfitting the classification model due to having a small amount of training data 

(Sebastiani 2002). 

There are two main ways to perform dimensionality reduction: either by selecting a subset of the original 

term space (term selection) or transforming the original terms to obtain fewer (and new) ones (term 

extraction) (Sebastiani 2002). Within the term selection techniques we can find wrappers and filters, 

whereas in the term extraction approach Term Clustering and Latent Semantic Indexing are good 

examples (Sebastiani 2002). 

3.2.2 Wrapper 

It consists of creating successive new term sets, either by adding or removing terms to the original term 

set, to apply the classifier algorithm until the most effective set is found. It implies using the same 

algorithm for both the classification and term selection (Sebastiani 2002). As a consequence, this 

approach is time consuming when the number of original terms is very high (Khan et al. 2010). 

The logic behind using the same algorithm for both tasks is that in this way, the effectiveness of the 

resulting reduced term set is guaranteed, since it was calculated with the actual algorithm that will 

perform the classification, instead of using any other measure geared towards other purposes (Blum & 

Langley 1997). 

Common algorithms used in the wrapper approach are Naïve Bayes and k-Nearest Neighbours (Blum 

& Langley 1997). 



21 

 

 

3.2.3 Filter 

It refers to a feature selection approach where a mechanism different (and independent) from the 

intended classification algorithm is used to subset the total number of features (Blum & Langley 1997). 

The filter decides which terms to keep based on a feature scoring metric that assesses the usefulness of 

the term for the classification (Khan et al. 2010).  

A simple metric can be term frequency, which can for example keep only the most frequent terms. This 

seemingly simplistic action can nonetheless achieve a reduced set 10 times smaller than the original one 

with no loss in effectiveness, given that stop words are first filtered (Sebastiani 2002). Other ways to 

select terms based on term frequency is to remove terms with minimal occurrences over the whole 

training set, or those appearing in a minimal amount of documents (regardless of how many times they 

appear inside the document) (Sebastiani 2002). 

3.2.4 Feature Selection Metrics 

They measure the ability of a feature to help differentiate the target classification categories (Khan et al. 

2010). While originally conceived as the core of filter approaches to term selection, they can also be 

used as heuristics to improve the performance of wrapper methods (Forman 2003). 

Common metrics according to (Forman 2003) are Chi-Square, a measure of divergence from a statistic 

distribution (thus prone to failure with small frequencies); Information Gain, measuring the decrement 

in entropy when a feature is considered; Odds Ratio, measuring the chances a term appears in one 

category over the chances of appearing in other categories; and Document Frequency, or how many 

documents contain a word. 

3.2.5 Language Statistics 

These are statistical measures that help characterise and understand language datasets (or corpora) (Bank 

et al. 2012). With them, datasets used in research projects can be compared in a fair manner, and by 

assessing their differences, it is possible to evaluate the transferability of the natural language processing 

methods or algorithms applied on them. 

Among the statistics proposed by (Bank et al. 2012), we focus on four: Shannon’s entropy, relative 

vocabulary size, vocabulary concentration, and vocabulary dispersion. 

Shannon’s entropy H for language engineering represents the mean amount of information of a term ti. 

High entropy means there are many words with low frequencies. It is given by the formula: 

𝐻 = − ∑ 𝑝(𝑡𝑖) log|𝑉| 𝑝(𝑡𝑖)

𝑡𝑖∈𝑉

 

Where V is the vocabulary size (all terms comprised in the dataset) and p(ti) is the probability of the 

term in the corpus. Moreover, (Hofmann & Chisholm 2016) estimate the probability of terms following 

a power-law distribution according to the formula: 

𝑝𝑟 ≈ [𝑟𝑙𝑛(1.78𝑁)]−1 

Where pr is the probability of the word in rank r (the typical frequency-based rank used for example in 

Zipf-plots, see sub section 3.2.6) and N is the total number of terms. 

The relative vocabulary size RVoc is a ratio of the vocabulary size V over the total number of occurrences 

of meaningful words Nm, where Nm refers to words that are not function words (see sub section 3.1.13): 

𝑅𝑉𝑜𝑐 =
|𝑉|

𝑁𝑚
 

Vocabulary concentration CVoc is understood as the ratio of the number of occurrences of the most 

frequent terms in the vocabulary Ntop, over the total number of occurrences of all terms in the dataset N: 

𝐶𝑉𝑜𝑐 =
𝑁𝑡𝑜𝑝

𝑁
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The vocabulary dispersion DVoc expresses the ratio of terms with low frequency Vlow (terms whose 

number of occurrences is less or equal to 10) over the vocabulary size V (total number of terms in the 

dataset): 

𝐷𝑉𝑜𝑐 =
|𝑉𝑙𝑜𝑤|

|𝑉|
 

3.2.6 Power-Law Distribution 

It is a type of cumulative distribution that is commonly found both in natural and man-made systems, 

including the frequency of words used in human language (Newman 2005). In it, the distribution of the 

quantities being measured, in this case the frequency of words, is proportional to the rank of the word 

(Newman 2005). We can express this in the formula: 

𝑃(𝑥) = 𝐶𝑥−𝑎 

Where P(x) is the fraction of words with frequency greater or equal than x, x is the frequency with which 

a word occurs (or a quantity in general), and both C and a (exponent or scaling parameter) are constant 

parameters that are estimated in a case by case basis. Also 𝐶 = 𝑒𝑐. It is important to notice that the 

estimation of the exponent a requires choosing a minimum x value above which the power law is valid. 

This points to the fact that in real life scenarios, distributions often present power-law behaviours in 

certain ranges, and not across the whole dataset (Newman 2005). 

Power-law distributions can be visually represented in different ways. The most common include the 

rank/frequency plots or CDF plots, which include Zipf-law plots (with P(x) on the y axis) and Pareto-

distribution plots (P(x) on the x axis); histograms on logarithmic scales, or a simple histogram (Newman 

2005). Examples of these are found in Figure 10 for the simple histogram and Figure 40 for the Zipf 

plot. 

It is also called a scale-free distribution due to the fact that regardless of the units in which x is measured, 

the power-law distribution remains present, albeit with a change of value at the constant C(Newman 

2005). 

Power-law distributions can easily induce high-dimensionality problems over time as data grows and 

frequencies of very rare terms increase, even if it is in marginal levels. This is of particular relevance in 

scenarios like the one that (Liu et al. 2013) point out, where multi-category classification is performed 

on an open text collection (new items are added over time). They also highlight that in real-life 

applications, this represents a challenge in terms of storage-time-cost sensitivity that needs to be 

controlled. After all, in many scenarios many features will be useless for classification because of their 

comparatively low frequency, thus supporting the need of reducing the total number of features. They 

propose a method that takes advantage of the power-law distribution to achieve this with low storage, 

computing time and cost. 

For this (Liu et al. 2013) define the uselessness ratio Ru “as the ratio of the number of token features 

with less frequency to the total number of token features”, where less frequency is considered to be less 

or equal to two. The complement to Ru is then the random sampling ratio Rrs that can be used to reduce 

the size of the power law distribution without altering its overall distribution.  

Additionally, very frequent terms can also present an obstacle for proper classification. (Cavnar et al. 

1994) point out that a power-law distribution implies the dominance of a small set of words in a given 

language both in general and in particular subjects. Empirically, they discovered that around the top 300 

terms in a language, there is a high correlation among those terms regardless of the subjects covered in 

the composing texts. Beyond this point, terms are more specific to the subjects of each document. While 

they discover this around the 300th rank for a collection of short texts, they mention that this tipping 

point was discovered manually, and could change for other collections. 

Finally, (Newman 2005) and (Clauset et al. 2009) raise a warning to avoid identifying power-law 

behaviour in any distribution that graphically presents some exponential trend. This is particularly 

relevant since a very common way to check for power-law behaviour is visually inspecting a plot of 

term frequencies with a logarithmic scale in both axes (Clauset et al. 2009). When the distribution seems 



23 

 

 

to resemble a straight line, the dataset is considered to follow a power-law. However this offers 

erroneous results and inaccurate parameter estimations.  

Instead, (Clauset et al. 2009) propose to estimate the scaling parameter with a maximum-likelihood 

method (MLE for Maximum-Likelihood Estimator) and the minimum x value with a Kolmogorov-

Smirnov statistic (KS statistic or test), the most common statistic used for non-normal data. The MLE 

method is based on the Hill Estimator, while the KS test measures the distance between two 

distributions: the one fitted by the parameters and the actual data distribution. The adequacy of this 

estimations is then verified with a p-value test on the hypothesis of data being drawn from a different 

distribution. Lower values for the KS Statistic evidence better fit while values higher than 0.05 for the 

p-value reject the hypothesis of data being drawn from other distributions. 

3.3 Classification Algorithms 

3.3.1 Levels of Supervision 

Machine learning algorithms can be classified according to the amount of preliminary human effort 

needed to use them. According to (Hänig 2012), this effort refers to the creation of a train input set and 

to the specification of the expected output (regarding for example the amount of categories). The 

supervision is then this initial labelled dataset (Gupta 2011). Depending on the amount of supervision 

needed, there are three distinct categories. 

Supervised methods, which can achieve very accurate results when their conditions are properly met, 

require a fully annotated training set; this is an initial set of data with labels describing the particular 

attribute by which all data has to be classified (Hänig 2012). They also require to specify the number of 

categories in which data has to be classified. Their main drawback is precisely the amount of effort 

required to label the training set, which in some cases may not even be possible to do, because the data 

refers to subjects or phenomena no longer available. Traditional classification algorithms such as Naïve 

Bayes, Support Vector Machines, K-Nearest Neighbours and Artificial Neural Networks are supervised 

algorithms (Gupta 2011). 

Unsupervised methods on the other side, are very easy to apply on new data sets because they neither 

require a previously annotated train set nor the specification of the output (Hänig 2012). On the positive 

side, this means that they are an efficient alternative to obtain some structure out of a new data set even 

if that structure is not that accurate (Hänig et al. 2008). Instead, they cluster data based on some measure 

of differences or distance between observations. This can lead to classifications that do not match the 

problem at hand, because they do not consider the categories in place, resulting in unpredictable results 

with both useful and useless patterns (Gupta 2011). Some examples of unsupervised algorithms are K-

Means, Latent Dirichlet Allocation Topic and Expectation-Maximization for mixture of Gaussians. 

The final category of algorithm incorporates characteristics of the previous two. Semi-supervised 

algorithms do begin with a set of labelled data. This is used to classify data unless a certain abort 

condition is met (Hänig 2012). The classified results can be then reused as additional train data if a 

human expert confirms the correctness of the classification (Hänig 2012). 

3.3.2 Multiclass Text Classification 

It refers to the process of labelling each document (written in natural language) in a document collection 

with a single category (or class) out of a set of predefined thematic categories (Giorgetti & Sebastiani 

2003).  

The process begins with a document corpus already labelled with categories from its predefined category 

set. This is split into training and testing sets to be used at different stages of the process. Afterwards, 

an algorithm, also called learner, builds a classification model for the target categories using the 

documents in the training set. The model’s effectiveness is then measured by running classifying the 

documents on the testing set using the same model (Giorgetti & Sebastiani 2003). Effectiveness is 

calculated in terms of accuracy, understood as the proportion of correct classifications over the total 

number of classifications (Giorgetti & Sebastiani 2003). 
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3.3.3 Naïve Bayes 

It is a classification algorithm based a probabilistic model that aims to select the category with the 

highest probability for a document based on the words the document has (Giorgetti & Sebastiani 2003). 

Given a document training set or corpus D, where each document can be represented with a feature 

vector wj, the probability of a document represented by vector wj to belong to a category ci is calculated 

by applying the Bayes theorem in the following manner: 

𝑃(𝑐𝑖|𝑤𝑗) =
𝑃(𝑐𝑖)𝑃(𝑤𝑗|𝑐𝑖)

𝑃(𝑤𝑗)
 

The assumption that gives this algorithm the quality of Naïve, and also simplifies the calculation 

probability, is applied to the calculation of P(wj|ci), because normally the number of vectors (or 

documents) to consider is too high (Sebastiani 2002). It is simply assumed that each element of the 

feature vector (typically words) are independent from each other and from the order in which they 

appear. Instead, the document is considered a sort of “bag of words” without any contextual or semantic 

information about the feature vectors (Gupta 2011). This is represented in the following equation: 

𝑃(𝑤𝑗|𝑐𝑖) = ∏ 𝑃(𝑡𝑘|𝑐𝑖)

𝐾

𝑘=1

 

Where tk represents the kth term t and ci the ith category. 

Although this assumption can be considered unrealistic in particular for the text classification domain, 

the accuracy it yields, along with its ease to be implemented and its efficient computation use (Khan et 

al. 2010), has led Naïve Bayes to be a foundation algorithm upon which many improvements are 

proposed (Hotho et al. 2005). Moreover, this algorithm can be trained with a small amount of training 

data without affecting the performance of the classifier, proving its robustness despite of miscalculations 

in the probability model (Khan et al. 2010). 

There are two common variants, the more performant multinomial, where all documents are considered 

a single document to do the calculations (Khan et al. 2010), and multi-variate Bernoulli method 

(Giorgetti & Sebastiani 2003). 

Still it is worth mentioning that Naïve Bayes is not considered one of the best performers, especially 

when compared against the SVM algorithm. It also sees its performance reduced when features are 

highly correlated (Khan et al. 2010). 

3.3.4 Support Vector Machines 

A supervised machine learning algorithm that is commonly among the top performers in classification 

tasks. At its basic form, it is a binary classification model that aims to optimise the separation between 

two opposite category datasets, which can then be considered as positive and negative categories, each 

one requiring its own training data (Khan et al. 2010). 

In the space in which document vectors are represented (see Figure 7), a hyperplane can be defined as 

the linear separation between the two classes for which the distance between itself (the hyperplane), and 

the closest elements from either class (distance called the margin), is maximised. In such space, 

documents are represented as vectors of real numbers (i.e. with term frequency weights) (Chih-Wei Hsu, 

Chih-Chung Chang 2008). 

Documents located at the limits of the margin constitute the support vector. Once these are created, all 

training data not being part of the support vector can be removed without altering performance (Khan 

et al. 2010).  
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Figure 7 Example of Support Vector Machines Classification 

Because of the linear representation it needs, finding the optimal hyperplane can be calculated in terms 

of a maximization problem for the Euclidean distance between the support vectors and the hyperplane 

(Hänig 2012). This is a “constrained quadratic optimization problem which can be solved efficiently for 

a large number of input vectors” (Hotho et al. 2005). 

SVM was originally conceived as a binary classification algorithm, which means that it requires 

modifications to handle more classes (Zhang et al. 2011). These multi-class classification problems are 

approached by applying the algorithm as many times as there are classes (Hänig 2012). If the data is 

also represented in a highly-dimensional space, then using kernel functions allows the application of 

SVM by mapping the multidimensional space into a higher dimensional feature space where linear 

separation is possible (Hänig 2012). Options for kernel functions are linear, polynomial, radial basis 

function (RBF) and sigmoid (Chih-Wei Hsu, Chih-Chung Chang 2008). Another possibility to address 

this issue is to use a slack variable (Hänig 2012). 

Even though SVM can indeed handle high-dimensional input, complex training and categorising 

algorithms are a problem (Khan et al. 2010). Another consequence of this complexity is the processing 

time of O(N2) for a training data set of size N makes it unsuitable for large datasets (Kyriakopoulou 

2008). Also, in contrast to other algorithms, SVM reduces its effectiveness when feature selection 

techniques are applied to the dataset (Giorgetti & Sebastiani 2003). 

3.3.5 Decision Trees 

This classification algorithm builds its logic into a tree data structure where leaves are the classification 

categories and branches are sequences of selection tests that decide to which category a document should 

belong. Each document goes through a series of queries based on selected terms starting from the root 

node (Khan et al. 2010). To achieve this, algorithm is built using a “divide and conquer” principle (Hotho 

et al. 2005). Moreover, since most of the variants of this algorithm are based on binary document 

representations, and each node on the tree usually queries a single term (or feature), the resulting trees 

are binary (Sebastiani 2002). Therefore, they can also be seen as an organised set of if-then rules 

(Schierle 2011). 

The creation of a decision tree starts with a set of labelled documents. From them, the term (or feature) 

that can better predict the documents’ labels (categories) is selected to split the set into two groups: those 

with the selected term and those without it. This logic is recursively applied until all documents in a 

group (or subset) belong to the same category (Hotho et al. 2005). How to choose the first and successive 

features to continue building branches, the key step in this algorithm, is based on different measures, 

information gain being a common one (Schierle 2011). 

Popular types of decision trees algorithms are Classification and Regression Tree (CART), ID3, and 

C4.5 (Murty et al. 2012). 

Decision trees are commonly used in Data Mining because of their speed and scalability when it comes 

to the number of variables (features in our domain) and the size of the training set. However, these 
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advantages can become drawbacks for their performance in text mining, since they tend to employ only 

a small amount of the available features (Hotho et al. 2005). This results in poor performance to classify 

documents. However this can be overcome with the use of a few structured attributes (Khan et al. 2010). 

Other challenges are its tendency to over fit the model to the training data, and the creation of overly 

complicated trees when the dataset is very large (Khan et al. 2010). 

The main advantage of decision trees is its ease to be interpreted by humans (Sebastiani 2002), 

something that does not occur with probabilistic methods. 

3.3.6 K Nearest Neighbours (k-NN) 

An example-based classifier, it is also considered a lazy learner because of its lack of computation during 

the train phase, performing it all during the actual classification (Sebastiani 2002). In fact, training 

simply comprises storing documents as feature vectors along with their categories. The classification 

phase then computes similarities between all train vectors and the new vector (document) in order to 

choose the k most similar or “nearest” vectors. The most common category among those k vectors is 

allocated to the new document (Khan et al. 2010).  

Based on this description, we notice two are the main steps in the algorithm, namely estimating the 

optimal k value and calculating the similarity between document vectors. 

The optimal value for k can be obtained with additional training data using cross-validation (Hotho et 

al. 2005). It is important to note that this estimation should also take into account the number of classes 

and the size of the training set (Gupta 2011). Some authors argue the optimal values lie somewhere 

between 30 and 45, even though increasing the value does not significantly degrade performance 

(Sebastiani 2002). On large datasets, a classifier with k=1 has an error rate never larger than twice the 

optimal error rate (Hotho et al. 2005). 

Similarity or semantic relatedness of documents can be calculated in multiple ways. Normalised count 

of common terms is one option (Hotho et al. 2005), others include cosine similarity, Euclidean distance, 

and Kullback-Liebler distance measure (Gupta 2011). According to (Sebastiani 2002) this measure can 

be probabilistic, or vector-based. In all cases, it is computed between a new document and all documents 

in the train set (Hotho et al. 2005). 

This algorithm is known for its good performance in terms of accuracy and fast training phase (Murty 

et al. 2012). This is the case even for multi-categorised documents (Khan et al. 2010).  

However, this does not come free of challenges. It takes a long time to be executed and is 

computationally intensive given the fact that it uses all features in distance comparison (Khan et al. 

2010). Its performance is degraded with noisy or irrelevant features in the training data (Murty et al. 

2012). Finally, the estimation of an appropriate K value is complicated if data is not evenly distributed 

or if there is noisy data (Murty et al. 2012). 

3.4 Related Technologies 

3.4.1 R 

It is a functional programming language and environment for statistical computing and graphics 

distributed under a GNU-style copy left (R Core Team 2001). Besides of its core functionality on 

statistical procedures, R also has a package specification that allows to create purpose-specific modules. 

Thanks to this, it is possible to extend the scope of the R methods to unstructured text data. One such 

package that is relevant for text mining is the “tm” package.  

The “tm” package provides a framework that integrates R statistical methods with advanced text mining 

or natural language processing methods from other toolkits, such as Weka and OpenNLP (Feinerer et 

al. 2008). This is done thanks to a modular design that can interface with the RWeka and Snowball 

packages to offer stemming, tokenisation, sentence detection and part of speech tagging. 

“tm” is designed around a typical three-step text mining process including: 1)importing text and 

structuring it to be accessed in a uniform manner, 2) pre-processing text to obtain a convenient 
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representation (which may involve reformatting, whitespace removal or stemming), and 3) transforming 

texts in a format useful for computation like clustering or classification (Feinerer et al. 2008). The 

process starts with the creation of a corpus (or text document collection) as a data structure to manage 

documents in a generic way, and ends with the generation of a document term matrix on which 

computations can be performed. 

Another package offering a stark different approach to supervised learning on text data is “RTextTools”. 

This packages streamlines the process of pre-processing data, training several classification algorithms, 

performing the classification, comparing teach algorithm’s performance, and exporting the results (Jurka 

et al. 2013). This package goes through a nine-step process starting with a document term matrix and 

finishing with a document summary to review accuracy of each of the nine classification algorithms 

available, namely Support Vector Machines, glmnet, maximum entropy, scaled linear discriminant 

analysis, bagging, boosting, random forest, neural networks and classification tree. 

3.4.2 Weka  

Standing for the Waikato Environment for Knowledge Analysis, it comprises a collection of machine 

learning algorithms and data pre-processing tools implemented in Java and released as open source 

software (Hall et al. 2009). It is built with a modular, extensible architecture that also provides an API 

and a graphical interface.  

Because of its Java implementation, Weka requires a Java Virtual Machine with enough heap space, 

thus demanding to specify in advance the amount of needed memory. In addition to this, the amount 

specified also has to be less than the total amount of physical memory available to avoid swapping. 

These two conditions represent obstacles to its widespread use in practise (Hall et al. 2009). 

It includes algorithms for regression, classification, clustering, association rule mining and attribute se- 

lection. Data exploration capabilities include data visualisation and pre-processing tools (Hall et al. 

2009). 

3.4.3 Unstructured Information Management Architecture (UIMA) 

A middleware architecture initially developed by IBM, it is designed to support the creation of 

applications which process vast amounts of unstructured information with the use of structured data. 

The final goal of such applications is to extract relevant knowledge from data sources like natural 

language text, voice recordings, audio or video (Ferrucci & Lally 2004). 

As discussed by (Ferrucci & Lally 2004), UIMA is meant to accelerate the creation of Unstructured 

Information Management (UIM) solutions by facilitating the integration of different technologies within 

a common framework. Moreover, it enables the reutilisation of existing software components, thus 

increasing the solution’s flexibility as well. 

At its very core, UIMA-based applications can be conceived as a sequence of Analysis Engines and or 

Consumers that perform different kinds of analyses on documents (units of unstructured information 

processing) and or Collections generating as a result a series of Annotations. A more structured overview 

of UIMA groups the previously mentioned components along with others into 4 different kinds of 

services: Acquisition, Unstructured Information Analysis, Structured Information Access and 

Component Discovery (Ferrucci & Lally 2004). 

It is important to mention that originally, UIMA requires file descriptors for the creation of Analysis 

Engines where the input requirements, output specifications and external resources dependencies are 

specified (Ferrucci & Lally 2004). According to (Ogren & Bethard 2009) this is to be expected because 

of UIMA being a programming framework. However, in the long term this can become a burden due to 

the additional effort needed to maintain the descriptor files consistent with the code. To circumvent this 

problem, (Ogren & Bethard 2009) introduced what is known today as uimaFIT, a set of classes to 

instantiate, run and test UIMA components easily and without descriptor files. It is particularly useful 

to run Pipelines (sequences of analysis engines that process documents typically supplied by a 

Collection Reader) in a simplified manner. 
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4 Framework to Optimise Data Features and Classification Algorithms 

In this chapter we design a framework to create solutions to the problem described in 1.2.2. To achieve 

this, we first refine the conceptual architecture for text classification presented at the beginning of 

chapter 3, specifically in Figure 6, to detail how specific concepts are used in the design of text 

classification solutions. We then explore the properties of our application scenario’s dataset to 

characterise the concept of messy data to our particular context. With this enriched definition we then 

proceed to devise a method that supports the creation of text classification solutions both by making use 

of our conceptual architecture and being aware of the specific challenges present in this research 

problem. 

In terms of the Design Science methodology, this chapter introduces two artefacts: a model (the 

conceptual architecture) and a method which are used to build an instantiation artefact in chapter 5. 

4.1 Conceptual Architecture for Text Classification 

There are multiple reasons to refine the detailed conceptual architecture introduced in chapter 3 and turn 

it into a reference model that can help us develop our own text classification solution. First, and as 

initially mentioned, with this detailed architecture we give equal importance to text mining pre-

processing techniques in the development of text analytics solutions. This is important to stress the fact 

that the process of building text analytics solutions involves more than just parsing text and applying 

algorithms into it. It is also necessary to decide the way text is processed, represented, and even 

transformed to discover relevant features upon which algorithms can be applied. Underestimating this 

choices, especially for the unexperienced practitioner, can result into considerable performance 

degradations. 

Second, by enforcing a clear distinction of three layers we clarify the way concepts from different 

disciplines are combined to develop text classification solutions. In this way, the architecture can help 

identify alternatives not only during development, but also when revisiting existing solutions by pointing 

at other components on the same level that are worth considering. 

In this sense, the conceptual architecture describes more than component aggregations. It delimits the 

scope of possible solutions that can be developed to address our problem, something (Hevner et al. 2004) 

refer to as the solution space. Solutions derived from the application of this architecture can then be 

assumed comparable with each other, facilitating the evaluation of their respective performances in the 

search of the optimal solution. Because this architecture is inspired by the same analysis and research 

line that conceived the solution implemented by (Kassner & Mitschang 2016), comparisons can also be 

made with it. 

Figure 8 shows the refined version of the conceptual architecture for text classification. It classifies 

components in three levels with the same amount of layers, without taking dependencies into account. 

This is to remain flexible and reusable while still addressing this and other domain specific analytics 

problems, one of the design goals conceived by (Kassner & Mitschang 2016). Components are thought 

as modules that can be combined horizontally and vertically to build a text classification solutions. The 

only constraints are consistency and the availability of features and structured data, thus encouraging 

the possibility of developing multiple solutions. 

In a basic scenario, different components on the first two layers can be combined following the needs 

of a selected classification algorithm and the availability of the features in the dataset. As long as a 

combination of elements from every layer produce meaningful results, the solution is considered valid. 

It could also be possible to combine two or more algorithms and their necessary components from the 

layers above to come up with more complex solutions, but this is an alternative we do not focus on. 
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Figure 8 Full detail view of the Conceptual Architecture for Text-Document Classification 

In this architecture three kinds elements are contemplated. On the bottom, feature extraction components 

refer to the generic unstructured text analytics that process the dataset to identify or help identify 

potential features in it to be later employed by a classification algorithm. This layer contains then 

components from Text Data Mining that can process unstructured textual data to identify terms, correct 

spelling mistakes, identify concepts, detect the language, etc. The objective is to obtain a set of 

potentially useful features contained in convenient data structures to be used by the following layer. An 

important result here is a Document Term Matrix. A structured data layer is at the same level because 

some of the components in the feature extraction layer may need access to structured resources to 

perform their task. For example, a concept annotator needs to access a taxonomy to identify the concepts 

in text.  

The feature selection layer then focuses on choosing a subset with the most useful features out of all the 

ones previously obtained. This enables the selected classification algorithm to work more efficiently 

while still being able to describe the dataset in a reasonably accurate way. To fulfil this purpose, this 

layer addresses the need to specify an appropriate filter (see sub section 3.2.3), evaluation metric (see 

sub section 3.2.4), and weighting scheme (see sub section 3.1.5). The choice of including only filters 

and not wrapper methods (see sub section 3.2.2) is based on the design goal of maintaining every 

component in the layer modular and flexible to be used with as many different choices as it makes sense. 

Since wrappers are directly related to the selected classification algorithm, they are not part of our 

feature selection alternatives. 

Based on the power-law nature commonly found in text, this layer also offers the use of statistic methods 

based on the properties of this kind of distribution (see sub section 3.2.6). Taking into consideration the 

fact that the data we study is framed in a domain-specific context (see section 4.3), the layer also 

contemplates selection alternatives based on other kinds of dimensions that can be relevant in the 

domain, like space, time or others based on business rules. As (Zhang et al. 2011) show and argue, this 

is possible because text contains many times information related to these dimensions albeit in an 

unstructured format. Examples of the information contained are names of places, spatial terms and 

certain POS elements like orientation words, prepositions and verbs (Zhang et al. 2011). This kind of 

techniques would infer the relevance of features based on, for example, how recently they were 

generated, how close to one another were the authors who created their source text reports or whether a 

pair of reports refer to similar car parts or not. Because of this, and in a similar way to the Feature 

Extraction Layer, the execution of certain elements on this layer depends on the use of structured data, 

this time to obtain relationships that can serve as input. Therefore, the structured data layer is also part 

of this level. 
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The top layer simply points out the existence of several classification algorithms that can be applied 

whenever an algorithm suits the target dataset’s conditions, for example being able to handle the required 

number of classification categories. It should be noted that since there are multiple combinations of 

feature selection techniques and feature extraction components that can be applied to every classification 

algorithm, the elements on this top layer actually represent a family of algorithm configurations that 

share the same logic but apply it on different feature sets. 

4.2 Data Exploration 

The dataset we study comes from the quality inspection process described in section 1.2.1. It is a 

randomly sampled subset of the original dataset dealing with three major car part classes. It contains 

7500 distinct data bundles or collections of text reports and structured data referring to an equal amount 

of car parts that went through the process and have an error code assigned. Aside from other irrelevant 

fields, the structured data that is created is shown on Figure 9. All data is stored in a relational database. 

Text reports, error descriptions and part description are written either in English or German. All data 

has been anonymised, so that no individual, organisation or vehicle can be identified.  

 

Name Description Type Example 

Reference number A 9–digits code to identify every part that is 

processed. Generated at the beginning of the 

process 

Text 768192821 

Error code An 11-characters long code to identify the 

particular kind of failure the part suffered. 

Assigned by the OEM at the end of the 

process. This are the target categories for 

classification of reports. In the studied dataset, 

there are 1271 different codes. 

Text 33107B61AV7 

Part code A 7-characters-long code to identify the type 

of part being analysed. It is part of the error 

code. There are 31 different codes in our 

subset. 

Text 33107B6 

Mileage Distance in kilometres that the car had by the 

time it went to repair. 

Numeric 13809 

Production date Date when the car was finished. Date 2002-08-04 

Admission-to-drive 
date 

Date when the car is authorized to drive in the 

streets. 

Date 2002-11-11 

Repair date Date when the car is taken to repair. Date 2002-12-25 

Figure 9 Relevant structured data for every car part 

 

We focus our interest in the values of the error code, since they represent the categories in which the 

text reports have to be classified. Since the whole dataset is annotated with an error code, we can use 

part of it as a training test, and the rest as a testing set for our classification algorithm. 

It is important to mention that not all data bundles contain the same information. When querying the 

database to obtain a bundles containing all reports and structured data fields, the amount of records (or 

rows) decreases up to 5538. This is due to the use of an INNER JOIN in order to obtain results with all 

fields. Instead of using a LEFT OUTER JOIN to retrieve incomplete results on certain fields (either 

missing text reports or structured data fields), we split the total dataset based on the roles involved in 

the process, namely the Mechanic, Supplier and OEM. By doing this we obtain datasets with 5624, 7182 
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and 583 observations respectively. In the case of the OEM we consider only those with the optional 

preliminary report, which is the only one available at the moment of classification. 

Even though this decision reduces already the size of the initial dataset, it gives clarity about its 

composition with regards to the real-life context where it belongs. Moreover, it allows to attribute 

performance improvements or deficiencies to the quality of the data produced at each role, shedding 

light at how each role’s contribution to the overall dataset should be treated. 

As an initial step we do a visual exploration of each role’s dataset with the objectives of: characterising 

the behaviour of each potential feature, finding patters in the interaction of different features, and 

determining the suitability of each feature for the classification task. Every dataset is extracted from the 

relational database and loaded into an R environment to explore. For each role we first look at its 

structured data and then at the contents of its reports. 

4.2.1 Supplier Role Dataset 

From the original 7182 observations retrieved, we begin by verifying the usefulness of the data for the 

classification task by looking at different criteria. Any observation that does not meet the requirements 

is then removed from the dataset.  

We first remove 180 elements due to inconsistent or erroneous production or admission-to-drive dates 

(from years 1900 or 1997). Not only are these dates useless to locate the moment in time when these 

observations occurred, they also represent outliers that bring noise to the analysis of data trends over 

time. These elements with faulty dates constitute the totality of observations for 38 error codes. The 

remaining 7002 observations span across a 10 year period from 2004 to 2014. 

In these observations, there are 709 error codes that only have a single occurrence. This makes them 

unsuitable for the classification, since it either adds a category to classify for which there is no way to 

test the accuracy, or it brings observations that can only create misclassifications. We then remove them 

from the dataset.  

Still, the fact of having two occurrences of the same error code does not guarantee full utility for a 

classification task. The lack of enough elements of the same error code restricts the possibilities to 

perform statistical inference based on their structured data, a method that could otherwise help identify 

relevant features to improve classification performance. For example, 480 of the remaining 519 error 

codes have less than 30 occurrences. If we were to test significant differences of some structured data 

feature between samples of two error codes, such a small number of elements per error code would leave 

the t-distribution, especially designed for small samples (de Winter 2013), as the only option. Even then, 

with 426 out of those 480 error codes having very small numbers of occurrences (below 13, what 

(Johnson 1978) estimates enough elements for data with extremely asymmetrical distributions),  the t-

distribution tests would have problems not to produce false positives or false negatives. The reason is 

that for very small samples to produce accurate results, the effect of the variable (feature) involved has 

to be very large (de Winter 2013), and this is not guaranteed.  

All in all, considering the significance of the loss it would represent to give up some many error codes, 

and the possibility to explore their utility for the classification task with other (less precise) methods, 

we keep these observations. 

After these considerations, we start our exploration with 6293 observations belonging to 519 error codes. 

Figure 10 shows a little less than a third of all error codes ordered by the number of observations. Their 

distribution seem to follow a power-law.  
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Figure 10 Plot of the 150 most frequent error code for the Supplier Role (filtered dataset) 

We then test their fit using the KS tests (see sub section 3.2.6) and obtain a p-value of 0.4519 and a 

statistic of 0.0377. The first value rejects the hypothesis of the data being drawn from a distribution 

other than the power-law distribution, while the second one shows there is little distance between the 

fitted and the actual distribution. We can then conclude that for a scaling parameter of 1.8334 and a 

minimum frequency x of 2, the tests suggest the data indeed follows a power-law. 

 

If we compare at Figure 11 and Figure 12, we see that after removing more than half of the error codes 

(which were in 12.37 % of the observations), the distribution of error codes per type of part (which we 

will error code families for clarity) does not change drastically. This suggests that the missing error 

codes were more or less evenly distributed across all part codes. It also contributes to validate the 

assertions made on the filtered dataset as a whole, since it resembles the original one. It is important to 

note, however, that three car parts are no longer represented, going from 31 original car parts, to 28. 
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Figure 11 Distribution of error codes per part code in the original Supplier dataset 

 

 

 

Figure 12 Distribution of error codes per part code in the filtered Supplier dataset 

 

Looking at the size of error code families in the filtered data set, we see strong variations between them. 

From the perspective of the original process, this shows that some parts have many distinct ways to 

present failures, whereas others do not. This can represent a problem at the moment of evaluating the 

performance of the classification algorithm because not all car parts have the same amount of possible 

error codes to be assigned, thus making some accuracy values lack sense. After all, if a given part can 
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only have 6 different error codes (even in the original unfiltered scenario), how can we interpret accuracy 

in the 10 most probable error codes? 

Focusing only on the filtered dataset, if we plot how many observations does every part have (shown in 

Figure 13), we see that their distribution is more or less similar to that of the error codes (Figure 12), 

except for a few notable cases. The leftmost part type has a lot of observations for its total error codes, 

averaging 36.5 observations per part, while “Part 22” has only an average of 7.49 observations per part. 

This suggests that some error codes will have very well trained models and, as a consequence, very good 

results while others will have more misclassifications because of the opposite scenario: very little 

observations and a lot of error codes. Similarly, this could represent a challenge if we tried to classify 

the observations of each part separately. In some cases the amount of data will be enough to build robust 

train and test sets, while in some others it will not. Moreover, it is likely that we would need more than 

one algorithm to perform the classification, just so we can address all the different behaviours present 

in every error code family. Averages for each part type are shown in Figure 14. 

 

 

Figure 13 Observations per type of part for the filtered Supplier dataset 

 



35 

 

 

 

Figure 14 Average number of observations for every error code of each part type for the filtered Supplier 

dataset 

4.2.1.1 Structured data in the dataset 

We now take a look at different structured data fields that can be used to complement the features 

extracted from the text reports and as a result improve accuracy. We aim to find features whose values 

are heterogeneous enough to help discriminate among error codes. 

4.2.1.1.1 Regarding mileage 

To see the distribution of the mileage values we present these values as box plots in Figure 15. We see 

that for some part types there are many outlier values and a very short interquartile ranges (IQR) while 

for others the opposite is true. Yet in all cases the median values (thick lines inside the boxes) seem to 

remain low, somewhere beneath the 50,000 km mark. This is not particularly helpful, since across the 

range of values that mileage has, there does not seem to be a clear pattern to allocate a new observation 

to a particular part type. However, because of the scale distortion provoked by the presence of outliers, 

it is hard to determine how similar the median values really are. This is important because it indicates 

that half of the observations for every part type have values below that of the median. If these values are 

indeed different enough, it could serve as a good discriminating feature. 

To verify this, we plot the median values in Figure 16. In this case it is clear that they progressively 

grow from almost 150 to a little more than 28000 km. We can expect difficulties in predicting to which 

error code does a part belong to, based on the mileage. Moreover, let us not forget these are median 

values which do not represent the full variability of mileage within every part type. As a consequence it 

is very likely that values close to the limits of the 1st or 3rd quartile in one part type (or error code family) 

could be mistakenly taken as belonging to another error code family where they also fit. As a conclusion, 

it can be expected to contribute very little to the overall performance of the classification algorithm. 
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Figure 15 Box plots of mileage values per part type for the filtered Supplier dataset 

 

 

 

Figure 16 Ordered median mileage values per part type for the filtered Supplier dataset 

 

 

4.2.1.1.2 Regarding time 

Figure 17 shows the observations grouped by the 519 error codes considered in the filtered Supplier 

dataset on the y axis and grouped by the months in their repair dates on the x axis. Therefore, horizontal 

lines on the plot show the apparition of error codes during the whole time considered in our dataset. 
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Figure 17 Error codes grouped by their month of repair for the filtered Supplier dataset 

Despite of the big amount of observations, a clear trend is present. As we move over the error codes 

ordered in alphabetical order (as they are in the plot), the more likely it is that the error code was 

identified at a later month. Following this logic, error codes with an earlier alphabetical position are 

more likely to be assigned earlier in time. The exceptions to this trend are the first 50 error codes or so, 

since they seem to be present across all the time period, albeit less frequently as time goes by. In a 

similar vein, observations around years 2009 and 2011 can be particularly difficult to categorise, given 

the fact that almost all error codes have some elements present at that moment in time. 

To gain more clarity on this pattern, Figure 18 shows the same data (repair date months) as box plots 

grouped by part type. Here we see the variability we expected among part types if we look at the 

distribution of IQRs over the total time span. The length of IQRs varies as well, something that indicates 

that the discrimination problem we expected to see around years 2009 and 2011 may not be as tough as 

originally thought, as observations from each part type tend to concentrate at slightly different moments 

in time within this particular period.  
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Figure 18 Months of the repair date grouped by part type for the filtered Supplier dataset 

A similar situation occurs if we examine the distribution of observations according to the admission-to-

drive dates they have registered. This is shown in Figure 19. The IQRs for each part type are just as 

spread over the whole period of study as in the case of repair dates. In some case the IQRs are also 

shorter, favoring the concentration of observations around a particular point in time, and as a 

consequence avoiding overlaps with other part types, thus helping classification. Examples of this are 

parts 8 and 11, 4 and 5 or 14 and 15. 

 

 

Figure 19 Months of the admission-to-drive date grouped by part type for the filtered Supplier dataset 
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All in all, these features can prove useful to increase the performance of the classification algorithm. 

Even though this is due to the particular way observations spread over time for our specific scenario, it 

highlights the importance that temporal data can have to improve the classification of unstructured text 

data. 

A more revealing feature comes from calculating the amount of days from the day a car is first admitted 

to circulate until the day it is taken to repair, which we will call “driving time”. Figure 20 shows the 

quartile distributions of this calculation arranged by part type. Contrary to what happens with mileage, 

here observations are very similar to one another within their part type (shown in the more or less 

compact IQRs) and different enough in comparison to observations from other parts (median values 

vary more or less evenly over a range of 500 days). 

 

Figure 20 Box plots of driving times per part type for the filtered Supplier dataset 

Based on these observations, and even though this feature does not promise to add much as much 

discrimination as the previous one, we can also consider the driving time as an additional feature. It is 

safe to include this feature along with the repair date because, despite of being a derived calculation 

between the admission-to-drive and repair dates, it has low correlation with their effects (-20% and 12% 

respectively). 

 

4.2.1.2 Text reports in the dataset 

In order to explore the nature of the texts in the dataset and the effects of different pre-processing 

sequences, we represent each report as a feature vector made of single-word terms. Based on this 

representation we perform two types of pre-processing. One that is blind to the language of the texts and 

another one that applies additional processing steps based on the identified language in each report (only 

English and German are valid options). Both pre-processing sequences are implemented in R, in a setup 

described in section 5.2.  

The simpler language-blind approach takes every text report (document) in the dataset (collection or 

corpus) and 1) turns it into lowercase letters, 2) filters English and German stop words, 3) removes all 

numbers, and 4) removes all punctuation signs.  

The language-oriented pre-processing approach takes every text report (document) in the dataset 

(collection or corpus) and 1) turns it into lowercase letters, 2) identifies the document’s language, 3) 

filters only the stop words of the identified language, 4) removes all numbers, 5) removes all punctuation 

signs, and 6) stems the remaining terms in the document according to the identified language. The reason 



40 

 

to apply lowercasing before anything else is to improve the language detection rate, since the 

corresponding component is based on character n-gram frequencies where only a subset s is used (known 

as the Cavnar and Trenkle approach (Hornik et al. 2013)), probably leaving out many n-grams with 

uppercase letters. 

Applying the simpler pre-process we obtain a document term matrix (DTM) with 8219 terms coming 

from all 6293 documents. Documents have a median sequence length of 33 terms, with a maximum of 

95 and a minimum of 8 terms. As expected, we have high dimensionality issues despite of filtering stop 

words. 

Meanwhile, the language-oriented pre-processing yields two separate document terms matrices which 

combined provide 9307 terms out of 5198 documents, more than in the language-blind pre-processing 

scenario, both in absolute terms and per document. This occurs even though terms are stemmed and the 

language detection discarded some documents that due to their spelling errors and high-content of 

abbreviations could not be identified either as English or German. As a consequence, we still have high-

dimensionality. 3794 English-identified documents contribute 5365 terms, while the German matrix has 

only 1404 documents from which we obtain 3942 terms. We see then more English documents than 

German ones and consequently, more English terms than German terms. 

In terms of length, English documents have a median sequence length of 27 terms, with a maximum of 

90 terms and a minimum of 2. German documents have a median of 22 terms with a maximum length 

of 69 terms and a minimum of 5. These numbers show that at most, reports are approximately as long 

as this paragraph, with English documents being longer. This difference can be attributed to the fact that 

English typically needs more words to express what German can with just one compound word. An 

example could be the German (nevertheless grammatically incorrect) term 

“diebstahlschutzaktivierungsfehler” which in English would be written as “Anti-theft alarm activation 

error”. It is also worth noting that stop word removal is significantly more effective in German 

documents. 

Figure 21 shows the thirty most frequent terms from each DTM. We see that based on the language 

detection and stemming, results vary significantly. While in the language-blind case the rank is topped 

by internal terms and abbreviations with unclear meaning, in the language-focused scenarios we find 

stems that do belong to each language and are easier to interpret, even if their meaning appears to be 

vague in the context of a quality process. They revolve around the terms or stems “problem”, 

“customer”, “complain”, “failure” and “defect”.  

On top of this lack of specificity, we also find big levels of correlation between the top terms, as shown 

by the ample interconnectedness among them (Figure 22, Figure 23, and Figure 24). This suggests two 

things. First, top terms are not particularly useful to discriminate among different categories of error 

codes since they tend to appear together over more documents than there are for each error code. This 

can be estimated considering that the highest average of observations per error code shown in Figure 14 

is far smaller than, let’s say, the 1527 observations where the terms customer and complaint correlate. 

Secondly, stemming seems to mitigate some of this high correlation. Terms in the language-oriented 

cases do not show as much correlations as in the language-blind case. In fact some show no correlation 

at all (at least with these terms). This can be perhaps attributed to the fact that abbreviations are not as 

present as in the language-blind case. These also suggest that correlation in general is less present in the 

language-oriented version of the dataset, making it more useful for the classification task. 

If we compare the terms extracted for this role to the ones found for the Mechanic role, we see there is 

little overlap. In the language-blind pre-processing datasets we find 25.12% of the Supplier terms also 

present in the Mechanic dataset. On the language-oriented side, despite stemming, the Supplier terms 

in English also appear 18.54% of the times among the Mechanic English terms, whereas in the German 

case, this occurs 20.16% of the times. This confirms the notion that in general each role refers to the 

same observations in very different terms. 
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Figure 21 Top 30 most frequent terms for Language Blind (left), English (centre) and German (right) Pre-

Processing for the Supplier dataset 

 

 

Figure 22 Correlation relationships among the 20 most frequent terms (Supplier dataset, language-blind 

pre-processing) 

 

Rank Term Occurrences

1 <internal term 1> 9374

2 <internal term  2> 6809

3 bedienteil 4446

4 high 4072

5 <internal term 3> 4054

6 mid 3123

7 usa 2980

8 fehler 2441

9 control 2297

10 navi 2206

11 customer 2026

12 steering 1914

13 noise 1858

14 entry 1774

15 issue 1610

16 complaint 1527

17 gerät 1359

18 yoke 1326

19 failure 1310

20 dvdwechsler 1265

21 see 1145

22 test 1125

23 confirmed 1084

24 power 1067

25 dvdchanger 1063

26 found 1060

27 lhd 1054

28 like 1051

29 dvd 1034

30 confirm 1011

Rank Term Occurrences

1 custom 1835

2 confirm 1783

3 nois 1586

4 test 1486

5 issu 1405

6 complaint 1360

7 failur 1144

8 yoke 1042

9 like 1000

10 found 936

11 part 891

12 close 889

13 check 884

14 due 826

15 caus 811

16 problem 810

17 rack 713

18 greas 687

19 see 678

20 play 669

21 bench 657

22 judg 656

23 bar 637

24 unit 611

25 acoust 568

26 clearanc 546

27 slave 519

28 defect 518

29 report 518

30 without 501

Rank Term Occurrences

1 fehl 2041

2 gerat 924

3 sieh 507

4 bestatigt 455

5 gepruft 405

6 ried 389

7 allgemein 383

8 gca 378

9 qec 367

10 bekannt 366

11 analys 325

12 funktion 307

13 stna 291

14 wurd 247

15 bitt 246

16 befund 241

17 <internal term 2> 216

18 mid 213

19 defekt 205

20 spindl 199

21 festgestellt 195

22 festgestelltna 185

23 laufwerk 180

24 verlang 171

25 beim 166

26 cds 163

27 dvd 144

28 motor 143

29 ergebnis 141

30 japan 136
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2 : Correlation graph of the  20 most frequent terms for Supplier data (English), cor= 0.25
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Figure 23 Correlation relationships among the 20 most frequent terms (Supplier dataset, English pre-

processing) 

 

 

Figure 24 Correlation relationships among the 20 most frequent terms (Supplier dataset, German pre-

processing) 

To better understand each dataset, we test for the existence of a power-law distribution using a term 

frequency weighting scheme. 
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Figure 25 shows both a power-law estimation based on the fitted linear model (black line) and the 

Maximum-Likelihood Estimation method (see sub section 3.2.6) (orange line). We see as we approach 

the tail of the distribution that the fitted linear model estimation diverges from the MLE estimation as a 

result of the noise in the area. This is due to the fact that the estimation is based on the least-square error 

calculation of a linear regression method, which according to (Clauset et al. 2009) is inaccurate. The 

MLE estimation does not suffer with this and thus let us determine whether the data follows the power-

law distribution in a more reliable way. Using KS tests to probe this assumption, we obtain a p-value of 

0.003613, which cannot reject the possibility of data being drawn from other (exponential) distributions. 

On the other hand, the statistic of 0.035542 suggests a good fit between the fitted and actual distributions. 

There are multiple ways to interpret these results, and looking at the estimations made for the data 

coming from a language-oriented pre-process helps to shed some light on the matter. 

Testing the estimations made with MLE method for both the English and German sub sets (orange lines 

in Figure 26 and Figure 27), we find notable differences between languages. The English results (p-

value of 0.046017 and statistic of 0.052702) contrast with the German ones (p-value of 0.518804 and 

statistic of 0.012992). They indicate that the frequency of terms identified as English terms could follow 

a distribution other than the power-law, while the so identified German terms are more likely to follow 

the power-law. In both cases however, the fit of an estimated power-law distribution is good. As we 

show later, because there are more English terms than German terms in the original dataset, it is expected 

that the behaviour of the language-blind pre-processed dataset resembles more the English subset than 

the German one. A simple inspection to the curvature at the beginning of the plots in all three cases 

easily confirms it. 

Going deeper into the details of the Zipf plots, the curvatures just mentioned represent lower-than-

expected frequencies of the most frequent terms, while the noise in the tails can be attributed to sudden 

changes in frequency values as we go down the rank. These deviations are in accordance to the claims 

of (Newman 2005) that power-law behaviour is not observed over the whole range of values. The 

reasons for this are beyond the scope of this thesis, but despite of these deviations, the values of the KS 

statistics suggest we can assume power-law behaviour in terms of ranks, but not in frequencies. 
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Figure 25 Zipf plot for the term frequency of features in the Supplier corpus (Language Blind) 
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Figure 26 Zipf plot for the term frequency of features in the Supplier corpus (English) 

0 2 4 6 8

0
2

4
6

3 : Power-Law fit for log(Term Frequencies) in the Supplier dictionary (German)

log(rank)

lo
g

(f
re

q
u

e
n

c
y
)

 

Figure 27 Zipf plot for the term frequency of features in the Supplier corpus (German) 

 

 

4.2.2 Mechanic Role Dataset 

We process this dataset in a similar way as we did with that of the Supplier role, so as to remove the 

observations with invalid dates or those with an error code that only appears once. From the initial 5624 

observations corresponding to 1068 error codes, we remove 178 with invalid dates and 610 that have 

error codes appearing just once. This leaves us with a filtered dataset of 4836 observations that 

correspond to 428 error codes. Once again, we see that 393 out of these 428 error codes have less than 

30 observations, thus preventing us from removing them. 

In general, these numbers already show a significant decrement in the amount of categories that can be 

classified by only using the mechanics data. However, it is interesting to see that despite of this, the 

behaviours observed in the supplier dataset remain present here. Figure 28 shows the 150 most frequent 

error codes for this dataset, which now represents a bit more than a third of all error codes considered. 

We see again the potential behaviour of a power-law distribution. 

The KS tests show again that for a scaling parameter a of 1.8338 and a minimum frequency x of 2, both 

the distance between fitted and actual distribution is small (KS statistic of 0.0344) and the hypothesis of 

data being drawn from another distribution is rejected (p-value of 0.6907). This let us conclude again 
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that despite of being considerably smaller than the supplier dataset, the mechanic data also follows a 

power-law distribution. 

 

Figure 28 Plot of the 150 most frequent error code for the Mechanic Role (filtered dataset) 

When comparing the distribution of error codes among part types before and after filtering the dataset 

(Figure 29 and Figure 30), we see that this time 4 part types are no longer represented in the filtered 

dataset. Aside from this change, the variance among part types remains. Again despite of removing 14% 

of the observations corresponding to 59% of all originally available error codes. 

 

Figure 29 Distribution of error codes per part code in the original Mechanic dataset 
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Figure 30 Distribution of error codes per part code in the filtered Mechanic dataset 

When it comes to the amount of observations belonging to each part type and how many of those 

observations on average can be assigned to each error code, we find the same pattern as with the supplier 

dataset. Up to four part types have very few observations to produce good classification results, while 

the leftmost part type in the graph has plenty of data to train and test the classification algorithm. For 

the sake of brevity while still supporting the argument, we present only the average observations per 

error code for every part type in Figure 31. 

 

Figure 31 Average number of observations for every error code of each part type for the filtered Mechanic 

dataset 
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4.2.2.1 Structured data in the dataset 

Since many of the characteristics of the Supplier dataset are also present in this dataset, in this sub 

section we provide only the key graphics to support the argument and briefly mention their relevance 

for the classification algorithm. Additional material can be found in chapter 7: Appendices. 

4.2.2.1.1 Regarding mileage 

Figure 32 shows the median values arranged by part types according to the Mechanic dataset. For most 

of the part types (except for the last four part types) the continuous behavior shown in the Supplier 

dataset is also present here. This means that in most cases, the first half of the observations belonging 

to a part type have mileage values very similar to those of other part types, providing very little 

variability to easily discriminate among part types. As a consequence, mileage is not a suitable feature 

to add to the classification. 

 

Figure 32 Ordered median mileage values per part type for the filtered Mechanic dataset 

4.2.2.1.2 Regarding time 

Looking at the way observations are distributed over time in the Mechanic dataset, we see a similar 

behaviour as the one present in the Supplier role. As the box plots in Figure 33 show, error codes are 

heterogeneously distributed across the total time period with IQRs for every part type having a compact 

length, few outliers (in most cases), and almost no alignment of their median values. This means that 

the first 50% of the observations of every part type are dated earlier than different points in time. This 

holds to the pattern seen previously and supports the idea of using the repair date as an additional feature 

for the classification. 
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Figure 33 Months of the repair date grouped by part type for the filtered Mechanic dataset 

In a similar vein, Figure 34 shows that the distribution of observations according to their admission-to-

drive dates also mimics the distribution of repair dates in this dataset. This holds even to the point of 

having shorter IQRs that avoid overlap, as it can be seen with between parts 6 and 7, or 13 and 14. As a 

result, the admission-to-drive date also constitutes a good supporting feature in this dataset.  

 

Figure 34 Months of the admission-to-drive date grouped by part type for the filtered Mechanic dataset 

 

Concerning the derivative feature we presented in the Supplier dataset, driving time, Figure 35 shows 

again a similar situation for the Mechanic role. However, a closer examination and analysis suggest 

mixed results as a classification feature. On one side, the six part types on the leftmost side of the graph 
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show less overlapping of their IQRs, as well as more compact lengths. This is positive to increase 

variability among part types. However, the correlation values between driving time and their original 

features, admission-to-drive date and repair date, increase to 1.71% and 37.75%. While still far from a 

range of high correlation, this may bring slight overestimation of effects which may in turn decrease 

performance. 

 

Figure 35 Box plots of driving times per part type for the filtered Mechanic dataset 

4.2.2.2 Text reports in the dataset 

As with the Supplier dataset, the Mechanic data was pre-processed with two different sequence of tasks. 

One that is language-blind to language and another who adds stemming based on the identified language 

(either English or German). 

In the language-blind case, 8989 terms are found out of 4836 documents, while the English DTM 

contains 3556 terms coming from 1572 documents. Finally, the German DTM has 3023 terms from 

2671 documents. This sums up to 6579 terms from 4243 documents from the language-oriented pre-

processing, which means slightly less terms both overall and per document compared to language-blind 

pre-processing. Also, contrary to the case in the Supplier dataset, here we have more German documents 

than English ones and yet the number of English terms continues to be bigger. 

Regarding document word counts, the language-blind-pre-processed documents have a median 

sequence length of 18 terms, with a maximum of 48 and a minimum of 3 terms. English documents have 

a median length of 23 terms, with a maximum of 39 terms and a minimum of 1. German documents 

have a median length of 7 terms, with a maximum of 33 terms and a minimum of 1. We see overall very 

short documents in this dataset, approximately half the size of their counterparts in the Supplier dataset 

(using the maximum lengths as reference). Moreover, the minimum value for the English hints to the 

misidentification of certain reports as English documents. This is confirmed when we see the smallest 

English document contains the stem “totalausfal”, German for “general failure”. 

Figure 36 shows the top 30 terms as obtained from either of the pre-processing approaches. We see 

again the presence of abbreviations on the top of the language-blind results. Meanwhile in the English 

terms, we see the presence of two stems “command” and “comand”, which evidences the presence of 

spelling mistakes in the dataset. Something similar occurs in the German rank with stems “imm” and 

“immer”. Another notable difference is the presence of more terms related to parts in comparison to the 

ranks of the Supplier dataset. Here we see over all three ranks terms or stems related to radio, dvd, 

display or audio components. 
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Additionally, there is again little overlap between the terms or stems found in the Mechanic dataset and 

those found in the Supplier one. In the language-blind pre-processing approach we find a 22.97% 

overlap, while in the language-oriented results overlap ratios are of 27.98% for English and 26.29% for 

German. The slight increments are due to the fact that overall the Supplier language-oriented datasets 

have more terms than the Mechanic datasets, thus increasing the chances of every term to be found. This 

relation also explains the decreased overlap in the language-blind results. 

When looking at the correlations among the top terms (with values of at 0.1) as depicted by lines in 

Figure 37, Figure 38, and Figure 39, we see similar patterns to those found in the Supplier dataset, even 

though overall the strength of the correlations (as shown by the thickness of the lines) is not a big. This 

is particularly noticeable with the German case, where four of the terms have no correlation at all. Still, 

the fact that top terms tend to appear together in documents across different error codes (as evidenced 

by the presence of big groups of interconnected terms) suggests that the most frequent terms are not 

suitable for classification. 

In the end, all the differences between Mechanic and Supplier terms make it clear that each role has 

different perspectives about the same observations. 

 

   

Figure 36 Top 30 most frequent terms for Language Blind (left), English (centre) and German (right) Pre-

Processing for the Mechanic dataset 

 

Rank Term Occurrences

1 <internal term 2> 5702

2 <internal term 1> 4601

3 bedienteil 4458

4 <internal term 3> 3775

5 high 2594

6 usa 2503

7 control 2265

8 unit 1229

9 entry 1224

10 mid 1195

11 comand 1136

12 navi 1135

13 radio 1074

14 dvdwechsler 980

15 states 922

16 command 897

17 test 821

18 gelesen 789

19 <internal term 4> 781

20 audio 696

21 <internal term 5> 652

22 <internal term 6> 626

23 dvd 614

24 cds 523

25 defekt 502

26 found 472

27 short 472

28 laufwerk 440

29 <internal term 7> 402

30 fault 372

Rank Term Occurrences

1 state 906

2 unit 896

3 test 880

4 command 871

5 comand 812

6 radio 757

7 code 545

8 custom 514

9 perform 491

10 found 468

11 will 467

12 short 466

13 fault 379

14 replac 366

15 client 335

16 inop 327

17 check 293

18 intern 280

19 screen 257

20 function 255

21 player 241

22 time 228

23 work 219

24 system 212

25 edac 210

26 verifi 205

27 audio 198

28 display 196

29 changer 193

30 eject 192

Rank Term Occurrences

1 geles 744

2 dvd 541

3 navi 455

4 defekt 405

5 cds 386

6 laufwerk 384

7 fallnr 348

8 radio 340

9 comand 298

10 fehl 282

11 gerat 282

12 audio 250

13 ztw 222

14 lasst 210

15 display 190

16 standig 188

17 funktion 185

18 moglich 177

19 mehr 157

20 zeitweis 155

21 fahrt 151

22 geht 141

23 ausgeworf 138

24 navigation 130

25 beim 122

26 erkannt 121

27 imm 119

28 reset 116

29 immer 103

30 intern 102
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Figure 37 Correlation relationships among the 20 most frequent terms (Mechanic dataset, language blind 

pre-processing) 

 

2 : Correlation graph of the  20 most frequent terms for Mechanic data (English), cor= 0.1
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Figure 38 Correlation relationships among the 20 most frequent terms (Mechanic dataset, English pre-

processing) 
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3 : Correlation graph of the  20 most frequent terms for Mechanic data (German), cor= 0.1
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Figure 39 Correlation relationships among the 20 most frequent terms (Mechanic dataset, German pre-

processing) 

 

To explore the existence of power-law behaviour in the Mechanic data, Figure 40, Figure 41, and Figure 

42 show the estimations using the fitted linear model in black and the MLE estimations in green. 

Opposite to the case of the Supplier data, differences between each line are not that significant since all 

distributions resemble more a straight line. At the same time this alone already indicates that data in all 

cases follows a power-law. KS tests confirm this intuition. In all cases the KS statistic shows very close 

resemblance between the data distribution and the estimated power-law distribution (0.010203 for the 

language-blind pre-processing, 0.018839 for English data, 0.019112 for German data). Similarly, the 

hypothesis tests do not support the fact that data could be drawn from another distribution by a good 

margin (p-value 0.898385 for the language-blind data, 0.777331 for the English data and 0.803988 for 

the German data) 
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Figure 40 Zipf plot for the term frequency of features in the Mechanic corpus (Language Blind) 
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Figure 41  Zipf plot for the term frequency of features in the Mechanic corpus (English) 
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Figure 42  Zipf plot for the term frequency of features in the Mechanic corpus (German) 

 

4.2.3 OEM Role Dataset 

The dataset with preliminary reports from the OEM begins with 583 observations, a considerably 

smaller size in comparison with the datasets from the other two roles. After removing observation with 

invalid dates or error codes that only appear once, we retain 469 observations corresponding to only 40 

error codes. As with the other datasets, we cannot remove error codes with few observations since 36 

out of the final 40 error codes have less than 30 occurrences. Regardless of this common issue, the 

dataset of preliminary reports from the OEM as it is represents only 3.14% of all classification categories 

(error codes), which definitely makes it unsuitable to obtain meaningful results. 

As expected, the visual exploration of the same features for the OEM role showed significant differences 

in the way observations are distributed. For the sake of brevity, we present a few representative plots in 

this sub section, while the rest of the material can be found in chapter 7: Appendices. 

While overall the OEM dataset is not consistent with the other two, the frequency of its observations 

still follow a power-law distribution for a scaling parameter of 1.864 and a minimum frequency x of 2. 

The values of the KS tests (statistic of 0.0924, p-value of 0.8839) support this assertion. Despite of this, 

the KS statistic shows less fit to the power-law distribution than in the other two datasets, most likely 

because of the small number of observations. 
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Regarding the derived feature driving time, correlation values among it and its parent features are still 

acceptable with -14.61% of correlation with the admission-to-drive date and 30.03% of correlation with 

the repair date. 

Beyond of the data that it actually depicts, Figure 43 summarises all the limitations that disqualify the 

OEM dataset as a useful one. The first major disadvantage is how little categories of the original set are 

covered. The 40 error codes contained in this dataset belong to only 9 part types and their 469 

observations span over a six years period instead of over a decade as it happens in the other role datasets. 

On top of that, the observations that are part of the dataset describe very different behaviours. The IQRs 

of the parts shown in Figure 43 show a very different distribution to those of the other datasets. Their 

lengths are very short, their medians tend to align on the same point in time, there are practically no 

outliers, and the part types that seem to be most prominent do not match the findings in the other roles. 

We know from the process description (see sub section 1.2.1) that preliminary reports are optional, and 

as such, the differences in distribution can be explained at least partially by this condition. Consequently, 

the differences in behaviour of this dataset can be either for real reasons or simply because of missing 

data. Without knowing the reason why experts from the OEM Company would create a preliminary 

report or not, we can only conclude that using this data to classify text reports can mean unrelated effects 

to the model, ultimately hurting the overall performance.  

 

Figure 43 Months of the repair date grouped by part type for the filtered OEM dataset 

4.2.4 Summary of the Two Main Roles 

Throughout the examination of the three different datasets both on their unstructured text data and the 

structured fields, we find that the datasets from the Supplier and Mechanic worker seem to be more 

appropriate for classification purposes since they have a good coverage of the original dataset, have a 

similar distribution of observations across the part types and their observations span over the whole time 

frame consistently, enabling the algorithm to be trained with data from the whole period.  

When it comes to the text collections from each dataset, these datasets do not look so similar anymore. 

As Figure 44 shows, Supplier reports are usually longer than their Mechanic counterparts. Despite of 

this, and the fact of having less reports, the Mechanic dataset has a slightly larger quantity of distinct 

terms to use in the classification. This can be seen as mechanics writing considerably shorter reports 

which nonetheless include a bigger variety of words. As a consequence, we can also expect more terms 

having low frequencies, something that seems to be confirmed with the Zipf plot in Figure 40, since the 

curvature at the most frequent terms (deviation from the fitted power-law distribution, caused by top 
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terms that “accumulate” more occurrences than they should according to their rank) is not as strong as 

in the case of the Supplier dataset (Figure 25). 

 

Figure 44 Comparison of the Supplier and Mechanic document collections (Language-blind pre-

processing) 

 

Figure 45 Comparison of language statistics for each role 

 

Figure 45 shows an additional perspective about the differences and similarities between our two 

relevant datasets (in their language-blind variants). By looking at the different values of these selected 

language statistics (see sub section 3.2.5), we can confirm the patterns observed so far either visually or 

by quantitatively analysing the text corpora. 

Starting with entropy, we notice that both datasets have similarly high values. This indicates that both 

datasets contain mostly words with small frequencies, instead of a few that are very frequent (Bank et 

al. 2012). This is to be expected given the identified power-law distribution we find in both datasets. 

Looking at the relative vocabulary size, we find low values in both cases, albeit with a slight increment 

in the case of the mechanic dataset. These values indicate a simple language (Bank et al. 2012), probably 

due in this case to the very specific domain in which text documents were created. Extending a bit more 

the interpretation of this very domain-specific vocabulary, the slight increase in the case of the mechanic 

dataset could be attributed to the fact that this role tends to refer more to technical parts than the supplier, 

as shown in the analysis of the top terms (see sub section 4.2.2.2). However, it is important to notice 

that because of the stop word removal applied during the pre-processing step, these values may be under 

estimated (see formula in sub section 3.2.5). Yet, considering the length of the documents and the high 

average content rate, it is likely these values are not that distant from those of the unprocessed texts. All 

in all, this supports the document representation as a bag of words, where terms are considered by 

themselves the main source of information to classify documents. 

When it comes to vocabulary concentration, high values would indicate that the vocabulary consists of 

a few words (Bank et al. 2012). In our case, we see that both the supplier and mechanic dataset have 

low concentrations, meaning that their 10 most frequent terms have relatively low frequencies. We can 

confirm this by looking at the Zipf plots for both datasets (Figure 25 and Figure 40). The curvature on 

the left-most side of the plot falls below the adjusted estimated power-law (straight lines in orange and 

green, respectively). Moreover, the difference in concentration values can also be explained by the same 

curvatures, since it is less pronounced in the case of the mechanic dataset, meaning their frequencies are 

comparatively higher (they represent a bigger share of the total amount of occurrences). According to 

(Bank et al. 2012) this complicates the usage of dictionary and rule-based methods for Natural language 

processing. 

Regarding vocabulary dispersion, we see high levels in both cases with a 10% difference in favour of 

the Mechanic dataset. Despite of what could be inferred, these metrics are not complementary to 

vocabulary concentration because vocabulary dispersion does not take term occurrences directly into 

Metric Supplier blind Mechanic blind

Vocabulary size 8219 8989

Number of documents 6293 4836

Maximum report length (tokens) 33 23

Median report length (tokens) 95 39

Language Statistics Supplier Mechanic

Shannon's entropy for language 

engineering
71,99% 71,88%

Relative vocabulary size 4,27% 9,91%

Vocabulary concentration 21,34% 32,27%

Vocabulary dispersion 82,15% 92,08%

Average content rate 98,49% 98,94%

Functional words 124 95
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account (see sub section 3.2.5). High dispersion values indicate considerable amounts of spelling errors, 

which in turn can affect named entity recognition or part-of-speech tagging efforts and require the use 

of feature selection techniques to cope with the noise and burden of unnecessary features (Bank et al. 

2012). Beyond confirming the known performance degradation provoked by the use of the mechanic 

dataset (see sub section 1.2.2), this metric brings a clear measurement of how different the two datasets 

actually are. This also sheds some light on how significant can be the improvement of data feature 

quality by applying some spelling correction step during pre-processing. 

In conclusion, the different metrics and statistics are consistent with the observations made by (Kassner 

& Mitschang 2016), regarding the superiority of the supplier dataset to achieve higher accuracy in the 

classification task. We expect this to be the case as well in our instantiation. 

In addition to the selected language statistics suggested by (Bank et al. 2012) and discussed so far, a 

lexical classification of each dataset brings attention to the potential gains that could be made when 

looking for additional concepts to enrich an existing taxonomy in the terms of each role.  

Based on lists of function words for each language (shown in section 7.1 of the Appendix) we can 

identify a very high proportion of content words (see sub section 3.1.13), suggesting there are almost 

only meaningful terms. Function words on the other hand, account in both cases for less than 2% of the 

total terms considered, which translates into roughly 100 terms in each case. Upon closer inspection, 

these function words are also mostly uncommon, with only 32 (in the supplier dataset) and 21 (in the 

mechanic dataset) of them being among the top 1000 most frequent terms.  

A possible explanation for this lack of function words is the overlap between the lists used to filter stop 

words and function words. In the case of English, 77.88% of the terms considered function words are 

also part of the stop words list. In German, 53.52% of the terms belonging to the function words list also 

appear in the stop words list. This means that several words that would be identified as function words 

in the lexical classification, are removed in the pre-processing of text corpora to build DTMs. 

4.3 Study Object Characterisation 

As we see from the previous results, the data that we focus on is different in many aspects to traditional 

structured data. This translates into several challenges to achieve a successful classification. To properly 

address them, we describe the properties that constitute a problem for traditional methods, conceptualise 

them and incorporate them into a study object characterisation.  

We begin with the definition of “messy data” provided by (Kassner & Mitschang 2016): 

“Text which consists of non-standard, domain-specific language, riddled with spelling errors, 

idiosyncratic and non-idiomatic expressions and OEM-internal abbreviations.” 

The properties we can extract from this definition are: 

 Non-standard content 

Text does not always follow standard grammar or syntax rules or conventions in terms of 

punctuation. This translates to challenges for concept recognition based on context identification 

(see sub section 3.1.12). 

 Full of abbreviations/ technicalities 

It is common to find abbreviations in the reports which are understood by human experts but not by 

standard parsing software, thus reducing the amount of knowledge that can be extracted from this. 

Evidence of this are the most frequent terms in the language-blind pre-processing data for both the 

Supplier and Mechanic roles. This also represents an issue for certain pre-processing methods such 

as stemming, which depend on standard vocabulary (see sub section 3.1.9). At the same time the 

solution may involve named entity recognition or concept recognition techniques (see sub sections 

3.1.11 and 3.1.12). 

 Domain oriented (even sub-domain) 
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The text reports come from the automotive domain and quality sub domain. As a consequence, most 

of the terms revolve around car parts, problems, and customer complaints. It can also be expected 

that these context limitation makes certain terms change the meaning they normally have in a general 

context. This again is shown in the top terms ranks for both datasets. 

Again this requires the use of concept recognition techniques (see sub section 3.1.12). 

 Misspelled 

This reflects the notion of data coming from free text under certain conditions that make its quality 

degrade. Text has typing errors or orthographic mistakes that difficult the pre-processing stage. This 

is noticeable when looking at term ranks with two versions of the same word, one with some spelling 

mistake and the correct one. This can represent a problem to properly calculate terms frequencies, 

which in excess can affect the data distribution on which certain feature selection metrics may 

depend (see sub sections 3.2.4, 3.2.5, and 3.2.6). 

In addition to these, the data exploration shows other characteristics worth-adding to the base definition. 

 Brief 

We deal with very short text pieces whose maximum length never goes over the 100 words. 

Depending on the type of pre-processing applied and the dataset in question, this can decrease up to 

32 words. On one side, this reduces the complexity of the text, since there is a limit to the depth of 

expression a text can achieve in so little space. On the other side, interpreting the intended meaning 

of words becomes more difficult because fewer terms that can serve as cues means it is harder to 

determine the context in which a word is used, a  basic requirement to identify concepts (Schierle 

& Trabold 2008). Additionally, these differences in length can present a challenge for the weighting 

scheme employed when it comes to long documents that contain the same term many times (see sub 

section 3.1.5). 

 From different perspectives 

Texts are not only written in a particular context but also by different roles in the process. While 

they are not extremely different from one another, they do present significant differences in several 

aspects. As shown in the data exploration, documents from the Supplier role are significantly longer 

than those of the Mechanic. They refer to the same observations in different terms, as shown by the 

small overlap of terms between the two datasets and the inclination of each role to compose reports 

based on parts and symptoms or customers and complaints. Additionally, languages have different 

dominance in each dataset, with English being more common in the Supplier data, and German 

being slightly more common in the Mechanic data (both in terms of documents). These two 

phenomena combined induce by themselves a high-dimensionality problem (see sub section 3.1.2). 

We can also expect a difference in relevance. For example, since mechanics are the first role in the 

process, many of the observations here are expected to be preliminary in nature. Symptoms and 

conditions described here may be superficial consequences of deeper causes to be determined by 

other roles later in the process. As a result, to avoid providing an algorithm with potentially 

contradictory input that can reduce its performance, it is better to consider data from different roles 

as independent inputs that can be provided to different instances of the same algorithm. 

 Incomplete components 

Data, understood as the combination of text data and the complementary structured data, has missing 

values that considerably decrease the amount of useful data for classification. This can even lead to 

redesigns of the modelling approach for the sake of not losing more records. The most notorious 

example in our data has to do with the dataset from the OEM. Representing 7.45% of the biggest 

dataset (both after filtering) and with a clearly visible concentration in a particular moment in time, 

this dataset would unbalance the data of other datasets if combined. Therefore, this role dataset is 

impossible to compare in a meaningful way to the other two.  
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Other examples of incompleteness occur at the moment of pre-processing. Reports without a valid 

date, with text whose language is hard to identify, and whose error code does not occur elsewhere 

in the dataset need to be removed. 

 In one or two languages 

Text written in multiple languages presents additional challenges in terms of its pre-processing, be 

it stemming, stop word filtering, or part of speech tagging. In all these cases, the fact of having to 

distinguish between English and German requires an additional step where records can be lost 

because of the inability to properly identify them. We see this happening in the language-oriented 

pre-processing results. 

Moreover, the before mentioned tasks as well as others like name entity detection or concept 

recognition can be more difficult to implement because of the differences in logic they need to adapt 

to the nature of each language. A clear example is given by (Schierle & Trabold 2008): concepts 

that are expressed with one word in German may require multiple words in English. 

 Many classification categories possible 

Moreover, the amount of potential classes available make the classification difficult. This is because 

many multi classification algorithms were not designed to work with so many categories and despite 

of modifications to address this issue, they are not efficient enough to scale up to this order of 

magnitude (see sub section 3.3.4). A notable exception to this case is the Naïve Bayes algorithm, 

thanks to the Naïve assumption it takes to estimate the probability of a document represented by its 

feature vector to be part of a given category (see sub section 3.3.3). This assumption which 

originated from the fact that usually there are many documents to classify, also addresses the 

problem of having multiple categories. This leads to either looks for ways to reduce the amount of 

categories to use in the classification algorithm or to use only algorithms that are able to handle this 

many categories. 

 Classification categories do not distribute evenly 

As shown in the data exploration section, not all classification categories are equally likely to be 

used. The first reason is that by design, the error codes that can be allocated to each part type vary 

significantly, as shown in either Figure 12 or Figure 30. This means that when an error code belongs 

to a big error code family (part type), all other things being equal, the chances it has to be selected 

are lower than those of an error code from a smaller error code family.  

The second reason has to do with time. As Figure 18 shows, there does not seem to be a clear pattern 

in the way error codes are assigned at any given point of time, let alone to present signs of 

seasonality. An example for this is that at the beginning of the time period, all observations can only 

have an error code belonging to one part type, but later on around year 2011, there are multiple 

options possible, making the classification in this period of time a lot harder than in the early years 

of the records. Finally, because of external unknown reasons, certain error codes may have more 

observations to be trained and tested, as it can be inferred from Figure 13 , Figure 14, Figure 31, 

and Figure 33.  

These three conditions represent a difficult scenario for algorithms based on probabilities, since very 

common categories can affect the probabilities of very rare ones to be selected (see sub section 

3.3.3). Moreover, this requires an elaborate sampling process that random selection cannot fulfil. 

This could be a problem as well for algorithms where positive and negative training data is needed 

(see sub section 3.3.4). This skewness is a problem that according to (Forman 2003), only worsens 

as data grows. 

Considering all these properties we can arrive at a definition of messy data that more closely resembles 

the situation we deal with in our business scenario: 

“Short texts written by different individuals about a single event in non-standard form, in 

multiple languages and with spelling mistakes; containing domain-specific language, and 

jargon abbreviations for the purpose of classifying each event in one many multiple categories.” 
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Based on the characteristics mentioned in this definition, we can develop a better understanding of the 

independent variables that operationalise the presumed cause in our research model Availability of data 

features: 1) quantity of data features and 2) quality of data features (see Figure 4 in chapter 2). We can 

expect characteristics like misspelling, incompleteness, abbreviations and the lack of proper grammar 

or syntax to affect the quality of data features, just as shown in sub section 4.2.4 with the values of 

vocabulary dispersion shown in Figure 45, whereas bilingualism, the increased diversity of categories, 

the existence of multiple roles, and the reduced length may influence the quantity of data features, also 

evidenced by the entropy and vocabulary concentration figures in the same Figure 45. 

 

Knowing in detail the properties and challenges we need to deal with to perform our classification task, 

we can design a custom method that properly addresses them and as a result provides us with an optimal 

feature set to explore the effect relationship depicted in our research model (see Figure 4 in chapter 2). 

4.4 Method to Select Optimal Classification Algorithm Configuration and 
Features 

A complement to the conceptual architecture in section 4.1, the method to arrive at the feature set that 

results in the highest accuracy (as defined in sub section 1.2.4) when used with a particular classification 

algorithm configuration is shown in Figure 46. It covers the course of action taken to build a 

classification solution (instantiation artefact described in chapter 5) from a generic perspective that can 

be applied to all possible solutions derived from the use of our conceptual architecture. The steps go 

from the bottom layer (Feature Extraction) to the top one (Classification algorithm) to review the 

decisions and actions to go from the selection of a classification algorithm, to the algorithm 

configuration and feature set that provide the best results in the specified performance metrics. 

Eventually, a logical formulation of this method could be implemented in a (semi) automated algorithm 

explorer to standardise the way this process is performed, facilitating fair comparisons and reducing the 

time required to do it. This could also be extended to target problems with a similar study object to the 

one we focus on here (unstructured domain-specific text data). 

The steps are: 

1. Select classification algorithm. Based on a list of requirements derived from the study object 

characterisation and the chosen metrics to evaluate the classification performance (one which is 

typically accuracy), a set of candidate algorithms is chosen. We assume there is not perfect 

match between any basic algorithm and the requirements of the study object. This asks for a 

comparison regarding their advantages and disadvantages to discard all but one, which will 

serve as base for the design of configurations later on. 

2. Extract all data features. This involves retrieving the dataset from its source to then use different 

components from the Feature Extraction layer in our conceptual architecture to obtain as many 

features as possible both from the text and structured data parts. On the text part, this requires 

the use of tokenisation to generate feature vectors (to work in the Vector Space Model) and 

applying different levels of pre-processing to transform the original unstructured text into a 

more manageable format. Examples are removing stop words, punctuation signs, lowercasing, 

or spellchecking. Since the structured data is considered by definition to be in a convenient 

format, no pre-processing is applied to it. 

3. Choose document representation and weight scheme. As part of the fundamental choices that 

needed in the Vector Space Model, the use of representation and weight schemes predisposes 

the suitability of applying certain feature selection techniques and classification algorithms. 

While we begin with a term frequency weighting scheme and a single-word-as-term 

representation, other options can be explored when coming to this step in a second iteration. 

Options for weights include TF-IDF or binary schemes found in the Feature Selection layer, 

while document representations could be n-grams of different sizes, phrases or concepts, all of 

which involve the use of a certain component from the Feature Extraction layer. In both cases, 

the choice is enacted in the creation of a Document Term Matrix with these characteristics. 
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4. Explore data features. A less concrete step than the previous two, this involves the creation of 

several graphical representations to look for  patterns in their distribution over time, statistical 

distribution, value ranges and other quantitative aspects that can be observed by grouping the 

datasets under different perspectives. Using domain-specific notions or combining structured 

data is also encouraged, e.g. verification of valid dates, meaningful amount of observations, etc. 

The purpose is to find feature behaviours that can help discriminate between the classification 

categories and to identify challenges that the selected algorithm needs to deal with. In addition 

to this, a quantitative exploration may consists in the calculation of relevant metrics that 

summarise the text content in particular and the data set in general concerning certain aspects, 

e.g. term correlation, distribution fit, median document lengths, vocabulary size, vocabulary 

dispersion, etc. 

5. Assess possibility to derive features and calculate derivative features. In combination with the 

feature exploration, this step aims to obtain additional features by integrating some of the 

original features. This includes calculating intervals between dates, averages or variances of 

certain values, normalised values based on other certain structured data (per kilometre, per day) 

and any other measure that makes sense in the domain context. The resulting new feature should 

be tested for correlation with its source features to avoid overestimating effects when building 

the classification model. 

6. Analyse features’ utility for the algorithm. This step is meant to deal with the problems of high 

dimensionality. Based on the patterns observed and the values obtained in the data exploration, 

and the application of one or multiple feature selection techniques (filters with evaluation 

metrics, statistical or dimension-based techniques), a decision must be taken regarding how 

many features should be considered and how will they be selected. While it still involves a 

certain amount of trial and error, the correct interpretation of the findings made so far should 

help to narrow down the feature selection techniques attempted. 

7. Assess dataset coverage. Before making a final decision on which features to preserve to train 

a classification model, it is important to verify that the intended feature subset still covers most 

of the observations in the dataset. If this is not the case, and the amount of observation cannot 

be used to classify the majority of the categories, it is necessary to rethink the way data is 

processed starting from the document representation and weighting scheme. 

8. Select most suitable feature subset. If the feature subsets are representative of the dataset and 

significant to support the execution of the classification algorithm, the feature selection 

techniques used to arrive to them are applied definitively to proceed. The plural form in the 

previous sentences is intentional, because at this point there is still reasonable doubt about which 

one is the feature selection technique that can contribute to the best performance results, 

something to be discovered later on in the method.  

9. Design algorithm configurations. Algorithm configurations are built around k binary design 

choices concerning the selection, use, or way to use any of the elements considered in the 

Feature Extraction and Feature Selection layers of the conceptual architecture and that can affect 

the classifier’s performance. Every choice becomes then a factor with two levels, high or low, 

present or absent. This results in 2k configurations to be tested representing all possible 

combinations of factors’ levels. 

10. Compare algorithm configurations’ performance. Every configuration is run at least twice to 

obtain performance metrics’ values for each one of them. Doing so not only enables the 

statistical testing of the observed performance levels, it also reduces the likelihood of accepting 

inaccurate performance levels obtained by chance, since the inconsistency of each trial is easy 

to detect. This however, does not substitute proper sampling methods, such as cross-validation 

or stratification, to protect against “lucky sampling” effects. 

11. Choose final configuration. The collected performance data can be used as input of a 2k 

experiment design to evaluate the magnitude and significance that every factor (or architectural 

choice) has on the performance metric values. In this way it is possible to identify the 

components that improve the most the final result to focus more on them and how they do it at 
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the expense of others which make little difference. It is important to remember, that this results 

suggest a best configuration based only on the two levels each factor has, not on all the possible 

levels the factor can actually have. An example for this would be choosing between two weight 

schemes, even though our conceptual architecture considers at least three. 

 

 

Figure 46 Method to select the best classification algorithm configuration and feature subset given the 

selected classification algorithm 
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5 Experiments and Evaluation 

In this chapter we exemplify the application of the framework proposed in chapter 4 to build a 

classification solution for our application scenario. We go through each of the steps described in the 

method introduced in section 4.4 while also explaining additional details regarding this instantiation 

whenever necessary. We present the results obtained with our solution and discuss their performance in 

comparison to the previously implemented solution from (Kassner & Mitschang 2016). Finally, we 

evaluate the artefacts that led to the creation of our solution in light of the Design Science methodology. 

5.1 Classification Algorithm Selection 

As the first step from our method, we create a list of requirements that an algorithm should fulfil to 

handle the particular properties of our study object as identified by both the characterisation in section 

4.3 and the problem description in sub section 1.2.2. 

We look for an algorithm with the following characteristics 

1. Time efficient. We look for an algorithm that can be comparable to the processing time per report 

of the equivalent k-NN implementation. This means having values around the 0,14 seconds per 

report of the bag of words approach from the k-NN implementation. 

2. Can handle many features. A consequence of the bag of words approach, where every word is 

considered a feature, there is a considerable amount of features even in brief texts as ours to 

build a feature vector. While feature selection techniques can help partly address this abundance 

of features, the selected algorithm should still be able to deal with enough features as to keep 

the subset representative of the original reports. 

3. Can handle many classification categories. The selected algorithm should be able to perform 

multi class text classification (see sub section 3.3.2) with hundreds of categories.  

4. Robust to data skewness. Despite the evident skew of data towards some categories, the selected 

algorithm should be able to maintain a reasonable performance and to overcome the expectable 

errors in estimations to classify very uncommon categories. 

5. Easy integration of unstructured and structured features. The selected algorithm should be able 

to combine structured and unstructured features in the same classification model with little or 

no transformation of either kind of data. 

6. Generation of multiple category suggestions. Instead of just offering a single most likely 

category, the selected algorithm should provide several category alternatives to classify each 

document. This is to support the work of a human expert as described in sub section 1.2.2. 

 

5.1.1 Algorithm Selection Rationale 

(Khan et al. 2010) describe the k-NN, Naïve Bayes and Support Vector Machines as the typical 

algorithms of choice for text classification. However, since the k-NN is already implemented for our 

application scenario, we replace it with the decision trees algorithm to make our comparison. We discuss 

each algorithm’s advantages and disadvantages. 

 

5.1.1.1 Naïve Bayes 

This model is known for its simple implementation, for which no adaptation of the document term 

matrices is needed. The composing feature vectors of the matrix are used directly to calculate 

probabilities for each classification category. Moreover, thanks to its Naïve assumption when 

calculating the conditional probability of belonging to a category given the document vectors (see sub 

section 3.3.3), it can scale to handle big amounts of data and categories. Additionally, the algorithm is 

robust to failures in the calculation of probabilities due to small training sets, a useful property 
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considering the limited amount of observations some error codes have (see sub sections 4.2.1.1 and 

4.2.2.1). Finally, according to (Liu et al. 2013), the use of token (or term) frequency is an effective 

scheme for statistical algorithms, such as this one. 

On the negative side, we can consider its average performance in terms of accuracy compared to other 

algorithms, something that nevertheless can be improved with multiple adaptations (Khan et al. 2010). 

Perhaps the integration of structured data as just another feature among a myriad others obtained from 

text can lead to a weak influence of the structured data features, but this is to be seen in experimentation. 

 

5.1.1.2 Support Vector Machines 

Known as a top performer for text classification, this algorithm can handle a big amount of testing/ input 

data efficiently thanks to its hyperplane representation of positive and negative category spaces (see sub 

section 3.3.4). Also, when dataset are highly dimensional, it is possible for this algorithm to transform 

this highly dimensional feature space into a simpler representation using kernel functions. 

However, its greatest weakness appears when dealing with extreme multi class classification problems 

such as ours. Since it is designed as a binary classification algorithm, it needs to run as many times as 

there are categories, thus leading to an inefficient execution time and complex adaptations to provide 

the necessary positive and negative training data without skewing the samples towards the negative side 

(since at any given moment all categories are negative training data except one). Using feature selection 

mechanisms to address this result in performance degradation. 

In addition to this, configuring additional components to enable the algorithm to deal with high-

dimensionality data (such as kernel functions or a slack variable) represent an additional burden that is 

not needed with other algorithms. 

 

5.1.1.3 Decision trees 

Known for its speed and scalability, this algorithm can easily integrate structured data features 

(something that also helps address overfitting), given the fact that in essence it works as a chain of if-

then rules (see sub section 3.3.5). It however has the risk of either being too efficient to classify by using 

a small amount of features and overfitting the training data or being very complicated as it keeps growing 

along with the dataset. This last option also sacrifices its main advantage: intelligibility by humans. 

Moreover, by design it is supposed to assign just one category to each report. Adapting it to provide a 

list of suggested categories (as needed by our application scenario) entails then additional complexity. 

5.1.2 Final Selection 

As we can see, given the particular characteristics of our study object and application scenario, 

specifically that 1) this is an extreme multi class classification, and that 2) we aim to provide a list of 

suggested categories instead of a single one, the Naïve Bayes algorithm stands out as the most 

straightforward alternative to test our method and conceptual architecture. By choosing it, we can 

redirect the focus from the classification algorithm alone, to the complementary feature extraction 

components and feature selection techniques that also form part of our conceptual architecture. 

5.2 Technical Setup 

Figure 47 shows the environment where the experiments run. In white we show the necessary software 

components that serves as foundation for our instantiation, while the created components are coloured 

in grey. Arrows indicate the flow of data from its source to the classifier logic. We describe this setup 

in a bottom-up fashion. 

Our environment is a 64-bit Lubuntu server version 4.8.2-19 with a quad-core CPU running at 3.2 Ghz, 

100 Gb of storage and 46 Gb of RAM. It hosts all our components and is available exclusively for these 
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experiments. Data is stored in several tables in a Postgres database (version 9.5.3). It is loaded to the R 

environment with the RPostgresql interface package. 

 

 

 

 

Figure 47 Technical Setup for the implementation of the Naive Bayes classifiers 

We run an R environment in version 3.3.0 with the following additional packages installed 

(dependencies not included): 

1. RTextTools: To test multiple classifiers in a simplified manner. Version 1.4.2 

2. igraph: To check for power-law fit of text data. Version 1.0.1 

3. Rgraphviz: To plot correlations of terms as a graph with links of different strengths. Version 

2.14.0 

4. tm: To pre-process the text reports corpora (stop words removal, stemming, removing numbers). 

Version 0.6-2 

5. textcat: For language detection. Version 1.0-4 

6. RWeka: Interface to use the Weka Naïve Bayes classifier. Version 0.4-27 

7. RPostgresql: To retrieve data rows from the source database. Version 0.4 

8. qdap: To make lexical classification. Version 2.2.4 

9. sampling: To do stratified sampling. Version 2.7 

10. qualityTools: To run the 2k Experiments and plot effects. Version 1.55 

Weka toolkit in version 3.9.0. Classes are accessed with the RWeka interface package. 

We also have a Java virtual machine version 1.8.0_91 to support the execution of the Weka toolkit. 

The Naïve Bayes classification solution is composed of several R scripts that perform some part of the 

steps to arrive at the classification train and execution. They follow a “pipeline” design where a script 

can be replaced with other similar ones, for example to create feature vectors with terms made of two 

words, or to perform different kinds of pre-processing. The scripts in the solution include: 

1. Data extraction script: Retrieves data for each role from the database and stores it into a 

corresponding data frame (R data structure). 

2. Role data building script: It filters observations with invalid dates, removes observations whose 

error codes appear only once (singletons), builds explicit labels of the error codes, aggregates 
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text reports into a single field (for the roles whose reports are split in multiple fields), and 

calculates the derivative features standard mileage (mileage per day) and driving time (days 

elapsed from the moment a car is first admitted to drive to the moment when it is taken to repair). 

3. Role pre-processing script: It creates a text corpus (data structure from the tm package) and 

performs the two kinds of pre-processing. The language-blind pre-processing which 1) turns it 

into lowercase letters, 2) filters English and German stop words, 3) removes all numbers, and 

4) removes all punctuation signs. Meanwhile, the language-oriented pre-processing 1) turns it 

into lowercase letters, 2) identifies the document’s language, 3) filters only the stop words of 

the identified language, 4) removes all numbers, 5) removes all punctuation signs, and 6) stems 

the remaining terms in the document according to the identified language. 

4. Role DTM processing script: It builds document term matrices, tests for the existence of power-

law behaviour, and obtains lists of all terms ordered by frequency to ease further calculations. 

The last three scripts all depend on the results of the previous scripts to achieve different purposes, they 

are independent from each other. 

5. Naïve Bayes classifier script: Performs the classification task with the given parameters for role, 

use of structured data, weighting scheme, pre-processing, and number of terms. It also calculates 

accuracies with lists of 1, 5, 15 and 25 suggested categories. 

6. Plotting script: Generates graphics of each role dataset based on their document term matrix 

representations. It plot correlation among top terms, Zipf plots of term frequencies and simple 

plots of terms ordered by frequency. 

7. Data exploration scripts: Generates graphics of each role dataset regarding structured data and 

the distribution of reports across categories and time. 

5.3 Extract All Data Features 

We begin by retrieving records for each role from the Postgres database and loading them into R. At 

this point, data is organised into rows of results from an SQL query in the form of a R data frame. The 

extraction of features from this data frame occurs at different stages of the script pipeline depending on 

the kind of feature. Structured data is obtained at the role data building script, simply parsing extracted 

text strings into date formats or mileage values into numeric formats. Text features are obtained in the 

role DTM processing script by default using a single-word-as-term representation and term frequency 

weights. 

5.4 Choose Document Representation and Weight Scheme 

The document representation in all cases is set to single words as terms since we are exploring the 

spectrum of feature selection in the bag of words approach. For the weight scheme we use both term 

frequency and term frequency- inverse document frequency (TF-IDF) to account for the differences in 

documents’ lengths. These two weighting schemes indicate more than just the presence of a word in a 

document, they also account for multiple mentions, thus allowing more fine-grained probability 

calculations, a feature selection technique based on frequencies, and the use of language statistics to 

explore the dataset (as shown in sub section 4.2.4). 

5.5 Data Exploration  

In this step we include the complementary steps derivation of features and feature assessment for the 

classification task. Data exploration is covered in detail in section 4.2. Based on this exploration we 

determine to use only the supplier and mechanic datasets. As structured data features we decide to 

employ the admission-to-drive date and driving time for both roles, for reasons covered in the same 

section. 

Regarding the vast amount of unstructured data features (those obtained from text), we select features 

according to their frequency values and the power-law distribution they follow. Based on the assumption 

that neither very frequent features (since they tend to be present in many documents) nor very 

uncommon ones (since they appear in a few documents) help discriminate among the various categories 
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available, we select one thousand features (or terms) following a 80/20 Pareto principle. We exclude the 

first top terms that account for 20% of the total occurrences in the dataset and use the following 

thousand. With this we also expect to avoid the common correlation issues at the head of a power-law 

distribution that can difficult classification (see sub section 3.2.6). 

When it comes to sub setting the language-oriented matrices, we also begin our selection after the top 

terms accounting for 20% of the occurrences in each language, but the thousand features are obtained 

in proportional rates from each language to preserve their original representation: 58%/42% in favour 

of English for the Supplier dataset and 54%/46% in favour of English in the Mechanic dataset. 

In addition to this subset selection, we employ the whole set of features to have reference values in 

accuracy and processing time to compare against. 

5.6 Coverage 

The feature selection technique just described in the previous section allows us to achieve a good 

coverage in terms of occurrences while drastically reducing the processing time. As Figure 48 shows, 

while the thousand terms chosen represent 10% to 15% of all distinct terms in their respective document 

term matrices, they account for 63% to 75% of all term occurrences in the reports. Even though these 

values can still be optimised to obtain a better trade-off between the number of distinct terms and the 

number of occurrences included, the selection is considered sufficient to exemplify the utility of a 

power-law based selection. 

 

Configuration type Feature space (total 

number of terms) 

1000 terms share as 

distinct terms 

1000 terms 

share as per 

occurrences 

Supplier Language-blind 8219 12,17% 70,64% 

Supplier Language-oriented 9307 10,74% 63,05% 

Mechanic Language-blind 8989 11,12% 75,24% 

Mechanic Language-oriented 6579 15,20% 66,98% 

 Figure 48 Coverage of occurrences in different configuration types for different sub setting criteria 

It is worth mentioning that there seems to be a clear distinction in coverage between the two kinds of 

pre-processing in favour of the language-blind variant. 

5.7 Naïve Bayes Algorithm Configurations 

There are five different choices that we consider to design the configurations, given the fact that they 

can alter the accuracy performance if we choose one of the two proposed levels for each of them. They 

are: 

1. Role: Using text reports from the supplier or mechanic datasets. While the difference in 

performance due to role data already has evidence from the previous k-NN implementation, we 

keep this factor to be able to observe the effects of other factors in each dataset. 

2. Weight scheme: We compare the term frequency and term frequency – inverse document 

frequency schemes to verify the effectiveness of the latter in giving more relevance to 

uncommon features. 

3. Pre-processing type: We compare the language-blind and the language-oriented approaches to 

estimate the effect of different degrees of pre-processing in the classification results. 

4. Use of structured data: We evaluate the impact of using structured data (driving time and 

admission-to-drive date) in the classification results. 
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5. Number of terms: To assess the effectiveness of the power-law based selection technique 

compared to executing the classification with all terms. 

These factors result in 32 (2k, with k=5) configurations to run our Naïve Bayes classifier, comprising all 

possible combinations of factors’ levels. 

5.8 Algorithm Configuration Results 

As a result of the first four scripts in the “R pipeline” (see section 5.2) we have 12 Document Term 

Matrices to serve as input for the 32 configurations. Each role has 6 DTMs with the following differences 

among them: 

1. Language-blind pre-processing, term frequency weights. 

2. Language-blind pre-processing, TF-IDF weights. 

3. English-oriented pre-processing, term frequency weigths. 

4. English-oriented pre-processing, TF-IDF weights. 

5. German-oriented pre-processing, term frequency weights. 

6. German-oriented pre-processing, TF-IDF weights.  

We run each configuration with its corresponding DTM (or DTMs for the language-oriented 

configurations). 80% of the documents are used to train the model (training) and the rest is used for 

testing. This split is made with a stratified sample based on the total amount of documents labelled in 

each category. In the case the amount of documents for the error code is too small to allow a 4:1 split 

(only two reports), one document was used for training and the other one for testing.  

Due to the language detection step, some error codes in the language-oriented DTMs may have only 

one document; this despite of the singleton removal made by the role data building script (see section 

5.2). This is the combination of two phenomena: 1) the language detector component may assign the 

two reports of the same error code to different languages or simply may not assign one of them to any 

language, and 2) the removal of singletons occurs before the language detection step. Since the solution 

to this report loss heavily relies on the improvement of language detection components, we proceed with 

these datasets and leave enhancements for a future time (see section 2.8). In these cases the only report 

available is used for training the classifier. 

We present results according to the role dataset used, starting with summary tables containing the exact 

values for all configurations. Then, to improve readability and analysis, we present graphs grouping 

configurations by weight scheme and subset used. 

5.8.1 Supplier Dataset 

Figure 49 shows accuracy levels and processing times (considering only the testing time) of all 16 

configurations corresponding to the supplier role. In addition, the code frequency baseline used in the 

k-NN implementation (see sub section 1.2.2) is also shown for comparability. 

One of the first differences that stand out is the remarkable variance in processing time of the 

configurations using a subset of a thousand terms compared to those that use the whole feature set. While 

all configurations with a subset have processing times below 0.2 seconds per report, times for the rest 

of configurations are above two minutes. These values make the subset configurations comparable to 

the bag of concepts approach from the k-NN implementation with regards to processing time but not in 

terms of accuracy. 

Concerning the accuracy levels and how they fare against the code frequency baseline, we see that the 

classifier performs better than the baseline in all configurations only for the first suggestion of error 

codes (accuracy at 1). With a list of 5 suggestions, 10 out 16 configurations still perform better. However 

with lists of 10 suggestions or more, the baseline outperforms all configurations. 
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Figure 49 Results for the algorithm configurations with Supplier data 

 

Feature 

Selection Weight Scheme Pre-Processing

Use of Structured 

Data

Accuracy 

at 1

Accuracy 

at 5

Accuracy 

at 15

Accuracy 

at 25

Total 

classification 

time (minutes)

Time per report 

(secs or min)

kNN Baseline 

Code Frequency
35% 76% 90% 100% NA NA

1000 Terms Term Frequency Language-blind With Structured Data 67,0% 81,7% 86,2% 87,4% 4,68 0,19

1000 Terms Term Frequency Language-blind No Structured Data 67,6% 83,5% 88,7% 90,8% 4,08 0,17

1000 Terms Term Frequency Language-Oriented With Structured Data 52,0% 74,7% 79,9% 81,9% 3,37 0,14

1000 Terms Term Frequency Language-Oriented No Structured Data 52,5% 74,2% 79,9% 82,2% 3,37 0,14

1000 Terms TF-IDF Language-blind With Structured Data 61,5% 79,4% 83,8% 86,0% 4,09 0,17

1000 Terms TF-IDF Language-blind No Structured Data 61,8% 82,3% 88,4% 90,6% 4,05 0,16

1000 Terms TF-IDF Language-Oriented With Structured Data 53,0% 73,8% 79,4% 81,0% 3,43 0,14

1000 Terms TF-IDF Language-Oriented No Structured Data 52,0% 73,2% 78,4% 80,3% 3,42 0,14

All terms Term Frequency Language-blind With Structured Data 68,4% 80,4% 85,6% 86,9% 54,94 2,22

All terms Term Frequency Language-blind No Structured Data 68,7% 83,5% 88,2% 89,9% 55,28 2,24

All terms Term Frequency Language-Oriented With Structured Data 55,2% 74,5% 79,1% 80,8% 51,75 2,10

All terms Term Frequency Language-Oriented No Structured Data 55,3% 76,6% 81,9% 83,4% 52,86 2,14

All terms TF-IDF Language-blind With Structured Data 70,3% 82,6% 87,1% 88,5% 55,30 2,24

All terms TF-IDF Language-blind No Structured Data 71,0% 85,0% 89,1% 90,4% 56,62 2,29

All terms TF-IDF Language-Oriented With Structured Data 54,8% 75,9% 80,7% 82,4% 52,78 2,14

All terms TF-IDF Language-Oriented No Structured Data 55,0% 76,4% 80,8% 82,4% 52,96 2,14
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Figure 50 Accuracy and processing time plots for the Supplier set with TF weights 
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Looking at a graphical representation of the term frequency part of the Supplier results (Figure 50), we 

can see a clear distinction between language-blind and language-oriented configurations, both in terms 

of accuracy and time. While language-oriented configurations take less time to classify the same amount 

of reports, they do so with a consistently lower accuracy. 

Accuracy at the first suggestion varies in this group of configurations (both graphs) between 52% and 

almost 69%. With the largest list of suggestions, accuracy ranges between roughly 82% and 90%. While 

the range of variation decreases steadily as the list of suggestions grows, the more remarkable change 

occurs as the list grows from 1 to 5 elements. All configurations strongly raise their accuracy in this 

interval, particularly the language-oriented configurations that raise approximately 20%.  

When looking at the effects of using structured data, contrary to expectations, it tends to lessen accuracy, 

with its negative effect growing as the list of suggested error codes (categories) increases. From the 

processing time perspective, the effect is unclear, given that otherwise identical configurations can 

increase, decrease or maintain their processing time with the use of structured data. However, regarding 

pre-processing, language-blind configurations seem to take slightly longer to complete. Also interesting 

to point out, the use of a feature selection technique (upper graph) seems to neutralise the effect in 

accuracy of structured data in the language-oriented configurations, something that does not occur with 

the language-blind counterparts. 
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Figure 51 Accuracy and processing time plots for the Supplier set with TF-IDF weights 

The portion of results with TF-IDF weights, shown in Figure 51, presents a similar behaviour to that of 

the TF configurations in many respects: the performance distinction between language-blind and 

language-oriented configurations remains, so does the processing time difference between 

configurations with a term subset (upper graph) and those using all terms (lower graph), and the sharper 

accuracy increment from 1 to 5 recommendations in all configurations, with particularly higher values 

for the language-oriented kinds. Finally, when looking at processing times, the difference between 

language-blind and language-oriented configurations remains visible. 

However, we can also appreciate several differences. With this weight scheme, language-blind 

configurations achieve a slightly higher accuracy using all terms in the feature set (lower graph), but 

also see a greater loss when using only a thousand terms instead (upper graph). Moreover, the effects of 

structured data seem to be neutralised for all language-oriented configurations, not just those with a 

feature sub set.  

In conclusion, we see that the best configurations tend to be those with a language-blind pre-processing 

and with no use of structured data, regardless of the weight scheme and feature subset. However, with 

just one suggested category (accuracy at 1), there are losses in their accuracies when using a feature 

subset (upper graphs in both figures Figure 50 and Figure 51), which may be as big as 9.2% or as small 

as 1.1% depending on the weight scheme used. This strongly contrasts with the situation observed at 

accuracies with the longest list of suggestions (of the same configurations), where the use of a feature 

subset actually increases values up to 0.9%. Since our goal is to provide overall good lists of suggestions 

to human experts, this supports the idea of selecting a portion of all available features to perform 

classification. 
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5.8.2 Mechanic Dataset 

Figure 52 shows accuracy levels and processing times (considering only the testing time) of all 16 

configurations corresponding to the mechanic role, along with the code frequency baseline from the k-

NN implementation for ease of comparison. 

When comparing accuracy levels to the baseline, we immediately notice the stark difference in quality 

of the mechanic dataset compared to its supplier counterpart. Only three configurations have better 

accuracies when suggesting a single error code. Every other scenario is dominated by the baseline. Even 

if their processing times are overall better than those of the supplier dataset (with some configurations 

even crossing the 2 minutes threshold), their bad accuracy performance make this dataset unsuitable for 

classification. 
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Figure 52 Results for the algorithm configurations with Mechanic data 

 

Feature 

Selection Weight Scheme Pre-Processing

Use of Structured 

Data

Accuracy 

at 1

Accuracy 

at 5

Accuracy 

at 15

Accuracy 

at 25

Total 

classification 

time (minutes)

Time per 

report 

(seconds)

kNN Baseline 

Code Frequency
35% 76% 90% 100% NA NA

1000 Terms Term Frequency Language-blind With Structured Data 38,2% 62,4% 75,9% 79,7% 2,66 0,14

1000 Terms Term Frequency Language-blind No Structured Data 30,9% 59,2% 76,2% 81,7% 2,62 0,14

1000 Terms Term Frequency Language-Oriented With Structured Data 20,9% 41,5% 55,7% 62,0% 2,38 0,12

1000 Terms Term Frequency Language-Oriented No Structured Data 12,4% 31,2% 47,6% 54,4% 2,35 0,12

1000 Terms TF-IDF Language-blind With Structured Data 33,5% 53,2% 67,2% 72,1% 2,62 0,14

1000 Terms TF-IDF Language-blind No Structured Data 27,5% 48,3% 63,1% 68,7% 2,55 0,13

1000 Terms TF-IDF Language-Oriented With Structured Data 21,2% 40,5% 55,7% 63,0% 2,38 0,12

1000 Terms TF-IDF Language-Oriented No Structured Data 13,1% 31,1% 45,2% 55,0% 2,38 0,12

All terms Term Frequency Language-blind With Structured Data 39,1% 62,4% 76,2% 80,1% 39,57 2,08

All terms Term Frequency Language-blind No Structured Data 33,4% 62,2% 77,8% 83,0% 40,08 2,10

All terms Term Frequency Language-Oriented With Structured Data 21,3% 43,5% 56,7% 63,8% 25,89 1,36

All terms Term Frequency Language-Oriented No Structured Data 14,7% 33,3% 47,9% 54,9% 25,60 1,34

All terms TF-IDF Language-blind With Structured Data 38,6% 62,2% 74,9% 79,4% 39,73 2,08

All terms TF-IDF Language-blind No Structured Data 33,5% 59,5% 76,2% 81,7% 39,16 2,05

All terms TF-IDF Language-Oriented With Structured Data 21,4% 41,2% 55,3% 60,6% 25,74 1,35

All terms TF-IDF Language-Oriented No Structured Data 15,3% 32,6% 47,8% 53,2% 25,18 1,32
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Figure 53 Accuracy and processing time plots for the Mechanic set with TF weights 
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When looking at the visual representation of the mechanic results with term frequency weights (Figure 

53), we can appreciate different patterns to those in the supplier dataset. Beyond the generalised 

accuracy fall, the use of structured data seems to have totally different effects, this time making a clear 

contribution to accuracy in language-oriented configurations and twisting performance in language-

blind ones. With suggestion lists of just one element, the use of structured data in language-oriented 

configurations can mean improvements from 6.6% to 8.9%, in favour of the configurations using a 

feature subset (upper graph). With 25 suggested categories, the improvements go from 7.6% to 8.9%, 

but this time in favour of the configurations using all features (lower graph). 

As mentioned earlier, the impact of structured data in the language-blind configurations is more 

complex. At suggestions of a single category, using structured data improves accuracy from 5.7% to 

7.3% in favour of the configurations using a feature subset (upper graph). However, when looking at 

accuracies with suggestions of 25 elements, the effect is the opposite: using structured data now 

decreases values by 2% to 2.9% also in favour of the configurations using a feature subset (upper graph), 

meaning less accuracy loss. 

Overall, this behaviour seems to benefit most of the time the configurations using a feature subset (upper 

graph), showing them as more stable options across the different accuracy cut-offs, even though their 

performance is slightly worse than those using all features available (lower graph). 

Considering the elapsed time to execute each configuration, although the two patterns found in the 

Supplier dataset still hold (1. language-oriented configurations being faster than language-blind ones, 

2. Configurations with feature subsets (upper graph) being faster than configurations using all features 

(lower graph)), the difference between the language-blind and language-oriented configurations seems 

to be smaller. Possibly because of the reduced size of the dataset compared to the Supplier one. 

All in all, the mechanic dataset does yield worse results than the supplier dataset. We can imagine that 

having less documents (that also happen to contain less words), in addition to the many other 

characteristics summarised in sub section 4.2.4 are the causes behind this reduced performance. 

Determining whether this is true or not, is left to future research. 
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Figure 54 Accuracy and processing time plots for the Mechanic set with TF-IDF weights 

Finally, Figure 54 shows the results for the configuration with TF-IDF weights. In this group, the 

language-blind configurations using a feature subset (upper graph) suffer a sharp loss in accuracy 

compared to their full feature set counterparts (lower graph). This results in all configurations using a 

feature subset (upper graph) to perform below the level of the code frequency baseline. This strong 

reduction does not happen however with the language-oriented configurations that also use a feature 

subset (upper graph). 

Concerning the use of structured data, all configurations with TF-IDF weights tend to be benefited by 

its use, with the sole exception of the language-blind configuration using all features in the set (lower 

graph), which loses its advantage over the similar configuration without structured data at 25 

suggestions. 

When it comes to processing time, the behaviours observed in the mechanic configurations with term 

frequency weights (Figure 53) are still observed, implying that weight schemes do not have an impact 

on processing time. 

 

5.9 Algorithm Configurations Evaluation 

As evidenced by the results analysis of the previous section, it is hard to determine the real significance 

of using one configuration instead of another very similar. Accuracy values do not have a clear trend 

variation over different configurations, with the most problematic factors being the use of structured 

data and the use of a feature selection technique to subset the feature set. Depending on the dataset used, 

the accuracy cut-off specified or the kind of pre-processing used, these two factors can have increased, 

reduced, or inverse effects on the accuracy levels. Besides, by analysing execution data of just one run, 

we are exposed to attribute significance to variations due to chance. 
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To address these issues and to be able to more effectively determine the way each factor affects accuracy, 

and even whether a factor has a real effect at all, we run four 2k experiments with two replicates each. 

Two experiments deal with the supplier dataset and accuracy cut-offs at 1 and 25, whereas the other two 

use the mechanic dataset and the same cut-off levels. By targeting accuracy at the two extreme cut-offs 

we can appreciate changes in the way each factor affects the classification performance. 

The 2k design is useful for this particular situation, as it provides an efficient way to test effects and 

interactions of multiple factors (Montgomery 2013). In it, every factor is given an uppercase letter and 

every level is arbitrarily considered high or low. For our particular application scenario, as stated in 

section 5.7, we maintain the distinction of role data as a way to clearly differentiate the impact of other 

factors in accuracy, not to estimate the impact of the dataset itself. The reason for this is that both the 

results of the previous k-NN implementation and the results shown in section 5.8 provide plenty of 

evidence to support the notion that the supplier data is indeed better for the report classification than the 

mechanic data. This leads us then to consider four factors: A) Weight schemes, with term frequency as 

high level and TF-IDF as low; B) Pre-processing, with language-blind as high level and language-

oriented as low; C) Structured data use, with “usage” as high level and “no usage” as low; and D) Feature 

selection technique (Subset) with 1000 terms subset as high level and no subset (use all terms) as low. 

With each of the four experiments we can estimate the effects of each factor and the significance of 

these effects, in other words, how much variability in accuracy can be attributed to changes in a given 

factor (Montgomery 2013). For this (test significance) we run an analysis of variance (ANOVA) on an 

linear model that we assume factors follow at least in the range considered within their levels, something 

safe to do since the linear model can hold even if the assumption is very approximate (Montgomery 

2013). 

For each experiment, we mention the statistically significant factors as well as their estimated effects. 

We then take a look at the way these factors change depending on the accuracy cut-off considered. 

Additional support material for each experiment can be found in section 7.2 of the Appendix. 

5.9.1 Supplier Data Experiments 

For the accuracy cut-off at 1, with an adjusted r-square of 98.5% (the amount of variability that can be 

explained by the model, adjusted for the number of factors), we find that pre-processing and subset are 

the most significant factors, followed by weight. Language-blind pre-processing is estimated to augment 

accuracy by 6.87%, while selecting 1000 terms is estimated to reduce accuracy by 2.28%. Using term 

frequency weights is estimated to increase accuracy 0.63%, something that is already negligible.  

If we look at Figure 55 Effect estimates with Supplier data for Accuracy at 1Figure 55 we can see there 

are some factor interactions that are also significant, however, their effects are so small that for practical 

purposes they can also be neglected. If we consider the kind of contributions our significant factors do, 

we can find that the best configuration for accuracy at 1 cut-off is that with language-blind pre-

processing, using all terms with term frequency weights, regardless of the use of structured data. We 

can confirm this by looking at the corresponding results on Figure 49. Yet if we take the processing time 

into account, we see that for a net loss in accuracy of 1.6% (selecting the feature subset and using term 

frequency as weight scheme), we can classify every report in at least 632.73 times less time, going from 

2 minutes 13 seconds to only 0.19 seconds. 
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Figure 55 Effect estimates with Supplier data for Accuracy at 1 

 

For the accuracy cut-off at 25, with an adjusted r-square of 96.72% (the amount of variability that can 

be explained by the model, adjusted for the number of factors), we find that pre-processing and 

structured data are strongly significant factors, subset is significant and weight is a little significant. 

Language-blind pre-processing is estimated to augment accuracy 3.58%. Using structured data is 

estimated to decrease accuracy by 1.03%. Selecting a 1000 terms is estimated to reduce accuracy by 

0.46%, while using term frequency weights is estimated to increase accuracy only 0.22%, making the 

last two factors practically negligible.  

Interactions between pre-processing and structured data, and weight and subset, while significant (as 

shown in Figure 56) have again negligible effects to be considered. Using the same graph to find the 

best configuration for the accuracy cut-off at 25, we conclude that a language-blind configuration, 

without using structured data, selecting 1000 terms, regardless of the weight scheme used should bring 

the best results. We can confirm this in Figure 49. Moreover, the processing time per report remains low 

in 0.17 seconds. 
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Figure 56 Effect estimates with Supplier data for Accuracy at 25 

 

Examining Figure 57 and Figure 58 is possible to compare which effects are most relevant when trying 

to achieve higher accuracies with just 1 or 25 category suggestions. The first thing to notice is that in 

both cases, the most decisive factor is pre-processing, with a clear preference for the language-blind 

kind. In contrast, weighting schemes seem to have overall very little impact to improve accuracy, 

remaining steadily in favour of term frequency weights by a very little margin. 

On the other end of the spectrum, the use of structured data and feature selection techniques have a very 

different effect depending on the accuracy we strive for. In traditional classification scenarios, where 

the objective is to obtain a single classification category per element (Figure 57), the effect of structured 

data is minimal and the reduced processing times achieved by using a subset of the total amount of 

features comes with a high price.  

In our application scenario (Figure 58), the objective is different and so are the options to achieve it. 

The negative and now moderate effect of using a subset of all features can be easily compensated by 

properly configuring the pre-processing of text data, selecting the right weight scheme and including 

useful structured data. By doing this we can achieve a nearly optimal trade-off between accuracy and 

processing time. To further improve it, it would be necessary to refine the choices made in every factor 

that contributes to accomplish this trade-off, following the direction of the most useful level (as long as 

there are still options available). In this case, it means exploring configurations with even lighter pre-

processing and looking for better ways to select the 1000 terms considered in the subset. 
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Figure 57 Variations in Accuracy levels at 1 by factor (Supplier data) 

 

 

Figure 58 Variations in Accuracy levels at 25 by factor (Supplier data) 

 

5.9.2 Mechanic Data Experiments 

For the accuracy cut-off at 1, with an adjusted r-square of 99.2%, we find that all factors (weight, pre-

processing, structured data and subset) are strongly significant. Language-blind pre-processing is 

estimated to augment accuracy by 8.61%. Using structured data is estimated to increase accuracy by 

3.11%. Selecting 1000 terms is estimated to reduce accuracy by 1.26%, and using term frequency 

weights is estimated to augment accuracy by 0.63%, once more a negligible gain. Once more, 
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interactions among factors, although significant, are discard on the basis of their negligible 

contributions. 

According to Figure 59, the best configuration for the accuracy cut-off at 1 uses language-blind pre-

processing, structured data, and all terms regardless of the weighting scheme. This can be confirmed in 

Figure 52. Although, similar to the supplier case, if we consider the processing time it is better to use 

term frequency as the weighting scheme and to select 1000 terms, achieving a net loss in accuracy of 

0.63%, and reducing the processing time per report from 2 minutes 4 seconds to only 0.14 seconds. 

 

 

Figure 59 Effect estimates with Mechanic data for Accuracy at 1 

 

For the accuracy cut-off at 25, with and adjusted r-square of 99.49%, we find that all factors are strongly 

significant. Language-blind pre-processing is estimated to augment accuracy by 10%, using structured 

data is estimated to augment accuracy by 1.97%, using term frequency weights does the same by 1.43% 

and selecting a feature subset of 1000 terms reduces accuracy by 1.32%.  

In addition, all interactions except that involving all factors are significant to various degrees. 

Considering only those with non-negligible contributions, the interaction pre-processing-structured 

data is estimated to decrease accuracy by 2.21%, the interaction weight-pre-processing is estimated to 

increase accuracy by 1.21%, the interaction weight-subset is estimated to increase accuracy by 1.12%, 

the interaction pre-processing-subset is estimated to decrease accuracy by 1.38%, and the interaction 

weight-pre-processing-subset is estimated to increase accuracy by 1.39%. 

Based on Figure 60, the best configuration for the accuracy cut-off at 25 (considering the effects of 

factors and interactions) uses language-blind pre-processing, no structured data, and all terms with term 

frequency weights. This can be confirmed in Figure 52. Once more, however, by taking a loss of 1.32% 

in accuracy at this cut-off level, the processing time per report is reduced 857.85 times, passing from 2 

minutes 6 seconds to 0.14 seconds. 
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Figure 60 Effect estimates with Mechanic data for Accuracy at 25 

With Figure 61 and Figure 62 it is possible to understand how the effect that each factor has on accuracy 

changes depending on the cut-off we consider. Contrary to the situation with the supplier dataset, effects 

remain more or less the same at 1 and at 25, letting pre-processing prevail as the dominant factor, and 

the language-blind type as the best choice. This confirms the finding in the supplier experiments of 

aiming to find lighter pre-processing approaches that nonetheless improve the effectiveness of feature 

selection techniques.  

Aside from this, it is interesting to note that for the mechanic dataset the use of structured data does 

increase accuracy at both cut-off levels, whereas for the supplier dataset, it is either irrelevant or 

counterproductive. Determining the reason for this inverse behaviour is beyond the scope of this work. 

 

Figure 61 Variations in Accuracy levels at 1 by factor (Mechanic data) 
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Figure 62 Variations in Accuracy levels at 25 by factor (Mechanic data) 

 

5.9.3 Selection of the Classification Algorithm Configuration and Features 

Using only the information obtained by applying our framework to optimise data features and 

classification algorithms (see chapter 4), it is possible to select the algorithm configuration and features 

that attain the best performance for our application scenario. 

From the performance results shown in section 5.8, it is clear that the supplier dataset contains higher 

quality features than the mechanic dataset, thus reducing the selection of algorithm configurations to 

those using the former. As for the corresponding experiments (see sub section 5.9.1), each one suggested 

slightly different configurations, encouraging the use of all terms on one side and suggesting the same 

for the 1000 terms subset on the other. One experiment disregards the specific choice of structured data 

while the other does something similar with the weighting schemes.  

However, when considering processing time (excluded by design from the experiment, since there 

cannot be two response variables for the same model), there is only one configuration that both 

experiments recommend. It is that with language-blind pre-processing, no use of structured data and the 

feature subset with term frequency weights. This configuration achieves 90.8% of accuracy with 25 

suggestions and processes each report in 0.17 seconds. 

5.10 Artefacts Evaluation 

In terms of the Design Science methodology, the contributions of this research work comprise three 

artefacts: 1) the Conceptual Architecture for Text Classification (model artefact), 2) the optimisation 

method for classification algorithm configurations and features (method artefact), and 3) the Naïve 

Bayes-based classification configurations (instantiation artefact). In this section we evaluate each one 

of them to assess their utility, quality, and efficacy (Hevner et al. 2004). 

5.10.1 Instantiation Artefact Evaluation 

The collection of classification algorithm configurations can be evaluated from three different 

perspectives: 1) In relation to its performance as a classification solution (dynamic analysis), 2) in 
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comparison to other classification solutions (optimisation), 3) as a tool to identify the way factors and 

features affect accuracy (controlled experiment). 

As a classification solution, the instantiation is subject to the metrics defined in sub section 1.2.4. At its 

best, the instantiation can provide a relevant error code within a list of 25 elements to a human expert in 

a little more than 90% of the cases, spending 0.17 seconds in the process (see sub section 5.9.3). 

Although there surely is room for improvement in terms of accuracy, we can consider the artefact useful 

enough to satisfy the needs of the application scenario. 

When compared to similar solutions, the criterion used is that of optimisation. In other words, to verify 

if the artefact can provide a better solution than previous instantiations. If we compare the current 

instantiation with the corresponding (bag of words) configurations of the previous k-NN implementation 

by (Kassner & Mitschang 2016), we notice a combination of results. Using the mechanic dataset, our 

instantiation performs overall better with an accuracy cut-off at 1, however it underperforms with any 

higher accuracy cut-off. Results on the supplier dataset are no better. This time the instantiation 

underperforms the bag-of-words configurations of the k-NN implementation in all accuracy cut-offs. 

However, the trend reverses when considering processing time. The instantiation’s configurations using 

a feature subset of 1000 terms have processing times ranging from 0.12 to 0.19 seconds per report, 

overcoming the k-NN implementation’s reference values of 0.5 seconds per report and 0.3 seconds per 

report for configurations with stop word removal. 

Finally, as a tool to test the effects of factors and features (in combination with a 2k experimental 

design), the artefact’s utility derives from its pipeline design that favours modularity. This modularity, 

represented by the composing scripts, enables the replacement of one file for another that performs the 

same processing steps (e.g. pre-processing, document term matrix building), although with a slightly 

different logic (e.g. different weight schemes, other pre-processing components). Thanks to this, it is 

possible to run similar configurations based on the same data processing scripts, speeding up the process 

of creating very similar configuration that vary just in one design choice. 

5.10.2 Model Artefact Evaluation 

The first evidence of the ability of the Conceptual Architecture to help design solutions for the particular 

problem of our application scenario is the existence of the instantiation artefact and its ability to classify 

documents in an accurate and time efficient manner. As such, the instantiation provides what (Hevner 

et al. 2004) call proof by construction about the utility of the conceptual architecture. 

We can also evaluate the completeness of this artefact by examining the way the architecture addresses 

each of the variables considered in our research model, which is at the core of the solutions we design 

for our problem. 

The most straightforward relationship happens between the architecture’s three layers and the 

moderating variables for Feature Extraction, Feature Selection and Classification Algorithm. The 

components in each layer offer alternatives to explore a wide range of pre-processing approaches, 

feature selection strategies, and algorithm configurations so that the impact of each of these variables 

can be tracked across their full range of values, other things held equal.  

The availability of structured data is also acknowledged by the conceptual architecture in that it 

integrates structured data sources as a complement to extract features or to select them. Examples of 

components making use of this integration could be the concept recognition component or the dimension 

based selection techniques. 

When it comes to the independent variables quantity of data features and quality of data features, 

although they are not depicted as elements of the architecture, it is clear that they are closely related to 

the selection of components in the feature extraction and feature selection layers. Components like 

spellchecking or punctuation removal are included based on the need to increase feature quality as part 

of the process of designing a solution. Something similar occurs between filters in the feature selection 

layers and feature quantity, albeit with a different focus based on the way feature quantity affects 

accuracy and processing time (see chapter 6). 
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Finally, the associations presented so far make it clear the conceptual architecture’s orientation towards 

the improvement of the dependent variables classification algorithm accuracy and classification 

algorithm processing time. Without it, the purpose and utility of the architecture cannot be understood. 

This orientation can be demonstrated by the existence of several redundant components (weighting 

schemes, evaluation metrics, n-gram extraction or tokenisation) in every layer that perform the same 

kind of processing step, but whose presence is meant to provide flexibility in their use. This redundancy 

allows the construction of a configuration that can overall optimise for the target dependent variables 

by choosing complementary components that compensate the affectations of other components towards 

accuracy in favour of benefiting processing time, and vice versa. 

5.10.3 Method Artefact Evaluation 

Analogous to the case of the conceptual architecture, a compelling argument about the method’s utility 

to guide the building process of a classification solution is the fact that it already did. The evidence for 

this proof by construction is shown in sections 5.1 to 5.9. 

In addition to this, it is possible to imagine some additional application scenarios where the application 

of this method (along with the conceptual architecture) can also prove useful without any modification. 

We refer to scenarios where a business process is designed around the classification of text data, with 

text containing domain-specific vocabulary. 

The first one is an insurance policy management process where an expert analyst needs to read 

customers’ change requests to the terms of their contracted policy, which can lead to changing the 

policy’s amount coverage, the scope of assets it protects, or even the insurance company (in the scenario 

of an insurance broker). One can think of simple “approved” or “rejected” categories that classify each 

customer request based on the contents of the text. More refined alternatives can include more specific 

categories detailing instead the degree of attention the request needs, so as to bring the most delicate 

cases to the attention of the expert analyst instead of letting him or her find them among all requests. 

While this may require more effort in labelling enough documents to train for all potential categories, 

the method is expected to handle this multi-class classification task as well, since it does not depend on 

the amount of categories to provide useful results. Moreover, structured data like the value of the assets 

covered by the policy, the customer’s financial standing and the amount of years he or she has been 

renovating the policy are good examples of additional features that could be used in combination with 

text features. 

Another scenario can be identified in a support desk process with phone conversation transcripts as 

input. In it, the text can be commented by a call centre executive to specify (using domain-specific 

jargon) the problem and symptoms discussed in the conversation. These two pieces of text would 

constitute a data bundle which can then be classified according to a priority scale so that the case (or 

support ticket) be assigned to one of different escalation support levels. The training data would need 

labels concerning the different priority levels, which depending on the company’s policies may involve 

several categories. Complementary structured data that can be used in this scenario would be customer 

details retrieved from a CRM system using the customer’s number, which is typically registered in a 

support phone call as part of the conversation protocol. 
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6 Conclusions and Future Research 

At the beginning of chapter 2 we introduced a research model (see Figure 4) to explore the creation of 

classification solutions that could address the problem of our application scenario (see sub section 1.2.2). 

Given that our goal (see sub section 1.2.3) is to understand the way elements in the research model relate 

to one another, we present in this chapter the conclusions we can draw about these relationships based 

on the results and evaluation presented in sections 5.8 and 5.9. Additional remarks concerning how to 

continue studying any of these relationships are presented right after the relevant relationship. 

Quality of data features can be perceived through visual and statistical exploration as shown throughout 

section 4.2. We find that a good summary for these data exploration, and as a consequence a good 

measure for feature quality are the language statistics suggested by (Bank et al. 2012) (e.g. vocabulary 

concentration, vocabulary dispersion, vocabulary relative size, and entropy) as well as others, like 

correlation. As expected, the relation of feature quality to classification performance is directly 

proportional: the higher the quality of the data features, the better the classification performance. 

Moving into quantity of data features, we find this independent variable can be measured in terms of 

the number of distinct terms (vocabulary size) or in terms of the occurrences each term has. This leads 

to two corresponding measures of dataset coverage. However, as our feature selection technique shows, 

it is better to opt for the occurrence based coverage, as it allows to subset the amount of features with 

consideration to the power-law distribution their frequencies show. This proves to be of key importance 

to remove highly correlated terms that can lower classification performance. This also infers that the 

relation of data quantity with classification performance is not a linear one. It does not have to do only 

with providing the least amount of terms that account for the most amount of occurrences, but also with 

choosing a subset with this characteristics that also deals with correlation. In other words, objective is 

to have a middle point, with not so few features that they do not describe the dataset correctly (thus 

degrading accuracy) but also with not that many that it increases processing time. 

Concerning feature extraction mechanisms, the pre-processing approaches proved to be the single most 

significant factor to alter accuracy, with minimal affectations to performance. Supporting evidence are 

the similar times between language-blind and language-oriented configurations shown in section 5.8. 

The difference in their effects seems to dictate that less complex pre-processing leads to better accuracy 

with marginally longer processing times. 

It is important to remember that each of these approaches is an aggregation of several components. 

Therefore changes in accuracy attributed to either approach tell us more about the components that 

differentiate each approach than about the common components (e.g. stop word removal, lowercasing). 

As a result, it is worth pursuing further analysis of the effect each separate component has or even better, 

ways to estimate this without performing all the required classifications. 

The effects of Feature selection can be controlled by using different techniques, such as the statistical 

sub setting described in section 5.5. In general this moderating variable tends to degrade accuracy but 

sharply increase performance, thus highlighting the need to use it appropriately and in combination with 

feature extraction and feature selection components that compensate for this and positively impact 

overall classification performance.  

Another aspect of feature selection are (the confirmation of) weight schemes. These however showed 

little impact on accuracy, at least when it comes to the two schemes tested. Because of this, the choice 

of term frequency weights (the better choice in terms of accuracy) mostly plays a compensating function 

to handle the accuracy drop caused by selecting a sub set of all available features. 

The classification algorithm as a moderating variable seems to set the limits for the effects of the other 

moderating variables, the upper limits in particular. For example, not even the best configuration of the 

Naïve Bayes algorithm shown in section 5.9.3, can surpass the equivalent configurations (bag-of-words) 

from the k-NN algorithm. Further exploration of the Naïve Bayes variant with similar pre-processing 

choices to those of the k-NN implementation could confirm this assumption. 

When looking at the impact of using available structured data on the algorithm performance, we do see 

an effect, however results do not provide a clear direction for it, as in combination with supplier data it 
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tends to degrade accuracy, while the opposite occurs when the mechanic data is used. Possible causes 

for this can be related to 1) the dataset used, 2) the way the algorithm integrates structured data into 

calculations, or 3) the nature of the structured data itself. Concerning the dataset employed, the cause 

could either lie on the quality or quantity of the dataset in question, since we know the mechanic dataset 

is both smaller and of lesser quality. This view is the one supported by our results. However it could 

also be that the impact of structured data heavily depends on the way an algorithm ponders different 

kinds of features into its calculations, for example giving more weight to features that have more 

importance in the context of the application scenario. Finally, there is also the possibility that the 

structured data features used in this work were not of sufficient quality to really impact classification 

performance. Finding mechanisms to assess the quality of structured data features, or augmenting the 

share of features coming from structured data could shed light on the truth this hypothesis may hold. 

Finally, while the amount of categories (our only confounding variable) is given as part of the 

requirements and conditions of our application scenario, it does represent an indirect limitation to 

increasing classification performance. This is because it restricts the classification algorithms that can 

be employed. 

This work has brought attention to the way the different variables in our research model can be 

configured to design increasingly performing solutions. A key observation in this respect is that although 

the dataset used, the feature extraction and feature selection choices can all have sound effects on the 

final accuracy and processing time of a classification solution, they cannot overcome the performance 

range established by the classification algorithm in use. This stresses the need for future research on this 

topic to delve into the broad scope of possible solutions based on different classification algorithms. 

Suffice to mention one example of this future work: 

The SVM algorithm can be adapted to multi-class classification problems, turning it into a set of binary 

classification tasks as numerous as there are categories to classify. This decomposition of the 

classification problem can in theory enable the algorithm to be run in a distributed computing network, 

where each node processes a classification category as a standard SVM algorithm (see sub section 3.3.4). 

Each node requires observations labelled for its category to serve as positive train data, whereas every 

other observation in the dataset can be used as negative train data. This split can be expected to lead to 

skewed training sets, which may need to be resolved as a feature selection problem, using the necessary 

elements from our Framework to Optimise Data Features and Classification Algorithms (comprising the 

Conceptual Architecture and Optimisation Method). While this implementation is certainly expensive 

in terms of computing power and possibly processing time, the potential accuracy gains make it an 

interesting research endeavour. 

Additionally, as stated in the beginning of this document (see sub section 1.2.2), the focus when 

exploring the effects of the different elements of our research model has remained on the side of the bag 

of words approach. Yet, a complementing element to this research is the exploration of a bag of concepts 

approach that can provide information about a particular feature extraction component: the concept 

annotation. While the emphasis is this work has been to count existing words in every document to do 

calculations with them, a concept annotator identifies the relevant word or set of words that represent a 

concept in this particular domain and replaces them with a concept identifier. This implies a 

representation of text reports as a collection of identifiers. This significant transformation brings the 

advantage of discovering relationships previously hidden across languages and behind synonyms. 

Previously implemented resources (needed to implement this approach) are based on the UIMA 

framework (see sub section 3.4.3), which then sets the context for further work to be done in this 

direction. 

In a nutshell, it is through the exploration of alternative classification algorithms and additional feature 

extraction and feature selection components that the work of quality experts in our application scenario 

can be better supported. The aim in all cases is to raise the existing 90% of accuracy with 25 suggested 

categories to higher ratios needing less suggestions and the same or shorter execution times. The better 

this conditions are satisfied, the more useful and transparent our technological solution becomes in the 

great scheme of things, along with the benefits for employees and customers this entails. 
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7 Appendices 

7.1 Function Words Lists for English and German 

7.1.1 English Function Words List 

1. a 

2. about 

3. above 

4. after 

5. again 

6. ago 

7. all 

8. almost 

9. along 

10. already 

11. also 

12. although 

13. always 

14. am 

15. among 

16. an 

17. and 

18. another 

19. any 

20. anybody 

21. anything 

22. anywhere 

23. are 

24. aren't 

25. around 

26. as 

27. at 

28. back 

29. else 

30. be 

31. been 

32. before 

33. being 

34. below 

35. beneath 

36. beside 

37. between 

38. beyond 

39. billion 

40. billionth 

41. both 

42. each 

43. but 

44. by 

45. can 

46. can't 

47. could 

48. couldn't 

49. did 

50. didn't 

51. do 

52. does 

53. doesn't 

54. doing 

55. done 

56. don't 

57. down 

58. during 

59. eight 

60. eighteen 

61. eighteenth 

62. eighth 

63. eightieth 

64. eighty 

65. either 

66. eleven 

67. eleventh 

68. enough 

69. even 

70. ever 

71. every 

72. everybody 

73. everyone 

74. everything 

75. everywhere 

76. except 

77. far 

78. few 

79. fewer 

80. fifteen 

81. fifteenth 

82. fifth 

83. fiftieth 

84. fifty 

85. first 

86. five 

87. for 

88. fortieth 

89. forty 

90. four 

91. fourteen 

92. fourteenth 

93. fourth 

94. hundred 

95. from 

96. get 

97. gets 

98. getting 

99. got 
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100. had 

101. hadn't 

102. has 

103. hasn't 

104. have 

105. haven't 

106. having 

107. he 

108. he'd 

109. he'll 

110. hence 

111. her 

112. here 

113. hers 

114. herself 

115. he's 

116. him 

117. himself 

118. his 

119. hither 

120. how 

121. however 

122. near 

123. hundredth 

124. i 

125. i'd 

126. if 

127. i'll 

128. i'm 

129. in 

130. into 

131. is 

132. i've 

133. isn't 

134. it 

135. its 

136. it's 

137. itself 

138. just 

139. last 

140. less 

141. many 

142. me 

143. may 

144. might 

145. million 

146. millionth 

147. mine 

148. more 

149. most 

150. much 

151. must 

152. mustn't 

153. my 

154. myself 

155. near 

156. nearby 

157. nearly 

158. neither 

159. never 

160. next 

161. nine 

162. nineteen 

163. nineteenth 

164. ninetieth 

165. ninety 

166. ninth 

167. no 

168. nobody 

169. none 

170. noone 

171. nothing 

172. nor 

173. not 

174. now 

175. nowhere 

176. of 

177. off 

178. often 

179. on 

180. or 

181. once 

182. one 

183. only 

184. other 

185. others 

186. ought 

187. oughtn't 

188. our 

189. ours 

190. ourselves 

191. out 

192. over 

193. quite 

194. rather 

195. round 

196. second 

197. seven 

198. seventeen 

199. seventeenth 

200. seventh 

201. seventieth 

202. seventy 

203. shall 

204. shan't 

205. she'd 

206. she 

207. she'll 

208. she's 

209. should 

210. shouldn't 

211. since 

212. six 

213. sixteen 
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214. sixteenth 

215. sixth 

216. sixtieth 

217. sixty 

218. so 

219. some 

220. somebody 

221. someone 

222. something 

223. sometimes 

224. somewhere 

225. soon 

226. still 

227. such 

228. ten 

229. tenth 

230. than 

231. that 

232. that 

233. that's 

234. the 

235. their 

236. theirs 

237. them 

238. themselves 

239. these 

240. then 

241. thence 

242. there 

243. therefore 

244. they 

245. they'd 

246. they'll 

247. they're 

248. third 

249. thirteen 

250. thirteenth 

251. thirtieth 

252. thirty 

253. this 

254. thither 

255. those 

256. though 

257. thousand 

258. thousandth 

259. three 

260. thrice 

261. through 

262. thus 

263. till 

264. to 

265. towards 

266. today 

267. tomorrow 

268. too 

269. twelfth 

270. twelve 

271. twentieth 

272. twenty 

273. twice 

274. two 

275. under 

276. underneath 

277. unless 

278. until 

279. up 

280. us 

281. very 

282. when 

283. was 

284. wasn't 

285. we 

286. we'd 

287. we'll 

288. were 

289. we're 

290. weren't 

291. we've 

292. what 

293. whence 

294. where 

295. whereas 

296. which 

297. while 

298. whither 

299. who 

300. whom 

301. whose 

302. why 

303. will 

304. with 

305. within 

306. without 

307. won't 

308. would 

309. wouldn't 

310. yes 

311. yesterday 

312. yet 

313. you 

314. your 

315. you'd 

316. you'll 

317. you're 

318. yours 

319. yourself 

320. yourselves 

321. you've 
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7.1.2 German Function Words List 

 

1. als   

2. am   

3. an   

4. auch   

5. auf   

6. aus   

7. bei   

8. bin   

9. bis   

10. bist   

11. da   

12. dann   

13. darf   

14. das   

15. dein   

16. dem   

17. den   

18. der   

19. die   

20. du   

21. durch   

22. ein   

23. eine   

24. einen   

25. er   

26. es   

27. euch   

28. euer   

29. fragt   

30. für   

31. haben   

32. hat   

33. hinter   

34. ich   

35. ihr   

36. im   

37. in   

38. ist   

39. ja   

40. kann   

41. kein   

42. los   

43. mein   

44. meine   

45. mich   

46. mir   

47. mit   

48. muss   

49. nein   

50. nicht   

51. nun   

52. nur   

53. oder   

54. oft   

55. ruft   

56. sagt   

57. sein   

58. sie   

59. sind   

60. so   

61. soll   

62. um   

63. und   

64. uns   

65. unser   

66. unten   

67. von   

68. vor   

69. wann   

70. war   

71. was   

72. wenn   

73. wer   

74. wie   

75. will   

76. wir   

77. wo   

78. zu   

79. du   

80. er   

81. es   

82. ich   

83. man   

84. sie 

85. wir  

86. an 

87. auf 

88. aus 

89. durch 

90. für 

91. gegen 

92. hinter 

93. in 

94. nach 

95. neben 

96. unter 

97. vor 

98. zu 

99. über 

100. aber 

101. damit 

102. ob 

103. oder 

104. und 



96 

 

105. weil 

106. wenn 

107. warum 

108. was 

109. wer 

110. wie 

111. wo 

112. woher 

113. wohin 

114. dein 

115. mein 

116. unser 

117. aber  

118. bei  

119. da  

120. ein  

121. für  

122. ganz 

123. alle  

124. bis  

125. dann  

126. eine  

127. gegen 

128. als  

129. das  

130. einem 

131. am  

132. dass  

133. einen 

134. an  

135. dem  

136. einer 

137. auch  

138. den  

139. eines 

140. auf  

141. denn  

142. einzelnen 

143. aus  

144. der  

145. er 

146. des  

147. es 

148. die 

149. diese 

150. dieser 

151. doch 

152. du 

153. durch  

154. habe  

155. ich  

156. kann  

157. man  

158. nach  

159. oder 

160. haben  

161. ihm  

162. können  

163. mehr  

164. nicht  

165. ohne 

166. hat  

167. ihn  

168. meine  

169. noch 

170. hatte  

171. ihnen  

172. mich  

173. nun 

174. hier  

175. ihr  

176. mir  

177. nur 

178. ihre  

179. mit 

180. im  

181. muss 

182. in 

183. ist 

184. schon  

185. über  

186. vom  

187. war  

188. Zeit 

189. sehr  

190. um  

191. von  

192. was  

193. zu 

194. sein  

195. und  

196. vor  

197. welche  

198. zum 

199. sein  

200. uns  

201. wenn  

202. zur 

203. seine  

204. unter  

205. werden 

206. seiner  

207. wie 

208. selbst  

209. wieder 

210. sich  

211. wir 

212. sie  

213. wird 

214. sind  
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215. wo 

216. so 

217. zum  

218. also  

219. weiterhin  

220. ergänzend  

221. und 

222. sicherlich  

223. nochmals  

224. wesentlich  

225. ausdrücklich  

226. nachdrücklich  

227. letztlich 

228. etwas  

229. wenig  

230. eher  

231. kaum  

232. fast  

233. wenig  

234. teilweise  

235. ziemlich  

236. nur  

237. bloß 

238. ziemlich  

239. einigermaßen  

240. viel  

241. sehr  

242. beträchtlich  

243. ganz  

244. höchst  

245. völlig  

246. gerade  

247. ausschließlich  

248. genug 

249. überaus  

250. sehr  

251. gar 

252. völlig  

253. gänzlich  

254. höchst 

255. zu  

256. allzu  

257. übermäßig  

258. über  

259. generell  

260. ausnahmsweise   

261. offensichtlich  

262. andererseits 

263. jedoch 

264. aber  

265. wie  

266. als  

267. ebenso 

268. häufig 

269. oft 

270. sehr 

271. viel 

272. weit 

273. wenig 

274. wohl  

275. ähnlich  

276. desgleichen  

277. gleichfalls  

278. einen   

279. zwar    

280. aber  

281. gleichfalls  

282. eine  

283. beides 

284. und  

285. überdies  

286. außerdem  

287. dazu  

288. insbesondere  

289. erstens   

290. zweitens 

291. übrigens 

292. auch  

293. sogar  

294. einschließlich  

295. samt  

296. nebst  

297. inklusive 

298. schließlich  

299. sobald  

300. als  

301. während  

302. bevor  

303. bis  

304. nachdem  

305. darauf  

306. dabei  

307. zuvor  

308. danach 

309. währenddessen  

310. daraufhin  

311. unterdessen  

312. damals  

313. früher  

314. zuvor  

315. gleichzeitig  

316. zuerst  

317. zunächst  

318. sodann  

319. schließlich  

320. endlich  

321. später  

322. seit  

323. während  

324. nach  
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325. vor 

326. beispielsweise  

327. ähnlich  

328. deutlich 

329. aber  

330. sondern  

331. doch  

332. jedoch  

333. während  

334. währenddessen  

335. indessen  

336. dagegen  

337. wohingegen  

338. wogegen  

339. dennoch  

340. hingegen  

341. vielmehr  

342. jedoch  

343. doch  

344. zuwider  

345. gegen  

346. umgekehrt  

347. obwohl  

348. denn  

349. weil  

350. da  

351. zumal  

352. deswegen  

353. dadurch  

354. darum  

355. weshalb  

356. weswegen  

357. also  

358. eben  

359. doch  

360. nämlich  

361. durch  

362. dank  

363. mangels  

364. wegen  

365. dass 

366. somit  

367. mithin  

368. also  

369. folglich  

370. so  

371. demzufolge  

372. darum  

373. daher 

374. infolgedessen  

375. infolge  

376. deshalb  

377. deswegen  

378. aber  

379. obgleich  

380. wenngleich  

381. obschon  

382. obzwar  

383. obwohl  

384. trotz 

385. allem  

386. trotzdem  

387. gleichwohl  

388. doch  

389. selbstverständlich  

390. aber auch  

391. natürlich  

392. andererseits 

393. sicherlich  

394. trotzdem  

395. allerdings  

396. immerhin  

397. zusammenfassend  

398. zusammengefasst  

399. kurz  

400. kurzum  

401. abschließend  

402. schließlich  

403. letztlich  

404. schlussendlich  

405. laut  

406. entsprechend  

407. offenbar  

408. offensichtlich  

409. ebenso  

410. sowie  

411. soweit  

412. gleichsam  

413. anscheinend  

414. offenkundig  

415. augenscheinlich  

416. dies 

417. bedenkend 

418. voraussetzend 
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7.2 Design Matrices and Analysis Of Variance (ANOVA) for 2k Experiments 

7.2.1 Design Matrix and ANOVA for Supplier Dataset with Accuracy At 1 

 

Figure 63 2k design matrix with supplier data for accuracy at 1 

 
Call: 
lm(formula = yield.lief.1 ~ A * B * C * D, data = fdacc.lief.1) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.01381 -0.00328  0.00000  0.00328  0.01381  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.009e-01  1.637e-03 367.141  < 2e-16 *** 
A            6.309e-03  1.637e-03   3.855 0.001402 **  
B            6.877e-02  1.637e-03  42.015  < 2e-16 *** 
C           -5.434e-04  1.637e-03  -0.332 0.744190     
D           -2.288e-02  1.637e-03 -13.979 2.19e-10 *** 
A:B          4.227e-03  1.637e-03   2.583 0.020030 *   
A:C         -9.728e-04  1.637e-03  -0.594 0.560585     
B:C         -2.828e-03  1.637e-03  -1.728 0.103248     
A:D          8.259e-03  1.637e-03   5.046 0.000119 *** 
B:D         -3.840e-03  1.637e-03  -2.346 0.032177 *   
C:D          1.361e-03  1.637e-03   0.831 0.417998     
A:B:C        8.042e-04  1.637e-03   0.491 0.629844     
A:B:D        9.020e-03  1.637e-03   5.511 4.74e-05 *** 
A:C:D       -5.691e-05  1.637e-03  -0.035 0.972690     
B:C:D       -5.178e-04  1.637e-03  -0.316 0.755800     
A:B:C:D     -1.123e-03  1.637e-03  -0.686 0.502407     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.009259 on 16 degrees of freedom 

A (Weight)

B (Pre-

processing)

C (Structured 

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + + 1000 Terms, Term Frequency, Language-blind, With 

Structured Data 67,03% 66,35%

+ + - +
1000 Terms, Term Frequency, Language-blind, No 

Structured Data 67,57% 67,36%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With 

Structured Data 51,99% 51,58%

+ - - + 1000 Terms, Term Frequency, Language-Oriented, No 

Structured Data 52,48% 49,72%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 61,50% 61,29%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 61,77% 61,50%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured 

Data 53,05% 50,28%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 51,99% 49,39%

+ + + -
All terms, Term Frequency, Language-blind, With Structured 

Data 68,37% 68,91%

+ + - -
All terms, Term Frequency, Language-blind, No Structured 

Data 68,71% 69,86%

+ - + -
All terms, Term Frequency, Language-Oriented, With 

Structured Data 55,16% 55,16%

+ - - -
All terms, Term Frequency, Language-Oriented, No 

Structured Data 55,32% 55,97%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 70,26% 69,32%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 71,00% 70,67%

- - + -
All terms, TF-IDF, Language-Oriented, With Structured Data 54,75% 55,56%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 55,00% 54,02%
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Multiple R-squared:  0.9923, Adjusted R-squared:  0.985  
F-statistic: 136.6 on 15 and 16 DF,  p-value: 5.522e-14 

 

7.2.2 Design Matrix and ANOVA for Supplier Dataset with Accuracy At 25 

 

Figure 64 2k design matrix with supplier data for accuracy at 25 

 
Call: 
lm(formula = yield.lief.25 ~ A * B * C * D, data = fdacc.lief.25) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.01056 -0.00319  0.00000  0.00319  0.01056  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  8.509e-01  1.257e-03 677.103  < 2e-16 *** 
A            2.239e-03  1.257e-03   1.781 0.093856 .   
B            3.586e-02  1.257e-03  28.531 3.78e-15 *** 
C           -1.030e-02  1.257e-03  -8.197 4.04e-07 *** 
D           -4.673e-03  1.257e-03  -3.718 0.001870 **  
A:B         -3.000e-04  1.257e-03  -0.239 0.814372     
A:C         -1.700e-03  1.257e-03  -1.353 0.194870     
B:C         -5.123e-03  1.257e-03  -4.076 0.000879 *** 
A:D          3.167e-03  1.257e-03   2.520 0.022747 *   
B:D          1.217e-03  1.257e-03   0.968 0.347327     
C:D         -4.596e-04  1.257e-03  -0.366 0.719363     
A:B:C        1.447e-03  1.257e-03   1.152 0.266332     
A:B:D        1.205e-04  1.257e-03   0.096 0.924817     
A:C:D        2.488e-05  1.257e-03   0.020 0.984448     
B:C:D       -2.490e-03  1.257e-03  -1.982 0.064963 .   
A:B:C:D      2.280e-04  1.257e-03   0.181 0.858329     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

A (Weight)

B (Pre-

processing)

C (Structured 

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + + 1000 Terms, Term Frequency, Language-blind, With 

Structured Data 87,39% 86,65%

+ + - +
1000 Terms, Term Frequency, Language-blind, No 

Structured Data 90,76% 90,63%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With 

Structured Data 81,88% 79,77%

+ - - + 1000 Terms, Term Frequency, Language-Oriented, No 

Structured Data 82,21% 82,05%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 85,97% 85,97%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 90,63% 88,67%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured 

Data 80,99% 79,77%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 80,26% 80,42%

+ + + -
All terms, Term Frequency, Language-blind, With Structured 

Data 86,92% 88,27%

+ + - -
All terms, Term Frequency, Language-blind, No Structured 

Data 89,89% 90,49%

+ - + -
All terms, Term Frequency, Language-Oriented, With 

Structured Data 80,83% 81,23%

+ - - -
All terms, Term Frequency, Language-Oriented, No 

Structured Data 83,43% 82,70%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 88,47% 87,46%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 90,42% 90,29%

- - + -
All terms, TF-IDF, Language-Oriented, With Structured Data 82,37% 81,07%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 82,37% 82,78%
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Residual standard error: 0.007109 on 16 degrees of freedom 
Multiple R-squared:  0.9831, Adjusted R-squared:  0.9672  
F-statistic: 61.96 on 15 and 16 DF,  p-value: 2.707e-11 

 

7.2.3 Design Matrix and ANOVA for Mechanic Dataset with Accuracy At 1 

 

Figure 65 2k design matrix with mechanic data for accuracy at 1 

 
Call: 
lm(formula = yield.mont.1 ~ A * B * C * D, data = fdacc.mont.1) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.017771 -0.003864  0.000000  0.003864  0.017771  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.2566519  0.0015028 170.783  < 2e-16 *** 
A            0.0063209  0.0015028   4.206  0.00067 *** 
B            0.0861428  0.0015028  57.322  < 2e-16 *** 
C            0.0311284  0.0015028  20.714 5.57e-13 *** 
D           -0.0126798  0.0015028  -8.437 2.76e-07 *** 
A:B          0.0053603  0.0015028   3.567  0.00257 **  
A:C          0.0014137  0.0015028   0.941  0.36083     
B:C         -0.0028533  0.0015028  -1.899  0.07579 .   
A:D          0.0056167  0.0015028   3.738  0.00179 **  
B:D         -0.0051150  0.0015028  -3.404  0.00363 **  
C:D          0.0036352  0.0015028   2.419  0.02785 *   
A:B:C        0.0003330  0.0015028   0.222  0.82743     
A:B:D        0.0033353  0.0015028   2.219  0.04126 *   
A:C:D       -0.0006551  0.0015028  -0.436  0.66873     

A (Weight)

B (Pre-

processing)

C (Structured 

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + +
1000 Terms, Term Frequency, Language-blind, With 

Structured Data 38,17% 37,29%

+ + - +
1000 Terms, Term Frequency, Language-blind, No 

Structured Data 30,92% 31,88%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With 

Structured Data 20,94% 20,17%

+ - - +
1000 Terms, Term Frequency, Language-Oriented, No 

Structured Data 12,39% 12,97%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 33,54% 33,97%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 27,51% 26,72%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured 

Data 21,23% 17,68%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 13,06% 11,91%

+ + + -
All terms, Term Frequency, Language-blind, With Structured 

Data 39,13% 39,21%

+ + - -
All terms, Term Frequency, Language-blind, No Structured 

Data 33,45% 33,54%

+ - + -
All terms, Term Frequency, Language-Oriented, With 

Structured Data 21,33% 20,17%

+ - - -
All terms, Term Frequency, Language-Oriented, No 

Structured Data 14,70% 14,51%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 38,60% 36,94%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 33,54% 34,06%

- - + - All terms, TF-IDF, Language-Oriented, With Structured Data 21,42% 20,65%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 15,27% 14,41%
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B:C:D        0.0005132  0.0015028   0.342  0.73715     
A:B:C:D     -0.0018558  0.0015028  -1.235  0.23469     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.008501 on 16 degrees of freedom 
Multiple R-squared:  0.9959, Adjusted R-squared:  0.992  
F-statistic: 257.3 on 15 and 16 DF,  p-value: 3.66e-16 

 

7.2.4 Design Matrix and ANOVA for Mechanic Dataset with Accuracy At 25 

 

Figure 66 2k design matrix with mechanic data for accuracy at 25 

 
Call: 
lm(formula = yield.mont.25 ~ A * B * C * D, data = fdacc.mont.25) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.012008 -0.004585  0.000000  0.004585  0.012008  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.682857   0.001407 485.481  < 2e-16 *** 
A            0.014345   0.001407  10.199 2.09e-08 *** 
B            0.100004   0.001407  71.098  < 2e-16 *** 
C            0.019753   0.001407  14.043 2.04e-10 *** 
D           -0.013292   0.001407  -9.450 6.00e-08 *** 
A:B          0.012183   0.001407   8.662 1.95e-07 *** 
A:C         -0.003619   0.001407  -2.573 0.020431 *   
B:C         -0.022154   0.001407 -15.751 3.67e-11 *** 
A:D          0.011228   0.001407   7.983 5.70e-07 *** 
B:D         -0.013892   0.001407  -9.877 3.26e-08 *** 
C:D          0.004640   0.001407   3.299 0.004532 **  
A:B:C       -0.004460   0.001407  -3.171 0.005934 **  
A:B:D        0.013990   0.001407   9.946 2.96e-08 *** 

A (Weight)

B (Pre-

processing)

C (Structured 

Data) D (Subset) Treatment combination Replicate I Replicate II

+ + + +
1000 Terms, Term Frequency, Language-blind, With 

Structured Data 79,65% 79,74%

+ + - +
1000 Terms, Term Frequency, Language-blind, No 

Structured Data 81,75% 81,83%

+ - + +
1000 Terms, Term Frequency, Language-Oriented, With 

Structured Data 61,96% 62,73%

+ - - +
1000 Terms, Term Frequency, Language-Oriented, No 

Structured Data 54,37% 54,08%

- + + + 1000 Terms, TF-IDF, Language-blind, With Structured Data 72,05% 73,10%

- + - + 1000 Terms, TF-IDF, Language-blind, No Structured Data 68,73% 67,69%

- - + +
1000 Terms, TF-IDF, Language-Oriented, With Structured 

Data 63,02% 62,92%

- - - + 1000 Terms, TF-IDF, Language-Oriented, No Structured Data 55,04% 52,64%

+ + + -
All terms, Term Frequency, Language-blind, With Structured 

Data 80,09% 80,09%

+ + - -
All terms, Term Frequency, Language-blind, No Structured 

Data 82,97% 81,40%

+ - + -
All terms, Term Frequency, Language-Oriented, With 

Structured Data 63,78% 62,63%

+ - - -
All terms, Term Frequency, Language-Oriented, No 

Structured Data 54,85% 53,60%

- + + - All terms, TF-IDF, Language-blind, With Structured Data 79,39% 80,26%

- + - - All terms, TF-IDF, Language-blind, No Structured Data 81,75% 82,10%

- - + - All terms, TF-IDF, Language-Oriented, With Structured Data 60,61% 62,15%

- - - - All terms, TF-IDF, Language-Oriented, No Structured Data 53,22% 54,95%



103 

 

 

A:C:D       -0.005720   0.001407  -4.067 0.000897 *** 
B:C:D        0.003439   0.001407   2.445 0.026440 *   
A:B:C:D     -0.002358   0.001407  -1.677 0.113048     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.007957 on 16 degrees of freedom 
Multiple R-squared:  0.9974, Adjusted R-squared:  0.9949  
F-statistic: 405.4 on 15 and 16 DF,  p-value: < 2.2e-16 
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