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Abstract

Methods of stochastic approximations are used for the recursive estimation of parame-
ters of an unknown function which can only be observed with noise. These parameters
are for example roots or extreme points. For root-finding the Robbins-Monro algo-
rithm

Zn`1 “ Zn ´ anYnpZnq with Ynpzq “ fpzq ´Mn,

and an ą 0 is very common. In order to estimate extrema of multivariate functions
f : Rd Ñ R the Kiefer-Wolfowitz recursion

Zn`1 “ Zn ´ anYnpZnq

with

Ynpzq “
1

2cn

 `

fpz ` cneiq ´M
`
n,i

˘

´
`

fpz ´ cneiq ´M
´
n,i

˘(

iPt1,...,du
,

an ą 0, cn ą 0, is widely used. Here only YnpZnq is observable, but not its individual
components. Moreover at each iteration step of the Kiefer-Wolfowitz recursion 2d
observations are required. In order to reduce the number of observations, randomized
stochastic approximation algorithms were introduced, such as

Zn`1 “ Zn ´
an
2cn

D´1
n

 `

fpz ` cnDnq ´M
`
n

˘

´
`

fpz ´ cnDnq ´M
´
n

˘(

with a d-dimensional random sequence Dn and D´1
n it’s component-wise inverse.

These require only two observations per step. Over the years many extensions of
such randomized algorithms were developed. Of a special interest is

Zn`1 “ Zn ´
an
cn
D´1
n

 

fpz ` cnDnq ´M
`
n

(

which requires actually only one observation per step, using slightly stronger con-
ditions. However one condition, that all these algorithms have in common, is the
assumption of Dn being independent and identically distributed (i.i.d.). This makes
an extension of such algorithms to a path-continuous setting impossible. In this thesis
a unification of the preceding procedures is presented and extended to a semimartin-
gale setting. For that purpose Dn is no longer assumed to be i.i.d. and thereby more
sophisticated methods of proof are to be performed.
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iv Abstract

The first chapter gives a historical introduction to stochastic approximation in
general. Moreover semimartingale settings and randomized algorithms are introduced
as well as their benefits. After that, a generic randomized semimartingale algorithm
is presented. It does not only establish the theory for not yet investigated time-
continuous randomized procedures but also contains all known time-discrete special
cases as well as non-discovered ones.

Chapter 2 investigates the almost sure convergence of the generic algorithm. Spe-
cial cases in a semimartingale, time-continuous and time-discrete setting are derived.
It turns out that the presented framework also offers the possibility to handle deter-
ministic perturbation functions which yield the same a.s. convergence results as the
randomization processes. Particular examples of useful randomization are handled as
well. The chapter closes with visualization of simulation results.

In the third chapter almost sure convergence rates are derived. Again the rates of
the randomized semimartingale setting are shown to hold true in the special cases
that were presented in previous chapters. Finally the different perturbation designs
are compared by simulations of the empirical L2-error.

Based on methods for the estimation of roots or extreme points, the second part of
this thesis presents a generalized companion stochastic approximation method of the
form

Υn ´Υn´1 “ ´ãnΥn´1 ` ãnrYnpZnq, with ãn ą 0, rYnpZnq “ GnpZnq `
kn
ãn
MnpZnq.

Here Zn is generated by a leading algorithm, like the Robbins-Monro or the Kiefer-
Wolfowitz procedure and rYnpZnq stands for the noisy observation at Zn of the pa-

rameter of interest. The individual components of rYnpZnq, namely the value of the
estimator GnpZnq, as well as its measuring error MnpZnq, are not observable. Compan-
ion algorithms can be interpreted as a solution process of a generalized semimartingale
stochastic integral equation of the form

Υt “ Υ0 `

ż t

0

ãs

´

Gs ´Υs´

¯

dRs `

ż t

0

ksMpds,Υs´q.

The asymptotic behaviour of this process Υ “ pΥtqtě0 is discussed. The dicussion is
based on the work of Mokkadem and Pelletier where two companion-type algorithms
for the underlying Kiefer-Wolfowitz algorithm were presented, but only in a time-
discrete setting.

The first chapter of the thesis’ second part gives a technical motivation for the
time-discrete companion algorithms of Mokkadem and Pelletier, that apply to the
Kiefer-Wolfowitz algorithm.

In the sixth chapter, a general semimartingale-type companion algorithm is pre-
sented. This generalizes the ideas of Mokkadem and Pelletier in two ways. On one
hand, it presents a companion to an arbitrary stochastic approximation algorithm, and
not only to the Kiefer-Wolfowitz algorithm. For example companion algorithms for
the Robbins-Monro procedure but also new companions for the Kiefer-Wolfowitz pro-
cedure can be derived. On the other hand, the algorithm is presented in a semimartin-
gale framework. It turns out, that it includes time-discrete as well as time-continuous



Abstract v

settings. We show consistency of the general semimartingale-type companion algo-
rithm and consider special settings in the semimartingale context. Corresponding
results in a time-continuous and a time-discrete framework are derived. It unfolds,
that the consistency results of Mokkadem and Pelletier are special cases of the time-
discrete framework.

The seventh chapter is devoted to the rate of convergence of the general algorithm.
We consider special settings of the algorithms of the previous chapter. We point out
how the rate of convergence depends on the gain processes patqtě0, pctqtě0, pãtqtě0,
pktqtě0 and the smoothness of f in the leading algorithm. Consequently we discuss
settings in which the underlying and the companion algorithm cannot simultaneously
converge at an optimal rate. Again, time-continuous and time-discrete settings are
established as special cases.

Chapter eight establishes asymptotic normality results. For that purpose an al-
most L2-convergence result of the underlying algorithm is used. In contrast to the
Kiefer-Wolfowitz algorithm, there was no such result for the Robbins-Monro algo-
rithm before. After showing this missing almost L2-result, we attend to asymptotic
normality under parameter settings given in the previous chapters.





Zusammenfassung

Die Methoden der stochastischen Approximation werden zur rekursiven Bestimmung
von unbekannten Parametern einer Funktion verwendet, die nur mit Rauschen be-
obachtet werden kann. Diese Parameter sind beispielsweise Null- oder Extremstellen.
Zur Ermittlung von Nullstellen hat sich der Robbins-Monro Algorithmus

Zn`1 “ Zn ´ anYnpZnq mit Ynpzq “ fpzq ´Mn,

und an ą 0 etabliert. Für die Schätzung von Extremstellen ist das Kiefer-Wolfowitz
Verfahren

Zn`1 “ Zn ´ anYnpZnq

mit

Ynpzq “
1

2cn

 `

fpz ` cneiq ´M
`
n,i

˘

´
`

fpz ´ cneiq ´M
´
n,i

˘(

iPt1,...,du
,

an ą 0, cn ą 0 weit verbreitet. Hierbei ist nur YnpZnq beobachtbar, aber nicht seine
einzelnen Komponenten. Desweiteren werden für jede Iteration des Kiefer-Wolfowitz
Verfahrens 2d Beobachtungen benötigt. Um diese Anzahl verringern zu können, wur-
den randomisierte stochastische Approximationsverfahren eingeführt, wie beispiels-
weise

Zn`1 “ Zn ´
an
2cn

D´1
n

 `

fpz ` cnDnq ´M
`
n

˘

´
`

fpz ´ cnDnq ´M
´
n

˘(

mit einer d-dimensionalen Zufallsfolge Dn und D´1
n als deren komponentenweiser In-

versen. Diese benötigen lediglich zwei Beobachtungen pro Schritt. Mit den Jahren
wurden vielerlei solcher randomisierter Algorithmen entwickelt. Von einem speziellen
Interesse ist

Zn`1 “ Zn ´
an
cn
D´1
n

 

fpz ` cnDnq ´M
`
n

(

bei welchem nur eine einzige Beobachtung pro Schritt genügt, auch wenn die Vor-
aussetzungen leicht verschärft werden müssen. Eine Bedingung jedoch, die alle diese
Verfahren gemeinsam haben, ist die Eigenschaft, dass die Dn unabhänging und iden-
tisch verteilt (u.i.v.) sind. Dies macht die Erweiterung solcher Algorithmen in einen
pfadstetigen Kontext unmöglich. Diese Thesis stellt die Vereinheitlichung der zuvor
präsentierten Verfahren vor, welche zudem in einen Semimartingalrahmen erweitert
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viii Zusammenfassung

werden. Daher wird Dn nicht mehr als u.i.v. vorausgesetzt und weitergehende Metho-
den sind anzuwenden, um die Beweise durchführen zu können.

Das erste Kapitel gibt eine historische Einführung in die stochastische Approxima-
tion. Desweiteren werden Semimartingal- und Randomisierungsverfahren vorgestellt
sowie deren Vorzüge. Anschließend wird ein generischer randomisierter Semimartin-
galalgorithmus präsentiert. Dieser umfasst nicht nur die Theorie der bisher nicht un-
tersuchten zeitstetigen randomisierten Verfahren, sondern auch alle bekannten zeit-
diskreten Spezialfälle und auch noch nicht entdeckte.

Kapitel 2 behandelt die fast sichere Konvergenz des generischen Verfahrens. Spe-
zialfälle sowohl in einem zeitstetigen als auch in einem zeitdiskreten Rahmen werden
vorgestellt. Es stellt sich heraus, dass der präsentierte Kontext die Möglichkeit bietet,
deterministische Störungsfunktionen zu verwenden, welche die selben fast sicheren
Konvergenzresultate liefern wie die Randomisierungsprozesse. Zudem werden speziel-
le Beispiele von nutzbringender Randomisierung behandelt. Das Kapitel schließt mit
der Visualisierung von Simulationsresultaten.

Im dritten Kapitel werden fast sichere Konvergenzraten hergeleitet. Auch hier wird
gezeigt, dass die Raten des Semimartingalverfahrens sich auf die in den vorigen Kapi-
teln vorgestellen Spezialfälle übertragen. Am Ende werden den verschiedenen Designs
von Störungen mithilfe der Simulation des empirischen L2-Fehlers verglichen.

Begründet auf den Methoden zur Schätzung von Null- oder Extremstellen wird im
zweiten Teil der Arbeit ein verallgemeinertes begleitendes stochastisches Approxima-
tionsverfahren der Form

Υn ´Υn´1 “ ´ãnΥn´1 ` ãnrYnpZnq, mit ãn ą 0, rYnpZnq “ GnpZnq `
kn
ãn
MnpZnq

vorgeschlagen. Hierbei wird Zn erzeugt durch einen zugrundeliegenden Algorithmus,
wie dem Robbins-Monro- oder dem Kiefer-Wolfowitz-Verfahren, und rYnpZnq steht für
die verrauschte Beobachtung des zu schätzenden Parameters an der Stelle Zn. Die ein-
zelnen Komponenten von rYnpZnq, also der Wert des Schätzers GnpZnq, sowie dessen
Messfehler MnpZnq, sind nicht getrennt beobachtbar. Begleitende Verfahren können
als Lösungsprozess verallgemeinerter semimartingalartiger stochastischer Integralglei-
chungen der Form

Υt “ Υ0 `

ż t

0

ãs

´

Gs ´Υs´

¯

dRs `

ż t

0

ksMpds,Υs´q

interpretiert werden. Neben den bereits erwähnten zeitdiskreten Verfahren sind hier
auch zeitkontinuierliche Verfahren enthalten. Es wird das asymptotische Verhalten
dieses Lösungsprozesses Υ “ pΥtqtě0 diskutiert. Diese Überlegung fußt auf der Arbeit
von Mokkadem und Pelletier, in der Begleitalgorithmen in einem zeitdiskreten Zu-
sammenhang zum zugrundeliegenden Kiefer-Wolfowitz Verfahren vorgestellt wurden.

Das erste Kapitel des zweiten Teils der Arbeit gibt eine heuristische Begründung
für die Form des Begleitalgorithmus von Mokkadem und Pelletier. In diesem wird
zusätzlich zum Kiefer-Wolfowitz-Algorithmus, welcher die Minimalstelle behandelt,
noch der Funktionswert geschätzt.

Im sechsten Kapitel wird ein verallgemeinerter semimartingalartiger Begleitalgo-
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rithmus vorgeschlagen. Dieser erweitert die Ideen von Robbins und Monro in zweierlei
Hinsicht. Zum einen stellt er einen Begleitalgorithmus für ein beliebiges stochastisches
Approximationsverfahren dar, und nicht lediglich zum Kiefer-Wolfowitz-Algorithmus.
Beispielsweise werden ein Algorithmus zum Robbins-Monro-Verfahren und ein wei-
teres Verfahren für den Kiefer-Wolfowitz-Algorithmus hergeleitet. Zum anderen wird
der Begleitalgorithmus in einem Semimartingal-Zusammenhang dargestellt. Entspre-
chende Ergebnisse im zeitdiskreten und im zeitstetigen Kontext ergeben sich als Spe-
zialfälle. Es stellt sich heraus, dass die Resultate von Mokkadem und Pelletier in den
zeitdiskreten Ergebnissen enthalten sind.

Das siebte Kapitel widmet sich der Konvergenzgeschwindigkeit des verallgemei-
nerten Verfahrens. Wir betrachten spezielle Fassungen der Algorithmen des vorigen
Kapitels. Es wird untersucht, wie die Konvergenzgeschwindigkeit von den Schrittwei-
tenprozessen patqtě0, pctqtě0, pãtqtě0, pktqtě0 und von der Glattheit von f im zugrun-
deliegenden Verfahren abhängt. Somit werden auch Szenarien diskutiert, in denen der
führende und der begleitende Algorithmus nicht jeweils mit optimaler Rate konver-
gieren. Wie zuvor, wird auf zeitdiskrete und zeitstetige Fassungen eingegangen.

In Kapitel acht werden Ergebnisse zur asymptotischen Normalität präsentiert. Hier-
für wird ein Resultat zur fast-L2-Konvergenzrate des zugrundeliegenden Verfahrens
verwendet. Im Gegensatz zum Kiefer-Wolfowitz-Algorithmus liegt ein solches Resultat
für den Robbins-Monro-Algorithmus nicht vor und muss zunächst erarbeitet werden.
Daraufhin widmen wir uns der asymptotischen Normalität unter den Parametern des
vorigen Kapitels.
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Zudem möchte ich Philipp Thomann und Matthias Giegerich für die kritischen
Hinweise zur Rohfassung meiner Arbeit danken.

Besonderer Dank gilt meinen Eltern sowie meiner Freundin Katharina, die mir
jederzeit den nötigen Rückhalt gegeben haben.

xi





Contents

Abstract iii

Zusammenfassung vii

Acknowledgments xi

Contents xiii

Abbreviations xix

I Randomized Algorithms 1

1. Introduction 3
1.1. Historical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. General Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. General Semimartingale Algorithms . . . . . . . . . . . . . . . . . . . . 7

2. Almost Sure Convergence 11
2.1. A General Semimartingale Algorithm . . . . . . . . . . . . . . . . . . . 11
2.2. Algorithms Using Kernel-Based Gradient Estimates . . . . . . . . . . . 20

2.2.1. An Application in Analog Computing . . . . . . . . . . . . . . . 23
2.2.2. An Application in Model-Free Control . . . . . . . . . . . . . . 25
2.2.3. Continuous-Time Algorithms . . . . . . . . . . . . . . . . . . . 27
2.2.4. Discrete-Time Algorithms . . . . . . . . . . . . . . . . . . . . . 34
2.2.5. An Application in Wing Design Optimization . . . . . . . . . . 43
2.2.6. A Neural Network Application . . . . . . . . . . . . . . . . . . . 44

2.3. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1. Comparison of One- and Two-measurement Algorithms and

Kiefer-Wolfowitz . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2. Comparison of One-measurement Algorithms Starting at the

Extremum of f . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.3. L2-Convergence of Algorithms Starting at the Extremum of f . 55

3. Almost Sure Convergence Rate 59
3.1. A General Semimartingale Algorithm . . . . . . . . . . . . . . . . . . . 59

xiii



xiv Contents

3.2. Algorithms Using Kernel-Based Gradient Estimates . . . . . . . . . . . 68
3.2.1. Continuous-Time Algorithms . . . . . . . . . . . . . . . . . . . 71
3.2.2. Discrete-Time Algorithms . . . . . . . . . . . . . . . . . . . . . 72

3.3. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.1. L2-Convergence Rate of One-measurement Algorithms Starting

at the Extremum of f . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2. L2-Convergence Rate of Two-measurement Algorithms Starting

at the Extremum of f . . . . . . . . . . . . . . . . . . . . . . . 75

4. Concluding Remarks 79

II Companion Algorithms 81

5. Introduction 83
5.1. Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2. General Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3. The General Semimartingale Framework . . . . . . . . . . . . . . . . . 86

6. Almost Sure Convergence of Companion Algorithms 87
6.1. Consistency of the Generic Algorithm . . . . . . . . . . . . . . . . . . . 87
6.2. Consistency of Special Algorithms . . . . . . . . . . . . . . . . . . . . . 90
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Part I

RANDOMIZED ALGORITHMS





1 Introduction

This part of the thesis deals with optimization of systems with multiple unknown pa-
rameters by randomized stochastic approximation in a semimartingale context. Before
presenting the results, a historical overview is given.

1.1 Historical Introduction

Stochastic approximation has its origin in the 1950s, when Robbins and Monro [33]
presented a recursive algorithm for finding the root z˚ of an unknown increasing
function f : RÑ R, where the statistician only has noisy observations of the function
values. They suggested a recursion of the form

Zn`1 ´ Zn “ ´anYnpZnq with Ynpzq :“ fpzq `Mnpzq, (1.1)

where Mnpzq represents the additional noise of f at z. This procedure resembles
Newton’s method

xn`1 “ xn ´
fpxnq

f 1pxnq

in numerical analysis. At step n` 1 the user observes the function f at the point Zn,
receiving a noisy function value YnpZnq. Unlike Newton’s method, for the Robbins-
Monro algorithm usually no observation of the gradient ∇f nor noisy observations of
it are assumed to be available. Instead of the gradient one uses a damping sequence
panq which is chosen by the experimenter. A typical choice is an :“ a{n with a ą 0.
Robbins and Monro [33] proved that pZnq converges in probability to the root z˚ of
f .

On this basis Kiefer and Wolfowitz [20] suggested in 1952 an algorithm for the search
of stationary points related to minima. Like Robbins and Monro they did not assume
an observable gradient ∇f . Instead it was estimated by p2cnq

´1
`

fpx`cnq´fpx´cnq
˘

with a sequence pcnq tending to zero. Hence the recursion is of the form

Zn`1 ´ Zn “ ´anYnpZnq with Ynpzq :“
1

2cn

´

fpz ` cnq ´ fpz ´ cnq `Mnpzq
¯

.

Common choices to achieve convergence are an :“ a{n and cn :“ cn´γ with γ P
p0, 1{2q. Stationary points for maxima can be found by changing the recursion to
Zn`1 ´ Zn “ `anYnpZnq, but in the following we will stick to minima. Kiefer and

3
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Wolfowitz showed convergence in probability for their algorithm.
In 1954, Blum [3] presented a multidimensional extension of the Robbins-Monro

recursion to handle multivariate functions f : Rd Ñ Rd. Furthermore he suggested a
multi-variable Kiefer-Wolfowitz recursion

Zn`1 ´ Zn “ ´anYnpZnq

with

Ynpzq “
1

2cn
tfpz ` cneiq ´ fpz ´ cneiq `Mn,iuiPt1,...,du , (1.2)

where f : Rd Ñ R, and Mn,i comprising the observation noise. Note that in each
iteration step in (1.2) 2d observations have to be made. Asymptotic normality of
both kinds of processes pZnq, generated by (1.1) and (1.2), was first shown by Sacks
[36] in 1957. In 1967 Fabian [15] suggested a modified estimator Ynpzq for the gradient
of f at z, if differentiability of f of odd order p ě 3 can be assumed. He showed that his
estimate, which is based on dpp´1q observations, achieves the a.s. and L2-convergence
rate n´pp´1q{p2pq`ε, @ε ą 0 and n´pp´1q{p2pq, respectively. Therefore it approaches the
rate of the Robbins-Monro process, which is n´1{2, if f is differentiable of any order.
Dippon and Renz [12] constructed an unbiased estimator. It is worth to mention, that
Chen [6] showed in 1988 that the rate n´pp´1q{p2pq is optimal.

A ground-breaking innovation regarding the Robbins-Monro method was suggested
by Polyak [31] in 1990. Instead of the original algorithm he considered an averaged
Robbins-Monro scheme with slowly decaying weights an “ an´α, where 0 ă α ă 1.
It turned out that except of f 1pz˚q ą 0 no assumption on the usually unknown first
derivative of f has to be made. In the classical context the asymptotic variance is
given by pa2σ2q{p2af 1pz˚q ´ 1q such that a should not be chosen too large in order
to attain small variance. But the stability condition f 1pz˚q ą 1{p2aq requires a to be
chosen large enough. When using averaged algorithms this dilemma does not arise
as no condition relating a and the derivative of f is necessary. Although using a
Robbins-Monro algorithm with asymptotic rate less than n´1{2, its averaged process
achieves rate n´1{2 and is optimal regarding the variance. Hence, the averaged scheme
has asymptotic and stability benefits over the original algorithm. In 1996 and 1997
Dippon and Renz [11, 12] applied Polyak’s ideas to a Kiefer-Wolfowitz algorithm with
weighted means. Important surveys of time-discrete stochastic approximation are the
books of Ljung et al. [24] and Duflo [14].

Even though Itô published his epoch making contributions on stochastic integral
equations in the 1940s, it took until the 1970s when Nevel’son and Has’minskĭi
[29] studied stochastic approximation processes which are generated by the follow-
ing stochastic integral equations of Itô type. To estimate the root of f : R Ñ R
in a time-continuous framework with a d-dimensional Brownian motion pWtqtě0 and
diffusion function σ : r0,8q ˆ Rd Ñ Rd,

Zt “ Z0 ´

ż t

0

asfpZsqds´

ż t

0

asσspZsqdWs, (c-RM)
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and to estimate the minimum of f : R Ñ R, with a 1-dimensional Brownian motion
pWtqtě0 and diffusion function σ : r0,8q ˆ RÑ R,

Zt “ Z0 ´

ż t

0

as
2cs

´

fpZs ` csq ´ fpZs ´ csq
¯

ds´

ż t

0

as
2cs

σspZsqdWs. (c-KW-1D)

In the same book they treated consistency, rate of convergence and asymptotic nor-
mality of the Robbins-Monro algorithm in both, the recursive and the Itô framework.
Furthermore they showed consistency of the Itô type Kiefer-Wolfowitz algorithm.

Until the end of the 1980s time-discrete and time-continuous algorithms were trea-
ted separately. In the second half of the 20th century, the foundations of stochas-
tic analysis were established. As a generalization of Itô-processes, semimartingales
were investigated. Semimartingales offer a self-contained integration theory and can,
roughly speaking, be considered as the sum of a process of finite variation on compacts
and a local martingale. As a consequence Levy processes are included and thereby
time-discrete recursions as well. Then in 1989 Melnikov [27] found a unification of
time-discrete and time-continuous algorithms within a semimartingale framework. Af-
terwards, together with Rodkina [34] and Valkeila [42], consistency as well as asymp-
totic normality of the Robbins-Monro process and consistency of the Kiefer-Wolfowitz
process were shown. The conditions for these results however are very technical and
hard to verify. A few years later, Lazrieva, Sharia and Toronjadze [22] suggested the
solution of

Zt “ Z0 ´

ż t

0

HspZs´qdRs ´

ż t

0

Mpds, Zs´q,

with Zs´ the left-continuous modification of Zs, as a general semimartingale version
of the Robbins-Monro process. The choices HspZs´q :“ asfpZsq and Mpds, Zs´q :“
asσdWs as well as HspZs´q :“ anfpZn´1q and Mpds, Zs´q :“ anVn show how the Itô
type and the recursive Robbins-Monro algorithms are embedded in the semimartingale
framework as special cases. For the proof of consistency they showed a generalized
Robbins-Siegmund theorem, which in turn is based on a multiplicative decomposition
theorem. Thereby the conditions of their theorem are weaker and less technical then
those of Melnikov et al. [42]. Furthermore Lazrieva et al. showed asymptotic normality
of the original and the averaged process in a path-continuous semimartingale frame-
work. In 2010 Schnizler [37] studied the related Kiefer-Wolfowitz algorithm in detail.
However, to prove asymptotic normality he did not need to assume path-continuity.

One of the main disadvantages of the Kiefer-Wolfowitz algorithm is that it requires
2d observations of f in each iteration step. In order to handle this high-dimensional
problem, several algorithms have been suggested that need only two evaluations per
step. Kushner and Clark [21] suggested a method which estimates the gradient of f
at Xn by estimating the directional derivative along a randomly chosen direction of
the unit sphere Sd. Spall [38] formulated an alternative approach, namely simulta-
neous perturbation stochastic approximation (SPSA), choosing a distribution FSP on
Rd which is the d-fold tensor product of a symmetrical distribution concentrated on
Rdzt0u. Possible distributions are for example the Bernoulli distribution or the uni-
form distribution concentrated on the vertices of the cube r´1, 1sd. In 2002 Dippon
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[10] unified such two-measurement randomized stochastic approximation algorithms
by using a randomized kernel gradient estimate

Ynpzq “
1

2cn
KpDnq

 `

fpz ` cnDnq ´Wn,1

˘

´
`

fpz ´ cnDnq ´Wn,2

˘(

with a kernel functionK : Rd Ñ Rd and random vectorsDn P Rd satisfying EpKpDnqb

Dnq “ 1d. In 1997 Spall [39] presented SPSA1, an estimator

Ynpzq “
1

cn
D´1
n

 `

fpz ` cnDnq ´Wn,i

˘(

, with D´1 :“ p1{Dp1q, . . . , 1{Dpdqq,

that only needs one evaluation per iteration step. Therefore the question arises how
one can extend Dippon’s ideas to such one-measurement algorithms.

All these randomized procedures are in discrete time. In this thesis an abstract algo-
rithm in a semimartingale framework is suggested, including both, one-measurement
and two-measurement algorithms. Semimartingales are the largest class of integra-
tors for which an integral of the form

şt

0
HsdXs, with H a locally bounded predictable

process, is closed, and hence a powerful calculus is available. Obviously time-discrete
as well as Itô type versions of one- and two-measurement algorithms follow as special
cases. But also more general settings, where observations can only be taken at random
times, are possible. Apart from theoretical interest there is a large field of applica-
tions that explicitly use general semimartingale models, and not only time-discrete or
time-continuous special cases. Some of them are presented in later sections.

Classical Robbins-Monro algorithms are known to converge with rate n´1{2, whereas
standard Kiefer-Wolfowitz type algorithms converge with a rate not better than n´1{3.
Therefore it seems natural to prefer Robbins-Monro in stochastic gradient optimiza-
tion whenever the gradient is available. But in some circumstances it is preferable
to apply a Kiefer-Wolfowitz algorithm instead of a stochastic gradient method. We
point out the examples given by Spall [40, Ch. 6.2].

• Calculating the gradient can be too costly in time or computational steps.

• There can be human errors by doing the derivations.

• In complex calculations there is the possibility of software coding errors in the
implementation of the algorithm.

• Computer algebra packages may have difficulties with the gradient calculations
in high dimensions.

• When applying so-called automatic differentiation methods, one needs huge
knowledge of the ”inner workings“ of the software.

Additionally, sometimes it is sensible to formulate a root-finding problem as a
stochastic gradient optimization problem. Typical for the Robbins-Monro algorithm
is the assumption that the infimum of px´ x˚qTfpxq over a compact set not contain-
ing x˚ must be positive, which directs the process to the direction of the root of f .
Loosely speaking this means, one has to know, whether the function f is increasing
or decreasing in the vicinity of the root. Ruppert [35] was one of the first who treated
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this problem. Instead of finding the root of fpxq one minimizes g :“ }f}2. Now, for
the optimization algorithm the assumption px ´ x˚qT∇gpxq is bounded away from 0
on a compact set not containing x˚ has to be fulfilled. Here, one only has to know
whether g has to be minimized or maximized. As the problem is user-defined this
is, in contrast to the mean-reverting assumption, always clear. Due to the fact that
randomized stochastic approximation algorithms work very well with only one or two
measurements per iteration step, and that the rate of convergence of n´1{2 can be
approached arbitrarily closely, it represents a very powerful alternative.

1.2 General Assumptions

In the following, results on consistency of an abstract semimartingale algorithm of
the form (1.3) are given. We specialize this setting to one- and two-measurement
randomized kernel gradient estimators (1.5) and (1.6). On this basis, time-continuous
(2.11) and (2.12) as well as time-discrete (2.13) and (2.14) special cases are derived.
Apart from the proof of consistency for algorithm (2.14), which has been done by
Dippon [10] under slightly different assumptions, all results are completely new.

We use the following notations. The tensor x b y : Rd Ñ Rd is the linear mapping
xy, .yx , where x and y are two vectors in Rd. The open ball around x with radius
ε is given by Uεpxq. Considering a multi-index m “ pm1, . . . ,mdq P Nd

0 the length
m1 ` . . . `md is denoted by |m| and m! means m1! ¨ . . . ¨md!. The m-th power of a
vector x P Rd is defined as xm “ xm1

1 ¨ . . . ¨ xmdd , where we assume that 00 :“ 1. The
differential operator ∇m with respect to x is defined by Bm1

pBx1q
m1
¨ ¨ ¨ Bmd

pBxdq
md

. The notation

Xt » Yt means that Xt and Yt are asymptotically equal, i.e. limtÑ8Xt{Yt “ 1. We
make the general assumption, that all relations, unless explicitly otherwise specified,
shall hold a.s.

1.3 General Semimartingale Algorithms

We consider a stochastic basis pΩ,F ,F “ pFtqtě0,Pq satisfying the usual conditions.
This means that F0 contains all P-null sets of F , and that the filtration F is right-
continuous. On this basis a random variable Z0, a random field M P Rd and processes
patqtě0, pctqtě0, pDtqtě0, and pRtqtě0 are defined. The processes patqtě0 and pctqtě0

shall be predictable with respect to F, and moreover pat
ct
qtě0 has to be locally bounded.

Furthermore it is assumed that pRtqtě0 is increasing, càdlàg (i.e. right-continuous with
left-sided limits), predictable with respect to F, and R0 “ 0 as well as ∆R0 “ 0 hold.
The process pDtqtě0 is assumed to be Rd-valued and predictable with respect to F.
By M2

locpPq we denote the set of locally square-integrable martingales with respect
to P and F. The random field tMpt,Dt´, vq : t ě 0, v P Rdu is F-adapted for all
v P Rd. Furthermore for every t ě 0, v P Rd the relations Mpt,Dt´, vq PM2

locpPq and
şt

0
as
cs
pMpds,Ds´, vqqtě0 PM2

locpPq hold.
By o and O we denote the Landau symbols. Moreover, for a stochastic process

pXtqtě0, we write Xt “ obprtq if t is increasing to infinity and pXt{rtq is bounded
a.s. Moreover Rd denotes the purely discontinuous part of the process R. By ∆Rt

we define the jump Rt ´ Rt´. We note that ∆Rt “ dRd
t . The covariation and
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the predictable covariation processes of pXtqtě0 and pYtqtě0 are denoted by rX, Y st
and rX, Y st, respectively. The unit vectors of the Euclidean space Rd are written as
e1, . . . , ed.

In the subsequent sections, it is shown that the stochastic integral equation [Gen-
Rand]

Zt “ Z0 ´

ż t

0

as
cs
F pDs´, cs, Zs´qdRs ´

ż t

0

as
cs
Mpds,Ds´, Zs´q (1.3)

can be considered as an abstract formulation of randomized stochastic approximation
procedures of various forms. In this stochastic differential equation, the process D
represents the incorporated randomization that can be chosen by the statistician. As
D is assumed to be predictable, the notation Ds´ instead of Ds seems superfluous here.
However the arising time-discrete special cases are easier to compare with already
existing results, when D and Z have the same index in the same iteration step. We
note that the function F is a composition of predictable processes and thus predictable
as well. Hence

d
ÿ

i“1

Q

ż .

0

´

F pDτ´, cτ , Zτ´qdRτ

¯

i

U

t
“

ż t

0

}F pDs´, cs, Zs´q}
2∆RsdR

d
s (1.4)

holds true. Equation (1.3) unifies randomized one-measurement and two-measurement
stochastic approximation procedures. In the following this will be investigated in
detail. It is worth mentioning that algorithms with 2m, m P N, simultaneous mea-
surements are included in the two-measurement framework. Details can be found
in the papers of Fabian [15], Dippon and Renz [11], [12] and Dippon [10]. But also
three-measurement or other odd-valued measurement algorithms are included in (1.3).
Even a deterministic Ds is feasible. A sufficient condition for the existence of these
integrals including F , is that F is continuous in its arguments. In an analogous way
the terms of the second integral in (1.3), which include M , are defined. The stochastic
integral equation (1.3) is assumed to be well-defined. We are interested in the asymp-
totic behaviour of the process Z. Therefore we assume the existence of a unique
strong solution on r0,8q. Existence and uniqueness of stochastic integral equations
are well-investigated in the book of Protter [32].

In this thesis a function K : Rd Ñ Rd with EpKpDs´qbDs´q “ 1d is called a kernel
function. Here 1d denotes a d-dimensional diagonal matrix such that all diagonal
entries are 1, whereas ~1 denotes a d-dimensional vector with all entries equal to 1.
Assume the existence of |M such that KpDs´q|Mpds, Zs´q equals Mpds,Ds´, Zs´q or
2Mpds,Ds´, Zs´q. As special methods to estimate the minimum of f by employing
one-measurement and the two-measurement randomized kernel gradient estimations
[Ker-Rand-1] and [Ker-Rand-2] there are stochastic integral equations given by

Zt “ Z0 ´

ż t

0

as
cs
KpDs´q

 

fpZs´ ` csDs´q
(

dRs ´

ż t

0

as
cs
KpDs´q|Mpds, Zs´q (1.5)
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and

Zt “ Z0 ´

ż t

0

as
2cs

KpDs´q
 

fpZs´ ` csDs´q ´ fpZs´ ´ csDs´q
(

dRs

´

ż t

0

as
2cs

KpDs´q|Mpds, Zs´q (1.6)

respectively. Note that in these instances F consists of the function f : Rd Ñ R and
the kernel function K as follows:

F pDs´, cs, Zs´q “

#

KpDs´q
 

fpZs´ ` csDs´q
(

in (1.5)
1
2
KpDs´q

 

fpZs´ ` csDs´q ´ fpZs´ ´ csDs´q
(

in (1.6).

Moreover the classical Kiefer-Wolfowitz algorithm

Zt “ Z0 ´

ż t

0

as
2cs

 

fpZs´ ` cseiq ´ fpZs´ ´ cseiq
(

iPt1,...,du
dRs ´

ż t

0

as
2cs

Mpds, Zs´q

is included in this framework by setting F pDs´, cs, Zs´q “
1
2
tfpZs´` cseiq ´ fpZs´´

cseiquiPt1,...,du.
Throughout the rest of part one of this thesis the following general conditions shall

hold.

Assumption 1.3.1.

• The function F : Rd ˆ Rˆ Rd Ñ Rd is differentiable with respect to c. Here ∇k
c

denotes the k-fold derivative with respect to c.

• Let F be factorizable at c “ 0 with respect to d and z in the sense that there
are measurable functions f̃0 : Rd Ñ R, f̃1 : Rd Ñ Rd, g0 : Rd Ñ Rd and g1 : Rd Ñ

Rdˆd, such that for all k P t0, 1u

∇k
cF pd, 0, zq “ gkpdqf̃kpzq. (1.7)

• The norm of g1p.q is defined as the Frobenius norm, i.e.

}g1p.q} :“

g

f

f

e

d
ÿ

i“1

d
ÿ

j“1

|g1p.qij|2.

• F is affine in the sense of

∇k
cF pd, c, zq “ ∇k

cF pd, 0, z ` cdq for all k P t0, 1u, d P Rd and z P Rd. (1.8)

In both, (1.5) and (1.6), we find g0pdq “ Kpdq, g1pdq “ Kpdqbd and f̃1pzq “ ∇fpzq.
However in (1.5) f̃0pzq “ fpzq whereas in (1.6) f̃0pzq “ 0 holds true.





2 Almost Sure Convergence

In this chapter almost sure convergence is investigated. We begin with a general
result on a generic semimartingale algorithm. Later on, kernel-based algorithms are
derived, which in turn include interesting continuous-time and discrete-time special
cases. Moreover several possible applications, randomization designs and simulations
are presented.

2.1 A General Semimartingale Algorithm

We state conditions, which are helpful for the investigation of almost sure convergence
of Z defined in (1.3).

Assumption 2.1.1. Let Assumption 1.3.1 hold.

(A) Lipschitz condition for f̃1p.q: There exists a constant L such that for all z1, z2 P

Rd,

}f̃1pz1q ´ f̃1pz2q} ď L}z1 ´ z2}.

(B) There exists a unique point z˚ such that ∇cF pd, 0, z
˚q “ 0 for all d P Rd.

(C)

@
εą0

D
Cpεqą0

@
tzPRd|εď}z´z˚}ď 1

ε
u

A

f̃1pzq, z ´ z
˚
E

ě Cpεq.

(D) The processes patqtě0, pctqtě0 satisfy

at, ct ą 0 at, ct Ó 0
ż 8

0

asdRs “ 8

ż 8

0

ascsdRs ă 8.

(E) If pRtqtě0 is not pathwise continuous we furthermore assume that

ż 8

0

a2
s∆RsdR

d
s ă 8.

11
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(F) For all t ě 0 let g1pDtq have non-negative eigenvalues and }g1pDtq}}Dt} be square
integrable such that for any t ě 0, Epg1pDtqq ą c1d with c ą 0 and

ˇ

ˇ

ˇ

ˇ

ż 8

0

as

´

g1pDs´q ´ Epg1pDs´qq

¯

dRs

ˇ

ˇ

ˇ

ˇ

ă 8,

ˇ

ˇ

ˇ

ˇ

ż 8

0

ascs

´

}g1pDs´q}}Ds´} ´ Ep}g1pDs´q}}Ds´}q

¯

dRs

ˇ

ˇ

ˇ

ˇ

ă 8,

ˇ

ˇ

ˇ

ˇ

ż 8

0

a2
sc

2
s

´

}g1pDs´q}
2
}Ds´}

2
´ Ep}g1pDs´q}

2
}Ds´}

2
q

¯

∆RsdR
d
s

ˇ

ˇ

ˇ

ˇ

ă 8,

ˇ

ˇ

ˇ

ˇ

ż 8

0

a2
s

´

}g1pDs´q}
2
´ Ep}g1pDs´q}

2
q

¯

∆RsdR
d
s

ˇ

ˇ

ˇ

ˇ

ă 8.

(G) Assume for all s P r0,8q and all z P Rd that Epg0pDs´qqf̃0pzq “ 0,

ˇ

ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as
cs
xZs´, g0pDs´qf̃0pZs´qydRs

ˇ

ˇ

ˇ

ˇ

ă 8,

and

ż 8

0

a2
s

c2
s

1

1` }Zs´}2
}g0pDs´q}

2
}f̃0pZs´q}

2∆RsdR
d
s ă 8.

(H) For every i P t1, . . . , du and x P Rd assume

ż 8

0

a2
s

c2
s

hiis pZs´q

1` }Zs´}2
dRs ă 8 with hiis pzq :“

dr
ş.

0
pMpdτ,Dτ´, zqqiss

dRs

.

Theorem 2.1.1. Let Assumption 2.1.1 be fulfilled. Then the process pZtqtě0, gener-
ated by algorithm (1.3), converges almost surely to the point z˚ fulfilling f̃1pz

˚q “ 0.

Remark 2.1.1. Note that in this theorem, instead of F we could consider an explicitly
time-dependent Fs. This enables us to minimize more general problems. One way to
handle these cases is to modify Assumption 2.1.1 such that L is replaced by Ls and in
conditions with as, the as-terms are replaced by asLs, where Ls is a time-dependent
process. However, in the following sections we restrict ourselves to time-independent
functions F to avoid technicalities.

Remark 2.1.2. As
ż t

0

drR,Rss “

ż t

0

drR,Rscs `
ÿ

0ăsďt

p∆Rsq
2
“

ÿ

0ăsďt

p∆Rsq
2
“

ż t

0

∆RsdR
d
s

holds true, we can write ∆RsdR
d
s instead of drR.,R.ss. In the following we use this

identity without explicitly mentioning it.
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According to (1.4) and the affine condition (1.8),

d
ÿ

i“1

Q

ż .

0

´

F pDτ´, cτ , Zτ´qdRτ

¯

i

U

t
“

ż t

0

}F pDs´, cs, Zs´q}
2∆RsdR

d
s

“

ż t

0

}F pDs´, 0, Zs´ ` csDs´q}
2∆RsdR

d
s

holds true.

Remark 2.1.3. Condition (G) is fulfilled, for example if Z is time-discrete and D is a
i.i.d. process. Cf. the paper of Dippon [10] and the references therein.

Remark 2.1.4. In the two-measurement algorithm (1.6), which is investigated later,
f̃0pzq “ 0 for any z P Rd and therefore E

`

g0pDs´q
˘

f̃0pzq “ 0 holds for any z P Rd.
Hence (G) is trivially fulfilled in such cases.

Remark 2.1.5. Assume that f̃0pzq is sublinear in the sense that there exist positive
constants C1, C2 such that C1p1`}z}q ď f̃0pzq ď C2p1`}z}q. Moreover let F pd, 0, zq “
g0pdqf̃0pzq such that, for all t ě 0, Epg0pDtqq “ 0 and Ep}g0pDtq}

2q ă 8 hold true.
Consequently the second condition of (G) can be replaced by

ˇ

ˇ

ˇ

ż 8

0

a2
s

c2
s

´

}g0pDs´q}
2
´ E

`

}g0pDs´q}
2
˘

¯

∆RsdR
d
s

ˇ

ˇ

ˇ
ă 8

and

ż 8

0

a2
s

c2
s

∆RsdR
d
s ă 8.

The first condition in (G) can be replaced by additionally assuming a random time
τpωq ă 8 such that

ˇ

ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as
cs
xZs´, g0pDs´qf̃0pZs´qydRs

ˇ

ˇ

ˇ

ˇ

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ˇ

ż 8

τpωq

as
cs
g0pDs´qdRs

ˇ

ˇ

ˇ

ˇ

and
ˇ

ˇ

ˇ

ˇ

ż 8

0

as
cs
g0pDs´qdRs

ˇ

ˇ

ˇ

ˇ

ă 8.

Remark 2.1.6. Theorem 2.1.1 still holds true if the process pDtqtě0 is replaced by a
deterministic, periodic function and the expectation values of terms including Ds are
substituted by the mean over the period. In this case with a sublinear f̃0pzq as in the
previous remark, we can employ the bound

ˇ

ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as
cs
xZs´, g0pDs´qf̃0pZs´qydRs

ˇ

ˇ

ˇ

ˇ

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ˇ

ż 8

0

as
cs
ksg0pDs´qdRs

ˇ

ˇ

ˇ

ˇ

(2.1)

with a predictable pktqtě0 and |kt| bounded for all t ě 0. Such a k is tolerable due to



14 2 Almost Sure Convergence

the fact that we can find deterministic functions D such that }
ş8

0
DsdRs}

2 “ Op1q.
For many random processes D, useful for our purposes, we typically cannot achieve
rates better than E}

şt

0
Ds´´EpDs´qdRs}

2 “ OpRtq. However we also create processes

D with rate E}
şt

0
Ds´´EpDs´qdRs}

2 “ Op1q. More details are given in the examples
of the following sections.

Remark 2.1.7. Assumption (H) is fulfilled if hiipxq ď Ci
sp1`}x}

2q with
ş8

0
a2
s

c2s
Ci
sdRs ă

8, or if hiis pxq ď C as well as
ş8

0
a2
s

c2s
dRs ă 8 hold.

Proof of Theorem 2.1.1. Without loss of generality let z˚ “ 0. We consider the
stochastic integral equation

Zt “ Z0 ´

ż t

0

as
cs
F pDs´, cs, Zs´qdRs ´

ż t

0

as
cs
Mpds,Ds´, Zs´q.

The main idea of this proof is to bound Xt :“ }Zt}
2 “ xZt, Zty by A1

t ´ A2
t `

ĂM ,

with predictable, increasing processes A1, A2 and a local martingale ĂM . Lemma A.1.1
applied to A1 yields convergence of X. Convergence of X to 0 follows by investigation
of A2 and a contradiction to the assertion of the same lemma.

Integration by parts yields

dxZs, Zsy “ ´2
as
cs

A

Zs´, F pDs´, cs, Zs´q
E

dRs ´ 2
as
cs

A

Zs´,Mpds,Ds´, Zs´q
E

`
a2
s

c2
s

d
ÿ

i“1

d
”

ż .

0

pF pDτ´, cτ , Zτ´qdRτ qi

ı

s

` 2
a2
s

c2
s

d
ÿ

i“1

pF pDs´, cτ , Zs´qqi∆RspMpds,Ds´, Zs´qqi

`
a2
s

c2
s

d
ÿ

i“1

d
”

ż .

0

pMpdτ,Dτ´, Zτ´qqi

ı

s
.

This can be decomposed as
şt

0
dxZs, Zsy “

şt

0
dAs `

şt

0
dĂMs, with

At ´ A0 :“ ´2

ż t

0

as
cs

A

Zs´, F pDs´, cs, Zs´q
E

dRs `

ż t

0

a2
s

c2
s

}F pDs´, cs, Zs´q}
2∆RsdR

d
s

`

ż t

0

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

ĂMt ´ ĂM0 :“ `2

ż t

0

a2
s

c2
s

d
ÿ

i“1

pF pDs´, cτ , Zs´qqi∆RspMpds,Ds´, Zs´qqi

´ 2

ż t

0

as
cs

A

Zs´,Mpds,Ds´, Zs´q
E

`

ż t

0

a2
s

c2
s

d
ÿ

i“1

d

ˆ

r

ż .

0

pMpdτ,Dτ´, Zτ´qqiss ´ r

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

˙

(2.2)
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where pAtqtě0 P V XP as F is predictable and due to the definition of the predictable

quadratic variation. The first and second term in the definition of ĂMt are in Mloc as
the integrands are predictable and the integrators are local martingales. By definition
of the compensator, the third term in the definition of ĂMt is in Mloc.

We employ the Lipschitz condition (A) to show that

›

›

›

1

cs

´

F pDs´, cs, Zs´q ´ cs∇cF pDs´, 0, Zs´q ´ F pDs´, 0, Zs´q
¯
›

›

›

“

›

›

›

1

cs

´

ż 1

0

cs∇cF pDs´, tcs, Zs´qdt` F pDs´, 0, Zs´q ´ cs∇cF pDs´, 0, Zs´q

´ F pDs´, 0, Zs´q
¯
›

›

›

“

›

›

›

1

cs

´

ż 1

0

cs∇cF pDs´, tcs, Zs´qdt´ cs∇cF pDs´, 0, Zs´q
¯
›

›

›

ď

ż 1

0

›

›

›
g1pDs´q

`

f̃1pZs´ ` tcsDs´q ´ f̃1pZs´q
˘

›

›

›
dt

ď }g1pDs´q}}Ds´}csL (2.3)

and analogously

›

›

›

1

cs
F pDs´, cs, Zs´q

›

›

›

2

“

›

›

›

1

cs
F pDs´, cs, Zs´q ´∇cF pDs´, 0, Zs´q `∇cF pDs´, 0, Zs´q

›

›

›

2

“

›

›

›

ż 1

0

∇cF pDs´, tcs, Zs´q ´∇cF pDs´, 0, Zs´qdt`
1

cs
F pDs´, 0, Zs´q

`∇cF pDs´, 0, Zs´q
›

›

›

2

ď 3}

ż 1

0

∇cF pDs´, tcs, Zs´q ´∇cF pDs´, 0, Zs´qdt}
2
`

3

c2
s

}F pDs´, 0, Zs´q}
2

` 3}∇cF pDs´, 0, Zs´q}
2

ď 3

ż 1

0

}g1pDs´q
`

f̃1pZs´ ` tcsDs´q ´ f̃1pZs´q
˘

}
2dt`

3

c2
s

}F pDs´, 0, Zs´q}
2

` 3}∇cF pDs´, 0, Zs´q}
2

ď 3}g1pDs´q}
2
}Ds´}

2

ż 1

0

L2
|tcs|

2dt`
3

c2
s

}F pDs´, 0, Zs´q}
2
` 3}∇cF pDs´, 0, Zs´q}

2

ď }g1pDs´q}
2
}Ds´}

2c2
sL

2
`

3

c2
s

}F pDs´, 0, Zs´q}
2
` 3}∇cF pDs´, 0, Zs´q}

2 (2.4)

hold. From (2.3) we conclude

´2
as
cs

@

Zs´, F pDs´, cs, Zs´q
D

“ ´2
as
cs

A

Zs´, F pDs´, cs, Zs´q ´ cs∇cF pDs´, 0, Zs´q ` cs∇cF pDs´, 0, Zs´q

´ F pDs´, 0, Zs´q ` F pDs´, 0, Zs´q
E
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“ ´2as
@

Zs´,∇cF pDs´, 0, Zs´q
D

´ 2
as
cs

A

Zs´, F pDs´, 0, Zs´q
E

´ 2
as
cs

A

Zs´, F pDs´, cs, Zs´q ´ cs∇cF pDs´, 0, Zs´q ´ F pDs´, 0, Zs´q
E

ď ´2as
@

Zs´,∇cF pDs´, 0, Zs´q
D

´ 2
as
cs

A

Zs´, F pDs´, 0, Zs´q
E

` 2}g1pDs´q}}Ds´}Lascs}Zs´}. (2.5)

Polarisation identity, (2.5) and (2.4) yield

At ´ A0

“ ´2

ż t

0

as
cs

A

Zs´, F pDs´, cs, Zs´q
E

dRs `

ż t

0

a2
s

c2
s

}F pDs´, cs, Zs´q}
2∆RsdR

d
s

`

ż t

0

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

ď ´2

ż t

0

as
@

Zs´,∇cF pDs´, 0, Zs´q
D

dRs ´ 2

ż t

0

as
cs

A

Zs´, F pDs´, 0, Zs´q
E

dRs

` 2

ż t

0

}g1pDs´q}}Ds´}Lascs}Zs´}dRs `

ż t

0

a2
s}g1pDs´q}

2
}Ds´}

2c2
sL

2∆RsdR
d
s

` 3

ż t

0

a2
s

c2
s

}F pDs´, 0, Zs´q}
2∆RsdR

d
s ` 3

ż t

0

a2
s}∇cF pDs´, 0, Zs´q}

2∆RsdR
d
s

`

ż t

0

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

ď 2

ż t

0

}g1pDs´q}}Ds´}Lascs}Zs´}dRs ` 2
ˇ

ˇ

ˇ

ż t

0

as
cs

A

Zs´, F pDs´, 0, Zs´q
E

dRs

ˇ

ˇ

ˇ

´ 2

ż t

0

as
@

Zs´,∇cF pDs´, 0, Zs´q
D

dRs

`

ż t

0

a2
s}g1pDs´q}

2
}Ds´}

2c2
sL

2∆RsdR
d
s ` 3

ż t

0

a2
s

c2
s

}F pDs´, 0, Zs´q}
2∆RsdR

d
s

` 3

ż t

0

a2
s}∇cF pDs´, 0, Zs´q}

2∆RsdR
d
s `

ż t

0

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

ď 2

ż t

0

}g1pDs´q}}Ds´}Lascs}Zs´}dRs

` 2
ˇ

ˇ

ˇ

ż t

0

as
cs

A

Zs´, F pDs´, 0, Zs´q
E

dRs

ˇ

ˇ

ˇ
´ 2

ż t

0

as
@

Zs´, g1pDs´qf̃1pZs´q
D

dRs

`

ż t

0

a2
s}g1pDs´q}

2
}Ds´}

2c2
sL

2∆RsdR
d
s ` 3

ż t

0

a2
s

c2
s

}F pDs´, 0, Zs´q}
2∆RsdR

d
s

` 3

ż t

0

a2
s}∇cF pDs´, 0, Zs´q}

2∆RsdR
d
s

`

ż t

0

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss.
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We decompose the right side of the previous inequality into

A1
t ´ A

1
0 :“

ż t

0

2as}g1pDs´q}}Ds´}}Zs´}csLdRs ` 2
ˇ

ˇ

ˇ

ż t

0

as
cs
xZs´, F pDs´, 0, Zs´qydRs

ˇ

ˇ

ˇ

`

ż t

0

}g1pDs´q}
2
}Ds´}

2a2
sc

2
sL

2∆RsdR
d
s

` 3

ż t

0

a2
s

c2
s

}F pDs´, 0, Zs´q}
2∆RsdR

d
s

` 3

ż t

0

a2
s}∇cF pDs´, cs, Zs´q}

2∆RsdR
d
s

`

ż t

0

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

´A2
t ` A

2
0 :“´ 2

ż t

0

as

A

Zs´, g1pDs´qf̃1pZs´q
E

dRs,

such that A ď A1 ´ A2. According to conditions (C) and (F), A2 ě 0 holds true.
Moreover, 0 ď A2 ď A1 ´ A, and hence the conditions of Lemma A.1.1 are fulfilled.

In order to make sure that pZtqtě0 converges, we show

"
ż 8

0

1

1` }Zs´}2
dA1

s ă 8

*

“ Ω a.s.

This is done by the investigation of the following terms. Assumptions (F), (D), (E)
and (G) yield

2

ż 8

0

1

1` }Zs´}2
as}g1pDs´q}}Ds´}}Zs´}csLdRs

ď C
ż 8

0

}g1pDs´q}}Ds´}ascsLdRs

ď C
ˇ

ˇ

ˇ

ż 8

0

`

}g1pDs´q}}Ds´} ´ Ep}g1pDs´q}}Ds´}q
˘

ascsLdRs

ˇ

ˇ

ˇ

` C
ż 8

0

Ep}g1pDs´q}}Ds´}qascsLdRs

ă 8,
ż 8

0

1

1` }Zs´}2
}g1pDs´q}

2
}Ds´}

2a2
sc

2
sL

2∆RsdR
d
s

ď C
ˇ

ˇ

ˇ

ż 8

0

a2
sc

2
sL

2
`

}g1pDs´q}
2
}Ds´}

2
´ Ep}g1pDs´q}

2
}Ds´}

2
q
˘

∆RsdR
d
s

ˇ

ˇ

ˇ

` C
ż 8

0

a2
sc

2
sL

2Ep}g1pDs´q}
2
}Ds´}

2
q∆RsdR

d
s ă 8
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and

3

ż 8

0

1

1` }Zs´}2
a2
s

c2
s

}F pDs´, 0, Zs´q}
2∆RsdR

d
s

“ 3

ż 8

0

1

1` }Zs´}2
a2
s

c2
s

}g0pDs´q}
2
}f̃0pZs´q}

2∆RsdRs ă 8.

Furthermore, by assumption (G), it holds true that

2
ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as
cs
xZs´, F pDs´, 0, Zs´qydRs

ˇ

ˇ

ˇ

“ 2

ˇ

ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as
cs
xZs´,

`

g0pDs´q ´ Epg0pDs´qq
˘

f̃0pZs´qydRs

ˇ

ˇ

ˇ

ˇ

` 2

ˇ

ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as
cs
xZs´,Epg0pDs´qqf̃0pZs´qydRs

ˇ

ˇ

ˇ

ˇ

ă 8.

Using the Lipschitz continuity condition, the Cauchy-Schwarz inequality and condi-
tions (E) and (F) we obtain

3

ż 8

0

1

1` }Zs´}2
a2
s}∇cF pDs´, 0, Zs´q}

2∆RsdR
d
s

“ 3

ż 8

0

1

1` }Zs´}2
a2
s}∇cF pDs´, 0, Zs´q ´∇cF pDs´, 0, 0q}

2∆RsdR
d
s

“ 3

ż 8

0

1

1` }Zs´}2
a2
s}g1pDs´q

`

f̃1pZs´q ´ f̃1p0q
˘

}
2∆RsdR

d
s

ď 3

ż 8

0

1

1` }Zs´}2
a2
sL

2
}g1pDs´q}

2
}Zs´}

2∆RsdR
d
s

ď C
ż 8

0

a2
sL

2
´

}g1pDs´q}
2
´ Ep}g1pDs´q}

2
q

¯

∆RsdR
d
s

` C
ż 8

0

a2
sL

2Ep}g1pDs´q}
2
q∆RsdR

d
s

ă 8.

Finally, by condition (H),

ż 8

0

1

1` }Zs´}2
a2
s

c2
s

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss “

ż 8

0

a2
s

c2
s

hiis pZs´q

1` }Zs´}2
dRs ă 8

holds true. Consequently it is shown that pZtqtě0 converges. We now show that Z
converges to the stationary point of F . This is proven by contradiction. It is already
shown that

Ω “ t}Zs}
2
Ñu X tA2

8 ă 8u.

However, as the smallest eigenvalue of g1pDq is not strictly greater than zero we
cannot employ the previous decomposition A ď A1 ´ A2 and especially the term A2
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to establish a contradiction. For that purpose assume that there exists a set N Ă Ω
of non-zero probability, such that for all its elements our stochastic integral equation
does not converge to the stationary point. The following considerations are done on
this set N . This means, we assume that Z does not converge to zero. Now we choose
another decomposition with an A2 which is more useful. Let

A1
t ´ A

1
0 :“

ż t

0

2as}g1pDs´q}}Ds´}}Zs´}csLdRs ` 2
ˇ

ˇ

ˇ

ż t

0

as
cs
xZs´, F pDs´, 0, Zs´qydRs

ˇ

ˇ

ˇ

` 2
ˇ

ˇ

ˇ

ż t

0

asxZs´,∇cF pDs´, 0, Zs´q ´ Epg1pDs´qqf̃1pZs´qydRs

ˇ

ˇ

ˇ

`

ż t

0

}g1pDs´q}
2
}Ds´}

2a2
sc

2
sL

2∆RsdR
d
s

` 3

ż t

0

a2
s

c2
s

}F pDs´, 0, Zs´q}
2∆RsdR

d
s

` 3

ż t

0

a2
s}∇cF pDs´, cs, Zs´q}

2∆RsdR
d
s

`

ż t

0

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

´A2
t ` A

2
0 :“´ 2

ż t

0

as

A

Zs´,Epg1pDs´qqf̃1pZs´q
E

dRs,

and note again that A ď A1 ´ A2 holds true. On the contrary to the previous part
of the proof we can now utilize that Z converges. By assumption on N for almost all
ω P N

D
ε˚ą0

D
s0

@
sěs0

ε˚ ď }Zs} ď 1{ε˚.

We imply this property to bound the following term:

2
ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
asxZs´,∇cF pDs´, 0, Zs´q ´ Epg1pDs´qqf̃1pZs´qydRs

ˇ

ˇ

ˇ

“ 2
ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
asxZs´, g1pDs´qf̃1pZs´q ´ Epg1pDs´qqf̃1pZs´qydRs

ˇ

ˇ

ˇ

“ 2
ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as

d
ÿ

i“1

Z
piq
s´

´

d
ÿ

j“1

´

g1pDs´q ´ Epg1pDs´qq

¯pijq

f̃
pjq
1 pZs´q

¯

dRs

ˇ

ˇ

ˇ

ď 4
ˇ

ˇ

ˇ

ż s0

0

1

1` }Zs´}2
as

d
ÿ

i“1

Z
piq
s´

´

d
ÿ

j“1

´

g1pDs´q ´ Epg1pDs´qq

¯pijq

f̃
pjq
1 pZs´q

¯

dRs

ˇ

ˇ

ˇ

` 4
ˇ

ˇ

ˇ

ż 8

s0`

1

1` }Zs´}2
as

d
ÿ

i“1

Z
piq
s´

´

d
ÿ

j“1

´

g1pDs´q ´ Epg1pDs´qq

¯pijq

f̃
pjq
1 pZs´q

¯

dRs

ˇ

ˇ

ˇ

ď Cpωq ` C
ˇ

ˇ

ˇ

ż 8

s0`

as

´

g1pDs´q ´ Epg1pDs´qq

¯

dRs

ˇ

ˇ

ˇ
ă 8.
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All other terms in the expansion of
ş8

0
p1 ` }Zs´}

2q´1dA1
t have already been handled

before. Now also for the new decomposition it is shown that

Ω “ t}Zs}
2
Ñu X tA2

8 ă 8u.

Now the set N is used to find a contradiction to the fact that Ω Ă tA2
8 ă 8u holds.

Note that

A2
8 “

ż 8

0

dA2
s ` A

2
0 “ 2

ż 8

0

as

A

Zs´,Epg1pDs´qqf̃1pZs´q
E

dRs ` A
2
0.

We already know that Z converges for almost all ω P Ω, but for all ω P N its limit is
not 0. Recall that for almost all ω P N

D
ε˚ą0

D
s0

@
sěs0

ε˚ ď }Zs} ď 1{ε˚.

Therefore for almost all ω P N it follows that

A2
8 “ 2

ż 8

0

as

A

Zs´,Epg1pDs´qqf̃1pZs´q
E

dRs ` A
2
0

“ 2

ż s0

0

as

A

Zs´,Epg1pDs´qqf̃1pZs´q
E

dRs

` 2

ż 8

s0`

as

A

Zs´,Epg1pDs´qqf̃1pZs´q
E

dRs ` A
2
0

ě Cpωq ` 2Cpε˚q

ż 8

s0`

asdRs “ 8

which is a contradiction to Ω “ tA2
8 ă 8u. Consequently such a set N cannot exist,

and Zt
tÑ8
ÝÝÝÑ 0 is proven. Due to the convexity-type condition (C) this stationary

point is a minimizer of f̃0.

2.2 Algorithms Using Kernel-Based Gradient Estimates

Now we state assumptions for algorithms of the one- and two-measurement forms
(1.5) and (1.6), respectively. For that purpose we formulate corresponding specialized
conditions of Assumption 2.1.1.

Assumption 2.2.1. Let conditions (D) and (E) from Assumption 2.1.1 hold.

(kA) The gradient of f : Rd Ñ R satisfies the Lipschitz condition

@
x,yPRd

}∇fpxq ´∇fpyq} ď L}x´ y},

with a constant L.

(kB) There exists a z˚ such that ∇fpz˚q “ 0.
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(kC) The gradient at z˚ satisfies the following condition:

@
εą0

D
Cpεqą0

@
tzPRd|εď}z´z˚}ď 1

ε
u

@

∇fpzq, z ´ z˚
D

ě Cpεq

(kF) For all s P r0,8q let

EpKpDs´q bDs´q “ 1d, Ep}Ds´}
4
}KpDs´q}

2
q ă 8 and E

`

}KpDs´q}
2
˘

ă 8.

Moreover

ˇ

ˇ

ˇ

ż 8

0

as

´

KpDs´q bDs´ ´ EpKpDs´q bDs´q

¯

dRs

ˇ

ˇ

ˇ
ă 8

ˇ

ˇ

ˇ

ż 8

0

ascs

´

}KpDs´q}}Ds´}
2
´ Ep}KpDs´q}}Ds´}

2
q

¯

dRs

ˇ

ˇ

ˇ
ă 8

ˇ

ˇ

ˇ

ż 8

0

a2
sc

2
s

´

}Ds´}
4
}KpDs´q}

2
´ Ep}Ds´}

4
}KpDs´q}

2
q

¯

∆RsdR
d
s

ˇ

ˇ

ˇ
ă 8

ˇ

ˇ

ˇ

ż 8

0

a2
s

´

}Ds´}
2
}KpDs´q}

2
´ Ep}Ds´}

2
}KpDs´q}

2
q

¯

∆RsdR
d
s

ˇ

ˇ

ˇ
ă 8.

(kG) For the one-measurement algorithm (1.5) we assume there exists a random time
τpωq ă 8 such that

ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs´}2
as
cs

@

Zs´, KpDs´qfpZs´q
D

dRs

ˇ

ˇ

ˇ

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

τpεq

as
cs

d
ÿ

i“1

KpDs´q
piqdRs

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ

ż 8

0

as
cs

d
ÿ

i“1

`

KpDs´q
piq
´ EpKpDs´qq

piq
˘

dRs

ˇ

ˇ

ˇ
ă 8,

for all s ě 0, EpKpDs´qq “ 0,

D
C1,C2ě0

@
zPRd

C1p1` }z}q ď fpzq ď C2p1` }z}q,

ˇ

ˇ

ˇ

ż 8

0

a2
s

c2
s

´

}KpDs´q}
2
´ Ep}KpDs´q}

2
q

¯

∆RsdR
d
s

ˇ

ˇ

ˇ
ă 8,

and

ż 8

0

a2
s

c2
s

∆RsdR
d
s ă 8.
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(kH) For every i P t1, . . . , du and z P Rd

ż 8

0

a2
s

c2
s

hiis pZs´q

1` }Zs´}2
dRs ă 8 with hiis pzq :“

dr
ş.

0
pKpDτ´q|Mpdτ, zqqiss

dRs

,

where |M was introduced on page 8.

Corollary 2.2.1. Let Assumption 2.2.1 be fulfilled. Then the process pZtqtě0, gener-
ated by the one- or two-measurement algorithms (1.5) or (1.6) converges almost surely
to the minimizing point of f .

Proof of Corollary 2.2.1. We show that the assertion is a consequence of Theorem
2.1.1. Set

F pDs´, cs, Zs´q

“

#

KpDs´qfpZs´ ` csDs´q for algorithm (1.5)
1
2
KpDs´qtfpZs´ ` csDs´q ´ fpZs´ ´ csDs´qu for algorithm (1.6).

We obtain

∇cF pDs´, cs, Zs´q

“

#

`

KpDs´q bDs´

˘

∇fpZs´ ` csDs´q for alg. (1.5)
1
2

`

KpDs´q bDs´

˘

t∇fpZs´ ` csDs´q `∇fpZs´ ´ csDs´qu for alg. (1.6).

We show that Assumption 2.2.1 implies conditions (A), (B), (C), (F), (G) and (H) in
Assumption 2.1.1. Note that according to the factorizing and the affine condition

∇cF pd, c, zq “ ∇cF pd, 0, z ` cdq “ g1pdqf̃1pz ` cdq “ pKpdq b dq∇fpz ` cdq

holds true for any z P Rd in both algorithms (1.5) and (1.6). Consequently f̃1pzq “
∇fpzq for any z P Rd. Therefore condition (kA), (kB) and (kC) imply (A), (B)
and (C), respectively. Choosing g1pdq :“

`

Kpdq b d
˘

yields (F) from (kF). With
g0pdq :“ Kpdq the first part of condition (G) follows by

F pDs´, 0, xq “ g0pDs´qf̃0pxq “

#

KpDs´qfpxq for algorithm (1.5)

0 for algorithm (1.6),

such that it is trivially fulfilled for (1.6). For (1.5) we get

ż 8

0

1

1` }Zs´}2
as
cs

@

Zs´, g0pDs´qf̃0pZs´q
D

dRs

“

ż 8

0

1

1` }Zs´}2
as
cs

@

Zs´, KpDs´qfpZs´q
D

dRs

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

0

as
cs

d
ÿ

i“1

KpDs´q
piqdRs

ˇ

ˇ

ˇ
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ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

0

as
cs

d
ÿ

i“1

`

KpDs´q
piq
´ EpKpDs´q

piq
q
˘

dRs

ˇ

ˇ

ˇ

ă 8.

To show the second assumption of (G) we note that

}F pDs´, 0, xq}
2
“

#

}KpDs´q}
2}fpxq}2 for algorithm (1.5)

0 for algorithm (1.6)

and apply a Taylor expansion and the sublinearity condition form (kG) to prove

}fpzq}2 ď Cp1` }z}q2 ď Cp1` }z}2q.

Then
ż 8

0

1

1` }Zs´}2
a2
s

c2
s

}F pDs´, 0, Zs´q}
2∆RsdR

d
s

“

ż 8

0

1

1` }Zs´}2
a2
s

c2
s

}KpDs´q}
2
}fpZs´q}

2∆RsdR
d
s

ď C
ż 8

0

a2
s

c2
s

}KpDs´q}
2∆RsdR

d
s

ď C
ˇ

ˇ

ˇ

ż 8

0

a2
s

c2
s

´

}KpDs´q}
2
´ Ep}KpDs´q}

2
q

¯

∆RsdR
d
s

ˇ

ˇ

ˇ

` C
ż 8

0

a2
s

c2
s

Ep}KpDs´q}
2
q

¯

∆RsdR
d
s ă 8.

Finally choosing Mpds,Ds´, xq :“ KpDs´qM̌pds, xq assumption (kH) yields (H).

Remark 2.2.1. It is worth mentioning that consistency of the classical Kiefer-Wolfowitz
algorithm follows from Theorem 2.1.1 by setting g0pDs´q “ ~1, g1pDs´q “ 1d and

f̃kpZs´q “

#

0 if k P t0, 2u

∇kfpZs´q if k “ 1.

2.2.1 An Application in Analog Computing

In current machine learning applications deep learning architectures are performing
extremely well [16]. However computation increases as dimensionality of the input
space increases. In such designs the computation is performed concurrently, CPUs
however run sequentially. To overcome this fact, GPUs are widely used. But these
are power hungry as well. The following examples show how analog computing offers
an alternative.

Analog VLSI (very large scale integration) implementations are working in a slow
but massively parallel fashion. Moreover they are tolerant with respect to inaccuracies,
while digital computers only accept two states and ignore values in the middle (to
achieve noise immunity).
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Off-chip learning is effective as long as training is performed in the loop. However,
I/O bandwidth limitations make systems with a large number of weight parameters
impractical. On-chip learning on the other hand provide autonomous, self-contained
systems which are able to adapt continuously in the environment they are operating
in. A detailed description can be found in a paper of Cauwenberghs [5].

Backpropagation, definitely the most common way to train neural networks, can
have vanishing or exploding gradients when training classical recurrent neural net-
works. Hence it is better to either use an advanced recurrent neural network ar-
chitecture, such as LSTM (long short-term memory), or to optimize with another
algorithm. In the following, we see how randomized stochastic approximation can be
used for such problems.

Cauwenberghs [4] considered a recurrent neural network with continuous-time dy-
namics:

τ
d

dt
xi,t “ ´xi,t `

6
ÿ

j“1

w
pnq
ij σpxj,tptq ´ θ

pnq
j q ` εi,t , t P ptn, tn`1q , i P t1, . . . , 6u,

with unknown states and thresholds wij and θj, observable neuron state variables xt
and external inputs εt, the sigmoid activation function σ and a fixed time constant τ
governing the dynamics. Hence 36 weights wij and 6 thresholds θj are to be estimated.
The usage of external input is not essential in this model. Hence we could choose ε
to be zero. However one can use ε as a teacher forcing signal εi,t :“ λγpxtar

i,t ´ xi,tq
with a constant λ, a symmetrical and monotonically increasing function γ : R Ñ R
and xtar

t the target output signal. Let Z be a 42-dimensional vector, representing the
weights and thresholds. We are looking for a value z˚ such that txtpz

˚q : t P r0,8qu
tracks txtar

t pz
˚q : t P r0,8qu the best. However at each iteration step n we only have

information on xt at a single point t in time and not for the complete time interval. Due
to this lack of information, we choose a loss function LnpZnq which can be considered
as a noisy observation of the path of }xtar

s ´xspZnq}
2
sPr0,tn`1q

. Then the loss function to

be minimized in a discrete-time setting is LnpZnq :“ }xtar
tn`1

´ xtn`1pZnq}
2. This leads

to the learning algorithm

Zn`1 “ Zn ´Dn
an
2cn

´

LnpZn ` cnDnq ´ LnpZn ´ cnDnq

¯

.

Cauwenberghs successfully implemented this model on an analog VLSI and used it
for tracking a circular target trajectory.

In Maeda’s and Wakamura’s paper [26] recurrent neural networks with a simultane-
ous perturbation learning scheme are considered. In contrast to ordinary correlation
rules, this method can be applied to analog learning and the learning of oscillatory
solutions of recurrent neural networks. They considered the implementation of a Hop-
field neural network with a field-programmable gate array (FPGA). With examples
of Hopfield neural networks for analog and for oscillatory targets they showed the
feasibility of such a learning scheme. Moreover it can be used for trajectory learning.
Usually backpropagation through time (BPTT) is employed to propagate an error
quantity through time from the current state to a state which is several time steps
in the past. Such a procedure is complicated as it takes a long time to compute the
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modifying quantities that correspond to all weights. Moreover its realization on a
hardware system is hard as well. This is where simultaneous perturbation has its
benefits. It is easy to implement and the modification of all weights can be done
without the need of a complicated error propagation through time. Unlike Hebbian
learning, it can also be applied to analog problems. Furthermore it is not necessary
to work with an energy function.

In contrast to digital computation, analog neural circuits require a smaller number
of elements and less power consumption. Moreover parallel information processing is
possible and therefore high-speed operation can be expected. Additional information
can be found in a paper of Maeda and Kusuhashi [25].

Time-continuous stochastic approximation methods fit perfectly for such models,
as no artificial discretization has to be done. Then the optimization problem to be
solved is

Zt “ Z0 ´

ż t

0

as
2cs

Ds´

 

LspZs´ ` csDs´q ´ LspZs´ ´ csDs´q
(

dRs.

Some recent analog computing applications can be worth considering. Sarpeshkar
et al. [9] showed how the behaviour of genetic circuits can be modelled by analog
circuits. They used analog electronic circuits to model interactions between proteins
and DNA in a cell with a remarkable accuracy. When treated as an analog device,
one single transistor has an infinite number of possible conductivities. However when
it is treated as a binary switch, there are only two possible states. Hence in such
a case, one would need a large number of transistors to model a large number of
concentrations.

In another paper [8] the opposite thing was done: Bacterial cells have been trans-
formed into living calculators.

Recently Sarpeshkar et al. [1] suggested a compiler which enables faster program-
ming of analog devices instead of programming by hand. Differential equations can be
translated into current flows and voltages. The laws of physics yield that the voltages
and currents across an analog circuit will balance out. When the variables in a set
of differential equations are encoded by those voltages and currents, then varying one
will also vary the others. This is in contrast to the inner workings of a digital circuit.
There time has to be split into a huge amount of intervals and the equations have to
be solved in each of these intervals. Moreover a transistor in such a circuit can only
represent one of two possible values instead of a continuous range of values.

Hence analog computers seem to be a good application of time-continuous ran-
domized stochastic approximation algorithms. This motivates the deduction of time-
continuous special cases of our original randomized stochastic approximation algo-
rithms 1.5 and 1.6, which will be done in subsection 2.2.3.

2.2.2 An Application in Model-Free Control

In 1998 Spall and Cristion [41] considered the problem of developing controllers for
a nonlinear, stochastic system whose equations are unknown. Consider a general
dynamic process X which is typically involving nonlinear dynamics and stochastic
effects. Instead of X, only a sequence of discrete-time measurements of a process Y ,
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which is a noisy observation of a function of X, is observable. In tracking applications
Yk`1 is compared with a target value Tk`1. On the basis of this information the goal is
to choose a sequence of corresponding controls pupZkqq with upZkq :“ upZk;Yk, Tk`1q

to optimize a function of future system measurements Yk`1 via Zk in such a way that
these measurements approach the target values Tk`1 in a certain sense. The structure
of u is fixed but might be unknown and Z represents the parameters to be optimized.
Assume the system dynamics and the measurements are given by

Xk`1 “ Xk ` fpZ;Xkq `Mk

Yk “ hpXkq `Nk,

with k “ 0, 1, 2, . . . where fpZ;Xkq :“ fpupZ, Yk, Tk`1q;Xkq and h are typically un-
known nonlinear functions and Mk as well as Nk are noise terms. An optimal Z can
be found by minimizing a loss function Lk related to the next measurement Yk`1,
comparing Yk`1 with a target value Tk`1. A common choice of Lk is the regularized
least squares loss function

LkpZq “ pYk`1 ´ Tk`1q
TApYk`1 ´ Tk`1q ` upZq

TBupZq (2.6)

with positive semidefinite matrices A and B representing the weight put on large
deviations from the target and the cost of large values of upZkq. The parameter Zk
only affects Lk via u. Note that, except of the dependence on Z, the structure of u is
left open. We can consider it as a direct approximator given no analytical structure
of the measurements. Spall and Cristion also considered more general forms of u
where previous measurements and controls are available as well. Besides that, they
presented a model where u is a neural network and Z are the weights to be optimized.
We seek for an optimal Z˚ minimizing the expectation value of Lk. Namely

BEpLkq
BZk

“
Bu

BZk

BEpLkq
Bu

“ 0 at Zk “ Z˚

must hold. Note, that sometimes in control literature, the expectation value is re-
placed by a conditional expectation given the previous measurements and control. But
it turns out, that under standard assumptions yielding the interchange of derivative
and integral, both are minimized by the same Z˚. Namely if we denote the conditional
expectation by E˚, then BE˚pLkq{BZt implies EpBE˚pLkq{BZtq “ BEpE˚pLkqq{BZt “
BEpLkq{BZt “ 0. Since f and h are not completely known we are unable to compute
the term BEpLkq{BZk which includes Bh{BXk`1 and Bf{Buk. For the unregularized
least squares loss function this is illustrated by

BpYk`1 ´ Tk`1q
2

BZk
“ 2pYk`1 ´ Tk`1q

Bh

BXk`1

Bf

Buk

Buk
BZk

.

Consequently a Robbins-Monro type algorithm cannot be applied as the derivative
is unavailable. As the number of parameters could be hundreds, Spall and Cristion
preferred SPSA1 and SPSA instead of the standard Kiefer-Wolfowitz algorithm. Thus
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their algorithms are of the form

Zk “ Zk´1 ´ akgpZk´1q

where the l-th component of gpẐk´1q, l “ t1, . . . , pu is given by

gpZk´1q “

$

’

&

’

%

Lp`qk

ckDkl
in the one-measurement, and

Lp`qk ´Lp´qk

2ckDkl
in the two-measurement form.

The estimates Lp˘qk :“ LkpZk´1 ˘ ckDkq make use of the observed Y
p˘q

k`1 and up˘qpZq.
In the tracking loss function from the beginning this means

LkpZq “ pY p˘qk`1 ´ Tk`1q
TApY

p˘q

k`1 ´ Tk`1q ` pu
p˘q
pZqqTBup˘qpZq.

Assume now, that system dynamics and measurements are not time-discrete but have
the following semimartingale form

Xt “ X0 `

ż t

0

fpZ;Xs´qdRs `

ż t

0

Mpds,Xs´q (2.7)

Yt “ hpXtq `Nt. (2.8)

The functions f and h are unknown nonlinear functions governing the system dynam-
ics and the measurement process, respectively. Note that only pYtqtě0 is observable.
Consider a randomized semimartingale stochastic approximation algorithm given by

Zt “ Z0 ´

ż t

0

as
cs
KpDs´q

 

LspZs´ ` csDs´q
(

dRs (2.9)

or

Zt “ Z0 ´

ż t

0

as
2cs

KpDs´q
 

LspZs´ ` csDs´q ´ LspZs´ ´ csDs´q
(

dRs, (2.10)

with an appropriate loss function Ls. Given an initial guess Z0 of the parameter Z, it
can be shown that under certain regularity conditions the solutions of these stochastic
differential equations approach the optimal Z˚.

2.2.3 Continuous-Time Algorithms

The preceding results have interesting special cases. We begin with the Itô type
stochastic integral equations [c-Ker-Rand-1] and [c-Ker-Rand-2] given by

Zt “ Z0 ´

ż t

0

as
cs
KpDsq

 

fpZs ` csDsq
(

ds´

ż t

0

as
cs
KpDsq

d
ÿ

j“1

σjspZsqdW
j
s (2.11)
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and

Zt “ Z0 ´

ż t

0

as
2cs

KpDsq
 

fpZs ` csDsq ´ fpZs ´ csDsq
(

ds

´

ż t

0

as
2cs

KpDsq

d
ÿ

j“1

σjspZsqdW
j
s (2.12)

with σj : R`ˆRd Ñ R and independent standard Brownian motions pWtqtě0, defined
on the standard basis.

Consider the following assumptions.

Assumption 2.2.2. Let (kA)–(kC) from Assumption 2.2.1 hold.

(kD’) Let patqtě0, pctqtě0 be continuous processes satisfying

at, ct ą 0 at, ct Ó 0

ż 8

0

asds “ 8

ż 8

0

ascsds ă 8.

(kF’) For all t ě 0 let the Rd-valued, continuous random process pDtqtě0 and the
measurable function K : Rd Ñ Rd fulfil Ep}KpDtq}}Dt}

2q ă 8 and EpKpDtq b

Dtq “ 1d. Moreover assume

ˇ

ˇ

ˇ

ż 8

0

as

´

KpDsq bDs ´ EpKpDsq bDsq

¯

ds
ˇ

ˇ

ˇ
ă 8

ˇ

ˇ

ˇ

ż 8

0

ascs

´

}KpDsq}}Ds}
2
´ Ep}KpDsq}}Ds}

2
q

¯

ds
ˇ

ˇ

ˇ
ă 8.

(kG’) For the one-measurement algorithm (2.11) we assume: There exists a random
time τpωq ă 8 such that

ˇ

ˇ

ˇ

ż 8

0

1

1` }Zs}2
as
cs

@

Zs, KpDsqfpZsq
D

ds
ˇ

ˇ

ˇ
ď Cpωq ` Cpωq

ˇ

ˇ

ˇ

ż 8

τpωq

as
cs

d
ÿ

i“1

KpDsq
piqds

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ

ż 8

0

as
cs

d
ÿ

i“1

`

KpDsq
piq
´ EpKpDsqq

piq
˘

ds
ˇ

ˇ

ˇ
ă 8,

for all s ě 0, EpKpDsqq “ 0.

(kH’) For every j P t1, ¨ ¨ ¨ , du

ż 8

0

a2
s

c2
s

σjspZsq
2

1` }Zs}2
ds ă 8

holds.

Remark 2.2.2. Note that the conditions in pkGq concerning the jump part ∆R are
superfluous in condition pkG1q. For the same reason there is no condition pkE 1q.
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Corollary 2.2.2. Let Assumption 2.2.2 hold. Then the strong solution pZtqtě0 of the
Itô type algorithms (2.11) or (2.12) converges to the minimizing point of the function
f .

Proof. We put the result down to Corollary 2.2.1. Setting Rs :“ s assures assumptions
(D) and (kG). Assumptions (E) and (F) follow immediately from the continuity of

the processes Z and D, respectively. Setting |Mpds, xq “
řd
j“1 σ

j
spxqdW

j
s we find

Q

ż .

0

KpDsq|Mpds, xsq
U

t

“

Q

ż .

0

KpDsq

d
ÿ

j“1

σjspxqdW
j
s

U

t
“

ż .

0

}KpDsq}
2

d
ÿ

j,k“1

pσjspxqσ
k
s pxqrdW

j
s , dW

k
s st

“

ż .

0

}KpDsq}
2

d
ÿ

j“1

pσjspxq
2ds

hence choosing hiis pxq :“
`

}KpDsq}
2
řd
j“1pσ

j
spxq

˘2

i
yields (kH) from (kH’).

Example 2.2.1. We establish two randomized Itô type stochastic approximation
algorithms. An overview of time-discrete examples can be found for instance in the
paper of Dippon [10]. By definition, the directional derivative is

lim
hÑ0

fspx` hvq ´ fspxq

h
, v P Rd.

Hence,

at
ct
tfpZt ` ctDtqu « at∇fpZtqDt `

at
ct
fpZtq

and

at
2ct
tfpZt ` ctDtq ´ fpZt ´ ctDtqu « at∇fpZtqDt

hold true. Assuming EpDtbDtq “
1
d
1d, this motivates an Itô type version of the one-

and two-measurement random direction stochastic approximation

Zt “ Z0 ´

ż t

0

as
cs
DstfspZs ` csDsquds´

ż t

0

as
cs
DsdWs

and

Zt “ Z0 ´

ż t

0

as
2cs

DstfspZs ` csDsq ´ fspZs ´ csDsquds´

ż t

0

as
2cs

DsdWs

where for the first one we additionally assume EDt “ 0.
A possible choice for D for d-dimensional problems is the Brownian motion on the

pd ´ 1q-sphere S with an initial value generated by a uniform distribution on the
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sphere. A Brownian motion on the unit sphere S of Rd, d ě 3, can be constructed
by applying the function φ : Rdzt0u Ñ S, x ÞÑ x}x}´1 to the d-dimensional Brownian
motion B “ pB1, . . . , Bdq. This yields a stochastic integral Y “ pY1, . . . , Ydq “ φpBq,
which according to Itô’s formula is given by

dYi “
}B} ´B2

i

}B}3
dBi ´

ÿ

j‰i

Bj ´Bi

}B}3
dBj ´

n´ 1

2

Bi

}B}3
dt with i, j “ 1, . . . , d.

Now the process Z, defined by the time change

Ztpωq :“ Yαpt,ωqpωq with αpt, ωq :“ βpt, ωq´1, βpt, ωq :“

ż t

0

1

}B}2
ds,

is a Brownian motion on the unit sphere S. Details can be found in the book of
Øksendal [30].

We now turn to the special case d “ 2, and verify the conditions of Assumption
2.2.2 that involve the process D. Here, with a 1-dimensional Brownian motion B,
Y “ eiB “ pcospBq, sinpBqq is a Brownian motion on the unit circle. With a random
variable U „ Unifr0, 2πq independent of the standard Brownian motion B we find

EpDtq “ E
ˆ

cospBt ` Uq
sinpBt ` Uq

˙

“ E
ˆ

cospBtq cospUq ´ sinpBtq sinpUq
sinpBtq cospUq ` cospBtq sinpUq

˙

“

ˆ

EpcospBtqq ¨ 0´ EpsinpBtqq ¨ 0
EpsinpBtqq ¨ 0` EpcospBtqq ¨ 0

˙

“

ˆ

0
0

˙

.

Now consider

E
ˆˆ

cospBt ` Uq
sinpBt ` Uq

˙

b

ˆ

cospBt ` Uq
sinpBt ` Uq

˙˙

“ E
ˆ

cospBt ` Uq
2 sinpBt ` Uq cospBt ` Uq

sinpBt ` Uq cospBt ` Uq sinpBt ` Uq
2

˙

and calculate the matrix entries

E
`

cospBt ` Uq
2
˘

“ E
´

`

cospBtq cospUq ´ sinpBtq sinpUq
˘2
¯

“ E
´

cospBtq
2 cospUq2 ´ 2 cospBtq sinpBtq cospUq sinpUq

` sinpBtq
2 sinpUq2

¯

“ EpcospBtq
2
qEpcospUq2q ´ 2 ¨ 0 ¨ 0` EpsinpBtq

2
qEpsinpUq2q

“
1

2
E
`

cospBtq
2
` sinpBtq

2
˘

“
1

2
,

E
`

sinpBt ` Uq cospBt ` Uq
˘

“ E
´

`

sinpBtq cospUq ` cospBtq sinpUq
˘

¨
`

cospBtq cospUq ´ sinpBtq sinpUq
˘

¯
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“ E
´

sinpBtq cospBtq

¯

E
´

cospUq2 ´ sinpUq2
¯

` E
´

sinpUq cospUq
¯

E
´

cospBtq
2
´ sinpBtq

2
¯

“ 0

and

E
`

sinpBt ` Uq
2
˘

“ E
´

`

sinpBt cospUq ` cospBtq sinpUq
˘2
¯

“ E
´

sinpBtq
2 cospUq2 ` 2 sinpBtq cospBtq cospUq sinpUq

` cospBtq
2 sinpUq2

¯

“ EpsinpBtq
2
qEpcospUq2q ` 2 ¨ 0 ¨ 0` EpcospBtq

2
qEpsinpUq2q

“
1

2
E
`

sinpBtq
2
` cospBtq

2
˘

“
1

2
.

Consequently

E
ˆˆ

cospBt ` Uq
sinpBt ` Uq

˙

b

ˆ

cospBt ` Uq
sinpBt ` Uq

˙˙

“
1

2

ˆ

1 0
0 1

˙

and thereby the choice KpDtq “ 2Dt makes sense to achieve EpKpDtqq “ Ep2Dtq “ 0
and EpKpDtq bDtq “ 1d for any t ě 0.

Next we turn to assumptions pkG1q and consider

ˇ

ˇ

ˇ

ż 8

0

as
cs

´

KpDsq ´ EpKpDsqq

¯

ds
ˇ

ˇ

ˇ
ă 8.

For that purpose employ Lemma A.1.4. It is sufficient to show that the rate-condition
of the second moment is fulfilled. This is shown component-wise. As U is not time-
dependent, and we are only interested in an asymptotic result, it is sufficient to
consider cospBtq and sinpBtq instead of cospDtq and sinpDtq, respectively. In order to
show

E
ˇ

ˇ

ˇ

ż t

0

cospBsqds
ˇ

ˇ

ˇ

2

“ Optq,

Itô’s formula and Itô’s isometry yield

E
ˇ

ˇ

ˇ

ż t

0

cospBsqds
ˇ

ˇ

ˇ

2

“ 2E
ˇ

ˇ

ˇ
´ cospBtq ` cospB0q ´

ż t

0

sinpBsqdBs

ˇ

ˇ

ˇ

2

ď 4E
ˇ

ˇ

ˇ
´ cospBtq ` cospB0q|

2
` 4E|

ż t

0

sinpBsqdBs

ˇ

ˇ

ˇ

2

ď C ` 4E
ˇ

ˇ

ˇ

ż t

0

sinpBsqdBs

ˇ

ˇ

ˇ

2

ď C ` C
ż t

0

EpsinpBsq
2
qds “ Optq.

In the same way E|
şt

0
sinpBsqds|

2 “ Optq holds.
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Now we show

E
ˇ

ˇ

ˇ

ż t

0

´

KpDsq bDs ´ EpKpDsq bDsq

¯pjkq

ds
ˇ

ˇ

ˇ

2

“ Optq

for each k, j P t1, . . . , du to verify
ş8

0
as

´

KpDsq bDs ´ EpKpDsq bDsq

¯

ds ă 8 from

condition pkF 1q. We calculate the corresponding matrix entries. Again it is sufficient
to consider cospBtq and sinpBtq instead of cospDtq and sinpDtq, respectively. Itô’s
formula and Itô’s isometry yield

E|
ż t

0

p2 cospBsq ´ 1qds|2

“ E|
ż t

0

cosp2Bsqds|
2
ď CE| cosp2Btq

2
| ` C ` CE|

ż t

0

sinp2BsqdBs|
2

ď C ` C
ż t

0

E| sinp2Bsq|
2ds “ Optq.

Analogously we find

E|
ż t

0

p2 sinpBsq ´ 1qds|2

“ E|
ż t

0

´ cosp2Bsqds|
2
ď CE| cosp2Btq

2
| ` C ` CE|

ż t

0

sinp2BsqdBs|
2

ď C ` C
ż t

0

E| sinp2Bsq|
2ds “ Optq

and

E|
ż t

0

2 sinpBsq cospBsqds|
2

ď CE| ´ Bt

2
´

1

4
sinp2Btq `

B0

2
`

1

4
sinp2B0q|

2
` CE|

ż t

0

cospBsq
2dBs|

2

ď CEpB2
t q ` CE| sinp2Btq

2
| ` C ` C

ż t

0

E cospBsq
4ds “ Optq.

As }KpDsq} “ 2 and }Ds} “ 1 it holds

}KpDsq}}Ds}
2
´ Ep}KpDsq}}Ds}

2
q “ 2´ Ep2q “ 0.

This shows the remaining condition of pkF 1q. For a one-dimensional stochastic ap-
proximation algorithm it is worth mentioning that the 0-sphere is not connected and
therefore not useful. But for that case a counterpart can be found just by setting
Dt “ cospBt ` Uq.

Example 2.2.2. For another example we return to the d-dimensional case and let

D´1
t :“ p1{D

p1q
t , . . . , 1{D

pdq
t q

T .
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Then the Itô type simultaneous perturbation stochastic approximation (SPSA) algo-
rithms (2.11) and (2.12) would be given by

Zt “ Z0 ´

ż t

0

as
2cs

D´1
s tfpZs ` csDsq ´ fpZs ´ csDsquds´

ż t

0

as
2cs

D´1
s dWs

and

Zt “ Z0 ´

ż t

0

as
cs
D´1
s tfpZs ` csDsquds´

ż t

0

as
cs
D´1
s dWs.

However in a time-continuous framework it must be possible that Dt equals zero for
some t. It is hard to find distributions fulfilling the corresponding conditions on Dt

and KpDtq.

Example 2.2.3. For D consider the deterministic, 2π-periodic function

Dt “

ˆ

cosptq
sinptq

˙

with t P r0,8q.

We calculate the counterparts for the expectation values in (kF’) and (kG’):

1

2π

ż 2π

0

Dtdt “
1

2π

ż 2π

0

ˆ

cosptq
sinptq

˙

dt “ 0

and

1

2π

ż 2π

0

Dt bDtdt “
1

2π

ż 2π

0

ˆ

cosptq2 sinptq cosptq
sinptq cosptq sinptq2

˙

dt “
1

2

ˆ

1 0
0 1

˙

.

Moreover, for t ą 0,

1

t
}

ż t

0

Dsds}
2
“ Op1q

and

1

t
}

ż t

0

pDs bDs ´ 12qds}
2
“ Op1q

hold true. Obviously the bounds are also of order Optq, such that we can apply Lemma
A.1.4 analogously to the previous examples, such that the remaining conditions of
(kF’) and (kG’) are verified. However having bounds of order Op1q also gives us
the possibility to apply Corollary A.1.1 and thereby make less strict conditions for
one-measurement algorithms.

Example 2.2.4. This example is similar to the previous one. However now the path
of D consists of sub-paths which we sample without replacement. Let the process D
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go along one of the paths

t ÞÑ

ˆ

cosptq
sinptq

˙

or t ÞÑ

ˆ

cosp´tq
sinp´tq

˙

with t ě 0 for m ě 1 times each. More precisely, let the process D start at D0 “

p1, 0qT . At every time t “ kπ, k P N0 it is Dt “ pp´1qk, 0qT where we sample
without replacement, from initially m upper arcs and m lower arcs, which direction
to choose next. Obviously the probability which path to choose next is dependent on
the previously chosen paths. Every 2m steps no paths are left to choose from and the
complete sample experiment will be repeated. In this case

E}
ż t

0

Dtdt}
2
“ Op1q

and

E}
ż t

0

pDt bDt ´ 12qdt}
2
“ Op1q

hold, althoughD is not deterministic. This is an example for a dependent perturbation
where Corollary A.1.1 is applicable to verify the integral conditions in (kF’) and (kG’).

2.2.4 Discrete-Time Algorithms

We carry on with the time-discrete recursive algorithms [d-Ker-Rand-1] and [d-Ker-
Rand-2] given by

Zn “ Zn´1 ´
an
cn
KpDn´1q pfpZn´1 ` cnDn´1q ` Vnq (2.13)

and

Zn “ Zn´1 ´
an
2cn

KpDn´1q
` 

fpZn´1 ` cnDn´1q ´ fpZn´1 ´ cnDn´1q
(

` Vn
˘

. (2.14)

Consider the following assumptions.

Assumption 2.2.3. Let (kA)–(kC) from Assumption 2.2.1 hold.

(kD”) Let panq, pcnq be sequences satisfying

an, cn ą 0 an, cn Ó 0
8
ÿ

n“1

an “ 8
8
ÿ

n“1

ancn ă 8.

(kE”) Assume

8
ÿ

i“1

a2
n ă 8.
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(kF”) For all n ě 0 let the Rd-valued random process pDnqně0 and the measurable
function K : Rd Ñ Rd fulfil

EpKpDnq bDnq “ 1d, Ep}Dn}
4
}KpDnq}

2
q ă 8 and E

`

}KpDnq}
2
˘

ă 8.

Moreover assume

ˇ

ˇ

ˇ

8
ÿ

n“1

an

´

KpDn´1q bDn´1 ´ EpKpDn´1q bDn´1q

¯ˇ

ˇ

ˇ
ă 8,

ˇ

ˇ

ˇ

8
ÿ

n“1

ancn

´

}KpDn´1q}}Dn´1}
2
´ Ep}KpDn´1q}}Dn´1}

2
q

¯
ˇ

ˇ

ˇ
ă 8,

ˇ

ˇ

ˇ

8
ÿ

n“1

a2
nc

2
n

´

}Dn´1}
4
}KpDn´1q}

2
´ Ep}Dn´1}

4
}KpDn´1q}

2
q

¯
ˇ

ˇ

ˇ
ă 8,

ˇ

ˇ

ˇ

8
ÿ

n“1

a2
n

´

}Dn´1}
2
}KpDn´1q}

2
´ Ep}Dn´1}

2
}KpDn´1q}

2
q

¯ˇ

ˇ

ˇ
ă 8.

(kG”) For the one-measurement algorithm (2.13) we assume: There exists a stopping
time τpωq ă 8 such that

ˇ

ˇ

ˇ

8
ÿ

n“1

1

1` }Zn´1}
2

an
cn

@

Zn´1, KpDn´1qfpZn´1q
D

ˇ

ˇ

ˇ

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

8
ÿ

n“τpωq

an
cn

d
ÿ

i“1

KpDn´1q
piq
ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ

8
ÿ

n“1

an
cn

d
ÿ

i“1

`

KpDn´1q
piq
´ EpKpDn´1qq

piq
˘

ˇ

ˇ

ˇ
ă 8,

for all n ě 1, EpKpDn´1qq “ 0,

D
C1,C2ě0

@
zPRd

C1p1` }z}q ď fpzq ď C2p1` }z}q,

ˇ

ˇ

ˇ

8
ÿ

n“1

a2
n

c2
n

´

}KpDn´1q}
2
´ Ep}KpDn´1q}

2
q

¯
ˇ

ˇ

ˇ
ă 8,

and

8
ÿ

n“1

a2
n

c2
n

ă 8.

(kH”) Assume

sup
nPN

E}KpDn´1qVn}
2
| Gnq ă 8 and EpKpDn´1qVn | Gnq “ 0 a.s.
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where Gn :“ σpZ1, . . . , Zn´1, D1, . . . , Dn´1q.

Corollary 2.2.3. Let Assumption 2.2.3 hold. Then the strong solution pZnq of the
time-discrete recursive algorithms (2.13) or (2.14), respectively converges to the min-
imizing point of the function f .

Proof. It is sufficient to check the assumptions of Corollary 2.2.1. We only investigate
recursion (2.13). The case for (2.14) follows analogously. Set F pDs´, cs, Zs´q :“
KpDs´qfpZs´ ` csDs´q. We extend the sequence pVnq to a time-continuous process

prVtqtě0 defined by

rVt :“

#

V1 for t “ 0

Vn for n´ 1 ă t ď n with n P N.

Furthermore we define

Mpds,Ds´, xq :“ KpDs´qrVsdRs and Rs :“ max
nPN
nďs

tnu “ tsu for s ě 0.

These definitions are used for
ż t

0

Mpds,Ds´, xq “

ż t

0

KpDs´qrVsdRs “
ÿ

nďt
nPN

KpDn´1qrVnp∆Rnq “
ÿ

nďt
nPN

KpDn´1qrVn

“
ÿ

nďt
nPN

KpDn´1qVn “: Ht.

We now show that
şt

0
Mpds,Ds´, xq is a martingale with respect to rFt :“ FRt , t ě 0.

EpHt | Fsq “ EpHt | Ftsuq “
ÿ

nďt
nPN

EpKpDn´1qVn | Ftsuq

“
ÿ

nďtsu

nPN

EpKpDn´1qVn | Ftsuq `
ÿ

tsuănďt
nPN

EpKpDn´1qVn | Ftsuq

“
ÿ

nďtsu

nPN

KpDn´1qVn ` 0 “
ÿ

nďtsu

nPN

KpDn´1qVn “ Hs

We get for n P N

Zn ´ Z0 “ ´

n
ÿ

j“1

aj
cj
KpDj´1qtfpZj´1 ` cjDj´1qup∆Rjq ´

n
ÿ

j“1

aj
cj
KpDj´1qVjp∆Rjq

“ ´

n
ÿ

j“1

aj
cj
KpDj´1qtfpZj´1 ` cjDj´1qu ´

n
ÿ

j“1

aj
cj
KpDj´1qVj.
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Writing recursion (2.13) in a telescoping series yields

Zn ´ Z0 “

n
ÿ

j“1

pZj ´ Zj´1q “ ´

n
ÿ

j“1

aj
cj
KpDj´1qtfpZj´1 ` cjDj´1qu ´

n
ÿ

j“1

aj
cj
KpDj´1qVj.

As a consequence it is sufficient to verify the assumptions of the theorem of the
semimartingale case. Assumptions (D) and (E) follow by

ż 8

0

asdRs “

8
ÿ

j“1

ajp∆Rjq “

8
ÿ

j“1

aj “ 8,

ż 8

0

ascsdRs “

8
ÿ

j“1

ajcjp∆Rjq “

8
ÿ

j“1

ajcj ă 8,

and

ż 8

0

a2
s∆RsdRs “

8
ÿ

j“1

a2
jp∆Rjq

2
“

8
ÿ

j“1

a2
j ă 8.

Noting that dRs “ dtsu, assumptions (kF) and (kG) follow obviously from (kF”) and
(kG”), respectively. Finally we deduce (kH) from (kH”). Knowing that

r

ż .

0

Mpds,Ds´, xqst “ r

ż .

0

KpDs´qrVsdRsst “
ÿ

nďt
nPN

E
`

KpDn´1q
2V 2

n p∆Rnq
2
| Fn´1

˘

“
ÿ

nďt
nPN

E
`

KpDn´1q
2V 2

n | Fn´1

˘

it is sufficient to show
ż 8

0

a2
s

c2
s

hiis pZs´q

1` }Zs´}2
dRs ď

ÿ

nPN

a2
n

c2
n

E
`

KpDn´1q
2V 2

n | Fn´1

˘

ă 8.

As the sum consists of positive terms only, we can apply the monotone convergence
theorem:

E
ÿ

nPN

a2
n

c2
n

E
`

KpDn´1q
2V 2

n | Fn´1

˘

“
ÿ

nPN

a2
n

c2
n

E |KpDn´1qVn|
2

Finally, Hölder’s inequality yields

ÿ

nPN

a2
n

c2
n

E |KpDn´1qVn|
2
ď

ˆ

sup
nPN

E}KpDn´1qVn}
2

˙

ÿ

nPN

a2
n

c2
n

ă 8.

Example 2.2.5. Imagine an irreducible, stationary Markovian chain pDnqně1 that
moves along the vertices of the hypercube r´1, 1sd and has a symmetric transition
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matrix. For instance, consider two kinds of settings.

• D moves to vertices to which it is connected via a common edge or stays at the
same vertex. All these events shall have the same probability. All other vertices
are not accessible in one step.

• D must leave the current vertex. It moves to vertices to which it is connected
via a common edge with same probability. All other vertices are not accessible
in one step.

The verifications of both settings are done in the same way. More specifically we will
consider irreducible, symmetric, doubly stochastic transition matrices.

Choose KpDnq :“ Dn. Then for any i P t1, . . . , nu it holds

E
`

KpDiq bDi

˘jk
“

#

EpDj
iD

k
i q “ EppDj

i q
2q “ 1 if j “ k

EpDj
iD

k
i q “

1
4

`

1´ 1´ 1` p´1q2
˘

“ 0 if j ‰ k.

Note that in this case Random Direction Stochastic Approximation (RDSA)

Zn`1 “ Zn ´
an
2cn

Dn

 `

fpZn ` cnDnq ´Wn,1

˘

´
`

fpZn ´ cnDnq ´Wn,2

˘(

and Simultaneous Perturbation Stochastic Approximation (SPSA)

Zn`1 “ Zn ´
an
2cn

D´1
n

 `

fpZn ` cnDnq ´Wn,1

˘

´
`

fpZn ´ cnDnq ´Wn,2

˘(

are identical. In order to achieve moment conditions like EpKpDnqq “ 0 we choose
the initial value D0 uniformly distributed on t´1, 1ud. Consequently EpD0q “ 0 P Rd.
Due to stationarity, EpKpDnqq “ EpDnq equals zero for any n.

Now we show that
ř8

n“1
an
cn

´

KpDnq ´ EpKpDnqq

¯

ă 8 in pkG2q is fulfilled. For

that purpose verify the conditions of Lemma A.1.4. The only non-obvious one is

E}
n
ÿ

i“1

Di}
2
“ Opnq.

First note that

ExX, Y y “
ÿ

x

ÿ

y

xx, yyPpX “ x, Y “ yq “
ÿ

x

ÿ

y

xx, yyPpY “ y | X “ xqPpX “ xq.

Let δ and δ1 denote elements of the set of all vertices of our hypercube. In our setting,
symmetry yields

ř

δ δ “ 0. Bringing these ideas together yields

ExDi, Djy “
ÿ

δ

ÿ

δ1

xδ, δ1yPpDi “ δ1 | Dj “ δqPpDj “ δq.

Due to stationarity, PpDj “ δq “ 1
2d

for all j. Note that the 2d-dimensional transition
matrix from Di to Di`1, which we denote by M in the following, is an irreducible,
symmetric, doubly stochastic matrix. For every stochastic matrix, 1 is an eigenvalue.
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According to the Perron-Frobenius theorem for stochastic matrices [19, Thm. A.2.4],
all eigenvalues have absolute value ď 1. For an irreducible, non-negative matrix A,
the spectral radius ρpAq is a positive, simple eigenvalue of A. Hence the eigenvalue
1 has algebraic (and thereby geometric) multiplicity 1. As M is a stochastic matrix,
the eigenvector related to eigenvalue 1 is v1 :“ p1, 1, . . . , 1qT “ ~1. In order to calculate
Mn, we diagonalize M by Λ :“ T TMT . It is of the form

Λ “

¨

˚

˚

˚

˝

1 0 . . . 0
0 λ2 . . . 0
...

. . . . . . 0
0 . . . 0 λ2d

˛

‹

‹

‹

‚

.

The remaining eigenvalues λ2, . . . , λd are either ´1 or have absolute value less than 1.
Note that there is no eigenvalue ´1 if M is primitive. This however does not apply
to all possible matrices in our example. The matrix

¨

˚

˚

˝

0 1{2 1{2 0
1{2 0 0 1{2
1{2 0 0 1{2
0 1{2 1{2 0

˛

‹

‹

‚

for example has eigenvalues 1, ´1 and 0.
Now the n-th power of Λ is

Λn
“

¨

˚

˚

˚

˝

1 0 . . . 0
0 λn2 . . . 0
...

. . . . . . 0
0 . . . 0 λn

2d

˛

‹

‹

‹

‚

.

Calculating Mn “ TΛnT T with

T “
´

v1

}v1}

v2

}v2}
. . .

v
2d

}v
2d
}

¯

“

´

~1?
2d

v2

}v2}
. . .

v
2d

}v
2d
}

¯

yields the desired matrix. Due to the special form of the eigenvector v1 all entries of
Mn consist, amongst others, of a summand with eigenvalue 1 divided by the squared
length of its eigenvector, namely 1 ¨ 1

2d
. This very same summand appears in every

matrix entry. All other summands consist of the other eigenvalues and are not nec-
essarily the same for each matrix entry as their corresponding eigenvector is not a
multiple of ~1. Hence we use different arguments for them in the next step.

Now calculate ExD0, Dny by multiplying each component of Mn with its corre-
sponding xδ, δ1y and the probability PpD0 “ δq and then summing up all entries. As
a result we get

ExD0, Dny ď
1

2d

ÿ

δ

ÿ

δ1

1

2d
xδ, δ1y ¨ 1` C

2d
ÿ

k“2

λnk .
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The first term on the right side represents the impact of the eigenvalue 1 and sec-
ond term stands for the remaining ones, those structure is not so handy, as their
corresponding eigenvectors are less trivial. Due to symmetry

ÿ

δ

ÿ

δ1

xδ, δ1y “
ÿ

δ

xδ,
ÿ

δ1

δ1y “
ÿ

δ

xδ, 0y “ 0,

hence the first term vanishes. Now compute

n´1
ÿ

i“0

ExD0, Diy ď

n´1
ÿ

i“0

C
2d
ÿ

k“2

λik.

There are two possibilities for λk. Either it is ´1 or |λk| ă 1. As
ř8

i“0p´1qi ă 8 and
the geometric series converges, we can find a bound C which is independent of n such
that

řn´1
i“0 ExD0, Dny ă C. Finally

E}
n´1
ÿ

i“0

Di}
2
“

n´1
ÿ

i“0

E
n´1
ÿ

j“0

xDi, Djy ď C
n´1
ÿ

i“0

1 “ Opnq.

Now check
ř8

n“1 an

´

KpDn´1q b Dn´1 ´ EpKpDn´1q b Dn´1q

¯

ă 8 in condition

pkF 2q. By a component-wise investigation of the entries we show

E}
n´1
ÿ

i“0

`

KpDiq bDi

˘

´ E
`

KpDiq bDi

˘

}
2
“ Opnq.

Note that all principal diagonal entries of
`

KpDiq bDi

˘

´ E
`

KpDiq bDi

˘

are zero.
All other entries, namely

´

`

KpDiq bDi

˘

´ E
`

KpDiq bDi

˘

¯j,k

“

´

KpDiq bDi

¯j,k

for j ‰ k, behave in the same way as E}
řn
i“1Di´1}

2 which was just proven to be
Opnq. Namely we consider

E
@

pDi bDiq ´ EpDi bDiq, pDj bDjq ´ EpDj bDjq
D

“
ÿ

δ

ÿ

δ1

´A´

pδ b δq ´ EpDi bDiq

¯

,
´

pδ1 b δ1q ´ EpDj bDjq

¯E

¨ PpDi “ δ1 | Dj “ δqPpDj “ δq
¯

,

where for matricesX and Y , xX, Y y denotes the Frobenius inner product, which means
that the elements of the matrices shall be multiplied element-wise and then summed

up. Then, similarly as before,
ř

δ

´

pδ b δq ´ EpDi b Diq

¯

“
ř

δ

´

pδ b δq ´ 1d

¯

“ 0.

Just consider the non-diagonal entries
ř

δ δ
piq ¨ δpjq with i ‰ j. Then summing over
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the 2d vertices δ yields

ÿ

δ

δpiq ¨ δpjq “

ˆ

2d

2
¨ 1`

2d

2
¨ p´1q

˙

“ 0.

Consequently we can cope with the simple, maximum eigenvalue 1 of the transition
matrix. All other eigenvalues are either ´1 of have absolute value less than 1 and can
be handled as before. As }KpDnq} “ }Dn} “

?
d, it holds

}KpDnq}
2
´ E

`

}KpDnq}
2
˘

“ d´ E
`

d
˘

“ 0.

Thus condition
ř8

n“1
a2
n

c2n

´

}KpDn´1q}
2 ´ E

`

}KpDn´1q}
2
˘

¯

ă 8 in pkG2q holds. All

assumptions of pkF 2q including the norm of KpDnq or Dn follow with the same argu-
ment.

Example 2.2.6. LetD follow the deterministic, periodic sequence of the 3-dimensional
vectors

¨

˝

1
1
1

˛

‚,

¨

˝

1
´1
1

˛

‚,

¨

˝

1
´1
´1

˛

‚,

¨

˝

1
1
´1

˛

‚,

¨

˝

´1
1
´1

˛

‚,

¨

˝

´1
´1
´1

˛

‚,

¨

˝

´1
´1
1

˛

‚,

¨

˝

´1
1
1

˛

‚.

The mean of these vectors is zero. Moreover
ř8
k“1Dk bDk “ 13. As the sequence of

vectors is deterministic and periodic,

E}
n
ÿ

i“1

Di}
2
“ }

n
ÿ

i“1

Di}
2
“ Op1q

and

E}Di bDi}
2
“ }Di bDi}

2
“ Op1q

hold true. This is sufficient to apply Lemma A.1.4, for which we only need the rate
Opnq. But we could even apply Corollary A.1.1 and thereby make less strict conditions
for one-measurement algorithms.

Remark 2.2.3. It is worth to mention that deterministically perturbated algorithms
where already handled by Bhatnagar [2]. However much stricter assumptions were
made there and only time-discrete algorithms were considered.

Example 2.2.7. Consider D to follow the vertices of a d-dimensional cube that are
sampled without replacement. After 2d steps, when no vertices are left to choose, we
start again sampling from all vertices. Here

E}
n
ÿ

i“1

Di}
2
“ Op1q
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and

E}Di bDi}
2
“ Op1q

hold. Hence this is an application for Corollary A.1.1 with a non-deterministic D.

A part of the following result has already been shown by Dippon [10] under slightly
different assumptions. There only the two-measurement algorithm (2.14) was in-
quired. The rest of the corollary is new.

Corollary 2.2.4. Let all conditions of Corollary 2.2.3 hold and furthermore assume
that pDnqně1 is not predictable but a sequence of i.i.d. random variables. Then the
strong solution pZnq of the time-discrete recursive algorithms (2.13) or (2.14), respec-
tively converges to the minimizing point of function f .

Proof. The proof is a direct consequence of Corollary 2.2.3, noting that most condi-
tions of assumption pkF 2q are fulfilled due to the Khintchine-Kolmogorov convergence
theorem.

Alternatively one can follow Dippon’s approach [10] to consider xZn, Zny and follow
similar steps as in the proof of Theorem 2.1.1. Decompose it into

}Zn}
2
“

´

Ep}Zn}2 | Z0, . . . , Zn, D0, . . . , Dn´1q

¯

`

´

}Zn}
2
´ Ep}Zn}2 | Z0, . . . , Zn, D0, . . . , Dn´1q

¯

.

The first summand represents the predictable part and the second one the martingale
part. The bounds

ˇ

ˇ

ˇ

8
ÿ

n“1

an

´

KpDn´1q bDn´1 ´ EpKpDn´1q bDn´1q

¯ˇ

ˇ

ˇ
ă 8

ˇ

ˇ

ˇ

8
ÿ

n“1

ancn

´

}KpDn´1q}}Dn´1}
2
´ Ep}KpDn´1q}}Dn´1}

2
q

¯
ˇ

ˇ

ˇ
ă 8

ˇ

ˇ

ˇ

8
ÿ

n“1

a2
nc

2
n

´

}Dn´1}
4
}KpDn´1q}

2
´ Ep}Dn´1}

4
}KpDn´1q}

2
q

¯
ˇ

ˇ

ˇ
ă 8

ˇ

ˇ

ˇ

8
ÿ

n“1

a2
n

´

}Dn´1}
2
}KpDn´1q}

2
´ Ep}Dn´1}

2
}KpDn´1q}

2
q

¯ˇ

ˇ

ˇ
ă 8,

from condition (kF”) are trivially fulfilled. For example

ˇ

ˇ

ˇ

8
ÿ

n“1

E
´

an

´

KpDn´1q bDn´1 ´ EpKpDn´1q bDn´1q

¯
ˇ

ˇ

ˇ
Z0, . . . , Zn´1, D0, . . . , Dn´2

¯
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

8
ÿ

n“1

an

´

EpKpDn´1q bDn´1 | Z0, . . . , Zn´1, D0, . . . , Dn´2q

´ EpKpDn´1q bDn´1q

¯
ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

8
ÿ

n“1

an

´

EpKpDn´1q bDn´1q ´ EpKpDn´1q bDn´1q

¯
ˇ

ˇ

ˇ

“ 0.

For the same reason the terms

ˇ

ˇ

ˇ

8
ÿ

n“1

1

1` }Zn´1}
2

an
cn

@

Zn´1, KpDn´1qfpZn´1q
D

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ

8
ÿ

n“1

an
cn

d
ÿ

i“1

`

KpDn´1q
piq
´ EpKpDn´1qq

piq
˘

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ

8
ÿ

n“1

a2
n

c2
n

´

}KpDn´1q}
2
´ Ep}KpDn´1q}

2
q

¯
ˇ

ˇ

ˇ
,

in (kG”) can be handled, as the summands turn to zero after applying the condi-
tional expectation to them. Note that this alternative approach is not applicable for
dependent perturbations pDnqně1.

Remark 2.2.4. In a continuous-time framework we do not have such a process pDtqtě0

which is path continuous, Dt1 and Dt2 are i.i.d. for t1 ‰ t2, and satisfies the moment
conditions like EpKpDtqq “ 0 and EpKpDtqbDtq “ 1d in order to achieve consistency
of pZtqtě0.

A comprehensive description of time-discrete examples with i.i.d. randomization
can be found in [10, Chapter 5].

2.2.5 An Application in Wing Design Optimization

This application deals with the design of a wing shape such that the lift L to drag D
ratio (L/D-ratio) is maximized with the wing weight as a constraint. The equations
which show the relation of L and D with the quantities to be optimized, are very
complex. In the following paragraph, the underlying equations and the relation to
the parameters to be optimized, are presented. A detailed description of this example
can be found in a paper of Xing and Damodaran from 2002 [44].

We begin with the description of the numerator. Here L is defined as L “ CLqS,
with q “ 1

2
ρV 2 the dynamic pressure, ρ the density of the air, V the flight speed,

CL “ CLαα the lift coefficient, with α the angle of attack and CLα “ 2πAR{
`

2 `
a

4` pARβ{ηq2p1` tan2 λ{β2qq
˘

the lift curve slope. In the lift curve slope expres-
sion, AR “ b2{S is the wing aspect ratio, b the wing span, λ the wing sweep an-
gle, η the airfoil efficiency factor, β “ 1 ´ M2 the compressibility factor, and M
the Mach number. The total drag is defined by D “ CDqS, with total drag co-
efficient CD “ CDi ` CD0, induced drag coefficient CDi “ C2

L{pπAReq and zero-lift
drag coefficient CD0 “ CfFQ. Here e “ 4.61p1 ´ 0.045A0.68

R qpcosλq0.15 ´ 3.1 is the
wing planform efficiency factor, Cf “ 0.455{plog10 Req2.58p1 ` 0.144M2q0.65 the sur-
face skin-friction coefficient, which in turn is a function of the Reynolds number Re,
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F “
`

1`p0.6{px{cqmqpt{cq`100pt{cq4
˘

p1.34M0.18pcosλq0.28q, t{c the airfoil thickness-
to-chord ratio, px{cqm the chord-wise location of the maximum thickness-to-chord
ratio, and Q a factor which stands for interference effects on drag. The weight of
the wing is Wwing “ 0.0106pWdgNzq

0.5S0.622A0.75
R pt{cq´0.4pcosλq´1, with design gross

weight Wdg and ultimate load factor Nz.
The variables to be optimized are angle of attack α, wing span b, mean aerodynamic

chord c, sweep angle λ and wing weight Wwing. Additionally the following constraints
are made:

1.0deg ď α ď 10.0deg 10.0 ď b ď 50.0

3.5 ď c ď 10.0 0.0deg ď λ ď 35.0deg

0.5 ď AR ď 15.0 Wwing ď 2473plbq

Hence

fpZq “
DpZq

LpZq
`
ÿ

jPJ

maxp0, gjpZqq
2

with Z “ pα, b, c, λ,Wwingq
T and J the number of conditions, is to be minimized

with Z representing the five design variables and the design constraints gjpZq ď 0
formulated as inequality constraints.

Xing and Damodaran simulated this optimization problem with simultaneous per-
turbation stochastic approximation (SPSA), simultaneous annealing (SA) and a ge-
netic algorithm (GA). It turned out that SPSA reached the stopping criteria after
383 iterations, where GA took more than 13000 and SA more than 9000 iterations.
Moreover SPSA is easier to implement.

It is worth mentioning that the same authors also investigated other aerodynamic
shape design optimization problems with the SPSA method in 2005 [45].

2.2.6 A Neural Network Application

Consider a neural network with d weights to be optimized. Typically such a problem
is solved by gradient descent. If not all sample data points are accessible, a stochastic
gradient descent procedure is a typical choice. Now we go one step further and assume
no knowledge of how the weights are connected. Thus, the exact function representing
the neural network is not accessible. The reason could be that the network structure
is too complicated or simply unknown. This means we cannot compute the gradient
of our loss function directly and Kiefer-Wolfowitz type algorithms come into play. As
mentioned in the introduction these algorithms require 2d observations per iteration
step. Especially in high-dimensional online optimization problems the system might
change faster than the corresponding weights can be estimated. For this purpose
randomized stochastic approximation algorithms are a good choice. With the ideas
in this thesis it is even possible to optimize problems where the randomization has
some dependency restrictions.
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2.3 Simulations

This section occupies with the comparison of Kiefer-Wolfowitz, one- and two-mea-
surement algorithms. The simulations should give some recommendations when to
use which procedure. Besides the almost sure convergence rate and the asymptotic
L2-error, which are simulated in the following sections, there is also the quality crite-
rion pre-convergence. This is important as in real-world applications the number of
iterations cannot be infinite. Hence it makes sense to also compare the procedures in
the first few iteration steps.

The following plots consider stochastic approximation of the minimum of the func-
tions R3 Ñ R : px1, x2, x3q

T ÞÑ
ř3
i“1 x

2
i for the two-measurement algorithm and a

linearly continued variant

R3
Ñ R : px1, x2, x3q

T
ÞÑ

3
ÿ

i“1

yi with yi “

#

x2
i if |xi| ď 1,

|xi| else,

i P t1, 2, 3u, for the one-measurement algorithm, where the latter grows linearly out-
side the unit cube. The step sequences are chosen as an “ 2{p20`nq, cn “ 1{n1{6. We

denote our stochastic approximation process by Z “ pZnqně0 “ pZ
p1q
n , Z

p2q
n , Z

p3q
n q

T
ně0.

The starting value is Z0 “ p´5,´5,´5qT . For each algorithm 10000 observations are
made. The observation noise is Bernoulli distributed with values ˘1. In order to keep
the algorithms comparable, we do not update at each iteration step. For example,
the classical Kiefer-Wolfowitz algorithm keeps the same values in each component for
the first 2d “ 6 iterations. Then an update at every component is done, which is
followed by freezing the values for another six steps. As the name implies, the two-
measurement algorithms need two evaluations per iteration step. Hence we update it
every second step. One-measurement algorithms are renewed in each step.

2.3.1 Comparison of One- and Two-measurement Algorithms and Kiefer-
Wolfowitz

We begin with the simulation (Figure 2.1) of the classical Kiefer-Wolfowitz procedure

Zn`1 “ Zn ´
an
2cn

tfpZn ` cneiq ´ fpZn ´ cneiq `Mn,iuiPt1,...,du

in R3. Note that it needs 2d “ 6 function evaluations per update.
Next we turn to the two-measurement (RDSA) in Figure 2.2

Zn`1 “ Zn ´
an
2cn

Dn

 `

fpZn ` cnDnq ´Wn,1

˘

´
`

fpZn ´ cnDnq ´Wn,2

˘(

and the one-measurement random direction stochastic approximation algorithm (RDSA1)
in Figure 2.3

Zn`1 “ Zn ´
an
cn
Dn

 `

fpZn ` cnDnq ´Wn

˘(

.
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Figure 2.1. The three components of a simulated path of a regular Kiefer-Wolfowitz
procedure in R3

These use an i.i.d. noise process. A stronger fluctuation of the one-measurement
algorithm is observable. The lack of a second, symmetrical, evaluation which could
give more stability yields a worse behaviour.

Dependent (Markovian) noise algorithms use a noise process on the vertices of
a cube, with a random vertex as starting value. The process changes the sign in
exactly one dimension d P t1, 2, 3u. The probability for each dimension is 1{3. The
two-measurement version (RDSA) is presented in Figure 2.4. It’s one-measurement
counterpart (RDSA1) on the other hand (Figure 2.5) does not indicate to eventually
converge when simulating 10000 evaluations. However using an alternative gain an “
2{p200 ` nq, yields another impression (Figure 2.6). Nevertheless these plots show a
drawback of one-measurement stochastic approximation procedures.

Another example for dependent perturbation is sampling without replacement from
the directions

p1, 1, 1qT , p´1,´1,´1qT , p´1, 1, 1qT , p1,´1, 1qT , p1, 1,´1qT , p´1,´1, 1qT ,

p´1, 1,´1qT , p1,´1,´1qT .

When all directions are chosen, the replacement experiment will be repeated. The
one- and two-measurement simulations are given in Figures 2.7 and 2.8, respectively.

Deterministically perturbated algorithms start at a random starting value, but fol-
low a deterministic rule: Starting with an arbitrary value one first changes the sign
of the first dimension then the second, and so on. The period is of length 2d. If we
started the simulation with D0 “ p1, 1, 1q

T , D in (RDSA) and (RDSA1) periodically
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Figure 2.2. The three components of a simulated path of a two-measurement procedure
with i.i.d. perturbation in R3
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Figure 2.3. The three components of a simulated path of a one-measurement procedure
with i.i.d. perturbation in R3
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Figure 2.4. The three components of a simulated path of a two-measurement procedure
with dependent perturbation
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Figure 2.5. The three components of a simulated path of a one-measurement procedure
with dependent perturbation
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Figure 2.6. The three components of a simulated path of a one-measurement procedure
with dependent perturbation and an “ 2{p200` nq
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Figure 2.7. The three components of a simulated path of a one-measurement procedure
with dependent perturbation without replacement
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Figure 2.8. The three components of a simulated path of a two-measurement procedure
with dependent perturbation without replacement

had the values

p1, 1, 1qT , p´1, 1, 1qT , p´1,´1, 1qT , p´1,´1,´1qT , p1,´1,´1qT , p1, 1,´1qT .

The corresponding simulations are given in Figures 2.9 and 2.10.
Now we present another procedure with deterministic directions which has a close

similarity to the classical Kiefer-Wolfowitz algorithm and shall hence be called pseudo-
Kiefer-Wolfowitz algorithm. It’s simulation is shown in Figures 2.11 and 2.12. The
direction is 6-periodic with D in (RDSA) and (RDSA1) periodically having the values

p1, 0, 0qT , p0, 1, 0qT , p0, 0, 1qT , p´1, 0, 0qT , p0,´1, 0qT , p0, 0,´1qT .

That is to say D1 “ p1, 0, 0q
T , D2 “ p0, 1, 0q

T , until D7 “ D1 and so on. In contrast
to the regular Kiefer-Wolfowitz algorithm, each evaluation requires not 2d function
evaluations but only one. Although this procedure looks similar to the classical Kiefer-
Wolfowitz algorithm, it is actually nothing else but the deterministic procedure we
simulated before with D concentrated on the vertices of a rotated hypercube. For this
reason we omit its simulation in the following sections.

The comparisons of one- and two-measurement algorithms show that the first ones
are very sensitive about poorly chosen initial values Z0. If additionally the random
perturbations are showing into an unfavourable direction, the iterates Zn move away
from the solution even further. Hence it is useful to investigate one-measurement
algorithms when they already start in the point which they actually shall converge
to. This is done in the following subsection. As an intermediate result, it seems
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Figure 2.9. The three components of a simulated path of a two-measurement procedure
with deterministic perturbation
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Figure 2.10. The three components of a simulated path of a one-measurement procedure
with deterministic perturbation
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Figure 2.11. The three components of a simulated path of a Pseudo Kiefer-Wolfowitz
procedure (one-measurement)
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Figure 2.12. The three components of a simulated path of a Pseudo Kiefer-Wolfowitz
procedure (two-measurement)



2.3 Simulations 53

that two-measurement algorithms are more robust at the first few iteration steps,
where one-measurement algorithms seem to have no benefit beyond requiring fewer
evaluations per iteration step.

2.3.2 Comparison of One-measurement Algorithms Starting at the Ex-
tremum of f

Now we compare one-measurement algorithms with each other. In contrast to the
previous simulations we start at Z0 “ p0, 0, 0qT , i.e. the extremum we are actually
searching for, and regard only 1000 evaluations. All other settings remain as before.
We begin with i.i.d. (Figure 2.13) and Markovian (Figure 2.13) perturbation settings
for which E}

řn´1
k“0 Dk}

2 “ Opnq holds true.
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Figure 2.13. The three components of a simulated path of a one-measurement procedure
with i.i.d. perturbation

Next we turn to algorithms for which E}
řn´1
k“0 Dk}

2 “ Op1q holds. This is the
case for sampling without replacement (Figure 2.15) and deterministic (Figure 2.16)
perturbation. It is observable that the latter two algorithms behave better at the
first evaluation steps. This becomes particularly obvious if one looks the paths up to
step 250.

The simulation of one single path gives a first impression on its behaviour though it
is not very representative for the whole process. For that reason in the next subsection
its empirical L2-error is investigated.
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Figure 2.14. The three components of a simulated path of a one-measurement procedure
with Markovian perturbation
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Figure 2.15. The three components of a simulated path of a one-measurement procedure
with dependent (sample without replacement) perturbation
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Figure 2.16. The three components of a simulated path of a one-measurement procedure
with deterministic perturbation

2.3.3 L2-Convergence of Algorithms Starting at the Extremum of f

In order to provide a fair comparison of the individual algorithms, we estimate the
L2-error empirically. The parameters are an “ 2{p70 ` nq, cn “ 1{n1{6, and starting
value Z0 “ p0, 0, 0qT . For each algorithm N “ 1000 paths with n “ 10000 single
observations, which equals the number of evaluation steps in one-measurement al-
gorithms, were performed. We begin with the one-measurement procedures. The
empirical L2-errors of these paths are given in Figure 2.17.

This plot upholds the assumption that algorithms with E}
řn´1
k“0 Dk}

2 “ Op1q
have a better behaviour at the first evaluation steps than algorithms for which only
E}

řn´1
k“0 Dk}

2 “ Opnq only holds true.
Next (Figure 2.18) we apply the same setting to Kiefer-Wolfowitz and the two-

measurement procedures. Note that similar to the previous simulations we freeze
the iterations for two or six evaluations. In two-measurement procedures the rate
of E}

řn´1
k“0 Dk}

2 seems to have no effect on the pre-asymptotic behaviour. This is
not very surprising, as due to symmetry our theorems and corollaries (cf. Corollary
2.2.3) on these algorithms did not need a condition including E}

řn´1
k“0 Dk}

2 or EpDkq.
Note that the pre-asymptotic behaviour of multi-measurement algorithms is generally
better than that of one-measurement. Although at very few steps the Kiefer-Wolfowitz
procedure has lower error, this changes after about 1000 evaluations. This is due to
the fact that the process is frozen three times as long as the the other simulations in
this plot. If we only compared with the total number of iterations without regarding
the evaluations per step, this would look completely different.

In the following chapter we occupy with the almost sure convergence rate of random-
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Figure 2.17. Empirical L2-error of Zn generated by one-measurement procedures

0.000

0.002

0.004

0.006

0.008

0 2500 5000 7500 10000

total number of single noisy function evaluations

Z
T
Z

Perturbation

Kiefer−Wolfowitz

deterministic sampling

sampling without replacement

sampling with replacement

Markovian sampling
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ized algorithms. The associated simulations yield more insights into which procedure
to prefer in which situation. Apart form already visible pre-asymptotic differences the
plots of the L2-converge rate can point out differences for large numbers of iterations.
Moreover it should be noted that the asymptotic L2-error is also dependent on the
form of f . In order to exclude the possibility that the simulated behaviour changes
for a different f we would need more advanced results like asymptotic normality.





3 Almost Sure Convergence Rate

After the verification of consistency, the question arises how fast the process pZtqtě0

defined in (1.3) converges towards the minimizing point z˚ of f̃0. Again we present a
general framework for semimartingales and deduce special cases.

3.1 A General Semimartingale Algorithm

We define γtpδq :“ Etpδ
ş.

0
asdRsq, where Etp.q is the stochastic exponential, and inves-

tigate how δ can be chosen such that

γtpδq}Zt ´ z
˚
} Ñ 0 a.s.

can be assured. Note that the stochastic exponential is the solution of Zt “ 1 `
şt

0
Zs´dXs, X0 “ 0 which is given by EtpXq :“ exp

`

Xt ´
1
2
rX,Xst

˘
ś

0ăsďtp1 `
∆Xsq exp

`

´∆Xs `
1
2
p∆Xsq

2
˘

. In that context we need additional assumptions that
are given below.

For the sake of simpler proofs let Ds´ as well as all functions which are only de-
pendent on Ds´ be bounded. The function F : Rd ˆ Rˆ Rd Ñ Rd is called p-smooth
at pc˚, z˚q if for all d P Rd

›

›

›
∇cF pd, c, zq ´

ÿ

n1 : |n1|ďm1
n2 : n2ďm2

m1`m2ďtpu´1

1

n1!n2!
∇n1
z ∇n2

c ∇cF pd, c
˚, z˚qpz ´ z˚qn1pc´ c˚qn2

›

›

›

“ o
´

}z ´ z˚}m1`ε1
¯

` o
´

|c´ c˚|m2`ε2
¯

with ε1, ε2 P r0, 1q and m1`ε1`m2`ε2 “ p´1 holds, and E}gipDsq}
2 ă 8 for i P t1, 2u

and any s P r0,8q. Note that this definition employs the multi-index notation which
was already defined in Section 1.2.

Now we extend the general Assumption 1.3.1 to p-smooth functions F .

Assumption 3.1.1.

• F is factorizable at c “ 0 with respect to d and z in the sense that there are
measurable functions f̃k : Rd Ñ Rdk , gk : Rd Ñ Rdk`1

such that

∇l
z∇k

cF pd, 0, zq “ gkpdq∇l
zf̃kpzq for l P t0, 1u and l ` k P t0, . . . , tpuu. (3.1)

59
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• F is affine in the sense of

∇k
cF pd, c, zq “ ∇k

cF pd, 0, z ` cdq for k P t0, . . . , tpuu. (3.2)

As mentioned before, Ds´ as well as all gkpDs´q with k P t0, . . . , tpuu are bounded.
Define ∇zf̃1pz

˚q “: Hz˚ . In applications later, we observe that Hz˚ coincides with
the Hessian of a function f at z˚. This condition will be naturally fulfilled in all
our applications. Its largest and smallest eigenvalues are denoted by λmax or λmin,
respectively.

We formulate the following assumptions.

Assumption 3.1.2. Let Assumption 3.1.1 and conditions (A)–(G) in Assumption
2.1.1 hold. Assume F : Rd ˆ Rˆ Rd Ñ Rd p-smooth with p ě 2 at pc˚, z˚q.

( rD)

ż 8

0

γs´pδqasc
p´1
s dRs ă 8

( rF )

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

´

gm`2pDs´q ´ E
`

gm`2pDs´q
˘

¯

f̃m`2pz
˚
qcm`1
s dRs

ˇ

ˇ

ˇ
ă 8

( rG)

ˇ

ˇ

ˇ

ż 8

0

1

1` γ2
s´pδq}Zs´}

2
γ2
s´pδq

as
cs

@

Zs´, F pDs´, 0, Zs´q
D

dRs

ˇ

ˇ

ˇ
ă 8

and let for every i P t1, . . . , du

ż 8

0

a2
s

c2
s

γ2
s´pδq}F pDs´, 0, Zs´q}

2

1` γ2
s´pδq}Zs´}

2
∆RsdR

d
s ă 8.

If p ě 3 assume E pgm´1pDs´qq f̃m´1pz
˚
q “ 0 for any m P t3, . . . , tpuu.

( rH) For every i P t1, . . . , du and all z P Rd let

ż 8

0

a2
s

c2
s

γ2
s´pδqh

ii
s pZs´q

1` γ2
s´pδq}Zs´}

2
dRs ă 8 where hiis pzq :“

dr
ş.

0
pMpdt,Dt´, zqqiss

dRs

.

The following theorem and its associated corollaries are new.

Theorem 3.1.1. Let Assumption 3.1.2 hold. Then for all δ P r0, λminq the solution
Z of algorithm (1.3) satisfies

γtpδq}Zt ´ z
˚
}
tÑ8
ÝÑ 0 a.s.
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Proof. Without loss of generality, let z˚ “ 0. The idea of the proof is similar to that
of Theorem 2.1.1. We investigate xγtpδqZt, γtpδqZty instead of }Zt}

2. With integration
by parts and Taylor expansions, we find a decomposition that is handled with Lemma
A.1.1. Integration by parts yields

γ2
t pδq “ γtpδqγtpδq “ Et

ˆ

2δ

ż .

0

asdRs `

ż .

0

δ2a2
sdrR,Rss

˙

“ Et
ˆ

2δ

ż .

0

asdRs ` δ
2

ż .

0

a2
s∆RsdR

d
s

˙

as well as

dγ2
s pδq “ γ2

s´pδq
`

2δasdRs ` δ
2a2
s∆RsdRs

˘

.

Using integration by parts as well as Lemma A.1.6 results in

γ2
t pδqxZt, Zty ´ γ

2
0pδqxZ0, Z0y

“

ż t

0

γ2
s´pδqdxZs, Zsy `

ż t

0

xZs´, Zs´ydγ
2
s pδq `

ż t

0

drγ2
pδq, xZ,Zyss

“

ż t

0

γ2
s´pδqdxZs, Zsy `

ż t

0

xZs´, Zs´ydγ
2
s pδq `

ż t

0

∆γ2
s pδqdxZ,Zys

“

ż t

0

γ2
s´pδqdxZs, Zsy `

ż t

0

xZs´, Zs´ydγ
2
s pδq `

ż t

0

`

γ2
s pδq ´ γ

2
s´pδq

˘

dxZ,Zys

“

ż t

0

γ2
s pδqdxZs, Zsy `

ż t

0

xZs´, Zs´ydγ
2
s pδq

“ ´2

ż t

0

γ2
s pδq

as
cs
xZs´, F pDs´, cs, Zs´qydRs

`

ż t

0

γ2
s pδq

a2
s

c2
s

}F pDs´, cs, Zs´q}
2∆RsdR

d
s

`

ż t

0

γ2
s pδq

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss ` 2δ

ż t

0

asγ
2
s´pδq}Zs´}

2dRs

` δ2

ż t

0

γ2
s´pδq}Zs´}

2a2
s∆RsdR

d
s `

ż t

0

γ2
s pδqdĂMs

where dĂMs is given in (2.2). With the same arguments as in the proof of consistency
şt

0
γ2
s pδqdĂMs PMloc follows. Now we have

1

cs
F pDs´, cs, Zs´q “ ∇z∇cF pDs´, 0, 0qZs´

`∇cF pDs´, 0, Zs´q ´∇z∇cF pDs´, 0, 0qZs´
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:Bs

`Cs

“ g1pDs´q∇zf̃1p0qZs´ `Bs ` Cs

where H0 “ ∇zf̃1p0q, Cs :“ 1
cs
F pDs´, cs, Zs´q ´∇cF pDs´, 0, Zs´q.
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We conclude

1

c2
s

}F pDs´, cs, Zs´q}
2
ď 3}g1pDs´q}

2λ2
max}Zs´}

2
` 3}Bs}

2
` 3}Cs}

2

and

´
1

cs
xF pDs´, cs, Zs´q, Zs´y

ď ´xZs´, g1pDs´q∇zf̃1p0qZs´y ` }Bs}}Zs´} ´ xCs, Zs´y

“ ´λmin

@

Zs´,
`

g1pDs´q ´ Epg1pDs´qq
˘

Zs´
D

´ λmin}Zs´}
2
` }Bs}}Zs´} ´ xCs, Zs´y.

A Taylor expansion at p0, 0q yields the following asymptotic behaviour of Bs:

}Bs} “

›

›

›
∇cF pDs´, 0, Zs´q ´∇z∇cF pDs´, 0, 0qZs´

›

›

›

“

›

›

›
∇cF pDs´, 0, 0q `∇z∇cF pDs´, 0, 0qZs´ ´∇z∇cF pDs´, 0, 0qZs´

` g1pDs´qop}Zs´}q
›

›

›

“ op}Zs´}q.

Furthermore }Bs}
2 “ op}Zs´}

2q. This holds true for any smoothness order p ě 2 of
F .

The investigation of Cs depends on the smoothness of F at pc˚, z˚q. In the case
where F is p-smooth with p P r2, 3q, it is already known from the proof of consistency,
namely equations (2.3) and (2.4), that

´Cs ď ~1}g1pDs´q}}Ds´}Lcs ´
1

cs
F pDs´, 0, Zs´q,

with ~1 :“ p1, . . . , 1qT and

}Cs}
2
ď

2

3
d}g1pDs´q}

2
}Ds´}

2L2c2
s `

2

c2
s

}F pDs´, 0, Zs´q}
2.

If F is p-smooth with p ě 3, there exists a θ P r0, 1s such that

Cs “
1

cs

´

F pDs´, cs, Zs´q ´ cs∇cF pDs´, 0, Zs´q
¯

“
1

cs

´

F pDs´, 0, Zs´q ` cs∇cF pDs´, 0, Zs´q `
1

2
c2
s∇2

cF pDs´, θcs, Zs´q

´ cs∇cF pDs´, 0, Zs´q
¯

“
1

cs

´

F pDs´, 0, Zs´q `
1

2
c2
s∇2

cF pDs´, θcs, Zs´q
¯

“
1

cs
F pDs´, 0, Zs´q `

1

2
cs∇2

cF pDs´, θcs, Zs´q
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“
1

cs
F pDs´, 0, Zs´q `

1

2
cs

´

∇2
cF pDs´, 0, 0q `∇z∇2

cF pDs´, 0, 0qZs´ ` op}Zs´}q

`

tpu´2
ÿ

m“1

1

m!
∇m`2
c F pDs´, 0, 0qθ

mcms ` opθ
p´2cp´2

s q

¯

“
1

cs
F pDs´, 0, Zs´q `

1

2
cs

´

g2pDs´q

´

f̃2p0q `∇zf̃2p0qZs´ ` op}Zs´}q
¯

`

tpu´2
ÿ

m“1

1

m!
gm`2pDs´qf̃m`2p0qθ

mcms ` gtpu´2pDs´qopθ
p´2cp´2

s q

¯

“
1

cs
F pDs´, 0, Zs´q ` g2pDs´qOpcs}Zs´}q

`

tpu´2
ÿ

m“0

gm`2pDs´qf̃m`2p0qOpcm`1
s q ` opcp´1

s q

and

}Cs}
2
ď

2

c2
s

}F pDs´, 0, Zs´q}
2
` c2

s}∇2
cF pDs´, θcs, Zs´q}

2

ď
2

c2
s

}F pDs´, 0, Zs´q}
2

` 5c2
s

´

}∇2
cF pDs´, 0, 0q}

2
` }∇z∇2

cF pDs´, 0, 0qZs´}
2
` op}Zs´}

2
q

`

›

›

›

tpu´2
ÿ

m“1

1

m!
∇m`2
c F pDs´, 0, 0qθ

mcms

›

›

›

2

` opθp´2cp´2
s q

¯

“
2

c2
s

}F pDs´, 0, Zs´q}
2
`Opc2

sq `Opc2
s}Zs´}

2
q ` opc2

s}Zs´}
2
q `Opc4

sq

“
2

c2
s

}F pDs´, 0, Zs´q}
2
`Opc2

sq `Opc2
s}Zs´}

2
q.

Note that for two-measurement algorithms like (1.6) it actually holds true that

}Cs}
2
“

2

c2
s

}F pDs´, 0, Zs´q}
2
`Opc4

sq `Opc2
s}Zs´}

2
q.

For one-measurement algorithms this would only be guaranteed by an additional
assumption like f̃2p0q “ 0 and thereby }∇2

cF pDs´, 0, 0q}
2 “ 0. We find

Cs “

$

’

’

’

&

’

’

’

%

1
cs
F pDs´, 0, Zs´q `Opcsq if F is p-smooth with p P r2, 3q

1
cs
F pDs´, 0, Zs´q `Opcs}Zs´}q
`
řtpu´2
m“0 gm`2pDs´qf̃m`2p0qOpcm`1

s q

`opcp´1
s q if F is p-smooth with p ě 3.

We seek for predictable processes pA1
t qtě0 and pA2

t qtě0 of finite variation with

γ2
t pδqxZt, Zty ´ γ

2
0pδqxZ0, Z0y ď A1

t ´ A
2
t `Nt,
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where Nt P M2
loc. Using the asymptotic behaviour of Bs and Cs, we find that the

following decomposition makes sense. Choose

A2
t :“ 2

ż t

0

γ2
s pδqas

ˆ

pδ ´ λminq}Zs´}
2
` }Bs}}Zs´}

˙´

dRs

A1
t :“ 2

ż t

0

γ2
s pδqas

ˆ

pδ ´ λminq}Zs´}
2
` }Bs}}Zs´}

˙`

dRs

` 2

ˇ

ˇ

ˇ

ˇ

λmin

ż t

0

γ2
s pδqas

@

Zs´,
`

g1pDs´q ´ Epg1pDs´qq
˘

Zs´
D

dRs

ˇ

ˇ

ˇ

ˇ

` 3

ż t

0

γ2
s pδqa

2
s}Bs}

2∆RsdR
d
s ` p3}g1pDs´q}

2λ2
max ` δ

2
q

ż t

0

γ2
s pδqa

2
s}Zs´}

2∆RsdR
d
s

` 2
ˇ

ˇ

ˇ

ż t

0

γ2
s pδqasxCs, Zs´ydRs

ˇ

ˇ

ˇ
` 3

ż t

0

γ2
s pδqa

2
s}Cs}

2∆RsdR
d
s

`

ż t

0

γ2
s pδq

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdτ,Dτ´, Zτ´qqiss

and

Nt :“

ż t

0

γ2
t pδqdĂMs,

with dĂMs as given in (2.2).
We are now prepared to prove

ż 8

0

1

1` γ2
s´pδqxZs´, Zs´y

dA1
s ă 8. (3.3)

A quick calculation yields

γtpδq “ exppδãt∆Rtq

´

exp
´

δ

ż t´

0

ãsdRs

¯

ź

0ăsăt

p1` δãs∆Rsq expp´δãs∆Rsq

¯

¨ p1` δãt∆Rtq expp´δãt∆Rtq

“ γt´pδqp1` δãt∆Rtq (3.4)

which is a useful representation for the investigation of 1
1`γ2

s´xZs´,Zs´y
. This, together

with the assumptions
ş8

0
a2
s∆RsdR

d
s ă 8 and

ş8

0
asdRs “ 8, implies

γtpδq

γt´pδq
“ p1` δat∆Rtq “ p1` obp1qq “ Cpωq.

Let us now expand (3.3) with the definition of A1. The first term in this expansion is
handled by showing that

D
s0pωq

@
sěs0pωq

ˆ

pδ ´ λminq}Zs´}
2
` }Bs}}Zs´}

˙`

“ 0.
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By the assumption that λmin ą δ and }Bs} “ op}Zs´}q for increasing s, there exists
such an s0 because the term in the brackets is negative for an s0 large enough. On
the other hand

ż s0pωq

0

1

1` γ2
s´pδq}Zs´}

2

ˆ

pδ ´ λminq}Zs´}
2
` }Bs}}Zs´}

˙`

γ2
s pδqasdRs

ď Cpωq
ż s0pωq

0

γ2
s pδqasdRs ă 8.

From Theorem 2.1.1 we know that pZtqtě0 converges. Moreover there are no explosion
times as pZtqtě0 is a strong solution of the stochastic integral equation (1.3). Conse-
quently supt }Zt} ď Cpωq ă 8. Therefore there exists a stopping time τpωq such that
the second term in the expansion of (3.3) can be handled as follows:

2λmin

ˇ

ˇ

ˇ

ż 8

0

γ2
s pδqas

1` γ2
s´pδq}Zs´}

2

@

Zs´,
`

g1pDs´q ´ Epg1pDs´qq
˘

Zs´
D

dRs

ˇ

ˇ

ˇ

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

τpωq

as

´

g1pDs´q ´ Epg1pDs´qq

¯

dRs

ˇ

ˇ

ˇ

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

0

as

´

g1pDs´q ´ Epg1pDs´qq

¯

dRs

ˇ

ˇ

ˇ

ă 8.

The fourth term in the expanded (3.3) is bounded by

C
ż 8

0

ˆ

γspδq

γs´pδq

˙2 γ2
s´pδq}Zs´}

2

1` γ2
s´pδq}Zs´}

2
a2
s∆RsdR

d
s ď Cpωq

ż 8

0

a2
s∆RsdR

d
s ă 8

and the seventh term by

C
ż 8

0

ˆ

γspδq

γs´pδq

˙2 γ2
s´pδq

1` γ2
s´pδq}Zs´}

2

a2
s

c2
s

d
ÿ

i“1

dr

ż .

0

pMpdt,Dt´, Zt´qqiss

ď

ż 8

0

γ2
s´pδqh

ii
s pZs´q

1` γ2
s´pδq}Zs´}

2

a2
s

c2
s

dRs ă 8.

The remaining terms dependent on Bs or Cs, respectively. We make use of the fact,
that they are bounded almost surely and we know their asymptotic properties.

Investigation of the third term leads to

ż 8

0

γ2
s pδq}Bs}

2

1` γ2
s´pδq}Zs´}

2
a2
s∆RsdR

d
s

ď Cpωq ` Cpωq
ż 8

τpωq

ˆ

γspδq

γs´pδq

˙2 γ2
s´pδq}Zs´}

2

1` γ2
s´pδq}Zs´}

2
a2
s∆RsdR

d
s

ď Cpωq ` Cpωq
ż 8

0

a2
s∆RsdR

d
s ă 8.

For the fifth summand we distinguish two cases. If F is p-smooth at p0, 0q with
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p P r2, 3q, it holds

ˇ

ˇ

ˇ

ż 8

0

ˆ

γspδq

γs´pδq

˙2 γ2
s´pδq

1` γ2
s´pδq}Zs´}

2
xCs, Zs´yasdRs

ˇ

ˇ

ˇ

ď Cpωq
ż 8

0

γs´pδqascsdRs

` Cpωq
ˇ

ˇ

ˇ

ż 8

0

γ2
s´pδq

as
cs

xZs´, F pDs´, 0, Zs´qy

1` γ2
s´pδq}Zs´}

2
dRs

ˇ

ˇ

ˇ
ă 8,

and, if F is p-smooth at p0, 0q with p ě 3, then

ˇ

ˇ

ˇ

ż 8

0

γ2
s pδqxCs, Zs´y

1` γ2
s´pδq}Zs´}

2
asdRs

ˇ

ˇ

ˇ

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

τpωq

γ2
s´pδq

as
cs

xZs´, F pDs´, 0, Zs´qy

1` γ2
s´pδq}Zs´}

2
dRs

ˇ

ˇ

ˇ

` Cpωq
ż 8

τpωq

ˆ

γspδq

γs´pδq

˙2

¨

´

cs}Zs´} `
řtpu´2
m“0 gm`2pDs´qf̃m`2p0qc

m`1
s ` cp´1

s

¯

γ2
s´pδq}Zs´}

1` γ2
s´pδq}Zs´}

2
asdRs

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

τpωq

γ2
s´pδq

as
cs

xZs´, F pDs´, 0, Zs´qy

1` γ2
s´pδq}Zs´}

2
dRs

ˇ

ˇ

ˇ

` Cpωq
ż 8

0

ascsdRs ` Cpωq
ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

gm`2pDs´qf̃m`2p0qc
m`1
s dRs

ˇ

ˇ

ˇ

` Cpωq
ż 8

0

γs´pδqasc
p´1
s dRs

ď Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

τpωq

γ2
s´pδq

as
cs

xZs´, F pDs´, 0, Zs´qy

1` γ2
s´pδq}Zs´}

2
dRs

ˇ

ˇ

ˇ

` Cpωq
ż 8

0

ascsdRs ` Cpωq
ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

E
`

gm`2pDs´q
˘

f̃m`2p0qc
m`1
s dRs

ˇ

ˇ

ˇ

` Cpωq
ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

´

gm`2pDs´q ´ E
`

gm`2pDs´q
˘

f̃m`2p0q
¯

cm`1
s dRs

ˇ

ˇ

ˇ

` Cpωq
ż 8

0

γs´pδqasc
p´1
s dRs

“ Cpωq ` Cpωq
ˇ

ˇ

ˇ

ż 8

τpωq

γ2
s´pδq

as
cs

xZs´, F pDs´, 0, Zs´qy

1` γ2
s´pδq}Zs´}

2
dRs

ˇ

ˇ

ˇ
` Cpωq

ż 8

0

ascsdRs

` Cpωq
ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

´

gm`2pDs´q ´ E
`

gm`2pDs´q
˘

f̃m`2p0q
¯

cm`1
s dRs

ˇ

ˇ

ˇ

` Cpωq
ż 8

0

γs´pδqasc
p´1
s dRs ă 8.
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Finally we have two cases for the sixth term as well. If F is p-smooth at p0, 0q with
p P r2, 3q, we use that

ş8

0
γs´pδqascsdRs ă 8 together with

ş8

0
asdRs “ 8 implies

γs´pδqcs Ñ 0 and hence

ż 8

0

γ2
s pδq}Cs}

2a2
s

1` γ2
s´pδq}Zs´}

2
∆RsdRs

ď Cpωq ` Cpωq
ż 8

τpωq

pγs´pδqcsq
2a2
s

1` γ2
s´pδq}Zs´}

2
∆RsdR

d
s

` Cpωq
ż 8

τpωq

γ2
s´pδqa

2
sL

2}Zs´}
2

1` γ2
s´pδq}Zs´}

2
∆RsdR

d
s

` Cpωq
ż 8

0

a2
s

c2
s

γ2
s´pδq

1` γ2
s´pδq}Zs´}

2
}F pDs´, 0, Zs´q}

2∆RsdR
d
s

ď Cpωq ` Cpωq
ż 8

0

a2
s∆RsdR

d
s

` Cpωq
ż 8

0

a2
s

c2
s

γ2
s´pδq

1` γ2
s´pδq}Zs´}

2
}F pDs´, 0, Zs´q}

2∆RsdR
d
s ă 8.

If F is p-smooth at p0, 0q with p ě 3, we make use of the facts that

}Cs}
2
ď Cpωq

´

c2
s}Zs´}

2
` c2

s `
1

c2
s

}F pDs´, 0, Zs´q}
2
¯

holds for an s larger than τpωq and that γscs Ñ 0 implies γ2
sc

2
s Ñ 0, to conclude

ż 8

0

ˆ

γspδq

γs´pδq

˙2 γ2
s´pδq}Cs}

2

1` γ2
s´pδq}Zs´}

2
a2
s∆RsdR

d
s

ď Cpωq ` Cpωq
ż 8

τpωq

´

c2
s ` γ

2
s´pδqc

2
s

¯

a2
s∆RsdR

d
s

` Cpωq
ż 8

0

a2
s

c2
s

γ2
s´pδq

1` γ2
s´pδq}Zs´}

2
}F pDs´, 0, Zs´q}

2∆RsdR
d
s

ă 8.

Hence γ2
t pδq}Zt}

2 converges by Lemma A.1.1.
Following the arguments of [37] in the same way an investigation of A2

t yields that
our algorithm converges to z˚ “ 0, the minimizing point of f̃0 .

According to Lemma A.1.1 we know that

Ω “ tγ2
s pδq}Zs}

2
Ñu X tA2

8 ă 8u.

Assume now that there exists a set N of non-zero probability on which γ2
t pδq}Zt}

2

does not convergence to 0. A contradiction to Ω Ă tA2
8 ă 8u completes the proof.

Note that

A2
8 “

ż 8

0

dA2
s ` A

2
0 ě 2

ż 8

0

γ2
s pδqas

´

pδ ´ λminq}Zs´}
2
` }Bs}}Zs´}

¯´

dRs ` A
2
0
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and }Bs} “ op}Zs´}q. Consequently there exists an s1
0pωq ă 8 such that for all

s ě s1
0pωq the relation }Bs} ď

1
2
pλmin ´ δq}Zs´} holds true. As λmin ą δ we conclude

for all s ě s1
0pωq that

´

pδ ´ λminq}Zs´}
2
` }Bs}}Zs´}

¯´

ě

´

pδ ´ λminq}Zs´}
2
`

1

2
pλmin ´ δq}Zs´}

2
¯´

“
1

2
pλmin ´ δq}Zs´}

2.

It is already known that the process γ2pδq}Z}2 converges for almost all ω P Ω. But
according to our assumption it does not converge to 0 for all ω P N . This implies that
for almost all ω P N ,

D
ε˚ą0

D
s20

@
těs20

ε˚ ď γ2
t´pδq}Zt´}

2.

Bringing these ideas together with s0 :“ maxts1
0, s

2
0u yields

A2
8 ě 2

ż 8

0

´

pδ ´ λminq}Zs´}
2
` }Bs}}Zs´}

¯´

asγ
2
s pδqdRs ` A

2
0

ě pλmin ´ δq

ż 8

s0

asγ
2
s´pδq}Zs´}

2dRs ě pλmin ´ δqε
˚

ż 8

s0

asdRs

ě pλmin ´ δqε
˚

loooooomoooooon

ą0

ˆ
ż 8

0

asdRs

loooomoooon

“8

´

ż s0

0

asdRs

loooomoooon

ďpRs0´R0qă8

˙

“ 8

for almost all ω P N , which leads to the desired contradiction and completes the proof.

3.2 Algorithms Using Kernel-Based Gradient Estimates

From Theorem 3.1.1 we can deduce many interesting special cases. We begin with
the most general ones for semimartingales and proceed with time-continuous and
time-discrete settings.

We have results for the one- and two-measurement algorithms (1.5) and (1.6). The
concept of p-smoothness is simpler in these cases. The function f fulfils the p-smooth
condition at z˚ if

›

›

›
∇fpzq ´

ÿ

mďtpu´1

1

m!
∇m∇fpz˚qpz ´ z˚qm

›

›

›
“ o

´

}z ´ z˚}p´1
¯

.

We furthermore assume, that D and KpDq are bounded and therefore

Ep}KpDsq}
2
}Ds}

2pp´1q
q ă 8

holds true.
The following assumptions are important.
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Assumption 3.2.1. Let conditions (kA)–(kC), (kF), (kG), (D) and (E) from As-
sumption 2.2.1 and condition (D̃) from Assumption 3.1.2 hold.

(ĂkF ) If p ě 3 assume

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

´

pKpDs´qD
m`2
s´ q ´ E

`

pKpDs´qD
m`2
s´ q

˘

¯

cm`1
s dRs

ˇ

ˇ

ˇ
ă 8

as well as E
`

KpDsqD
m´1
s

˘

“ 0 for all m with |m| P t3, . . . , tpuu for algorithm
(1.5) and

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu

2
´1

ÿ

k“1

´

pKpDs´qD
2k`1
s´ q ´ E

`

pKpDs´qD
2k`1
s´ q

˘

¯

c2k
s dRs

ˇ

ˇ

ˇ
ă 8

as well as E
`

KpDsqD
m´1
s

˘

“ 0 for all m with odd length |m| P t3, . . . , tpuu for
algorithm (1.6).

(ĂkG) If p ě 3 we furthermore assume E
`

KpDsqD
m´1
s

˘

“ 0 for all m with |m| P
t3, . . . , tpuu for algorithm (1.5).

( ĂkH) Let for every i P t1, . . . , du and all z P Rd

ż 8

0

a2
s

c2
s

γ2
s´pδqh

ii
s pZs´q

1` γ2
s´pδq}Zs´}

2
dRs ă 8 where hiis pzq :“

dr
ş.

0
pKpDsq|Mpdt, zqqiss

dRs

,

where |M was introduced on page 8.

Remark 3.2.1. Random variables fulfilling the moment conditions of (ĂkG) can be
generated with the help of a Vandermonde matrix. Details can be found in the paper
of Dippon [10, section 5.2].

Corollary 3.2.1. Let Assumption 3.2.1 hold, and assume a continuous Hessian H
around z˚. Assume that f is p-smooth at z˚ with p ě 2. Then for both, the one-
measurement (1.5) and the two-measurement (1.6) algorithm, for all 0 ď δ ă λmin

γtpδq}Zt ´ z
˚
}
tÑ8
ÝÑ 0 a.s.

holds.

Proof. We trace the result back to Theorem 3.1.1. Conditions (D), (E) and ( rD) are
also assumed there. In the proof of Corollary 2.2.1 we already showed that (A), (B),
(C), (F) and (G) follow from (kA), (kB), (kC), (kF) and (kG). It remains to show

that (ĂkF ), (ĂkG) and ( ĂkH) yield ( rF ), ( rG) and ( rH), respectively. It holds true that

f̃kpzq “

#

∇kfpzq if k is odd

0 if k is even.
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Condition ( rF ) follows from (ĂkF ) by gkpDs´q “ KpDs´qD
k
s´ and

Epg1pDs´q “ EpKpDs´q bDs´q “ 1d. Hence

ˇ

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

´

g1pDs´q ´ Epg1pDs´qq

¯

dRs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

´

pKpDs´q bDs´q ´ 1d

¯

dRs

ˇ

ˇ

ˇ

ˇ

ă 8.

Moreover for (1.5)

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

´

gm`2pDs´q ´ E
`

gm`2pDs´q
˘

¯

f̃m`2pz
˚
qcm`1
s dRs

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“0

´

pKpDs´qD
m`2
s´ q ´ E

`

pKpDs´qD
m`2
s´ q

˘

¯

∇m`2fpZs´qc
m`1
s dRs

ˇ

ˇ

ˇ

ă 8

and for (1.6), as f̃kpzq “ 0 if k is odd,

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu´2
ÿ

m“1

´

gm`2pDs´q ´ E
`

gm`2pDs´q
˘

¯

f̃m`2pz
˚
qcm`1
s dRs

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ż 8

0

γs´pδqas

tpu

2
´1

ÿ

l“1

´

pKpDs´qD
2l`1
s´ q ´ E

`

pKpDs´qD
2l`1
s´ q

˘

¯

∇2l`1fpZs´qc
2l
s dRs

ˇ

ˇ

ˇ

ă 8.

Now we turn to ( rG). For the one-measurement algorithm (1.5), the first condition

of ( rG) holds by assumption and Epg0pDs´qq “ EpKpDs´qq “ 0 by (kG). The two-

measurement (1.6) case is verified as f̃0pzq “ 0. Turning to the last part of ( rG)
yields

ż 8

0

a2
s

c2
s

γ2
s pδq

1` γ2
s´pδq}Zs´}

2
}F pDs´, 0, Zs´q}

2∆RsdR
d
s

“

ż 8

0

ˆ

γ2
s pδq

γ2
s´pδq

˙

a2
s

c2
s

γ2
s´pδq

1` γ2
s´pδq}Zs´}

2
}F pDs´, 0, Zs´q}

2∆RsdR
d
s

“

$

&

%

0 for algorithm (1.5)

Cpωq
ż 8

0

a2
s

c2
s

γ2
s´pδq}fpZs´q}

2

1` γ2
s´pδq}Zs´}

2
∆RsdR

d
s for algorithm (1.6)

ă 8.

Choosing Mpds,Ds´, xq :“ KpDs´q|Mpds, xq yields ( rH) from ( ĂkH).
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3.2.1 Continuous-Time Algorithms

Likewise consistency, the almost-sure convergence rate includes an interesting special
case for the Itô setting.

Assumption 3.2.2. Let f be p-smooth at z˚ with p ě 2. Assumption 2.2.2 holds

with (kD’) replaced by at :“ ap1` tq´1, a ą 0, as well as ct :“ cp1` tq´
1
2p , c ą 0, and

(kH’) replaced by
řd
j“1 σ

ij
s pxq ď Cp1` }x}q for all i P t1, . . . , du.

(ĄkF 1) If p ě 3 and algorithm (2.11) is used, assume

ˇ

ˇ

ˇ

ż 8

0

sδas

tpu´2
ÿ

m“0

´

pKpDsqD
m`2
s q ´ E

`

pKpDsqD
m`2
s q

˘

¯

cm`1
s ds

ˇ

ˇ

ˇ
ă 8

as well as E
`

KpDsqD
m´1
s

˘

“ 0 for all m with |m| P t3, . . . , tpuu.

If p ě 3 and algorithm (2.12) is used, assume

ˇ

ˇ

ˇ

ż 8

0

sδas

tpu

2
´1

ÿ

m“1

´

pKpDsqD
2m`1
s q ´ E

`

pKpDsqD
2m`1
s q

˘

¯

c2m
s ds

ˇ

ˇ

ˇ
ă 8

as well as E
`

KpDsqD
m´1
s

˘

“ 0 for all m with odd length |m| P t3, . . . , tpuu.

(ĄkG1) For the one-measurement algorithm (2.11) let

ˇ

ˇ

ˇ

ˇ

ż 8

0

as
cs
s2δ
pδq
xZs, KpDsqfpZsqy

1` s2δ}Zs}2
ds

ˇ

ˇ

ˇ

ˇ

ă 8.

If p ě 3 we furthermore assume E
`

KpDsqD
m´1
s

˘

“ 0 for all m with |m| P
t3, . . . , tpuu for algorithm (2.11).

Corollary 3.2.2. For the Itô type stochastic integral equations (2.11) and (2.12) let
Assumption 3.2.2 hold. For p-smooth f at z˚ with p ě 3, the Hessian H of f shall
exist and be continuous around z˚, and λmin ą

p´1
2pa

.
Then

p1` tqδ}Zt ´ z
˚
} Ñ 0 a.s.

for all δ P p0, p´1
2p
q.

Proof. It is sufficient to show that the conditions of Corollary 3.2.1 are fulfilled. In
both corollaries, (kA), (kB) and (kC) are assumed. Due to the continuity of the Itô

type stochastic integral equation, (ĂkG) and (E) are trivially fulfilled. Hence it remains

to verify that conditions (kG), (D)–(F), (D̃), (ĂkF ) and ( ĂkH) hold. As well as in the

proof of consistency we choose Rs :“ s and |Mpds, xq :“
řd
j“1 σ

j
spxqdW

jpsq. The
path-continuity of pRtqtě0 transfers to pγtpδqqtě0.

γtpδq “ Et
ˆ

δ

ż .

0

asdRs

˙

“ Et
ˆ

δa

ż .

0

1

1` s
ds

˙

“ exppδa lnp1` tqq “ p1` tqaδ



72 3 Almost Sure Convergence Rate

Condition (ĂkF ) follows due to Rs “ s. Moreover assume a sufficiently small ε ą 0.

According to our conditions, 0 ď δ ă λmin holds. We can show ( rD) by choosing
δ P

`

0, p´1
2pa

˘

, which yields

ż 8

0

γs´pδqascsdRs “ ac

ż 8

0

p1` sqaδ´1´ p´1
2p ds ď ac

ż 8

0

p1` sq
p´1
2p
´ε´1´ p´1

2p ds

“ ac

ż 8

0

p1` sq´1´εds ă 8.

Assumption ( ĂkH) follows by

ż 8

0

γ2
s´pδqh

ii
s pZs´q

1` γs´pδq}Zs´}2
a2
s

c2
s

dRs

“

d
ÿ

j“1

ż 8

0

γ2
s pδqσ

j
spZsq

2

1` γspδq}Zs}2
a2
s

c2
s

ds ď C
ż 8

0

γ2
s pδq

p1` }Zs}q
2

1` γspδq}Zs}2
looooooomooooooon

ď1

a2
s

c2
s

ds

ď C
ż 8

0

γ2
s pδq

a2
s

c2
s

ds “ C a
2

c2

ż 8

0

p1` sq2aδ´2` p´1
p ds

“ C
ż 8

0

p1` sq
p´1
p
´ε´2´ p´1

p ds ď C
ż 8

0

p1` sq´1´εds ă 8.

Condition (F) is a direct consequence of (kF’). The choice of patqtě0 and pctqtě0 yields
(D) form (kD’). In an analogous way, (kG’) implies (kG).

3.2.2 Discrete-Time Algorithms

We proceed with a time-discrete special case. In the following results we obtain the
same rates of convergence as in the previous subsection.

Assumption 3.2.3. Let f be p-smooth at z˚ with p ě 2. Assumption 2.2.3 holds for
algorithms (2.13) and (2.14), with (kD”) and (kE”) replaced by an :“ an´1, a ą 0,

and cn :“ cn´
1
2p , c ą 0.

(ĄkF 2) If p ě 3 and algorithm (2.13) is used, assume

ˇ

ˇ

ˇ

8
ÿ

k“1

kδak

tpu´2
ÿ

m“0

´

pKpDk´1qD
m`2
k´1 q ´ E

`

pKpDk´1qD
m`2
k´1 q

˘

¯

cm`1
k

ˇ

ˇ

ˇ
ă 8

as well as E
`

KpDkqD
m´1
k

˘

“ 0 for all m with |m| P t3, . . . , tpuu.

If p ě 3 and algorithm (2.14) is used, assume

ˇ

ˇ

ˇ

8
ÿ

k“1

kδak

tpu

2
´1

ÿ

m“1

´

pKpDk´1qD
2m`1
k´1 q ´ E

`

pKpDk´1qD
2m`1
k´1 q

˘

¯

c2m
k

ˇ

ˇ

ˇ
ă 8
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as well as E
`

KpDkqD
m´1
k

˘

“ 0 for all m with odd length |m| P t3, . . . , tpuu.

(ĄkG2) For the one-measurement algorithm (2.13) let

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

ak
ck
k2δ xZk´1, KpDk´1qfpZk´1qy

1` k2δ}Zk´1}
2

ˇ

ˇ

ˇ

ˇ

ă 8

and

8
ÿ

k“1

a2
k

c2
k

k2δ }fpZk´1q}
2

1` k2δ}Zk´1}
2
ă 8.

If p ě 3 we furthermore assume E
`

KpDkqD
m´1
k

˘

“ 0 for all m with |m| P
t3, . . . , tpuu for algorithm (2.13).

Corollary 3.2.3. Let Assumption 3.2.3 hold. If f is p-smooth at z˚, the Hessian H
of f exists and is continuous around z˚, and λmin ą

p´1
2pa

, then

nδ}Zn ´ z
˚
} Ñ 0 a.s.

for all δ P p0, p´1
2p
q.

Proof. Likewise the previous proof, it is sufficient to verify the conditions of Corollary
3.2.1. Hence we show that conditions (kG), (D)–(F), (D̃), (ĂkF ), (ĂkG) and ( ĂkH) hold.
Conditions (kA), (kB) and (kC) are assumed in both corollaries. We choose the same
notations as in the proof of consistency of the recursion. Together with Rs :“ tsu and
as :“ as´1 a Taylor expansion, and using that lnp1` xq « x for x ! 1 holds, yield

γtpδq “ Et
ˆ

aδ

ż .

0

1

s
dRs

˙

“

ttu
ź

i“1

ˆ

1`
aδ

i

˙

“ exp

˜

ttu
ÿ

i“1

lnp1`
aδ

i
q

¸

“: Cttu exp

˜

aδ

ttu
ÿ

i“1

1

i

¸

where Cttu Ñ C8 P p0,8q as tÑ 8. Investigating this exponential term yields

exp

˜

aδ

ttu
ÿ

i“1

1

i

¸

ě exp

˜

aδ

ż ttu

1

1

x
dx

¸

“ ttuaδ

as well as

exp

˜

aδ

ttu
ÿ

i“1

1

i

¸

“ exp

˜

aδ ` aδ

ttu
ÿ

i“2

1

i

¸

ď exp

˜

aδ ` aδ

ż ttu

1

1

x
dx

¸

“ exppaδqttuaδ

where the inequalities in the previous term follow by the integral test for convergence.
These results enable us to verify the assumptions of the semimartingale case with
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γt´pδq replaced by ttuaδ. Assume a sufficiently small ε ą 0. With the conditions on δ,
the bound

ż 8

0

tsuaδascsdRs ď ac
ÿ

nPN

naδ´1´ p´1
2p “ C

ÿ

nPN

n
p´1
2p
´ε´1´ p´1

2p “ C
ÿ

nPN

n´1´ε
ă 8

yields ( rD). Condition (ĂkF ) follows due to Rs “ s. In order to show ( ĂkH), we

use the positivity of the processes tsu2aδ a
2
s

c2s
hiis pZs´q and ∆Rs as well as the monotone

convergence theorem. Positivity enables us to investigate the expectation only. The
latter, together with Hölder’s inequality, yields

E
ż 8

0

tsu2aδ a
2
s

c2
s

hiis pZs´qdRs ď CE
ÿ

nPN

EpKpDnq
2V 2

n | Fn´1qn
2aδ´2´ p´1

2p

ď C
ˆ

sup
nPN

E}KpDsq
2
}V 2

n

˙

ÿ

nPN

n
p´1
p
´ε´2´ p´1

p

ď C
ÿ

nPN

n´1´ε
ă 8.

Validity of condition (ĂkG) follows analogously. The choice of panq and pcnq yields (D)
and (E) via (kD”) and (kE”), respectively. Assumptions (F) and (kG) follow directly
form (kF”) and (kG”), respectively.

3.3 Simulations

After the almost sure convergence rates were derived, we deal with simulations to find
out how processes behave when they are maximally weighted such that convergence
is still achieved. Moreover it is an interesting question, whether they have the same
empirical L2-error and which have a better pre-asymptotic behaviour. It should also
be noted that all processes with a perturbated direction can be modified such that it
reaches a rate close to n´1{2. Details can be found in Section 5.1 in Dippon’s paper
[10]. Therefore these procedures are superior to the Kiefer-Wolfowitz algorithm which
reaches a maximum almost sure convergence rate close to n´1{3. These special settings
of D are not simulated in this thesis.

3.3.1 L2-Convergence Rate of One-measurement Algorithms Starting at
the Extremum of f

As in Subsection 2.3.3, we choose an “ 2{p70`nq, cn “ 1{n1{6, and starting value Z0 “

p0, 0, 0qT . For each algorithm N “ 1000 paths with n “ 10000 single observations
were simulated. The estimated L2-errors of Zn are given in the following plots. In
Corollary 3.2.3 we found out that nδZn converges with δ P r0, 1{3q. In Figure 3.1 Zn
is multiplied by n1{3. Convergence of n1{3Zn in any sense is not proven in this thesis,
under the same assumptions as above. However it is well-known that the classical
Kiefer-Wolfowitz procedure converges with L2-rate n1{3 under similar conditions to
the assumptions of Corollary 3.2.3.
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Figure 3.1. Empirical L2-error of n1{3Zn generated by one-measurement procedures

Next, in Figure 3.2, we investigate n1{4Zn with all other settings as before. In
addition to the almost sure convergence rate, this plot also raises the conjecture that
the L2-convergence rate is near n1{3. Note that all procedures seem to have the same
limit. A reason for that could be that the distributions of all chosen perturbations
D are too similar in our simulations. Different constructions of D might yield other
results.

3.3.2 L2-Convergence Rate of Two-measurement Algorithms Starting at
the Extremum of f

After the investigation of one-measurement algorithms we devote ourselves to two-
measurement procedures. In order to make the comparison more complete we also
include the classical Kiefer-Wolfowitz algorithms which even takes 2d evaluations per
iteration step. These simulations can be found in Figure 3.3. Note that the scale
of the vertical axis depends on the number n of iterations, where the horizontal is
scaled with the number vpnq of evaluations. In order to make this plot, }Zn}

2 is
multiplied by pvpnq{6q2{3 for the Kiefer-Wolfowitz procedure, as in this case we have
6 evaluations per iteration step, hence vpnq “ 6n holds true. Analogously multiply
}Zn}

2 by pvpnq{2q2{3 in the two-measurement algorithms.
The Kiefer-Wolfowitz algorithm has the lowest L2-error for large n. All two-

measurement algorithms show a very similar pre-asymptotic behaviour. The asymp-
totic L2-error seem to coincide for Markovian perturbation and sampling with replace-
ment. These are the procedures for which }

řn
i“1Di ´ EpDiq}

2 “ Opnq holds. For
the procedures with }

řn
i“1Di ´ EpDiq}

2 “ Op1q, namely deterministic and sampling
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Figure 3.2. Empirical L2-error of n1{4Zn generated by one-measurement procedures
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Figure 3.3. Empirical L2-error of n1{3Zn generated by Kiefer-Wolfowitz and two-
measurement procedures
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without replacement, the asymptotic L2-error seems to be a little bit larger. In one-
measurement settings the results are different. We observed a different pre-asymptotic
behaviour but a similar asymptotic L2-error.

The reader might have noticed, that in Figure 3.3 the error of Kiefer-Wolfowitz is
lower although in Figure 2.18 it was higher. This is due to the fact that the process
is weighted by the number of iterations n and not by the number of single function
observations. If instead we weighted with the latter, this would result in Figure
3.4. Hence in this respect Kiefer-Wolfowitz seem to behave weaker. However, this
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Figure 3.4. Empirical L2-error of vpnq1{3Zn generated by Kiefer-Wolfowitz and two-
measurement procedures

effect is more pronounced in high dimensional problems. This would be extreme if
we simulated not only a 3-dimensional optimization problem but had hundreds of
parameters to be adjusted.

In all simulations one-measurement algorithms perform worse than two-measurement
algorithms or the Kiefer-Wolfowitz procedure. Moreover they have a similar be-
haviour. However concerning the pre-asymptotic behaviour, we distinguished two
subclasses. The methods with }

řn
i“1Di ´ EpDiq}

2 “ Op1q behave better than the
methods with only }

řn
i“1Di ´ EpDiq}

2 “ Opnq. Such a difference does not occur in
two-measurement settings. This behaviour seems to be independent of the function f ,
however we have no rigorous proof for this claim. It is worth mentioning that methods
with }

řn
i“1Di ´ EpDiq}

2 “ Opnq could even fulfil }
řn
i“1Di ´ EpDiq}

2 “ Opnαq with
α P p0, 1q. A more detailed investigation on this asymptotic behaviour as well as the
study of the L2-error of Zn with respect to α could be interesting.





4 Concluding Remarks

In this part of the thesis, many known as well as new results were derived from a
generic, semimartingale-type, randomization algorithm. Consistency and almost sure
convergence rate results transfer directly to these special cases. This general formula-
tion gives the opportunity to build new algorithms, just by employing this framework.
One key message is that multiple-measurement procedures are more robust than one-
measurement procedures, especially at the first iteration steps. If one can afford a
second observation per step, one should prefer to do so. But that’s not expensive
compared by the savings in high-dimensional problems where we need 2d observa-
tions in the regular Kiefer-Wolfowitz case. If randomization is to be avoided, then
the presented deterministic perturbations have the same dimension-reducing effect.
Moreover a variety of randomization as well as deterministic perturbation designs
were introduced. Due to the general assumptions, a whole bunch of new methods can
easily be constructed.

An open issue is the derivation of asymptotic normality results. However, with the
almost sure results at hand together with the methods presented in the second part
of this thesis, the main difficulties appear to be tractable.
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Part II

COMPANION ALGORITHMS





5 Introduction

This part of the thesis is on companion algorithms. These always refer to a leading
algorithm as for instance the Robbins-Monro or Kiefer-Wolfowitz procedure. An
introduction to these and stochastic approximation in general can be found at the
beginning of the previous part.

5.1 Previous Work

In 2006 Mokkadem and Pelletier [28] suggested an algorithm to estimate the minimizer
of f : Rd Ñ R and its minimum simultaneously. As a companion to the Kiefer-
Wolfowitz algorithm (1.2),

Zn`1 ´ Zn “ ´anYnpZnq

with

Ynpzq “
1

2cn
tfpz ` cneiq ´ fpz ´ cneiq `Mn,iuiPt1,...,du ,

which estimates the minimizing value z˚ of f , they suggested the recursion

Υn`1 “ p1´ ãnqΥn ` ãnrYnpZnq (5.1)

to estimate the minimum fpz˚q, where rYnpzq is a noisy estimator of the function value
fpzq and the sequence pãnq tends towards zero. The basic idea of procedure (5.1) is

to calculate a weighted mean of rYnpZnq. In the following the algorithm generating

Zn will be denoted as leading algorithm. Here the term rYnpZnq in (5.1) should not
be confused with YnpZnq in the leading Kiefer-Wolfowitz algorithm. It is worth to
mention that a related learning rule is given in the book of Ljung et al. [24, Ch. 4].

Now we show that the explicit representation for (5.1) is a weighted mean. For that
purpose choose the sequence pbnq with bi ą 0 for all i P N such that ãn “ bn{

řn
i“1 bi

holds. Consider the weighted mean

Υn`1 :“

řn
i“1 bi

rYipZiq
řn
i“1 bi

83
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then

Υn`1 ´Υn

“

řn
i“1 biỸipZiq
řn
i“1 bi

´

řn´1
i“1 biỸipZiq
řn´1
i“1 bi

“

´

řn´1
i“1 bi

¯´

řn
i“1 biỸipZiq

¯

´

´

řn
i“1 bi

¯´

řn´1
i“1 biỸipZiq

¯

p
řn
i“1 biqp

řn´1
i“1 biq

“

´

řn´1
i“1 bi

¯´

řn´1
i“1 biỸipZiq ` bnỸnpZnq

¯

´

´

řn´1
i“1 bi ` bn

¯´

řn´1
i“1 biỸipZiq

¯

p
řn
i“1 biqp

řn´1
i“1 biq

“

´

řn´1
i“1 bi

¯

bnỸnpZnq ´ bn

´

řn´1
i“1 biỸipZiq

¯

p
řn
i“1 biqp

řn´1
i“1 biq

“
bnỸnpZnq

p
řn
i“1 biq

´

bn

´

řn´1
i“1 biỸipZiq

¯

p
řn
i“1 biqp

řn´1
i“1 biq

“ ãnỸnpZnq ´ ãn

řn´1
i“1 biỸipZiq
řn´1
i“1 bi

“ ãnỸnpZnq ´ ãnΥn.

As a result Υ fulfills recursion (5.1). Consequently we can consider (5.1) as a weighted
mean

Υn`1 “

řn
i“1 bi

rYipZiq
řn
i“1 bi

of noisy function observations rYnpZnq. For example let rYnpZnq “ fpZnq `MnpZnq.
Then

Υn`1 “

řn
i“1 bi

rYipZiq
řn
i“1 bi

“

řn
i“1 bifpZiq
řn
i“1 bi

`

řn
i“1 biMipZiq
řn
i“1 bi

. (5.2)

According to Toeplitz’s lemma (Lemma A.1.2) the first term in (5.2) converges to
fpz˚q for Zt Ñ z˚. A law of large numbers can be applied to achieve the second term
asymptotically vanishing.

Mokkadem and Pelletier [28] basically used two different methods to estimate the
function value fpz˚q. The first one reuses the function evaluations taken by the
Kiefer-Wolfowitz algorithm setting

rYnpZnq “
1

2|S|
ÿ

iPS
Yn,ipZnq,

where

Yn,ipZnq “
´

fpZn ` cneiq ` fpZn ´ cneiq `Mn,ipZnq
¯

with Mn,i representing the observation noise, S a nonempty subset of t1, . . . , du, and
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|S| denoting the cardinality of S. Note that we do not need observations in all dimen-
sions to make the algorithm work. Unfortunately it turns out that it is impossible to
choose the sequences panq, pcnq and pãnq such that pZnq given in (1.2) and pΥnq given
in (5.1) converge simultaneously with optimal rates (c.f. Corollaries 7.4.3 and 7.4.6).
As another algorithm they investigated the average of |S| function evaluations

rYnpZnq “
1

|S|
ÿ

iPS
Yn,ipZnq, where Yn,ipZnq “

´

fpZnq `Mn,ipZnq
¯

. (5.3)

When using (5.3) in (5.1), Υn is not explicitly dependent on pcnq, but only implicitly
via Zn. Hence it is possible to choose panq, pcnq and pãnq such that optimal convergence
rates can be achieved simultaneously. However, |S| additional function evaluations
per iteration step are required.

It is worth mentioning, that a slight modification of the second estimator (5.3) was
presented in [28] as well. Instead of Zn, a weighted mean Z̄n :“ 1

řn
i“1 c

2
i

řn
i“1 c

2
iZi was

inserted, which results in replacing rYnpZnq by

ȲnpZ̄nq “
1

|S|
ÿ

iPS
Yn,ipZ̄nq, with Yn,ipZ̄nq “

´

fpZ̄nq `Mn,ipZ̄nq
¯

.

As the convergence rate of pZnq transfers to pZ̄nq, they found out that it does not
improve the convergence rate of pΥnq given in (5.1), albeit there are good reasons to
prefer pZ̄nq instead of pZnq in the leading algorithms (e.g. the dilemma of asymptotics
and stability mentioned earlier in Section 1.1). This is based on the fact that only
the rates and not the bias or variance of the asymptotic distribution of the leading
algorithm is employed to investigate the companion algorithms.

In this thesis the ideas of Mokkadem and Pelletier are generalized to the semi-
martingale framework. Weaker assumptions on the smoothness of the function f are
used. A new, generic algorithm is presented, without prescribing how to construct
rY . It is formulated in such a general way that it can easily be applied to further
algorithms. Besides generalizations of the original companion algorithms of Mokka-
dem and Pelletier, two new algorithms are suggested. The first one estimates the
Jacobian of f at the root as a companion algorithm to the Robbins-Monro algorithm.
The second one estimates the Hessian of f at the minimizer on the basis of a leading
Kiefer-Wolfowitz algorithm. Time-discrete as well as time-continuous versions follow
as special cases.

5.2 General Assumptions

We now state assumptions that shall hold true for the rest of the thesis. We consider
a stochastic basis pΩ,F ,F “ pFtqtě0,Pq satisfying the usual conditions. This means
that F0 contains all P-null sets of F , and that the filtration F is right-continuous.
On this basis an F0-measurable random variable Υ0 and a random field pMpt, υqqtě0

are given, with υ P R, υ P Rd or υ P Rdˆd, depending on the algorithm. Define
processes patqtě0, pctqtě0, pãtqtě0 and pktqtě0 that are predictable with respect to F,
and pktqtě0 is locally bounded. Furthermore it is assumed that pRtqtě0 is increasing,
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càdlàg (i.e. right-continuous with left-sided limits), predictable with respect to F,
R0 “ 0 as well as ∆R0 “ 0. By M2

locpPq we denote the set of locally square-integrable
martingales with respect to P and F. The random field pMpt, υqqtě0 is F-adapted,
the relation pMpt, υqqtě0 P M2

locpPq holds for every υ P R, υ P Rd or υ P Rdˆd, and

p
şt

0
ksMpds,Υs´qqtě0 PM2

locpPq is satisfied.
By o and O we denote the Landau symbols. Moreover, for a stochastic process

pXtqtě0, we write Xt “ obprtq if rt is increasing to infinity and pXt{rtq is bounded
a.s. If limtÑ8 at{bt “ 1, at and bt are called asymptotically equal, which is denoted
by at » bt. Moreover Rd denotes the purely discontinuous part of R. By ∆Rt we
define the jump Rt ´ Rt´. We note that ∆Rt “ dRd

t . The covariation and the
predictable covariation processes of pXtqtě0 and pYtqtě0 are denoted by prX, Y stqtě0

and prX, Y stqtě0, respectively. The unit vectors of the Euclidean space Rd are written
as e1, . . . , ed. By C (and Cpωq) we denote a non-negative, real, generic constant (which
also depends on ω P Ω). If not stated otherwise, the statements concerning random
variables and stochastic processes are to be interpreted in the almost surely sense.

5.3 The General Semimartingale Framework

The generic companion algorithm [Gen-Comp]

Υt “ Υ0 `

ż t

0

ãs

´

Gs ´Υs´

¯

dRs `

ż t

0

ksMpds,Υs´q, (5.4)

is run to estimate υ˚ consistently by Υt. Essentially, in (5.4) we assume that the
process pΥtqtě0 can be decomposed in a finite variation part and a local martingale,
and that there exists an intermediate process pGtqtě0 which in general cannot be
observed directly but approximate the quantity of interest υ˚ sufficiently fast. Un-
der appropriate conditions this will force Υt to converge to υ˚ almost surely. In
the algorithms of Mokkadem and Pelletier, introduced in Section 5.1, Gt is given as
p2|S|q´1

ř

iPS fpZt´` cteiq`fpZt´` cteiq or |S|´1
ř

iPS fpZt´q, Zt is generated by the
Kiefer-Wolfowitz algorithm, and υ˚ “ fpz˚q. Later on we deal with Robbins-Monro
and Kiefer-Wolfowitz type leading algorithms although this general framework is not
restricted to those two. The observation noise of Gt ´Υt´ is absorbed by M . More-
over, in this thesis we make the general assumption that for (5.4) there exists a unique
strong solution Υ on r0,8q. The starting point Υ0 is a random variable or a fixed
point. In practice the statistician chooses Υ0 either deterministically or in a random
fashion. The processes pãtqtě0 and pktqtě0 have a damping effect. It will turn out,
that they must be chosen to be positive and monotonously decreasing to zero. The
rate of convergence of pãtqtě0 and pktqtě0 to zero is important as well. If the rate is
chosen too slowly, Υt in (5.4) will not converge, whereas choosing it too high doesn’t
ensure the convergence to υ˚ anymore. Typically one chooses Rt :“ ttu or Rt :“ t. In
the first case new observations are only taken at times t P N, whereas in the second
case there is a continuous update of data. The semimartingale framework of (5.4),
however enables to chose pRtqtě0 as a stochastic process. For example it is possible to
model a situation in which new updates of data can only be taken at random times.



6 Almost Sure Convergence of Companion
Algorithms

In this chapter, consistency of companion algorithms is investigated. After proving
consistency of the generic algorithm, companion algorithms for the Kiefer-Wolfowitz
algorithm and the Robbins-Monro algorithm are investigated. These can be R, Rd-,
or Rdˆd-valued. For the sake of clarity assume the companion process pΥtqtě0 to be
R-valued. A generalization to Rd- and Rdˆd-valued processes is straightforward.

6.1 Consistency of the Generic Algorithm

Usually the first and most important question concerning an estimator is if it is
convergent. Typically if it is not, further investigation is redundant. Moreover many
results, as for instance on the rate of convergence, assume consistency. In order to
show strong consistency we state the following conditions.

Assumption 6.1.1.

(A) pGtqtě0 is an adapted left-continuous process with Gt
tÑ8
ÝÝÝÑ υ˚ P-a.s.

(B) Let pãtqtě0 satisfy

ãt ą 0, ãt Ó 0 and

ż 8

0

ãsdRs “ 8.

(C) Assume

ż 8

0

ãs|Gs ´ υ
˚
|dRs ă 8.

(D) For all y P R assume there exists a process pktqtě0 with

ż 8

0

k2
s

hspΥs´q

1`Υ2
s´

dRs ă 8 where hspyq :“
dr
ş.

0
Mpdt, yqss

dRs

.

(E) If the process Υ is not purely continuous, assume

ż 8

0

ã2
s∆RsdR

d
s ă 8.
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Theorem 6.1.1. If Assumption 6.1.1 is satisfied, then for (5.4), Υt Ñ υ˚ P-a.s. as
tÑ 8.

Remark 6.1.1. Condition (C) ensures that the leading algorithm converges sufficiently
fast to z˚.

Remark 6.1.2. Sufficient conditions for assumption (D) are hspyq ď Ksp1 ` |y|
2q

together with
ş8

0
k2
sKsdRs ă 8. Even simpler it is to assume hspyq ď C ă 8 together

with
ş8

0
k2
sdRs ă 8.

Remark 6.1.3. Condition (E) guarantees that the damped jumps as∆Rs tend to zero.

Remark 6.1.4. Note that under appropriate conditions the rates of convergence of
pZtqtě0 transfer to that of some weighted average process pZ̄tqtě0, c.f. Schnizler [37,
Theorem 4.1]. Consequently the result of Theorem 6.1.1 holds true if we replace
pZtqtě0 by pZ̄tqtě0 in algorithm (5.4).

Proof of Theorem 6.1.1. We consider the stochastic integral equation (5.4). Without
loss of generality let υ˚ “ 0.

The idea of the proof is to bound X :“ Υ2 by A1
t ´ A2

t ` M̃ , with predictable,

increasing processes A1, A2 and a local martingale ĂM .
In a first step the Robbins-Siegmund lemma (Lemma A.1.1 in the appendix) applied

to A1 yields P-a.s. convergence of X. Applying the same lemma also to A2 yields P-a.s.
convergence of X to 0. In that second part, the punchline is different from consistency
proofs of classical stochastic approximation algorithms like Robbins-Monro or Kiefer-
Wolfowitz. Application of the Robbins-Siegmund lemma for the consistency proof of
companion algorithms has not been performed before. Mokkadem and Pelletier used
a different method for which they needed unlike stronger assumptions and traced it
back to a consistency theorem on Robbins-Monro algorithms.

Application of integration by parts [32, II.6.Cor. 2] yields

dΥ2
s “ 2Υs´dΥs ` drΥss,

where

Υs´dΥs “ ãsΥs´GsdRs ´ ãsΥ
2
s´dRs ` ksΥs´Mpds,Υs´q

and

drΥss “ ã2
spGs ´Υs´q

2∆RsdR
d
s ` 2ãskspGs ´Υs´q∆RsMpds,Υs´q

` k2
sdr

ż ¨

0

Mpds,Υs´qss

“ ã2
sG

2
s∆RsdR

d
s ´ 2ã2

sGsΥs´∆RsdR
d
s ` ã

2
sΥ

2
s´∆RsdR

d
s

` 2ãsksGs∆RsMpds,Υs´q ´ 2ãsksΥs´∆RsMpds,Υs´q

` k2
sdr

ż .

0

Mpds,Υs´qss.

Therefore we have

dΥ2
s “ 2ãsΥs´GsdRs ´ 2ãsΥ

2
s´dRs ` 2ksΥs´Mpds,Υs´q
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` ã2
sG

2
s∆RsdR

d
s ´ 2ã2

sGsΥs´∆RsdR
d
s ` ã

2
sΥ

2
s´∆RsdR

d
s

` 2ãsksGs∆RsMpds,Υs´q ´ 2ãsksΥs´∆RsMpds,Υs´q

` k2
sdr

ż .

0

Mpds,Υs´qss. (6.1)

In order to apply the Robbins-Siegmund lemma, we define

dA1
t :“ 2ãs|Υs´Gs|dRs ` 2ã2

s|GsΥs´|∆RsdR
d
s ` ã

2
sG

2
s∆RsdR

d
s ` ã

2
sΥ

2
s´∆RsdR

d
s

` k2
sd

R
ż .

0

Mpds,Υs´q

V

s

´dA2
t :“ ´2ãsΥ

2
s´dRs

dM̃t :“ `2ksΥs´Mpds,Υs´q ` 2ãsksGs∆RsMpds,Υs´q

´ 2ãsksΥs´∆RsMpds,Υs´q

` k2
sd

ˆ„
ż .

0

Mpds,Υs´q



s

´

R
ż .

0

Mpds,Υs´q

V

s

˙

.

If we can show

ż 8

0

1

1`Υ2
s´

dA1
s ă 8, the Robbins-Siegmund lemma yields that pΥtqtě0

converges and
ş8

0
dA2

s ă 8.

We now bound the term

ż 8

0

1

1`Υ2
s´

dA1
s. Assumption pCq yields that

ż 8

0

ãs
|Υs´Gs|

1`Υ2
s´

dRs ď
1

2

ż 8

0

ãs|Gs|dRs ă 8.

For the second and the third term it holds by assumptions pAq and pEq

ż 8

0

ã2
s

|Υs´Gs|

1`Υ2
s´

∆RsdR
d
s ď Cpωq

ż 8

0

ã2
s∆RsdR

d
s ă 8

and

ż 8

0

ã2
s

1

1`Υ2
s´

G2
s∆RsdR

d
s ď Cpωq

ż 8

0

ã2
s∆RsdR

d
s ă 8,

respectively. With condition pEq the fourth term is bounded by

ż 8

0

ã2
s

Υ2
s´

1`Υ2
s´

∆RsdR
d
s ď

ż 8

0

ã2
s∆RsdR

d
s ă 8

and the last term, according to assumption pDq, is bounded by

ż 8

0

k2
s

1

1`Υ2
s´

dr

ż .

0

Mpds,Υs´qss “

ż 8

0

k2
s

1

1`Υ2
s´

hspΥs´qdRs ă 8.
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As a result, we conclude

ż 8

0

1

1`Υ2
s´

dA1
s ă 8.

Therefore the Robbins-Siegmund lemma (Lemma A.1.1) yields that pΥ2
t qtě0 converges

and A2
8 ă 8 a.s.

The convergence of Υ to 0 is shown by contradiction. For that purpose assume a
set N of non-zero probability on which the solution of the stochastic integral equation
does not converge to zero. We will deduce a contradiction to

Ω “ tA2
8 ă 8u.

As proven before, Υ converges for almost all ω P Ω, but by assumption for all ω P N
the process does not converge to 0. Hence it follows for all ω P N

D
ε˚ą0

D
s0

@
sěs0

ε˚ ď Υ2
s ď 1{ε˚.

In A2
t the term

ż t

0

ãsΥ
2
s´dRs

is non-negative. Consequently, with condition (B),

A2
8 ě

ż 8

0

ãsΥ
2
s´dRs “

ż s0

0

ãsΥ
2
s´dRs `

ż 8

s0`

ãsΥ
2
s´dRs

ě C ` ε˚
ż 8

s0`

ãsdRs “ 8.

This is a contradiction to what we have shown before. Consequently the set N cannot
exist. We conclude Υ2

t Ñ 0 and thereby Υt Ñ 0 a.s. for tÑ 8.

6.2 Consistency of Special Algorithms

We consider two types of leading algorithms, namely the Robbins-Monro algorithm
[RM]

Zt “ Z0 ´

ż t

0

asfpZs´qdRs ´

ż t

0

asMpds, Zs´q (6.2)

and the Kiefer-Wolfowitz algorithm [KW]

Zt “ Z0 ´

ż t

0

as
2cs

!

fpZs´ ` cseiq ´ fpZs´ ´ cseiq
)

iPt1,...,du
dRs ´

ż t

0

as
2cs

Mpds, Zs´q.

(6.3)
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In both cases Z0 is assumed to be F0-measurable and z˚ to exist as the limit of the
unique solution of pZtqtě0 in r0,8q and denotes the parameter that is approximated by
the corresponding leading algorithm. These parameters are the root of f estimated
by the Robbins-Monro algorithm and the minimizer of f estimated by the Kiefer-
Wolfowitz algorithm, respectively.

Let us consider semimartingale versions of two novel algorithms. To estimate the
Jacobian υ˚ :“ Jz˚ at the root of f : Rd Ñ Rd on basis of a leading Robbins-Monro
algorithm use [RM-J]

Υt “ Υ0 `

ż t

0

ãs

˜

"

1

cs

´

fpZs´ ` csq ´ fpZs´q
¯

*

´Υs´

¸

dRs `

ż t

0

ãs
cs
Mpds,Υs´q.

(6.4)

As an estimator of the Hessian υ˚ :“ Hz˚ of f : Rd Ñ R at a minimizer based on
[KW] consider [KW-H]

Υt “ Υ0 `

ż t

0

ãs

˜

"

1

c2
s

´

fpZs´ ` csq ` fpZs´ ´ csq ´ 2fpZs´q
¯

*

´Υs´

¸

dRs

`

ż t

0

ãs
c2
s

Mpds,Υs´q. (6.5)

Besides that, semimartingale versions of the algorithms to estimate υ˚ :“ fpz˚q on
basis of a leading [KW] that were presented by Mokkadem and Pelletier are surveyed:
Algorithm [KW-F-2]

Υt “ Υ0 `

ż t

0

ãs

˜

"

1

2|S|
ÿ

iPS
fpZs´ ` cseiq ` fpZs´ ´ cseiq

*

´Υs´

¸

dRs

`

ż t

0

ãsMpds,Υs´q (6.6)

which recycles the observations made in the leading algorithm (6.3), and [KW-F-1]

Υt “ Υ0 `

ż t

0

ãs

˜

fpZs´q ´Υs´

¸

dRs `

ż t

0

ãsMpds,Υs´q, (6.7)

requiring an additional observation. To keep notations simple, all proofs in this the-
sis referring to these two algorithms (6.4) and (6.5) are only covered in the one-
dimensional case, albeit an extension to the multi-dimensional setting is straightfor-
ward.

Assumption 6.2.1. Let Assumption 6.1.1 hold and replace conditions (A), (C) and
(D) by the following ones.

(Asp) Let

f : Rd
Ñ Rd with J be Lipschitz continuous in [RM-J] (6.4),
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f : Rd
Ñ R with H be Lipschitz continuous in [KW-H] (6.5),

f : Rd
Ñ R with ∇f be Lipschitz continuous in [KW-F-2] (6.6),

f : Rd
Ñ R with ∇f be Lipschitz continuous in [KW-F-1] (6.7).

(Csp) There exists a left-continuous adapted process prtqtě0 with rt Ñ 0 P-a.s. for
tÑ 8 such that }Zt ´ z

˚} “ Oprtq P-a.s. and

ż 8

0

ãsrsdRs ă 8 and

ż 8

0

ãscsdRs ă 8 for [RM-J] (6.4),
ż 8

0

ãsrsdRs ă 8 and

ż 8

0

ãscsdRs ă 8 for [KW-H] (6.5),
ż 8

0

ãsr
2
sdRs ă 8 and

ż 8

0

ãsc
2
sdRs ă 8 for [KW-F-2] (6.6),

ż 8

0

ãsr
2
sdRs ă 8 for [KW-F-1] (6.7).

(Dsp) Let

ż 8

0

ˆ

ãs
cs

˙2
hspΥs´q

1`Υ2
s´

dRs ă 8 for [RM-J] (6.4),
ż 8

0

ˆ

ãs
c2
s

˙2
hspΥs´q

1`Υ2
s´

dRs ă 8 for [KW-H] (6.5),
ż 8

0

ã2
s

hspΥs´q

1`Υ2
s´

dRs ă 8 for [KW-F-2] (6.6) and [KW-F-1] (6.7).

Theorem 6.2.1. Let Assumption 6.2.1 hold. Then the companion algorithm, given
as the solution of (6.4), (6.5), (6.6) or (6.7) is consistent, i.e. Υt Ñ υ˚ P-a.s. as
tÑ 8.

Proof. We trace the result back to Theorem 6.1.1. Algorithm (5.4) can be rewritten
as

Υt “ Υ0 `

ż t

0

ãs

´

Gs ´ υ
˚
´ pΥs´ ´ υ

˚
q

¯

dRs `

ż t

0

ksMpds,Υs´q.

Depending on the considered companion algorithm, we get Gs from (6.4), (6.5), (6.6)
or (6.7) and perform a Taylor expansion. The convergence rates that are achieved in
the terms of the expansion enable us to deduce the validity of assumptions (A) and
(C) from (Asp) and (Csp).

Considering algorithm [KW-F-2] as given in (6.6), a Taylor expansion yields

Gs ´ υ
˚

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

2|S|
ÿ

iPS

´

fpZs´ ` cseiq ` fpZs´ ´ cseiq
¯

´ fpz˚q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2|S|

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPS

ˆ
ż 1

0

A

csei,∇fpZs´ ` tcseiq ´∇fpZs´ ´ tcseiq
E

dt

˙

ˇ

ˇ

ˇ

ˇ

ˇ
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` |fpZs´q ´ fpz
˚
q|

ď
1

2|S|

ˇ

ˇ

ˇ

ˇ

ÿ

iPS

ˆ
ż 1

0

A

csei,∇fpZs´ ` tcseiq ´∇fpZs´q

`∇fpZs´q ´∇fpZs´ ´ tcseiq
E

dt

˙ˇ

ˇ

ˇ

ˇ

` |fpZs´q ´ fpz
˚
q|

ď C
ÿ

iPS

ˆ
ż 1

0

|csei|
´

L|tcsei| ` L|tcsei|
¯

dt

˙

` |fpZs´q ´ fpz
˚
q|

“ Opc2
sq ` |fpZs´q ´ fpz

˚
q| .

Furthermore

fpZs´q ´ fpz
˚
q ď

ż 1

0

}Zs´ ´ z
˚
}}∇fpz˚ ` tpZs´ ´ z˚qq}dt

“

ż 1

0

}Zs´ ´ z
˚
}}∇fpz˚ ` tpZs´ ´ z˚qq ´∇fpz˚q}dt

ď C
ż 1

0

}Zs´ ´ z
˚
}}tpZs´ ´ z

˚
q}dt “ Op}Zs´ ´ z˚}2q

holds, because ∇fpz˚q is equal to zero. Consequently

Gs ´ υ
˚
“ Op}Zs´ ´ z˚}2q `Opc2

sq “ Opr2
sq `Opc2

sq. (6.8)

An analogous calculation for algorithm (6.7) results to

Gs ´ υ
˚
“ Opr2

sq. (6.9)

Investigating algorithm (6.4) yields

ˇ

ˇ

ˇ

ˇ

1

cs

´

fpZs´ ` csq ´ fpZs´q
¯

´ Jz˚

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

JZs´`tcsdt´ Jz˚

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

JZs´`tcs ´ Jz˚dt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

JZs´`tcs ´ JZs´ ` JZs´ ´ Jz˚dt

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż 1

0

L|Zs´ ` tcs ´ Zs´| ` L|Zs´ ´ z
˚
|dt

ˇ

ˇ

ˇ

ˇ

“ Opcsq `Oprsq.

Finally, for algorithm (6.5)

ˇ

ˇ

ˇ

ˇ

1

c2
s

´

fpZs´ ` csq ` fpZs´ ´ csq ´ 2fpZs´q
¯

´Hz˚

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

t

cs

´

JZs´`tcs ` JZs´´tcs

¯

dt´Hz˚

ˇ

ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

´1

tHZs´`tucsdudt´Hz˚

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

´1

t
´

HZs´`tucs ´Hz˚

¯

dudt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

´1

t
´

HZs´`tucs ´HZs´ `HZs´ ´Hz˚

¯

dudt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

´1

|t|L|tucs| ` L|Zs´ ´ z
˚
|

¯

dudt

ˇ

ˇ

ˇ

ˇ

“ Opcsq `Oprsq,

holds where Hz denotes the Hessian of f at z. As a result we have

Gs ´ υ
˚
“

!

Opcsq `Oprsq for [RM-J] (6.4) and [KW-H] (6.5). (6.10)

Consequently we deduced the validity of assumption (A) from (Asp). Now (6.8), (6.9)
and (6.10) are used such that

ż 8

0

ãsGsdRs ď Cpωq `

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Cpωq
ż 8

τpωq

ãspr
2
s ` c

2
sqdRs for [KW-F-2] (6.6)

Cpωq
ż 8

τpωq

ãsr
2
sdRs for [KW-F-1] (6.7)

Cpωq
ż 8

τpωq

ãspcs ` rsqdRs for [RM-J] (6.4)

Cpωq
ż 8

τpωq

ãspcs ` rsqdRs for [KW-H] (6.5)

ă 8

directly yields (C) from (Csp). Condition (D) follows from (Dsp) by replacing k2
s by

pãs{csq
2, pãs{c

2
sq

2 or ã2
s, respectively.

6.3 Itô-Type and Recursive Stochastic Approximation Algorithms

Consider the Itô type, continuous generic companion algorithm [c-Gen-Comp]

Υt “ Υ0 `

ż t

0

ãs

´

Gs ´Υs

¯

ds`

ż t

0

ksσspΥsqdWs, (6.11)

under the following assumptions.

Assumption 6.3.1.

(cA) There exists an adapted continuous process pGtqtě0 with Gt
tÑ8
ÝÝÝÑ υ˚ P-a.s.

(cB) pãtqtě0 is continuous with

ãt ą 0, ãt Ó 0 and

ż 8

0

ãsds “ 8.
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(cC)

ż 8

0

ãs|Gs ´ υ
˚
|ds ă 8

(cD)

ż 8

0

k2
s

σ2
spΥsq

1`Υ2
s

ds ă 8.

Corollary 6.3.1. Let Assumption 6.3.1 hold. Then the solution process pΥtqtě0 of the
Itô type stochastic integral equation [c-Gen-Comp] given in (6.11) converges almost
surely to υ˚.

Proof. Without loss of generality let υ˚ “ 0. Setting Rs :“ s and Mpds, yq :“
σspyqdWs we get the corresponding Itô type stochastic integral equation from the
semimartingale stochastic integral equation. Moreover (cA) yields (A). Condition
(B) is directly deduced from (cB). Assumption (cC) implies (C). Continuity of
pRsqsě0 yields assumption (E). Assumption (D) follows from (cD) by

r

ż .

0

Mpds, yqst “ r

ż .

0

σspyqdWsst “

ż t

0

σ2
spyqds

and hspyq “ σ2
spyq. Consequently all conditions of Theorem 6.1.1 are verified and the

corollary is proven.

The following algorithms are the Itô type stochastic integral equations of the Rob-
bins-Monro algorithm [c-RM]

Zt “ Z0 ´

ż t

0

asfpZsqds´

ż t

0

asσspZsqdWs (6.12)

with diffusion function σ : R` ˆ Rd Ñ Rdˆd and a d-dimensional standard Brownian
motion W , and Kiefer-Wolfowitz algorithm [c-KW]

Zt “ Z0 ´

ż t

0

as
2cs

!

fpZs ` cseiq ´ fpZs ´ cseiqds`
d
ÿ

j“1

σijs pZsqdW
j
s

)

iPt1,...,du
(6.13)

with diffusion function σij : R` ˆRd Ñ R and d independent 1-dimensional standard
Brownian motions W j. Detailled analyses can be found in Lazrieva et al. [22] and
Schnizler [37].

In an analogous way to the semimartingale case we may deduce time-continuous
algorithms [c-RM-J], [c-KW-H], [c-KW-F-2] and [c-KW-F-1] as special cases.

Assumption 6.3.2. Let Assumption 6.3.1 hold, with (cA), (cC) and (cD) replaced
by the following conditions.

(cAsp) Let

f : Rd
Ñ Rd with J be Lipschitz continuous in [c-RM-J],
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f : Rd
Ñ R with H be Lipschitz continuous in [c-KW-H],

f : Rd
Ñ R with ∇f be Lipschitz continuous in [c-KW-F-2] and [c-KW-F-1].

(cCsp) There exists a continuous adapted process prtqtě0 with rt Ñ 0 for t Ñ 8

such that }Zt ´ z
˚} “ Oprtq P-a.s. as well as

ż 8

0

ãsrsds ă 8 and

ż 8

0

ãscsds ă 8 for [c-RM-J],
ż 8

0

ãsrsds ă 8 and

ż 8

0

ãscsds ă 8 for [c-KW-H],
ż 8

0

ãsr
2
sds ă 8 and

ż 8

0

ãsc
2
sds ă 8 for [c-KW-F-2],

ż 8

0

ãsr
2
sds ă 8 for [c-KW-F-1].

For [c-KW-H] and [c-KW-F-2], pcsqsě0 is the non-negative process from the
leading Kiefer-Wolfowitz algorithm.

(cDsp) Let

ż 8

0

ˆ

ãs
cs

˙2
σ2
spΥsq

1`Υ2
s

ds ă 8 for [c-RM-J],
ż 8

0

ˆ

ãs
c2
s

˙2
σ2
spΥsq

1`Υ2
s

ds ă 8 for [c-KW-H],
ż 8

0

ã2
s

σ2
spΥsq

1`Υ2
s

ds ă 8 for [c-KW-F-2] and [c-KW-F-1].

Corollary 6.3.2. Under Assumption 6.3.2 the solutions of the Itô type stochastic
integral equations [c-RM-J], [c-KW-H], [c-KW-F-2] and [c-KW-F-1] converge almost
surely to υ˚.

Proof. Without loss of generality let υ˚ “ 0. Setting Rs :“ s and Mpds, yq :“
σspyqdWs we get the corresponding Itô type stochastic integral equation from the
semimartingale stochastic integral equation. This also implies (Asp) and (Csp) from
(cAsp) and (cCsp). Following the proof of Corollary 6.3.1 yields (B), (D) and (E)
such that all conditions of Theorem 6.2.1 are fulfilled.

Now we consider a generic time-discrete companion algorithm [d-Gen-Comp]

Υn ´Υn´1 “ ãn

´

Gn ´Υn´1

¯

` knVn, (6.14)

under the following assumptions.

Assumption 6.3.3.

(dA) There exists a sequence pGnq with Gn
nÑ8
ÝÝÝÑ υ˚ P-a.s.
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(dB) The sequence pãnq satisfies

ãn ą 0, ãn Ó 0 and
8
ÿ

n“1

ãn “ 8.

(dC)

8
ÿ

n“1

ãn|Gn ´ υ
˚
| ă 8

(dD) Let
ř8

n“1 k
2
n ă 8 and

sup
nPN

E}Vn}2 ă 8 and EpVn | Fn´1q “ 0

where Fn :“ FnpΥ1, V1, . . . ,Υn, Vnq.

(dE)

8
ÿ

n“1

ã2
n ă 8

Corollary 6.3.3. Under Assumption 6.3.3 the solution process pΥnq of the recursive
algorithm [d-Gen-Comp] given in (6.14) converges almost surely to υ˚.

Proof. We define Rs :“ max
nPN,nďs

pnq “ tsu, s ě 0 and Mpds, yq :“ ṼsdRs. where

Ṽt :“

#

V1 , t “ 0

Vn , n´ 1 ă t ď n , n P N

is a time-continuous extension of Vn. We write

ż t

0

Mpds, yq “

ż t

0

ṼsdRs “
ÿ

nďt
nPN

Ṽnp∆Rnq “
ÿ

nďt
nPN

Ṽn “
ÿ

nďt
nPN

Vn “: Ht.

With F̃t :“ FRt we find

E
´

Ht | F̃s

¯

“ E
`

Ht | Ftsu

˘

“
ÿ

nďt
nPN

E
`

Vn | Ftsu

˘

“
ÿ

nďtsu

nPN

E
`

Vn | Ftsu

˘

`
ÿ

tsuănďt
nPN

E
`

Vn | Ftsu

˘

“
ÿ

nďs
nPN

Vn ` 0 “
ÿ

nďs
nPN

Vn “ Hs.

Consequently pHtq is a martingale with respect to F̃t :“ FRt , t ě 0.
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Now we are prepared to derive recursion [d-Gen-Comp] given in (6.14) from the
stochastic integral equation [Gen-Comp] (5.4). We find

Υn ´Υ0 “

ż n

0

ãs pGs ´Υs´q dRs `

ż n

0

ksMpds,Υs´q

“

n
ÿ

j“1

ãj pGj ´Υj´1q p∆Rjq `

n
ÿ

j“1

kjVj p∆Rjq

“

n
ÿ

j“1

ãj pGj ´Υj´1q `

n
ÿ

j“1

kjVj.

It suffices to check conditions (B), (C), (D) and (E) from Assumption 6.1.1. In order
to show (D) we write

r

ż .

0

Mpds, yqst “ r

ż .

0

ṼsdRsst “
ÿ

nďt
nPN

E
`

V 2
n p∆Rsq

2
| Fn´1

˘

“
ÿ

nďt
nPN

E
`

V 2
n | Fn´1

˘

.

The monotone convergence theorem and Hölder’s inequality yield

ż t

0

k2
s

hspΥs´q

1`Υ2
s´

dRs ď E
ÿ

nPN

k2
nE

`

V 2
n | Fn´1

˘

“
ÿ

nPN

k2
nEV 2

n ď

ˆ

sup
nPN

EV 2
n

˙

ÿ

nPN

k2
n ă 8.

Vality of Assumption (B) and (C) follows from

ż 8

0

ãsGsdRs “

8
ÿ

j“1

ãjGjp∆Rjq “

8
ÿ

j“1

ãjGj ă 8.

Condition pEq follows obviously from pdEq by

ż 8

0

ã2
s∆RsdR

d
s “

8
ÿ

n“1

ã2
n ă 8.

Consequently all conditions of Theorem 6.1.1 are verified.

We also investigate time-discrete special cases of (6.2) and (6.3):

Zn ´ Zn´1 “ ´antfpZn´1q ` Vnu (6.15)

Zn ´ Zn´1 “ ´
an
2cn
tfpZn´1 ` cneiq ´ fpZn´1 ´ cneiq ` V

i
nuiPt1,...,du (6.16)

which we denote by [d-RM] and [d-KW], respectively.
There are obvious time-discrete variants of [RM-J], [KW-H], [KW-F-2] and [KW-

F-1] which we denote as [d-RM-J], [d-KW-H], [d-KW-F-2] and [d-KW-F-1]. For these
special cases we formulate the following assumption.

Assumption 6.3.4.
Let Assumption 6.3.3 hold with (dA) and (dC) replaced by the following conditions.
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(dAsp) Let

f : Rd
Ñ Rd with J be Lipschitz continuous in [d-RM-J],

f : Rd
Ñ R with H be Lipschitz continuous in [d-KW-H],

f : Rd
Ñ R with ∇f be Lipschitz continuous in [d-KW-F-2] and [d-KW-F-1].

(dCsp) There exists an adapted process prnqnPN with rn Ñ 0 for n Ñ 8 such that
}Zn ´ z

˚} “ Oprnq P-a.s. as well as

8
ÿ

n“1

ãnrn ă 8 and
8
ÿ

n“1

ãncn ă 8 for [d-RM-J],

8
ÿ

n“1

ãnrn ă 8 and
8
ÿ

n“1

ãncn ă 8 for [d-KW-H],

8
ÿ

n“1

ãnr
2
n ă 8 and

8
ÿ

n“1

ãnc
2
n ă 8 for [d-KW-F-2], and

8
ÿ

n“1

ãnr
2
n ă 8 for [d-KW-F-1].

For [d-KW-H] and [d-KW-F-2], pcnq is the non-negative process from the
leading Kiefer-Wolfowitz algorithm.

(dDsp) Moreover let (dD) hold with ks replaced by pãs{csq, pãs{c
2
sq, ãs or ãs, for

algorithm [d-RM-J], [d-KW-H], [d-KW-F-2] or [d-KW-F-1], respectively.

Corollary 6.3.4. Under Assumption 6.3.4 the iterates of the recursive algorithms
[d-RM-J], [d-KW-H], [d-KW-F-2] and [d-KW-F-1] converge almost surely to υ˚.

Remark 6.3.1. Almost sure convergence of [d-KW-F-2] and [d-KW-F-1] has already
been shown in [28] under the assumption of a three times differentiable f at z˚. Here
f is assumed to have a Lipschitz continuous gradient at z˚ only. However it is fair
to say that a rate rt for leading [KW] can only be achieved if f is at least two times
differentiable.

Proof. We follow the steps of Corollary 6.3.3. We define Rs :“ max
nPN,nďs

pnq “ tsu, s ě 0

and Mpds, yq :“ ṼsdRs, where

Ṽt :“

#

V1 , t “ 0

Vn , n´ 1 ă t ď n , n P N

is a time-continuous extension of Vn. We write

ż t

0

Mpds, yq “

ż t

0

ṼsdRs “
ÿ

nďt
nPN

Ṽnp∆Rnq “
ÿ

nďt
nPN

Ṽn “
ÿ

nďt
nPN

Vn “: Ht.
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With F̃t :“ FRt we find

E
´

Ht | F̃s

¯

“ E
`

Ht | Ftsu

˘

“
ÿ

nďt
nPN

E
`

Vn | Ftsu

˘

“
ÿ

nďtsu

nPN

E
`

Vn | Ftsu

˘

`
ÿ

tsuănďt
nPN

E
`

Vn | Ftsu

˘

“
ÿ

nďs
nPN

Vn ` 0 “
ÿ

nďs
nPN

Vn “ Hs.

Consequently pHtq is a martingale with respect to F̃t :“ FRt , t ě 0.
Now we derive recursion [d-KW-F-1] from the stochastic integral equation [KW-F-1]

(6.7):

Υn ´Υ0 “

ż n

0

ãs pfpZs´q ´Υs´q dRs `

ż n

0

ksMpds,Υs´q

“

n
ÿ

j“1

ãj pfpZj´1q ´Υj´1q p∆Rjq `

n
ÿ

j“1

kjVj p∆Rjq

“

n
ÿ

j“1

ãj pfpZj´1q ´Υj´1q `

n
ÿ

j“1

kjVj.

Algorithms [d-RM-J], [d-KW-H] and [d-KW-F-2] follow analogously. Clearly (dAsp)
implies (Asp). Conditions (B), (Dsp) and (E) follow from (dB), (dDsp) and (dE)
in the same way as shown in the proof of Corollary 6.3.3. Vality of Condition (Csp)
follows from

ż 8

0

ãspr
2
s ` c

2
sqdRs “

8
ÿ

j“1

ãjpr
2
j ` c

2
jqp∆Rjq “

8
ÿ

j“1

ãjpr
2
j ` c

2
jq ă 8,

ż 8

0

ãsr
2
sdRs “

8
ÿ

j“1

ãjr
2
j p∆Rjq “

8
ÿ

j“1

ãjr
2
j ă 8,

ż 8

0

ãspcs ` rsqdRs “

8
ÿ

j“1

ãjpcj ` rjqp∆Rjq “

8
ÿ

j“1

ãjpcj ` rjq ă 8,

and

ż 8

0

ãspcs ` rsqdRs “

8
ÿ

j“1

ãjpcj ` rjqp∆Rjq “

8
ÿ

j“1

ãjpcj ` rjq ă 8,

respective to [d-KW-F-1], [d-KW-F-2], [d-RM-J] and [d-KW-H]. Consequently all
conditions of Theorem 6.2.1 are verified and the corollary is proven.
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6.4 Simulations

The following plots show the leading and companion algorithm together in one figure.
Although a random initial value would work as well, we manually choose fixed starting
values for the processes to keep the plots clear. All companion processes are chosen
to have an initial value Υ0 “ 0. The one- or two-dimensional leading algorithms all
start at 5 or p5, 5q, respectively. In all simulations we set an “ n´1 and ãn “ n´1. As
observation noise standard normal distributed random variables are chosen.

We begin in Figure 6.1 with the investigation of the companion algorithm [RM-J]
which estimates the first derivative at the root of a function, which in turn is estimated
via the Robbin-Monro procedure.

−1

0

1

2

0 2500 5000 7500 10000

iteration

process

Z

Υ

Figure 6.1. Paths of Robbins-Monro process Z and companion [RM-J] process Υ related
to the function z ÞÑ z ` sinpzq with cn “ 2n´1{4

In Figure 6.2 the paths of Kiefer-Wolfowitz and [KW-H] are shown. The latter
estimates the second derivative at the minimum.

Finally we focus on [KW-F-2] (Figure 6.3) and [KW-F-1] (Figure 6.4) which both
estimate the function value at the point of the location of the minimum of R2 Ñ

R : pz1, z2q
T ÞÑ z2

1 ` z2
2 ` 1 which in turn is estimated by a leading Kiefer-Wolfowitz

algorithm.
It is remarkable that the [KW-F-1] and the [KW-F-2] algorithms are very robust

against the observation noise. There is hardly any difference between both companion
paths. Another detail to notice is that the paths of [RM-J] and [KW-H] are approach-
ing their respective point of interest very early in contrast to [KW-F-1] or [KW-F-2].
This can be explained easily as both, the first derivative of z ÞÑ z ` sinpzq for [RM-J]
as well as the second derivative of z ÞÑ z2` cospzq for [KW-H] are bounded for any z.



102 6 Almost Sure Convergence of Companion Algorithms
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Figure 6.2. Paths of Kiefer-Wolfowitz process Z and companion [KW-H] process Υ related
to the function z ÞÑ z2 ` cospzq with cn “ 2n´1{6
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Figure 6.3. Paths of Kiefer-Wolfowitz process Z “ pZp1q, Zp2qqT and companion [KW-F-2]
process Υ related to the function pz1, z2q

T ÞÑ z2
1 ` z2

2 ` 1 with cn “ n´1{6
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Figure 6.4. Paths of Kiefer-Wolfowitz process Z “ pZp1q, Zp2qqT and companion [KW-F-1]
process Υ related to the function pz1, z2q

T ÞÑ z2
1 ` z2

2 ` 1 with cn “ n´1{6

This comes from the assumption, that the function in [RM] and the first derivative
in [KW] must be Lipschitz. The function value in [KW-F-1] or [KW-F-2] however is
highly dependent on the value z where it is located. One way to handle this disadvan-
tage could be to start the companion algorithm not at the same time as its leading
algorithm. Then it would not be misled by poorly chosen initial values. Moreover
it is observable that [KW-F-1] decreases a little bit faster than [KW-F-2]. This is
due to the fact that the latter averages four function evaluations per iteration step.
Hence the effect of negative noise, which pushes the curve down, is very unlikely. The
relatively smooth paths of [KW-F-1] or [KW-F-2] can be explained by a higher almost
sure rate of convergence which is almost n´1{2 and n´1{3, respectively, whereas [RM-J]
and [KW-H] have a rate close to n´1{4 and n´1{6, respectively. A detailed derivation of
almost sure convergence rates of companion algorithms is given in Chapter 7. Espe-
cially almost surely convergence rates of companion processes with parameters chosen
in the same way as for the simulated paths presented above are presented in Section
7.4.1. In Chapter 8 asymptotic normality of the companion processes is investigated.
Under the settings of current simulations, Section 8.5 yields that [KW-F-1] and [KW-
F-2] converge with rate n´1{2 and n´1{3, respectively. Moreover they have asymptotic
bias 0 and 3{2, respectively. [RM-J] converges unbiasedly with rate n´1{4. Finally
[KW-H] converges with rate n´1{6 and asymptotic bias 0.





7 Almost Sure Convergence Rate of Com-
panion Algorithms

Once consistency is ensured, the question arises how fast the process pΥtqtě0 converges.
Later, in order to establish asymptotic normality, we need Υ to converge at an a.s.
rate.

7.1 Semimartingale Companion Algorithms

For fixed δ ě 0, we define γtpδq :“ Etpδ
ş.

0
ãsdRsq, t ě 0, where Etp.q is the stochastic

exponential, and investigate the set of δ such that

γtpδq}Υt ´ υ
˚
} Ñ 0 a.s.

Note that the stochastic exponential of a semimartingale X is the solution of Υt “

1 `
şt

0
Υs´dXs, X0 “ 0, which is given by EtpXq :“ exp

`

Xt ´
1
2
rX,Xst

˘
ś

0ăsďtp1 `
∆Xsq exp

`

´∆Xs `
1
2
p∆Xsq

2
˘

, c.f. Protter [32].

7.2 Almost Sure Convergence Rate of the General Algorithms

We consider the following conditions.

Assumption 7.2.1. In addition to (A), (B) and (E) from Assumption 6.1.1 let the
following conditions hold true.

pC̃q

ż 8

0

γs´pδqãs|Gs ´ υ
˚
|dRs ă 8

pD̃q For all y P R
ż 8

0

k2
s

γ2
s´pδqhspΥs´q

1` γ2
s´pδqΥ

2
s´

dRs ă 8 where hspyq :“
dr
ş.

0
Mpds, yqss

dRs

.

105
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Theorem 7.2.1. Let Assumption 7.2.1 hold. Then for all 0 ď δ ă 1, the solution of
the companion algorithm [Gen-Comp] given in (5.4) satisfies

γtpδq|Υt ´ υ
˚
|
tÑ8
ÝÝÝÑ 0 P-a.s.

Proof. The proof is similar to that of Theorem 6.1.1. Let υ˚ “ 0. We investigate
pγ2
t pδqΥ

2
t qtě0 instead of pΥ2

t qtě0. We apply the Robbins-Siegmund lemma (Lemma
A.1.1 in the appendix) to a decomposition of pγ2

t pδqΥ
2
t qtě0. Integration by parts

yields

γ2
t pδq “ γtpδqγtpδq “ Et

ˆ

2δ

ż .

0

ãsdRs ` δ
2

ż .

0

ã2
sdrR., R.ss

˙

“ Et
ˆ

2δ

ż .

0

ãsdRs ` δ
2

ż .

0

ã2
s∆RsdR

d
s

˙

as well as

dγ2
s pδq “ γ2

s´pδq
`

2δasdRs ` δ
2a2
s∆RsdR

d
s

˘

.

Integration by parts, Lemma A.1.6 and (6.1) yield

γ2
t pδqΥ

2
t ´ γ

2
0pδqΥ

2
0 “

ż t

0

γ2
s´pδqdΥs `

ż t

0

Υ2
s´dγ2

s pδq `

ż t

0

drγ2
. pδq,Υ

2
. ss

“

ż t

0

γ2
s´pδqdΥs `

ż t

0

Υ2
s´dγ2

s pδq `

ż t

0

∆γ2
s pδqdΥ2

s

“

ż t

0

γ2
s´pδqdΥs `

ż t

0

Υ2
s´dγ2

s pδq `

ż t

0

pγ2
s pδq ´ γ

2
s´pδqqdΥ2

s

“

ż t

0

Υ2
s´dγ2

s pδq `

ż t

0

γ2
s pδqdΥ2

s

“ 2

ż t

0

γ2
s pδqãsΥs´GsdRs ´ 2

ż t

0

γ2
s pδqãsGsΥs´∆RsdR

d
s

´ 2

ż t

0

γ2
s pδqãsΥ

2
s´dRs `

ż t

0

γ2
s pδqã

2
sG

2
s∆RsdR

d
s

`

ż t

0

γ2
s pδqã

2
sΥ

2
s´∆RsdR

d
s `

ż t

0

γ2
s pδqk

2
srMpdτ,Υτ´qss

` 2δ

ż t

0

ãsγ
2
s´pδqΥ

2
s´dRs ` δ

2

ż t

0

γ2
s´pδqΥ

2
s´ã

2
s∆RsdR

d
s

`

ż t

0

dM̃s

where

dM̃s :“ `2γ2
s pδqksΥs´Mpds,Υs´q ` 2γ2

s pδqãsksGs∆RsMpds,Υs´q

´ 2γ2
s pδqãsksΥs´∆RsMpds,Υs´q
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` γ2
s pδqk

2
s

ˆ

r

ż .

0

Mpdτ,Υτ´qss ´ r

ż .

0

Mpdτ,Υτ´qss

˙

.

The first, second and third term in the definition of ĂMt are in Mloc as the integrands
are predictable and the integrators are local martingales. By definition of the com-
pensator, the fourth term in the definition of ĂMt is in Mloc. In order to apply the
Robbins-Siegmund lemma (Lemma A.1.1) we bound γ2

t pδqΥ
2
t ď A1

t ´ A
2
t ` M̃t with

A1
t :“ 2

ż t

0

γ2
s pδqãs|Υs´Gs|dRs ` 2

ż t

0

γ2
s pδqãs|GsΥs´|∆RsdR

d
s

`

ż t

0

γ2
s pδqã

2
sG

2
s∆RsdR

d
s `

ż t

0

γ2
s pδqã

2
sΥ

2
s´∆RsdR

d
s

`

ż t

0

γ2
s pδqk

2
sdrMpds,Υs´qss ` δ

2

ż t

0

γ2
s´pδqΥ

2
s´ã

2
s∆RsdR

d
s (7.1)

´A2
t :“ p2´ 2δq

ż t

0

ãsγ
2
s´pδqΥ

2
s´dRs. (7.2)

Now we assess

ż t

0

1

1` γ2
s´pδqΥ

2
s´

dA1
t . A quick calculation (c.f. (3.4)) yields

γtpδq “ γt´pδqp1` δat∆Rtq

which is a useful representation of γtpδq to investigate

ż 8

0

1

1` γ2
s´Υ2

s´

dA1
s. (7.3)

This, together with the assumptions
ş8

0
ã2
s∆RsdR

d
s ă 8 and

ş8

0
ãsdRs “ 8, stated in

(B) and (E), respectively, implies

γtpδq

γt´pδq
“ p1` δãt∆Rtq “ p1` obp1qq ď Cpωq.

Now we replace the integrand in (7.3) by (7.1). The first term in that substitution
can be bounded by

ż 8

0

1

1` γ2
s´pδqΥ

2
s´

γ2
s pδqãs|Υs´Gs|dRs

ď

ż 8

0

ˆ

γspδq

γs´pδq

˙2
γs´pδq|Υs´|

1` γ2
s´pδqΥ

2
s´

γs´pδqãs|Gs|dRs

ď Cpωq
ż 8

0

γs´pδqãs|Gs|dRs ă 8

where the last inequality holds by condition pC̃q. In the same way we can bound the
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purely discontinuous term

ż 8

0

1

1` γ2
s´pδqΥ

2
s´

γ2
s pδqãs|GsΥs´|∆RsdR

d
s

ď

ż 8

0

ˆ

γspδq

γs´pδq

˙2
γs´pδq|Υs´|

1` γ2
s´pδqΥ

2
s´

γs´pδqãs|Gs|∆RsdR
d
s

ď Cpωq
ż 8

0

γs´pδqãs|Gs|dRs ă 8.

The third term is handled with condition pEq as follows:

ż 8

0

1

1` γ2
s´pδqΥ

2
s´

γ2
s pδqã

2
sG

2
s∆RsdR

d
s

“

ż 8

0

ˆ

γspδq

γs´pδq

˙2
1

1` γ2
s´pδqΥ

2
s´

γ2
s´pδqã

2
sG

2
s∆RsdR

d
s

ď Cpωq
ż 8

0

γ2
s´pδqã

2
sG

2
s∆RsdR

d
s

ď Cpωq
ż 8

0

ã2
s∆RsdR

d
s

ă 8.

The second to last inequality holds for the following reason. By assumption (B)

ż 8

0

ãsdRs “ 8

holds true. Additionally by condition (C̃),

ż 8

0

γs´pδqãs|Gs|dRs ă 8.

This implies γs´pδq|Gs| Ñ 0 and hence γ2
s´pδqG

2
s Ñ 0. Concerning the fourth term in

the expansion of (7.3) we once more apply pEq to get

ż 8

0

1

1` γ2
s´pδqΥ

2
s´

γ2
s pδqã

2
sΥ

2
s´∆RsdR

d
s ď Cpωq

ż 8

0

ã2
s∆RsdR

d
s ă 8.

This bound is used to handle the sixth term as well. Finally the fifth term can be
handled with pD̃q as follows:

ż 8

0

1

1` γ2
s´pδqΥ

2
s´

γ2
s pδqk

2
sdrMpds,Υs´qss

ď Cpωq
ż 8

0

1

1` γ2
s´pδqΥ

2
s´

γ2
s´pδqk

2
shspΥs´qdRs ă 8.

As a result we conclude that

ż 8

0

1

1` γ2
s´pδqΥ

2
s´

dA1
s ă 8. Therefore, according to
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Lemma A.1.1, γ2
t pδqΥ

2
t converges. Furthermore the same lemma yields that A2

8 ă 8.
The convergence of pγtpδqΥtqtě0 to 0 is shown by contradiction. For that purpose

assume a set N of non-zero probability on which the solution of the stochastic integral
equation does not converge to zero. We will deduce a contradiction to

Ω “ tA2
8 ă 8u.

As proven before, pγtpδqΥtqtě0 converges for almost all ω P Ω, but by assumption for
all ω P N the process does not converge to 0. Hence it follows for all ω P N

D
ε˚ą0

D
s0

@
sěs0

ε˚ ď Υ2
s ď 1{ε˚.

As 0 ď δ ă 1 holds, A2
8, namely p2´ 2δq

ş8

0
ãsγ

2
s´pδqΥ

2
s´dRs, is non-negative. Conse-

quently, with condition (B),

A2
8 “ p2´ 2δq

ż 8

0

γ2
s´pδqãsΥ

2
s´dRs

ě C
ż 8

0

γ2
s´pδqãsΥ

2
s´dRs “ C

ż s0

0

γ2
s´pδqãsΥ

2
s´dRs ` C

ż 8

s0`

γ2
s´pδqãsΥ

2
s´dRs

ě C ` ε˚
ż 8

s0`

ãsdRs “ 8.

This is a contradiction to what we have shown before. Consequently the set N cannot
exist. We conclude γ2

t pδqΥ
2
t Ñ 0 and thus γtpδqΥt Ñ 0 a.s. as tÑ 8.

7.3 Almost Sure Convergence Rate of Special Algorithms

In order to examine algorithms [RM-J], [KW-H], [KW-F-2] and [KW-F-1] given in
(6.4)–(6.7), it makes sense to replace assumption (C̃) by the following one.

Assumption 7.3.1. Let Assumption 6.2.1 hold.

pC̃spq Dependent on the leading algorithm replace condition (Csp) by

ż 8

0

γs´pδqãspcs ` rsqdRs ă 8 for [RM-J] (6.4),
ż 8

0

γs´pδqãspcs ` rsqdRs ă 8 for [KW-H] (6.5),
ż 8

0

γs´pδqãspr
2
s ` c

2
sqdRs ă 8 for [KW-F-2] (6.6),

ż 8

0

γs´pδqãsr
2
sdRs ă 8 for [KW-F-1] (6.7).

Moreover assume

pD̃spq For all y P R
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ż 8

0

ˆ

ãs
cs

˙2 γ2
s´pδqhspΥs´q

1` γ2
s´pδqΥ

2
s´

dRs ă 8 for [RM-J] (6.4),
ż 8

0

ˆ

ãs
c2
s

˙2 γ2
s´pδqhspΥs´q

1` γ2
s´pδqΥ

2
s´

dRs ă 8 for [KW-H] (6.5),
ż 8

0

ã2
s

γ2
s´pδqhspΥs´q

1` γ2
s´pδqΥ

2
s´

dRs ă 8 for [KW-F-2] (6.6),
ż 8

0

ã2
s

γ2
s´pδqhspΥs´q

1` γ2
s´pδqΥ

2
s´

dRs ă 8 for [KW-F-1] (6.7),

where hspyq :“
dr
ş.

0
Mpds, yqss

dRs

.

Theorem 7.3.1. Let Assumption 7.3.1 hold. Then for the solutions of the companion
algorithms [RM-J] (6.4), [KW-H] (6.5), [KW-F-2] (6.6) and [KW-F-1] (6.7)

@
0ďδă1

γtpδq|Υt ´ υ
˚
|
tÑ8
ÝÝÝÑ 0 a.s.

Proof. From the proof of almost sure convergence, we already know how (Asp) is
employed to show

Gs “

$

’

’

’

&

’

’

’

%

Opcsq `Oprsq for [RM-J] (6.4)

Opcsq `Oprsq for [KW-H] (6.5)

Opr2
sq `Opc2

sq for [KW-F-2] (6.6)

Opr2
sq for [KW-F-1] (6.7).

Consequently (Asp) and (C̃sp) imply (A) as well as (C̃). Hence this theorem follows
directly from Theorem 7.2.1.

7.4 Itô Type and Recursive Stochastic Approximation Algorithms

In this section almost sure convergence rates for Itô type and recursive stochastic
approximation algorithms are explored. Like in Chapter 6 generic as well as special
types of companion algorithms are investigated. Before we go into the details, we first
have to understand the rates of the underlying algorithms. This is the purpose of the
following subsection.

7.4.1 Rates of the Underlying Algorithms

It is shown by Lazrieva et al. [22] that if as “ ap1 ` Rsq
´1 amongst other conditions

in the Robbins-Monro algorithm (6.2) then

@
ρPr0, 1

2
q

p1`Rtq
ρ
}Zt ´ z

˚
} Ñ 0 a.s.
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Moreover, setting as “ ap1`Rsq
´1 and cs “ cp1`Rsq

´γ as well as assuming further
conditions in the the Kiefer-Wolfowitz algorithm (6.3), Schnizler [37] shows

@
ρPr0,ρ̃q

p1`Rtq
ρ
}Zt ´ z

˚
} Ñ 0 a.s.,

where

ρ̃ :“ min

"

γpp´ 1q,
1

2
´ γ

*

,

if f is p-times continuously differentiable at z˚ with p P t2, 3u. The optimal ρ̃ is
achieved for γ “ 1{p2pq, if f is p-times continuously differentiable at z˚ with p P t2, 3u.
Then we obtain that ρ̃ is of the form

ρ̃ “
p´ 1

2p
.

The papers of Fabian [15], Dippon and Renz [12] and Dippon [10] deal with modified
Kiefer-Wolfowitz algorithms in order to achieve higher rates of convergence. But
usually one requires more observations or randomization of the estimator. These
algorithms are not handled here.

We point out settings of pasqsě0, pcsqsě0 and pãsqsě0 for which the companion al-
gorithms [c-KW-F-2] or [c-KW-H] and their leading algorithm [KW] don’t converge
simultaneously with optimal rate. Analogously such a trade-off can be achieved for
[RM-J] and its leading algorithm [RM].

7.4.2 Itô Type Stochastic Approximation Algorithms

Now we turn to a generic Itô type result for the almost sure convergence rate of
companion algorithms.

Corollary 7.4.1. Consider the Itô type companion algorithm [c-Gen-Comp] (6.11).
Let Assumption 6.3.1 and σspyq ď Cp1 ` |y|q hold. Set as “ ap1 ` sq´1, a ą 0, and
ks “ kp1` sq´κ, k ą 0. Assume

ş8

0
γspδqãs|Gs´υ

˚|ds ă 8 P-a.s. Then almost surely

p1` tqδ|Υt ´ υ
˚
|
tÑ8
ÝÝÝÑ 0

for all δ P r0, κ´ 1{2q.

Proof. The corollary is traced back to Theorem 7.2.1. As in the proof of Corollary
6.3.2 we choose Rs :“ s and Mpds, yq “ σspyqdW psq. Continuity of pRtqtě0 implies
continuity of pγtpδqqtě0. Hence

γtpδq “ Et
ˆ

δ

ż .

0

ãsdRs

˙

“ exp

ˆ

δ

ż t

0

p1` sq´1ds

˙

“ exp pδ lnp1` tqq “ p1` tqδ.
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Condition pD̃q follows by

ż 8

0

γ2
s´pδqhspΥs´q

1` γ2
s´pδqΥ

2
s´

k2
sdRs “

ż 8

0

γ2
s pδqσ

2
spΥsq

1` γ2
s pδqΥ

2
s

k2
sds ď C

ż 8

0

γ2
s pδqp1` |Υs|q

2

1` γ2
s pδqΥ

2
s

k2
sds

ď Cpωq
ż 8

0

γ2
s pδqk

2
sds “ Cpωq

ż 8

0

p1` sq2δ´2κds

ă 8.

Due to continuity, pEq holds and condition pC̃q follows by

ż 8

0

γs´pδqãs|Gs|dRs “

ż 8

0

γspδqãs|Gs|ds ă 8.

Analogously pBq follows from pcBq. Consequently all conditions of Theorem 7.2.1 are
fulfilled.

In the following corollary pasqsě0, pcsqsě0 and pãsqsě0 are chosen such that the
companion algorithm converges with optimal rate δ P r0, 1

2
q. This does not neces-

sarily mean, that the leading algorithm converges optimally as well. Moreover, for
algorithms [c-RM-J] and [c-KW-H] there is no possible choice of pasqsě0, pcsqsě0 and
pãsqsě0 such that they converge with optimal rate δ P r0, 1

2
q and consequently these

algorithms are not mentioned there, but handled in a later corollary.

Corollary 7.4.2. Consider the Itô type stochastic integral equations [c-KW-F-2] and
[c-KW-F-1]. Let Assumption 6.3.1 and σspyq ď Cp1 ` |y|q hold. Set a ą 0, as “
ap1 ` sq´1, and ãs “ ãp1 ` sq´1 with ã ą 0. In case of f being p-times continuously
differentiable at z˚, consider the following cases.

Companion Algorithm p cs δ

[c-KW-F-2] 2 cp1` sq´
1
4 r0, 1

2
q

[c-KW-F-2] 3 cp1` sq´
1
4 r0, 1

2
q

[c-KW-F-1] 2 cp1` sq´
1
4 r0, 1

2
q

[c-KW-F-1] 3 cp1` sq´
1
6 r0, 1

2
q

Then almost surely p1` tqδ|Υt ´ υ
˚|

tÑ8
ÝÝÝÑ 0.

In this corollary we had settings for which the leading algorithm [c-KW] and the
companion algorithm [c-KW-F-2] don’t converge simultaneously each with optimal
rate. Moreover we did not have settings in which [c-RM-J] and [c-KW-H] converged
at an optimal rate simultaneously with their respective leading algorithm. These cases
are handled in the following. Here we choose pasqsě0, pcsqsě0 and pãsqsě0 such that
the leading algorithm converges with optimal rate and give the resulting rate for the
companion algorithm.
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Corollary 7.4.3. Consider the Itô type stochastic integral equations [c-KW-F-2], [c-
RM-J] and [c-KW-H]. Assume that the leading algorithm converges with optimal rate.
Let Assumption 6.3.1 and σspyq ď Cp1 ` |y|q hold. Set as “ ap1 ` sq´1, a ą 0, and
ãs “ ãp1 ` sq´1, ã ą 0. In case of f being p-times continuously differentiable at z˚,
assume one of the following cases.

Companion Algorithm p cs δ

[c-KW-F-2] 3 cp1` sq´
1
6 r0, 1

3
q

[c-RM-J] 1 cp1` sq´
1
4 r0, 1

4
q

[c-KW-H] 3 cp1` sq´
1
6 r0, 1

6
q

Then almost surely p1` tqδ|Υt ´ υ
˚|

tÑ8
ÝÝÝÑ 0.

Proof of Corollaries 7.4.2 and 7.4.3. The corollary is traced back to Theorem 7.3.1.
As in the proof of Corollary 7.4.1 we choose Rs :“ s and Mpds, yq “ σspyqdW psq. In
the same proof we already showed

γtpδq “ p1` tq
δ

and how to deduce pBq and pD̃q from pcBq and pcDq, respectively. Continuity of
the paths directly yields pEq. The rest of the proof deals with the verification of the
conditions of pC̃spq.

Assume a sufficiently small ε ą 0. For the companion algorithms to estimate the
minimum we have
ż 8

0

γs´pδqãsr
2
sdRs “ C

ż 8

0

p1` sqδ´1´2ρds

ď

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C
ş8

0
p1` sq

1
2
´1´ 1

2
´εds in [c-KW-F-2] for f P C2, δ P r0, 1

2
q

C
ş8

0
p1` sq

1
2
´1´ 2

3
´εds in [c-KW-F-2] for f P C3, δ P r0, 1

2
q

C
ş8

0
p1` sq

1
2
´1´ 1

2
´εds in [c-KW-F-1] for f P C2, δ P r0, 1

2
q

C
ş8

0
p1` sq

1
2
´1´ 2

3
´εds in [c-KW-F-1] for f P C3, δ P r0, 1

2
q

C
ş8

0
p1` sq

1
3
´1´ 2

3
´εds in [c-KW-F-2] for f P C3, δ P r0, 1

3
q

ă 8

and
ż 8

0

γs´pδqãsc
2
sdRs “ c2

ż 8

0

p1` sqδ´1´2γds

ď

$

’

&

’

%

C
ş8

0
p1` sq

1
2
´1´ 1

2
´εds in [c-KW-F-2] for f P C2, δ P r0, 1

2
q

C
ş8

0
p1` sq

1
2
´1´ 1

2
´εds in [c-KW-F-2] for f P C3, δ P r0, 1

2
q

C
ş8

0
p1` sq

1
3
´1´ 2

3
´εds in [c-KW-F-2] for f P C3, δ P r0, 1

3
q
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ă 8.

For the companion algorithm [c-RM-J] we find the bound

ż 8

0

γs´pδqãscsdRs “

ż 8

0

p1` sqδ´1´γds ď C
ż 8

0

p1` sq´1´εds ă 8,

and for [c-KW-H]

ż 8

0

γs´pδqãscsdRs “ C
ż 8

0

p1` sqδ´1´γds

ď C
ż 8

0

p1` sq
1
6
´1´ 1

6
´εds

ă 8.

Finally

ż 8

0

γs´pδqãsrsdRs “ C
ż 8

0

p1` sqδ´1´ρds

ď

#

C
ş8

0
p1` sq

1
2
´1´ 1

2
´εds in [c-RM-J]

C
ş8

0
p1` sq

1
6
´1´ 1

6
´εds in [c-KW-H]

ă 8.

7.4.3 Recursive Stochastic Approximation Algorithms

We also have analogous results for the time-discrete setting. In the following corollaries
we achieve the same rates of convergence as in the previous subsection.

Corollary 7.4.4. Consider the companion algorithm [d-Gen-Comp] (6.14). Let As-
sumption 6.3.3 hold. Set an “ an´1, a ą 0, and ãn “ n´1, ã ą 0. Assume
ř8

n“1 γnpδqãn|Gn ´ υ˚| ă 8 P-a.s. Then almost surely nδ|Υn ´ υ˚|
nÑ8
ÝÝÝÑ 0 for all

δ P r0, 1{2q.

Proof. This corollary is ascribed to Theorem 7.2.1. Define Ṽs and Mpds, yq as in the
proof of Corollary 6.3.4. Choose Rs :“ tsu, ãs :“ s´1, as :“ as´1 and cs :“ cs´γ. The
definition of Et, expplnpxqq “ x and a Taylor expansion yield

γtpδq “ Et
ˆ

δ

ż .

0

1

s
dRs

˙

“

ttu
ź

i“1

ˆ

1`
δ

i

˙

“ exp

˜

ttu
ÿ

i“1

ln

ˆ

1`
δ

i

˙

¸

“ Cttu exp

˜

δ

ttu
ÿ

i“1

1

i

¸
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with a term Cttu such that Cttu Ñ C8, with C8 P p0,8q, for tÑ 8. Since

exp

˜

δ

ttu
ÿ

i“1

1

i

¸

ě exp

˜

δ

ż ttu

1

1

x
dx

¸

“ ttuδ

and

exp

˜

δ

ttu
ÿ

i“1

1

i

¸

“ exp

˜

δ ` δ

ttu
ÿ

i“2

1

i

¸

ď exp

˜

δ ` δ

ż ttu

i“1

1

i
dx

¸

“ exppδqttuδ,

we can replace γt´pδq by ttuδ in Assumption 7.2.1. In order to show assumption (D̃),
we recall that tsu2δk2

shspΥs´q is positive for all s. Therefore it is sufficient to show
E
ş8

0
hspΥs´qtsu

2δk2
sdRs ă 8. As in the previous proof, assume a sufficiently small

ε ą 0. Condition pD̃q is verified by

E
ż 8

0

hspΥs´qtsu
2δk2

sdRs “ E
ÿ

nPN

E
´

V 2
n | Fn´1

¯

n2δn´2κ
ď C

´

sup
nPN

EV 2
n

¯

ÿ

nPN

n1´ε´2

ď C
ÿ

nPN

n´1´ε
ă 8,

where we made use of the monotone convergence theorem and the fact that δ is smaller
than κ´ 1

2
. Moreover

ż 8

0

γs´pδqãs|Gs|dRs ď C
8
ÿ

n“1

γnpδqãn|Gn| ă 8

yields pC̃q.

Coming to special algorithms [d-RM-J], [d-KW-H], [d-KW-F-2] and [d-KW-F-1]
again, we begin with settings where the companion algorithms converge optimally.

Corollary 7.4.5. Consider the algorithms [d-KW-F-2] and [d-KW-F-1]. Let As-
sumption 6.3.3 hold. Set an “ an´1, a ą 0, and ãn “ ãn´1, ã ą 0. In case of f being
p-times continuously differentiable at z˚, assume one of the following cases.

Companion Algorithm p cn δ

[d-KW-F-2] 2 cn´
1
4 r0, 1

2
q

[d-KW-F-2] 3 cn´
1
4 r0, 1

2
q

[d-KW-F-1] 2 cn´
1
4 r0, 1

2
q

[d-KW-F-1] 3 cn´
1
6 r0, 1

2
q

Then almost surely nδ|Υn ´ υ
˚|

nÑ8
ÝÝÝÑ 0.

We now turn to the settings where only the leading algorithms converge with opti-
mal rate.
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Corollary 7.4.6. Consider the algorithms [d-KW-F-2], [d-RM-J] and [d-KW-H]. As-
sume that the leading algorithm converges with optimal rate. Let Assumption 6.3.3
hold. Set an “ an´1, a ą 0, and ãn “ ãn´1, ã ą 0. In case of f being p-times
continuously differentiable at z˚, assume one of the following cases.

Companion Algorithm p cn δ

[d-KW-F-2] 3 cn´
1
6 r0, 1

3
q

[d-RM-J] 1 cn´
1
4 r0, 1

4
q

[d-KW-H] 3 cn´
1
6 r0, 1

6
q

Then almost surely nδ|Υn ´ υ
˚|

nÑ8
ÝÝÝÑ 0.

Proof of Corollaries 7.4.5 and 7.4.6. As before these corollaries are also ascribed to
Theorem 7.3.1. Define Ṽs and Mpds, yq as in the proof of Corollary 6.3.4. Choose
Rs :“ tsu, ãs :“ s´1, as :“ as´1 and cs :“ cs´γ. In the proof of Corollary 7.4.4 it is
already shown that we can replace γt´pδq by ttuδ in Assumption 7.2.1. Moreover it is
shown there that pBq and pD̃q follow from pdBq and pDq, respectively. We complete
the proof with the verification of pC̃spq. For the two companion algorithms estimating
the function value of f at z˚ we have

ż 8

0

tsuδãsr
2
sdRs ď C

ÿ

nPN

nδ´1´2ρ

ď

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C
ř

nPN n
1
2
´1´ 1

2
´ε for [d-KW-F-2] if f P C2, δ P r0, 1

2
q

C
ř

nPN n
1
2
´1´ 2

3
´ε for [d-KW-F-2] if f P C3, δ P r0, 1

2
q

C
ř

nPN n
1
2
´1´ 1

2
´ε for [d-KW-F-1] if f P C2, δ P r0, 1

2
q

C
ř

nPN n
1
2
´1´ 2

3
´ε for [d-KW-F-1] if f P C3, δ P r0, 1

2
q

C
ř

nPN n
1
3
´1´ 2

3
´ε for [d-KW-F-2] if f P C3, δ P r0, 1

3
q

ă 8

and
ż 8

0

tsuδãsc
2
sdRs ď c2

ÿ

nPN

nδ´1´2γ

ď

$

’

&

’

%

C
ř

nPN n
1
2
´1´ 1

2
´ε for [d-KW-F-2] if f P C2, δ P r0, 1

2
q

C
ř

nPN n
1
2
´1´ 1

2
´ε for [d-KW-F-2] if f P C3, δ P r0, 1

2
q

C
ř

nPN n
1
3
´1´ 1

3
´ε for [d-KW-F-2] if f P C3, δ P r0, 1

3
q

ă 8.

For algorithm [d-RM-J], we find

ż 8

0

tsuδãscsdRs “
ÿ

nPN

nδ´1´γ
ď C

ÿ

nPN

n´1´ε
ă 8,
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and for [d-KW-H]

ż 8

0

tsuδãscsdRs “ C
ÿ

nPN

nδ´1´γ
ď C

ÿ

nPN

n
1
6
´1´ 1

6
´ε
ă 8.

Finally

ż 8

0

tsuδãsrsdRs “ C
ÿ

nPN

nδ´1´ρ

ď

#

C
ř

nPN n
1
2
´1´ 1

2
´ε for [d-RM-J]

C
ř

nPN n
1
6
´1´ 1

6
´ε for [d-KW-H]

ă 8

completes the proof.





8 Asymptotic Normality of Companion Al-
gorithms

In this section the asymptotic distribution of companion processes is identified. Know-
ledge of this distribution can be used to find optimal design parameters a, c, ã and k.
From now on, we assume that the process pRtqtě0 and especially the processes patqtě0,
pctqtě0, pãtqtě0 and pktqtě0 are deterministic of the form

at “
a

p1`Rt´q
α

, ct “
c

p1`Rt´q
γ

, ãt “
ã

p1`Rt´q
α̃

and kt “
k

p1`Rt´q
κ

with a, c, ã, k ą 0 and 0 ă α, γ, α̃, κ ď 1.

8.1 Almost L2-Convergence Rate

In order to show asymptotic normality of the companion algorithms (6.5), (6.6) and
(6.7), we make use of Theorem A.1.2 in the appendix on the almost L2-convergence
rate of the Kiefer-Wolfowitz process [37, Theorem 3.1.]. A process pZtqtě0 is said to
converge almost in L2, if for any ε ą 0, there is an event Aε of probability ě 1 ´ ε,
such that pZt1Aεqtě0 converges in L2. For the companion algorithm (6.4), which refers
to the Robbins-Monro process, we need a result on the almost L2-convergence rate
given in Theorem 8.1.1 below.

Also useful is the following lemma, which can be found in [37] as Lemma 3.1. It
can be employed to handle the impact of the leading algorithms on the companion
algorithms.

Lemma 8.1.1. Let Z be a strong solution of the stochastic integral equation (6.2) or
(6.3) on r0,8q. If there is a strictly positive, monotone increasing process pStqtě0 that
satisfies St Ò 8 and St}Zt} Ñ 0, then, for all ε, δ ą 0, a deterministic time T pε, δq
exists with

P

«

sup
těT pε,δq

}Zt} ą δ

ff

ă ε.

Remark 8.1.1. Choosing γ :“ 1{4 (or γ :“ 1{6) for two (or three) times differentiable
f , Theorem A.1.2 yields that there is a T such that, for all t ě T , the leading Kiefer-
Wolfowitz algorithm converges with rate ´1{4 (or ´1{3, respectively) in the almost

119
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L2 sense. The following assumptions refer to the Robbins-Monro algorithm given in
(6.2).

Assumption 8.1.1.

pRM Aq f : Rd Ñ Rd is Lipschitz-continuous.

pRM Bq There exists a z˚ with fpz˚q “ 0.

pRM Dq The weight process pasqsě0 satisfies

as ą 0 as Ó 0

ż 8

0

asdRs “ 8.

pRM Eq For every i P t1, . . . , du and x P Rd, we have

ż 8

0

a2
s

hiis pZs´q

1` }Zs´}2
dRs ă 8, where hijs pzq :“

dr
ş.

0
Mipdt, zq,

ş.

0
Mjpdt, zqss

dRs

.

pRM E˚q Assume that f is continuously differentiable around z˚,

@
i,jPt1,...,du

@
0ăCă8

D
0ăKă8

@
zPRd

}z} ď C ñ sup
tPr0,8q

|hijt pzq| ď K,

ż 8

0

a2
s∆RsdR

d
s ă 8 and

ż 8

0

a2
sdRs ă 8.

The following theorem on the almost L2-convergence rate is useful to investigate
companion algorithms with a leading Robbins-Monro algorithm.

Theorem 8.1.1 (Almost L2-convergence rate of the Robbins-Monro process). Con-
sider the Robbins-Monro process Z given in [RM] (6.2). Assume a positive, deter-
ministic, monotonously increasing function pStqtě0 with St Ò 8 and St}Zt} Ñ 0 a.s.
Assumption 8.1.1 shall hold true. Let Jz˚ be the Jacobian of f at z˚, and βmin as well
as βmax its minimum and maximum eigenvalue, respectively. Moreover let α P p1{2, 1s.
If α ă 1, assume βmin ą 0; if α “ 1 assume βmin ą 1{p2aq. Then, for all ε ą 0, there
exists a process pYtqtě0 such that

P
„

@
tě0

Yt “ Zt



ě 1´ ε (8.1)

and

E}Yt ´ z˚}2 “ Opp1`Rtq
1´2α

q. (8.2)

Proof. The proof is similar to that of Theorem 3.1 in [37] (Theorem A.1.2 in the
appendix) referring to the Kiefer-Wolfowitz algorithm. Without loss of generality we
may assume that z˚ “ 0. We construct a process pYtqtě0 with property (8.1). Next we
calculate }Yt}

2 and show that its local martingale part is even a martingale. Finally
we establish a convergence rate for E}Yt}2.
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Construction of Y . As f is continuous and differentiable at z˚ “ 0 we get

fpxq “ J0x` fpxq ´ J0x “: J0x` V pxq

where V pxq “ op}x}q. Choose a p˚ P r2α ´ 1, 1s. We distinguish the cases α ă 1 and
α “ 1. If α “ 1 we have 2aβmin ą 1 ě p˚ ą 0. Set

κ :“

$

’

&

’

%

2aβmin ´ p
˚

4a
if α “ 1

βmin

3
if α ă 1.

Note that this constant is strictly positive. The fact that V pxq “ op}x}q yields

@
ρą0

D
δ1ą0

@
}x}ăδ1

}V pxq} ď ρ}x}.

As κ is strictly positive, it is acceptable to choose ρ “ κ. With ε ą 0 and choosing δ :“
mintδ1, 1u, Lemma 8.1.1 guarantees the existence of a deterministic time T pε, δq ă 8
with

P
ˆ„

sup
těT pε,δq

}Zt} ď δ

˙

ě 1´ ε.

Recall that as “ ap1 ` Rs´q
´α. Conditions pRM Dq and pRM E˚q justify the impli-

cation
ż 8

0

asdRs “ 8 ^

ż 8

0

a2
s∆RsdRs “

ż 8

0

a2
s∆RsdR

d
s ă 8 ñ

∆Rs

p1`Rs´q
α

sÑ8
ÝÝÝÑ 0.

Together with the assumption that pRsqsě0 is deterministic this yields for α “ 1 that

D
s0
@

sěs0
as∆Rs ď

2aβmin ´ p
˚

2apβmax ` κq2
(8.3)

and for α ă 1

D
s1
@

sěs1

ˆ

as∆Rs ď
βmin

pβmax ` κq2
^ p1`Rtq

α´1
ď
aβmin

3p˚

˙

. (8.4)

Note that the times T pε, δq, s0 and s1 are all deterministic. For that reason

T :“

#

maxtT pε, δq, s0u if α “ 1

maxtT pε, δq, s1u if α ă 1

is deterministic as well, and hence especially has the properties of a stopping time.
Consequently, as Z is an adapted càdlàg process, according to [32, Theorem 4],

D :“ inftt ą T | }Zt} ą δu
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defines another, proper, stopping time. Now we are prepared to define pYtqtě0 by

Yt :“ ZD
t

“Zt1r0,T qptq ` Z
D
T 1rT,8qptq1rT‰Ds `

ż t^D

T`

dZs

“ Zt1r0,T qptq ` ZT1rT,8qptq1rT‰Ds

´

ż t

T`

asfpZs´q1pT,DspsqdRs ´

ż t

T`

as1pT,DspsqMpds, Zs´q.

Investigating the process pYtqtě0 on the set rD “ 8s yields

Yt1rD“8s “ Zt1r0,T qptq ` 1rT,8qptq
´

ZT `

ż t

T`

dZs

¯

“ Zt1r0,T qptq ` 1rT,8qptqZt “ Zt.

Consequently pYtqtě0 may differ from pZtqtě0 only on the set rD ă 8s. From T ě

T pε, δq we conclude suptąT }Zt} ď suptąT pε,δq }Zt} and therefore P
´”

suptąT }Zt} ď

δ
ı¯

ě P
´”

suptąT pε,δq }Zt} ď δ
ı¯

. So according to

P
´”

@
tě0

Zt “ Yt

ı¯

“ PprD ă 8sq ` PprD “ 8sq ě PprD “ 8sq “ P
´”

sup
těT

}Zt} ď δ
ı¯

ě P
´”

sup
tąT pε,δq

}Zt} ď δ
ı¯

ě 1´ ε

the P-measure of such a set rD ă 8s is at most ε.
From now on, we assume that t ą T holds. A straightforward calculation yields

}Yt}
2
“ }YT }

2
`

ż t

T`

d}Ys}
2

“ }ZD
T 1rT‰Ds}

2
`M˚

t `

d
ÿ

i“1

´

ż t

T`

a2
sh

ii
s pZs´q1pT,DspsqdRs

´ 2

ż t

T`

asfpZs´qiZ
i
s´1pT,DspsqdRs `

ż t

T`

a2
sfpZs´q

2
i1pT,Dspsq∆RsdR

d
s

¯

,

(8.5)

with a local martingale given by

M˚
t “

d
ÿ

i“1

ˆ
ż t

T`

a2
sfpZs´qi∆Rs1pT,DspsqM

d
i pds, Zs´q ´

ż t

T`

asZ
i
s´1pT,DspsqMipds, Zs´q

`

ż t

T`

a2
s1pT,Dspsq

´

rMipdr, Zr´qss ´ rMipdr, Zr´qss

¯

˙

. (8.6)

We furthermore have

1pT,DsptqYt “ ZD
T 1pT,Dsptq1rT‰Ds ` 1pT,Dsptq

ż t^D

T`

dZs
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“ ZD
T 1pT,Dsptq ` 1pT,Dsptq

ż t^D

T`

dZs “ 1pT,Dsptq
´

ZD
T `

ż t

T`

dZD
s

¯

“ 1pT,DsptqZ
D
t “ 1pT,DsptqZt

as well as

1pT,Dsptq}Yt´} “ 1pT,Dsptq}Zt´} ď δ1pT,Dsptq. (8.7)

In order to bound the terms
řd
i“1 Z

i
s´fpZs´qi and

řd
i“1 fpZs´q

2
i we establish some

inequalities. For a time s with s ą T we have

fpZs´qi “ pJ0Zs´q
i
` V i

pZs´q

which yields

´

d
ÿ

i“1

fpZs´qiZ
i
s´ “ ´

d
ÿ

i“1

ˆ

pJ0Zs´q
i
` V i

pZs´q

˙

Zi
s´

ď ´βmin}Zs´}
2
` }V pZs´q}}Zs´}

ď ´βmin}Zs´}
2
` κ}Zs´}

2 (8.8)

and

d
ÿ

i“1

fpZs´q
2
i “ }fpZs´q}

2
ď

´

}J0Zs´} ` }V pZs´q}
loooomoooon

ďκ}Zs´}

¯2

ď pβmax ` κq
2
}Zs´}

2. (8.9)

Martingale property of M˚. Next we show that the expectation value of the
local martingale pM˚

t qtěT is zero. For that purpose we show that the local martingale
is even a martingale. This can be done by the fact [32, Ch. II.6, Corollary 3] that a
local martingale Mt with EM2

t ă 8 for all t ě 0 is also a martingale if and only if
ErM st ă 8 for all t. As according to [23, p.60, Problem 7] for M PM2

loc with M0 “ 0
it holds ErM st “ ErM st for all t, it is sufficient to show ErM st ă 8. Condition
pRM E˚q will be employed repeatedly. Finally the expectation of a martingale starting
at zero is zero.

With (8.7) and condition pRM E˚q the second term in (8.6) is handled in the
following way:

sup
tąT

E
R d
ÿ

i“1

ż .

T`

asZ
i
s´1pT,DspsqMipds, Zs´q

V

t

“ sup
tąT

E
d
ÿ

i,j“1

ż t

T`

a2
sZ

i
s´Z

j
s´1pT,DspsqrMipdr, Zr´q,Mjpdr, Zr´qss

ď

d
ÿ

i,j“1

sup
tąT

E
ż t

T`

a2
sZ

i
s´Z

j
s´1pT,Dspsqh

ij
s pZs´qdRs ď C

ż 8

0

a2
sdRs ă 8.
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Before we investigate the first term, note

a2
sfpZs´qi∆RsMipds, Zs´q “ a2

sfpZs´qi∆RsM
d
i pds, Zs´q ` a

2
sfpZs´qi∆RsM

c
i pds, Zs´q

“ a2
sfpZs´qi∆RsM

d
i pds, Zs´q.

Now use this identity, (8.7), (8.9) and condition pRM E˚q to show

sup
tąT

E
R d
ÿ

i“1

ż .

T`

a2
sfpZs´qi1pT,Dspsq∆RsMipds, Zs´q

V

t

“ sup
tąT

E
d
ÿ

i,j“1

ż t

T`

a4
sfpZs´qifpZs´qjp∆Rsq

2hijs pZs´q1pT,DspsqdRs

“ C sup
tąT

E
ż t

T`

a4
s

´

d
ÿ

l“1

fpZs´ql

¯2

1pT,Dspsqp∆Rsq
2dRs

ď C
ż 8

0

a4
sp∆Rsq

2dRs “ C
ż 8

0

a2
spas∆Rsq

2dRs

“ C
ż 8

0

a2
sobp1qdRs ă C

ż 8

0

a2
sdRs ă 8.

In order to investigate the last term in (8.6) we use the following fact. If M is a locally
square integrable martingale starting at zero, we have ErM st “ ErM st for all t [23,
p.60, Problem 7]. Hence

E
ż t

T`

a2
r1pT,Dsprq

´

rMipdl, Zl´qsr ´ rMipdl, Zl´qsr

¯

“ E
„
ż .

T`

ar1pT,DsprqMipdr, Zr´q
loooooooooooooooomoooooooooooooooon

PM2
loc



t

´ E
R
ż .

T`

ar1pT,DsprqMipdr, Zr´q
loooooooooooooooomoooooooooooooooon

PM2
loc

V

t

“ 0.

Consequently pM˚
t qtěT is a proper martingale.

Convergence rate of E}Yt}2. Now we investigate

d
´

p1`Rtq
p˚E}Yt}2

¯

“ p1`Rt´q
p˚dE}Yt}2 ` E}Yt´}2dp1`Rtq

p˚
` drp1`R.q

p˚ ,E}Y.}2st. (8.10)

With (8.5) the expectation of }Yt}
2 can be rewritten as

E}Yt}2 “ E}ZD
T 1rT‰Ds}

2
`

ż t

T`

a2
sE

ˆ d
ÿ

i“1

fpZs´q
2
i1pT,Dspsq

˙

∆RsdR
d
s

`

ż t

T`

a2
sE

ˆ d
ÿ

i“1

hiis pZs´q1pT,Dspsq

˙

dRs
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´ 2

ż t

T`

asE
ˆ d
ÿ

i“1

fpZs´qiZ
i
s´1pT,Dspsq

˙

dRs.

Therefore the first term on the right hand side in (8.10) can be bounded with the help
of (8.8) and (8.9):

ż t

T`

p1`Rs´q
p˚dE}Ys}2

ď

ż t

T`

p1`Rs´q
p˚
pβmax ` κq

2 a∆Rs

p1`Rs´q
α
ap1`Rs´q

´αE}Zs´}2dRs

` C
ż t

T`

p1`Rs´q
p˚´2αdRs

` 2

ż t

T`

p1`Rs´q
p˚
p´βmin ` κqap1`Rs´q

´αE}Zs´}2dRs

ď a

ż t

T`

ˆ

´2βmin ` pβmax ` κq
2 a∆Rs

p1`Rs´q
α
` 2κ

˙

p1`Rs´q
p˚´αE}Zs´}2dRs

` C
ż t

T`

p1`Rs´q
p˚´2αdRs

ď a

ż t

T`

ˆ

´2βmin ` vs ` 2κ

˙

p1`Rs´q
p˚´αE}Zs´}2dRs

` C
ż t

T`

p1`Rs´q
p˚`ρ´1dRs. (8.11)

Here we define vs :“ pβmax ` κq2 a∆Rs
p1`Rs´qα

and ρ :“ 1 ´ 2α. By Itô’s formula and a

Taylor expansion of f : x ÞÑ p1` xqp
˚

around Rs´ with a ϑs P r0, 1s we get

p1`Rtq
p˚
´ 1

“

ż t

0`

p˚p1`Rs´q
p˚´1dRs

`
ÿ

0ăsďt

!

p1`Rsq
p˚
´ p1`Rs´q

p˚
´ p˚p1`Rs´q

p˚´1∆Rs

)

“

ż t

0`

p˚p1`Rs´q
p˚´1dRs `

ÿ

0ăsďt

! 1

2
p˚

loomoon

ě0

pp˚ ´ 1q
looomooon

ă0

p1`Rs´ ` ϑs∆Rsq
p˚´2

loooooooooooooomoooooooooooooon

ě0

)

ď

ż t

0`

p˚p1`Rs´q
p˚´1dRs.

Hence for the second term on the right hand side in (8.10) we have

ż t

T`

E}Ys´}2dp1`Rsq
p˚
ď p˚

ż t

T`

p1`Rs´q
p˚´1E}Ys´}2dRs.
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By the mean value theorem there is a ϑt P r0, 1s such that

0 ď ∆p1`Rtq
p˚
“ p1`Rtq

p˚
´ p1`Rt´q

p˚
“ p˚p1`Rt´ ` ϑt∆Rtq

p˚´1∆Rt

ď p˚p1`Rt´q
p˚´1∆Rt.

Hence the last term in (8.10) can be bounded in a similar way as (8.11):

ż t

T`

d
”

p1`R.q
p˚ ,E}Y.}2

ı

s

“

ż t

T`

∆p1`Rsq
p˚dE}Ys}2

ď a

ż t

T`

´

´2βmin ` vs ` 2κ
¯

p1`Rs´q
´αE}Zs´}2∆p1`Rsq

p˚dRs

` C
ż t

T`

p1`Rs´q
ρ´1∆p1`Rsq

p˚dRs

p‹q

ď C
ż t

T`

p1`Rs´q
p˚´1`ρ´1∆RsdRs,

where p‹q is discussed below. All terms in the last inequality, especially vs, are purely
deterministic. A combination of all bounds for the term on the right hand side of
(8.10) yields

ż t

T`

d
´

p1`Rsq
p˚E}Ys}2

¯

ď a

ż t

T`

´

´2βmin ` vs ` 2κ`
p˚

a
p1`Rs´q

α´1
¯

p1`Rs´q
p˚´αE}Zs´}2dRs

` C
ż t

T`

p1`Rs´q
p˚`ρ´1dRs

p‹q

ď C
ż t

T`

p1`Rs´q
p˚`ρ´1dRs (8.12)

where we made use of ∆Rs
p1`Rsqα

“ obp1q and p‹q. Now we discuss p‹q. In the case α “ 1

(8.3) yields

´2βmin ` pβmax ` κq
2 a∆Rs

p1`Rs´q
` 2κ`

p˚

a

ď ´2βmin ` pβmax ` κq
2 2aβmin ´ p

˚

2apβmax ` κq2
` 2

2aβmin ´ p
˚

4a
`
p˚

a
“ 0

and in the case α ă 1 with (8.4) we get

´2βmin ` pβmax ` κq
2 a∆Rs

p1`Rs´q
α
` 2κ`

p˚

a
p1`Rs´q

α´1

ď ´2βmin ` pβmax ` κq
2 βmin

pβmax ` κq2
` 2

βmin

3
`
p˚

a

aβmin

3p˚
“ 0.



8.2 Explicit Solution of a Stochastic Integral Equation 127

Application of Itô’s formula to the right hand side of (8.12) yields

ż t

T`

d
´

p1`Rsq
p˚E}Ys}2

¯

ď C
ż t

T`

p1`Rs´q
p˚`ρ´1dRs

“ C
ż t

T`

dp1`Rsq
p˚`ρ

` C
ż t

T`

p1`Rs´q
p˚`ρ´2∆RsdRs.

Condition pRM E˚q implies
ş8

0
p1 ` Rs´q

´2α∆RsdRs ă 8 and thus by Kronecker’s
lemma

şt

T`
p1`Rs´q

p˚`ρ´2∆RsdRs

p1`Rtq
p˚`ρ`2α´2

Ñ 0 as tÑ 8,

which yields a convergence rate for
şt

T`
p1`Rs´q

p˚`ρ´2∆RsdRs. Hence we have

p1`Rtq
p˚E}Yt}2 ď p1`RT q

p˚E}YT }2 ` Cp1`Rtq
p˚`ρ

` op1qp1`Rtq
p˚`ρ`2α´2

and

E}Yt}2 ď Cp1`Rtq
´p˚

` Cp1`Rtq
ρ
` op1qp1`Rtq

ρ`2α´2.

Our assumptions and the choice of p˚ guarantee α ď 1 as well as ´p˚ ď ρ and
ρ ě ρ` 2α ´ 2. As a result

E}Yt}2 “ O
´

p1`Rtq
ρ
¯

“ O
´

p1`Rtq
1´2α

¯

holds and the theorem is proven.

8.2 Explicit Solution of a Stochastic Integral Equation

The following lemma, a representation for the solution of [Gen-Comp] (5.4), is em-
ployed to show asymptotic normality. As a general assumption for the generic com-
panion algorithm we already assumed the existence of a unique solution of [Gen-Comp]
(5.4) on r0,8q. Now we construct an explicit solution.

Lemma 8.2.1. Let G be a left-continuous adapted process with Gt
tÑ8
ÝÝÝÑ υ˚ P-a.s.

Choose k ą 0, ks :“ kp1`Rs´q
´κ, ã ą 0 and ãs :“ ãp1`Rs´q

´α̃ such that
ş8

0
ãsdRs “

8 and
ş8

0
ã2
s∆RsdR

d
s ă 8 hold. Then the companion stochastic integral equation

Υt “ Υ0 `

ż t

0

ãs pGs ´Υs´q dRs `

ż t

0

ksMpds,Υs´q (8.13)

is solved by

Υt “ φt

ˆ

Υ0 ` k

ż t

0

p1`Rs´q
´κφ´1

s Mpds, υ˚q `

ż t

0

φ´1
s dR̃s

˙

(8.14)
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where

R̃s :“ ã

ż t

0

Gsp1`Rs´q
´α̃dRs `

ÿ

sďt

Υs´1tã∆Rs“p1`Rs´qα̃u

` k

ż t

0

p1`Rs´q
´κ
pMpds,Υs´q ´Mpds, υ

˚
qq

and

φt :“ Et
ˆ

´

ż .

0

āsp1`Rs´q
´α̃dRs

˙

with

ās :“ ã1tã∆Rs‰p1`Rs´qα̃u.

If α̃ “ 1 and
ř

0ďt 1tã∆Rt“1`Rt´u ă 8, the function pφtqtě0 can be represented as

φt “ p1`Rtq
´ã

ź

0,t

with

ź

0,t
:“

ź

0ăsďt

˜

ˆ

1´
ã∆Rs

1`Rs´

` 1tã∆Rs“p1`Rs´qu

˙ˆ

1`
∆Rs

1`Rs´

˙ã
¸

(8.15)

where
ś

0,t converges pointwise to a real number
ś

8
as tÑ 8.

If α̃ ă 1 and
ř

0ďt 1tã∆Rt“p1`Rt´qα̃u ă 8, the function pφtqtě0 can be represented as

φt “ exp
´

´
ã

1´ α̃
p1`Rtq

1´α̃
¯

ź

0,t

with

ź

0,t
:“

e
ã

1´α̃

ź

0ăsďt

ˆ

´

1´
ã∆Rs

p1`Rs´q
α̃
` 1tã∆Rs“p1`Rs´qα̃u

¯

exp
´ ã

1´ α̃
∆p1`Rsq

1´α̃
¯

˙

(8.16)

where
ś

0,t converges pointwise to a real number
ś

8
as tÑ 8.

In both cases, α̃ “ 1 and α̃ ă 1,

ź

s,t
:“

ź

0,t
ź

0,s

“
`

1` obp1q
˘

sÑ t pointwise for all t ě 0 (8.17)

holds true.

Proof. Insert (8.14) on the right and left side of (8.13). Equation (8.13) is equivalent
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to

dΥt “ ãt pGt ´Υt´q dRt ` ktMpdt,Υt´q

“ ãp1`Rt´q
´α̃GtdRt ´ ã1tã∆Rs‰p1`Rs´qα̃up1`Rt´q

´α̃Υt´dRt

´ ã1tã∆Rs“p1`Rs´qα̃up1`Rt´q
´α̃Υt´dRt ` kp1`Rt´q

´κMpdt, υ˚q

` kp1`Rt´q
´κ
`

Mpdt,Υt´q ´Mpdt, υ
˚
q
˘

“ ´ātp1`Rt´q
´α̃Υt´dRt ` kp1`Rt´q

´κMpdt, υ˚q ` dR̃t. (8.18)

From (8.14) we get

d
`

φ´1
t Υt

˘

“ kp1`Rt´q
´κφ´1

t Mpdt, υ˚q ` φ´1
t dR̃t

“ φ´1
t

´

kp1`Rt´q
´κMpdt, υ˚q ` dR̃t

¯

. (8.19)

According to Lemma A.1.6, d rφ, φ´1Υst “ ∆φtd
`

φ´1
t Υt

˘

holds true. With this fact
and equation (8.19) we find

dΥt “ d
`

φtφ
´1
t Υt

˘

“ φt´d
`

φ´1
t Υt

˘

`
`

φ´1
t´Υt´

˘

dφt ` d
“

φ, φ´1Υ
‰

t

“ φtd
`

φ´1
t Υt

˘

´∆φtd
`

φ´1
t Υt

˘

`
`

φ´1
t´Υt´

˘

dφt `∆φtd
`

φ´1
t Υt

˘

“ φtd
`

φ´1
t Υt

˘

`
`

φ´1
t´Υt´

˘

dφt
(8.19)
“ k p1`Rt´q

´κMpdt, υ˚q ` dR̃t ` φ
´1
t´Υt´dφt.

By (8.18)

dΥt “ ´ā
tΥt´ p1`Rt´q

´α̃ dRt ` k p1`Rt´q
´κMpdt, υ˚q ` dR̃t

“ ´Υt´

¨

˚

˚

˝

´φ´1
t´

´

´φt´ā
t
p1`Rt´q

´α̃ dRt

¯

loooooooooooooooomoooooooooooooooon

“dφt

˛

‹

‹

‚

` k p1`Rt´q
´κMpdt, υ˚q ` dR̃t

“ Υt´φ
´1
t´dφt ` k p1`Rt´q

´κMpdt, υ˚q ` dR̃t.

As a result both sides of (8.14) are equal.
In order to show an alternative representation of φ we first investigate the argument

of the stochastic exponential in the definition of φ:

´

ż t

0

ās

p1`Rs´q
α̃

dRs

“ ´ã

ż t

0

p1`Rs´q
´α̃

1tã∆Rs‰p1`Rs´qα̃udRs

“ ´ã

ż t

0

p1`Rs´q
´α̃ dRs ` ã

ż t

0

p1`Rs´q
´α̃

1tã∆Rs“p1`Rs´qα̃udRs

“ ´ã

ż t

0

p1`Rs´q
´α̃ dRs `

ÿ

0ăsďt

ã∆Rs

p1`Rs´q
α̃
1tã∆Rs“p1`Rs´qα̃u
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“ ´ã

ż t

0

p1`Rs´q
´α̃ dRs `

ÿ

0ăsďt

1tã∆Rs“p1`Rs´qα̃u. (8.20)

For the case α̃ “ 1 we apply Itô’s formula with f 1pxq “ p1` xq´1:

´ã

ż t

0

p1`Rs´q
´1dRs

“ ´ã lnp1`Rtq ` ã
ÿ

0ăsďt

"

lnp1`Rsq ´ lnp1`Rs´q ´
∆Rs

1`Rs´

*

“ ´ã lnp1`Rtq ` ã
ÿ

0ăsďt

"

ln

ˆ

1`Rs

1`Rs´

˙

´
∆Rs

1`Rs´

*

“ ´ã lnp1`Rtq ` ã
ÿ

0ăsďt

"

ln

ˆ

1`
∆Rs

1`Rs´

˙

´
∆Rs

1`Rs´

*

.

Equation (8.20) yields

´∆

ż t

0

ās

1`Rs´

dRs “ ´ã∆

ż t

0

p1`Rs´q
´1dRs `∆

ÿ

0ăsďt

1tã∆Rs“p1`Rs´qu

“ ´
ã∆Rt

1`Rt´

` 1tã∆Rt“p1`Rt´qu.

Since EtpXq “ eXt´X0´
1
2
rX,Xsct

ś

0ăsďtp1`∆Xsqe
´∆Xs we obtain

φt “ Et
ˆ

´

ż .

0

ās

p1`Rs´q
dRs

˙

“ exp

ˆ

´ã lnp1`Rtq ` ã
ÿ

0ăsďt

"

ln

ˆ

1`
∆Rs

1`Rs´

˙

´
∆Rs

1`Rs´

*

`
ÿ

0ăsďt

1tã∆Rs“p1`Rs´qu

˙

¨
ź

0ăsďt

ˆ

1´
ã∆Rs

1`Rs´

` 1tã∆Rs“p1`Rs´qu

˙

exp

ˆ

ã∆Rs

1`Rs´

´ 1tã∆Rs“p1`Rs´qu

˙

“ p1`Rtq
´ã

ź

0ăsďt

˜

ˆ

1´
ã∆Rs

1`Rs´

` 1tã∆Rs“p1`Rs´qu

˙ˆ

1`
∆Rs

1`Rs´

˙ã
¸

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

“
ś

0,t

“ p1`Rtq
´ã

ź

0,t
.

To show convergence of
ś

0,t we separate it into two factors
ś

0,τ and
ś

τ,t using a
stopping time τ . Choose τ in such a way that the second factor can be approximated
by a Taylor expansion. Then convergence of

ś

τ,t and boundedness of
ś

0,τ yield
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convergence of
ś

0,t. Consider the following Taylor expansions:

lnp1´ axq “ ´ax´
a2x2

2
` opx2

q for ´ 1 ă ax ă 1

a lnp1` xq “ ax´
ax2

2
` opx2

q for ´ 1 ă x ă 1

We define a (deterministic) time

τ 1 :“ min

"

t P R` :
∆Rs

1`Rs´

ă
1

ã` 1
for all s ą t

*

.

As assumptions
ş8

0
ãsdRs “ 8 and

ş8

0
ã2
s∆RsdR

d
s ă 8 imply ∆Rs

1`Rs´

sÑ8
ÝÝÝÑ 0, τ 1 ă 8

holds true. With the two Taylor expansions above we obtain

ln

ˆ

1´
ã∆Rs

1`Rs´

˙

` ã ln

ˆ

1`
∆Rs

1`Rs´

˙

“

ˆ

´
ã

2
´
ã2

2
` ρs

˙ˆ

∆Rs

1`Rs´

˙2

where ρs
sÑ8
ÝÝÝÑ 0.

This motivates the choice of the time

τ :“ min
 

t ě τ 1 : |ρs| ă 1 for all s ą t
(

which determines the decomposition
ś

0,t “
ś

0,τ ¨
ś

τ,t. The convergence ρs
sÑ8
ÝÝÝÑ 0

yields the finiteness of τ ă 8.
Now we analyse the logarithm of

ś

τ,t. Note that
ś

τ,t consists of positive factors

only. As τ ě τ 1 we have ∆Rs
1`Rs´

ă 1
ã`1

for all s ą τ . Together with ã∆Rs ě 0 this

means ã∆Rs ‰ p1`Rs´q for all s ą τ . Bringing these ideas together yields

ln
´

ź

τ,t

¯

“
ÿ

τăsďt

ln

˜

ˆ

1´
ã∆Rs

1`Rs´

` 1tã∆Rs“p1`Rs´qu

˙ˆ

1`
∆Rs

1`Rs´

˙ã
¸

“
ÿ

τăsďt

ln

˜

ˆ

1´
ã∆Rs

1`Rs´

˙ˆ

1`
∆Rs

1`Rs´

˙ã
¸

“
ÿ

τăsďt

ˆ

ln

ˆ

1´
ã∆Rs

1`Rs´

˙

` ã ln

ˆ

1`
∆Rs

1`Rs´

˙˙

“
ÿ

τăsďt

ˆ

´
ã

2
´
ã2

2
` ρs

˙ˆ

∆Rs

1`Rs´

˙2

,

where the second equation follows from ∆Rs
1`Rs´

ă 1
ã`1

, and the last one from the Taylor
expansion above.

Now ρs Ñ 0, |ρs| ă 1 and

ÿ

0ăsď8

ˆ

∆Rs

1`Rs´

˙2

“
1

ã2

ÿ

0ăsď8

ã2
sp∆Rsq

2
“

1

ã2

ż 8

0

ã2
s∆RsdR

d
s ă 8
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imply convergence of lnp
ś

τ,tq and
ś

τ,t, respectively.
Finally we prove boundedness of |

ś

0,τ |. We just showed that

ź

0,τ
“

ź

0ăsďτ

ˆ

1´
ã∆Rs

1`Rs´

` 1tã∆Rs“p1`Rs´qu

˙

˜

ź

0ăsďτ

ˆ

1`
∆Rs

1`Rs´

˙

¸ã

holds. The second factor is bounded as we have

ln

˜

ź

0ăsďτ

ˆ

1`
∆Rs

1`Rs´

˙

¸

“
ÿ

0ăsďτ

ln

ˆ

1`
∆Rs

1`Rs´

˙

ď
ÿ

0ăsďτ

∆Rs

1`Rs´

ď
ÿ

0ăsďτ

∆Rs

ď Rd
τ ă 8.

In the first factor we can neglect the term 1tã∆Rs“p1`Rs´qu as the set

ts P R` : ã∆Rs “ p1`Rs´qu

is finite.
The remaining term

ś

0ăsďτ

´

1´ ã∆Rs
1`Rs´

¯

is split into two factors. The first factor

consists of all factors with norm smaller than one, such that its norm is bounded by
one, too. Consequently we are done, when we can show that the remaining factor has
only a finite number of factors. The inequation

ˇ

ˇ

ˇ

ˇ

1´
ã∆Rs

1`Rs´

ˇ

ˇ

ˇ

ˇ

ě 1 implies ∆Rs ě
2

ã
.

The finiteness of the set

!

s P R` : s ď τ ^∆Rs ě
2

ã

)

in turn is assured by Rd
τ ă 8. This proves the convergence of

ś

0,t to a limit denoted
by

ś

8
.

For the case α̃ ă 1 we reuse the representation (8.20) as well as

´ã

ż t

0

p1`Rs´q
´α̃dRs

“ ´
ã

1´ α̃

ˆ

p1`Rtq
1´α̃

´ 1´
ÿ

sďt

´

∆p1`Rsq
1´α̃

´ p1´ α̃qp1`Rs´q
´α̃∆Rs

¯

˙

and

´∆

ż t

0

ās

p1`Rs´q
α̃

dRs “ ´ã∆

ż t

0

p1`Rs´q
˜́αdRs `∆

ÿ

0ăsďt

1tã∆Rs“p1`Rs´q´α̃u

“ ´
ã∆Rt

p1`Rt´q
α̃u
` 1tã∆Rs“p1`Rs´q´α̃u

in order to calculate the stochastic exponential EtpXq “ eXt´X0´
1
2
rX,Xsct

ś

sďtp1 `
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∆Xsqe
´∆Xs . This leads to the representation

φt “ Et
ˆ

´

ż .

0

ās

p1`Rs´q
α̃

dRs

˙

“ exp

ˆ

´
ã

1´ α̃

´

p1`Rtq
1´α̃

´ 1

´
ÿ

0ăsďt

p∆p1`Rsq
1´α̃

´ p1´ α̃qp1`Rs´q
´α̃∆Rsq

¯

`
ÿ

0ăsďt

1tã∆Rs“p1`Rs´qα̃u

˙

¨
ź

0ăsďt

ˆ

1´
ã∆Rs

p1`Rs´q
α̃
` 1tã∆Rs“p1`Rs´qα̃u

˙

¨ exp

ˆ

ã∆Rs

p1`Rs´q
α̃
´ 1tã∆Rs“p1`Rs´qα̃u

˙

“ exp

ˆ

´
ã

1´ α̃
p1`Rtq

1´α̃

˙

exp

ˆ

ã

1´ α̃

´

1`
ÿ

0ăsďt

∆p1`Rsq
1´α̃

¯

˙

¨
ź

0ăsďt

ˆ

1´
ã∆Rs

p1`Rs´q
α̃
` 1tã∆Rs“p1`Rs´qα̃u

˙

“ exp
´

´
ã

1´ α̃
p1`Rtq

1´α̃
¯

ź

0,t

with

ź

0,t
“ e

ã
1´α̃

ź

0ăsďt

ˆ

´

1´
ã∆Rs

p1`Rs´q
α̃
` 1tã∆Rs“p1`Rs´qα̃u

¯

exp
´ ã

1´ α̃
∆p1`Rsq

1´α̃
¯

˙

.

Finally we show that
ź

0,t
converges as tÑ 8. Firstly we observe

ż 8

0

ãsdRs “ 8 and

ż 8

0

ã2
s∆RsdR

d
s ă 8 imply ãs∆Rs “

ã∆Rs

p1`Rsq
α̃

sÑ8
ÝÝÝÑ 0.

Next, we make use of the well-known Taylor expansion lnp1 ´ xq “ ´
ř8

n“1
xn

n
, if

|x| ă 1. As
´

ã∆Rt
p1`Rtqα̃

¯

ě 0, this yields

ln

ˆ

1´
ã∆Rt

p1`Rt´q
α̃

˙

“ ´

8
ÿ

n“1

1

n
¨

ˆ

ã∆Rt

p1`Rt´q
α̃

˙n

ď ´
ã∆Rt

p1`Rt´q
α̃
´

1

2

ˆ

ã∆Rt

p1`Rt´q
α̃

˙2

for t sufficiently large. Consequently, with the previous inequation and a Taylor
expansion around Rs´, for s sufficiently large

ln
ź

sďt

˜

exp

ˆ

ã

1´ α̃
∆p1`Rsq

1´α̃

˙ˆ

1´
ã∆Rs

p1`Rs´q
α̃

˙

¸

“
ÿ

sďt

˜

ã

1´ α̃
∆p1`Rsq

1´α̃
` ln

ˆ

1´
ã∆Rs

p1`Rs´q
α̃

˙

¸
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ď
ÿ

sďt

˜

ã

1´ α̃
∆p1`Rsq

1´α̃
´

ã∆Rs

p1`Rs´q
α̃
´

1

2

ˆ

ã∆Rs

p1`Rs´q
α̃

˙2
¸

ď
ÿ

sďt

ˆ

ρs ´
ã2

2

˙ˆ

∆Rs

p1`Rs´q
α̃

˙2

,

with ρs Ñ 0, converges. The rest of the proof follows in an analogous way to the case
α̃ “ 1.

Finally from |
ź

0,t
| ď C ă 8 and

ź

0,t
Ñ

ź

8
follows

ź

s,t
:“

ź

0,t
ź

0,s

“
`

1` obp1q
˘

sÑ t pointwise.

8.3 General Distribution Results

Having results on the almost L2-convergence rate of the leading algorithms, we are
prepared to formulate a theorem on asymptotic normality of the companion algo-
rithms.

Assumption 8.3.1. Assume
ř

0ďs 1tã∆Rs“p1`Rs´qα̃u ă 8,
ş8

0
ãsdRs “ 8,

ş8

0
ã2
s∆RsdR

d
s ă 8,

hpυ˚q :“ lim
sÑ8
yÑυ˚

hspyq “ lim
sÑ8
yÑυ˚

hspy, υ
˚
q

where

hspy1, y2q :“
dr
ş.

0
Mpdt, y1q,

ş.

0
Mpdt, y2qss

dRs

, hspyq :“ hspy, yq,

and, for all ε P p0, 1s, the Lindeberg type condition

şt

0
p1`Rsq2ã

p1`Rs´q2κ

ş

Gεs,t
xTxνM

˚

pds, dxq

p1`Rtq
2pã´βq

P
ÝÑ 0 as tÑ 8 if α̃ “ 1

şt

0
p1`Rs´q

´2κφ´2
s

ş

Gεs,t
xTxνM

˚

pds, dxq

p1`Rtq
´2βφ´2

t

P
ÝÑ 0 as tÑ 8 if α̃ ă 1,

where M˚
t :“

şt

0
Mpds, υ˚q,

Gε
s,t :“

$

’

’

&

’

’

%

"

x P Rd
ˇ

ˇ

ˇ
}x} ą ε

p1`Rtq
ã´β

p1`Rst´q
´κp1`Rstq

ã

*

if α̃ “ 1
"

x P Rd
ˇ

ˇ

ˇ
}x} ą ε

p1`Rtq
´β

p1`Rst´q
´κ
φ´1
t φst

*

if α̃ ă 1,
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and νM
˚

is the compensator of the jump-measure µM
˚

of the local martingale M˚. If
α̃ “ 1 assume ã ą 1{2. If α̃ ă 1 assume ã ą 0.

The process Z converges to z˚ in the almost L2 sense with rate p1`Rs´q
´p. There

are constants l, ι, ν, χ ą 0 such that Gs can be decomposed as

Gs “ ls `Op}Zs´ ´ z˚}χq ` opmsq,

with ls :“ lp1`Rs´q
´ι and ms :“ p1`Rs´q

´η. The constant β satisfies β ď p
2
χ, β ď ι

and β ď η.

Remark 8.3.1. In preceding representation of Gs, the term ls causes a bias term in
asymptotic normality results, whereas ms vanishes asymptotically. The condition
β ď p

2
χ guarantees, that the almost L2-convergence rate of Z is fast enough to still

achieve convergence of the disturbed process. For a leading Robbins-Monro process
with differentiable f typically p “ 1{2 holds, whereas in a Kiefer-Wolfowitz process
only p “ 1{4 or p “ 1{3 for f P C2 or f P C3, respectively, can be achieved.

Now we are ready to state an asymptotic normality theorem about a generic com-
panion algorithm.

Theorem 8.3.1. Let Assumption 8.3.1 hold. Then

p1`Rtq
β
pΥt ´ υ

˚
q

D
ÝÑ Npµ,Σq as tÑ 8 if β “

2κ´ 1

2

p1`Rtq
β
pΥt ´ υ

˚
q

P
ÝÑ µ as tÑ 8 if β ă

2κ´ 1

2
.

Bias µ and variance Σ are given by

µ “

$

’

’

&

’

’

%

ãl

ã´ ι
if α̃ “ 1 and β “ ι

l if α̃ ă 1 and β “ ι

0 if α̃ ď 1 and β ă ι

and

Σ “

$

’

&

’

%

k2

2pã´ κq ` 1
hpυ˚q if β “ 2κ´1

2
and α̃ “ 1

k2

2ã
hpυ˚q if β “ 2κ´1

2
and α̃ ă 1.

The previous theorem employs a condition of Lindeberg type, which uses the jump
measure of the compensator explicitly. The following corollary demands conditions
(S1) and (S2) that are an alternative, which is easier to interpret, to the Lindeberg
type condition.

Corollary 8.3.1. If we replace condition

şt

0
p1`Rsq2ã

p1`Rs´q2κ

ş

Gεs,t
xTxνM

˚

pds, dxq

p1`Rtq
2pã´βq

P
ÝÑ 0 as tÑ 8 if α̃ “ 1
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şt

0
p1`Rs´q

´2κφ´2
s

ş

Gεs,t
xTxνM

˚

pds, dxq

p1`Rtq
´2βφ´2

t

P
ÝÑ 0 as tÑ 8 if α̃ ă 1,

in Assumption 8.3.1 by the following conditions

(S1)

E sup0ďsďtp1`Rs´q
2pã´κqp∆M˚

s q
2

p1`Rtq
2pã´κq`1

tÑ8
ÝÝÝÑ 0 if α̃ “ 1

E sup0ďsďtp1`Rs´q
´2κφ´2

s´p∆M
˚
s q

2

p1`Rtq
´2κ`1φ´2

t

tÑ8
ÝÝÝÑ 0 if α̃ ă 1

(S2)

E
ř

sďtp∆M
˚
s q

4p1`Rs´q
4pã´κq

p1`Rtq
4pã´κq`2

tÑ8
ÝÝÝÑ 0 if α̃ “ 1

E
ř

sďtp∆M
˚
s q

4p1`Rs´q
´4κφ´4

s´

p1`Rtq
´4κ`2φ´4

t

tÑ8
ÝÝÝÑ 0 if α̃ ă 1

then the conclusion of Theorem 8.3.1 still holds true.

Proof of Theorem 8.3.1. Without loss of generality we assume υ˚ “ 0. Now we anal-
yse p1` Rtq

βΥt, with Υ given in (8.14). Due to Lemma 8.2.1 and Slutsky’s theorem
it is sufficient to show

(I)

p1`Rtq
βφtΥ0

P
ÝÑ 0

(II)

p1`Rtq
βφt

ż t

0

φ´1
s dR̃s

P
ÝÑ µ

(III)

p1`Rtq
βφtk

ż t

0

p1`Rs´q
´κφ´1

s Mpds, 0q
D
ÝÑ Np0,Σq

with φ and R̃ defined in Lemma 8.2.1.
Verification of (I). In all settings β ď 1{2 holds true. If α̃ ă 1

p1`Rtq
β exp

´

´
ã

1´ α̃
p1`Rtq

1´α̃
¯

ź

0,t
Υ0

looomooon

|.|ďC

P
ÝÑ 0
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follows directly. When α̃ “ 1 we furthermore assumed ã ą 1{2. Therefore p1 `

Rtq
βp1`Rtq

´ã Ñ 0 yields p1`Rtq
βφtΥ0

P
ÝÑ 0, as β ´ ã ă 0.

Verification of (II). According to Lemma 8.2.1

φt “

$

&

%

exp
´

´ ã
1´α̃
p1`Rtq

1´α̃
¯

ź

0,t
if α̃ ă 1

p1`Rtq
´ã

ź

0,t
if α̃ “ 1

holds true with
ź

0,t
given in (8.15) or (8.16). We use the abbreviation

φ̄t :“ exp
´

´
ã

1´ α̃
p1`Rtq

1´α̃
¯

for α̃ ă 1.

The properties
ˇ

ˇ

ˇ

ś

0,t

ˇ

ˇ

ˇ
ď C ă 8 and

ś

0,t Ñ
ś

8
imply

ś

0,t
ś

0,s
“

ś

s,t “ p1 ` obp1qq for

sÑ t. According to the dominated convergence theorem, instead of

p1`Rtq
βφt

ż t

0

φ´1
s dR̃s

P
ÝÑ µ

it is sufficient to show
#

p1`Rtq
β´ã

şt

0
p1`Rsq

ãdR̃s
P
ÝÑ µ if α̃ “ 1

p1`Rtq
βφ̄t

şt

0
φ̄´1
s dR̃s

P
ÝÑ µ if α̃ ă 1.

Therefore our problem reduces to show

p1`Rtq
βφt

ż t

0

φ´1
s dR̃s » H1

t `H
2
t `H

3
t

P
ÝÑ µ

where

H1
t “

$

’

’

&

’

’

%

p1`Rtq
β´ã

ż t

0

ãGsp1`Rs´q
ã´1dRs if α̃ “ 1

p1`Rtq
βφ̄t

ż t

0

ãGsp1`Rs´q
´α̃φ̄´1

s´dRs if α̃ ă 1

H2
t “

$

’

&

’

%

p1`Rtq
β´ã

ÿ

0ăsďt

p1`Rs´q
ãΥs´1tã∆Rs“p1`Rs´qu if α̃ “ 1

p1`Rtq
βφ̄t

ÿ

0ăsďt

φ̄´1
s´Υs´1tã∆Rs“p1`Rs´qα̃u if α̃ ă 1

H3
t “

$

’

’

&

’

’

%

p1`Rtq
β´ã

ż t

0

kp1`Rs´q
ã´κ

pMpds,Υs´q ´Mpds, 0qq if α̃ “ 1

p1`Rtq
βφ̄t

ż t

0

φ̄´1
s´kp1`Rs´q

´κ
pMpds,Υs´q ´Mpds, 0qq if α̃ ă 1.

The asymptotic equality of p1 ` Rs´q
ã and p1 ` Rsq

ã follows as
ş8

0
ãsdRs “ 8 and
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ş8

0
ã2
s∆RsdRs “

ş8

0
ã2
s∆RsdR

d
s ă 8 imply

∆Rs

1`Rs´

Ñ 0. (8.21)

Actually we have

p1`Rsq
ã
“

ˆ

1`Rs

1`Rs´

˙ã

p1`Rs´q
ã
“

ˆ

1`
∆Rs

1`Rs´

˙ã

looooooooomooooooooon

sÑ8
ÝÝÝÑ1

p1`Rs´q
ã.

Analogous arguments yield the asymptotic equality of φ̄s´ and φ̄s. Consequently we
show:

(II.1) H1
t

P
ÝÑ µ (II.2) H2

t
P
ÝÑ 0 (II.3) H3

t
P
ÝÑ 0

Verification of (II.1). With the notation

Gs “ ls `Op}Zs´}χq ` opmsq “: ls ` Vs

we can split (II.1) into the tasks
(II.1.1)

p1`Rtq
β´ã

ż t

0

ãVsp1`Rs´q
ã´1dRs

P
ÝÑ 0 if α̃ “ 1

p1`Rtq
βφ̄t

ż t

0

ãVsp1`Rs´q
´α̃φ̄´1

s´dRs
P
ÝÑ 0 if α̃ ă 1,

as well as
(II.1.2)

p1`Rtq
β´ã

ż t

0

ãlsp1`Rs´q
ã´1dRs

P
ÝÑ

$

&

%

ãl

ã´ ι
if β “ ι

0 if β ă ι

for α̃ “ 1 and

p1`Rtq
βφ̄t

ż t

0

ãlsp1`Rs´q
´α̃φ̄´1

s´dRs
P
ÝÑ

#

l if β “ ι

0 if β ă ι

for α̃ ă 1.
In the following steps we use the abbreviation

Qs,t :“

$

’

’

&

’

’

%

p1`Rs´q
ã´1

p1`Rtq
ã´β

if α̃ “ 1

p1`Rs´q
´α̃φ̄´1

s´

p1`Rtq
´βφ̄´1

t

if α̃ ă 1.
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Verification of (II.1.1). Now we are prepared to verify

@
ε1ą0

@
ε2ą0

D
t0
@
tět0

P
„ˇ

ˇ

ˇ

ˇ

ż t

0

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ą ε1



ď ε2

with arbitrary but fixed ε1, ε2 ą 0.
According to the almost L2-convergence condition in Assumption 8.3.1 there exist

a process Y and a deterministic time T1 ă 8 such that for all t ě T1 we have

´

E}Yt}
¯2

ď E}Yt}2 ď Kp1`Rtq
´p and P

ˆ„

@
tě0

Yt “ Zt

˙

ě 1´
ε1
8

.

By definition of Vs it holds

Vs “ Op}Zs´}χq ` opmsq.

Hence we have

D
ρą0

@
}Zs´},msďρ

|Vs| ď A}Zs´}
χ
`Bms

with appropriate choices for the constants A and B.
As the conditions of Lemma 8.1.1 hold, there exists a deterministic T2 ă 8 such

that

P
ˆ„

sup
těT2

}Zt} ď ρ

˙

ě 1´
ε2
4

.

Furthermore there exists a deterministic T3 ă 8 such that for all t ą T3 it holds
m ă ρ. We define T :“ maxtT1, T2, T3u. Consequently it remains to show

P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż T

0

Qs,tVsdRs `

ż t

T`

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ą ε1

˙

ď P
ˆ„ˇ

ˇ

ˇ

ˇ

ż T

0

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2



Y

„ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2

˙

ď P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż T

0

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2

˙

looooooooooooooooomooooooooooooooooon

ď
ε2
2

`P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2

˙

looooooooooooooooomooooooooooooooooon

ď
ε2
2

. (8.22)

We begin with the verification of the bound of the first summand in the last line
of (8.22). As pZtqtě0 is a strong solution of the corresponding stochastic integral
equation on r0,8q, no explosion times exist and Zt Ñ z˚ a.s. Consequently for all
t ą 0 }Zt} ď Cpωq holds. Furthermore m is bounded. Combining these arguments
yields that there exists a constant Cpωq such that

|Vt| ď Cpωq for all t ď T .
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Therefore

ˇ

ˇ

ˇ

ˇ

ż T

0

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ď

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Cpωq
loomoon

ă8

p1`Rtq
β´ã

looooomooooon

Ñ0

ż T

0

p1`Rs´q
ã´1dRs

looooooooooomooooooooooon

ă8

if α̃ “ 1

Cpωq
loomoon

ă8

p1`Rtq
βφ̄t

looooomooooon

Ñ0

ż T

0

p1`Rs´q
´α̃φ̄´1

s´dRs

looooooooooooomooooooooooooon

ă8

if α̃ ă 1.

This yields almost sure convergence and therefore convergence in probability. Using
this fact we find

D
t10

@
tět10

P
„
ˇ

ˇ

ˇ

ˇ

ż T

0

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2



ď
ε2
2

.

Therefore the first inequation in (8.22) is proven. We now turn to the second bound
in the last equation of (8.22):

P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2

˙

ď P
ˆ„ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,tVsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2



X

„

sup
těT

}Zt} ă ρ

˙

` P
ˆ„

sup
těT

}Zt} ě ρ

˙

ď P
ˆ„

sup
těT

}Zt} ě ρ

˙

` P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs

´

A}Zs´}
χ
`Bms

¯

dRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
2

˙

ď
ε2
4
` P

ˆ„
ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,tA}Zs´}
χdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4

˙

` P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,tBmsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4

˙

“
ε2
4
` P

ˆ„
ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,t}Zs´}
χdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4A

˙

` P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,tBmsdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4

˙

(8.23)

We start with a bound for the second to last term in (8.23). We have

P
ˆ„ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,t}Zs´}
χdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4A

˙

ď P
ˆ„

@
tě0

Zt “ Yt

c˙

` P
ˆ„ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,t}Zs´}
χdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4A



X

„

@
tě0

Zt “ Yt

˙

ď P
ˆ„

@
tě0

Zt “ Yt

c˙

loooooooooomoooooooooon

ď
ε2
8

`P
ˆ„

ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,t}Ys´}
χdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4A

˙

looooooooooooooooooooomooooooooooooooooooooon

ď
ε2
8

where the first bound is a direct consequence of the assumed almost L2-convergence
rate. The second inequation is shown next. The bound

E}Yt}2 ď Kp1`Rtq
´p
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implies

E}Yt} ď K
1
2 p1`Rtq

´
p
2 with χ ą 0.

Using Markov’s inequality and the latter result yields

P
„ˇ

ˇ

ˇ

ˇ

ż t

T`

Qs,t}Ys´}
χdRs

ˇ

ˇ

ˇ

ˇ

ě
ε1
4A



ď
4A

ε1

ż t

T`

Qs,t E}Ys´}χ
looomooon

ďK
χ
2 p1`Rs´q

´
p
2χ

dRs

ď

$

’

’

&

’

’

%

4A

ε1
K

χ
2 p1`Rtq

β´ã

ż t

0

p1`Rs´q
ã´1´ p

2
χdRs if α̃ “ 1

4A

ε1
K

χ
2 p1`Rtq

βφ̄t

ż t

0

φ̄´1
s´p1`Rs´q

´α̃´ p
2
χdRs if α̃ ă 1.

Application of Itô’s formula and a Taylor expansion of f : x ÞÑ p1 ` xqã´
p
2
χ around

Rs´ with a ϑs P p0, 1q yields

ż t

0

p1`Rs´q
ã´1´ p

2
χdRs

“
p1`Rtq

ã´ p
2
χ ´ 1

ã´ p
2
χ

´
ÿ

0ăsďt

"

∆p1`Rsq
ã´ p

2
χ

ã´ p
2
χ

´ p1`Rs´q
ã´1´ p

2
χ∆Rs

*

“
p1`Rtq

ã´ p
2
χ ´ 1

ã´ p
2
χ

´
1

ã´ p
2
χ

ÿ

0ăsďt

1

2

´

ã´
p

2
χ
¯´

ã´ 1´
p

2
χ
¯

p1`Rs´ ` ϑs∆Rsq
ã´ p

2
χ´2
p∆Rsq

2

“
p1`Rtq

ã´ p
2
χ ´ 1

ã´ p
2
χ

´
1

2

´

ã´ 1´
p

2
χ
¯

ÿ

0ăsďt

p1`Rs´ ` ϑs∆Rsq
ã´ p

2
χ´2

p∆Rsq
2

“
p1`Rtq

ã´ p
2
χ ´ 1

ã´ p
2
χ

´
1

2

´

ã´ 1´
p

2
χ
¯

ÿ

0ăsďt

p1`Rs´ ` ϑs∆Rsq
ã
p1`Rs´ ` ϑs∆Rsq

´
p
2
χ´2

p∆Rsq
2

ď
p1`Rtq

ã´ p
2
χ ´ 1

ã´ p
2
χ

` C
ÿ

0ăsďt

p1`Rsq
ã
p1`Rs´q

´2´ p
2
χ
p∆Rsq

2

ď
p1`Rtq

ã´ p
2
χ ´ 1

ã´ p
2
χ

` C
ÿ

0ăsďt

ˆ

1`Rs

1`Rs´
looomooon

“1` ∆Rs
1`Rs´

“1`obp1q by (8.21)

˙ã

p1`Rs´q
ã´2´ p

2
χ
p∆Rsq

2.
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Therefore, for α̃ “ 1, choosing A :“ ε2
64
ε1pã´

p
2
χqK´

χ
2 ,

4AK
χ
2

ε1

ż t

0

p1`Rs´q
ã´1´ p

2
χ

p1`Rtq
ã´β

dRs

ď
4AK

χ
2

ε1pã´
p
2
χq

ˆ

1`Rt

˙β´ p
2
χ

looooooomooooooon

“1 if β “ p
2
χ

`C
ÿ

0ăsďt

p1`Rs´q
ã´2´ p

2
χ

p1`Rtq
ã´β

p∆Rsq
2

loooooooooooooooooomoooooooooooooooooon

Ñ0

Ñ

# ε2
16

if β “ p
2
χ

0 if β ă p
2
χ

holds. The convergence of the sum to zero follows by Kronecker’s lemma as β ď p
2
χ

implies

ÿ

0ăs

p1`Rs´q
ã´2´ p

2
χ

p1`Rsq
ã´β

p∆Rsq
2
ď C

ż 8

0

ã2
s∆RsdR

d
s ă 8.

In an analogous way, for α̃ ă 1, we can show that

4AK
χ
2

ε1

ż t

0

φ̄´1
s´p1`Rs´q

´α̃´ p
2
χ

φ̄´1
t p1`Rtq

ã´β
dRs Ñ

# ε2
16

if β “ p
2
χ

0 if β ă p
2
χ.

Now, for α̃ “ 1, we show that the last term in (8.23) equals zero. For t large enough
we have, using Itô’s formula in an analogous way as above,

p1`Rtq
β´ã

ż t

T`

p1`Rs´q
ã´1´ηdRs

ď
1

ã´ η
p1`Rtq

β´η
looooomooooon

“1 if β“η

`C
ÿ

0ăsďt

p∆Rsq
2 p1`Rs´q

ã´2´η

p1`Rtq
ã´β

looooooooooooooooomooooooooooooooooon

tÑ8
ÝÝÝÑ0 as above

ă
2

ã´ η
if β ď η

and therefore, for sufficiently large t,

P
ˆ„

p1`Rtq
β´ã

ż t

T`

p1`Rs´q
ã´1´ηdRs ě

2

ã´ η

˙

“ 0 holds.

In a similar way, for α̃ ă 1 and t sufficiently large, it is easy to show

P
ˆ„

p1`Rtq
βφ̄t

ż t

T`

φ̄´1
s´p1`Rs´q

´α̃´ηdRs ě
2

ã

˙

“ 0, if β ď η.
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Verification of (II.1.2). We have, for α̃ “ 1,

p1`Rtq
β´ã

ż t

0

ãlp1`Rs´q
´ι
p1`Rs´q

ã´1dRs

“ ãlp1`Rtq
β´ã

ż t

0

p1`Rs´q
ã´1´ιdRs

»
ãl

ã´ ι
p1`Rtq

β´ã
p1`Rtq

ã´ι

P
ÝÑ

$

&

%

ãl

ã´ ι
if β “ ι

0 if β ă ι

and analogously, for α̃ ă 1,

p1`Rtq
βφ̄t

ż t

0

ãlp1`Rs´q
´ι
p1`Rs´q

´α̃φ̄´1
s´dRs

P
ÝÑ

#

l if β “ ι

0 if β ă ι.

Verification of (II.2). We have assumed that
ř

sďt 1tã∆Rs“p1`Rs´qα̃u ă 8. More-
over we know that pΥtqtě0 converges and that there are no explosion times. Therefore,
if α̃ “ 1,

|p1`Rtq
β´ã

ÿ

0ăsďt

p1`Rs´q
ãΥs´1tã∆Rs“p1`Rs´qu|

ď Cpωq p1`Rtq
β´ã

looooomooooon

tÑ8
ÝÝÝÑ0

ÿ

sďt

1tã∆Rs“p1`Rs´qu

loooooooooomoooooooooon

ă8

tÑ8
ÝÝÝÑ 0.

If α̃ ă 1, one can show that

|p1`Rtq
βφ̄t

ÿ

0ăsďt

φ̄´1
s´Υs´1tã∆Rs“p1`Rs´qα̃u|

ď Cpωqp1`Rtq
βφ̄t

ÿ

sďt

1tã∆Rs“p1`Rs´qα̃u
tÑ8
ÝÝÝÑ 0.

Verification of (II.3). Now we prove

p1`Rtq
β´ã

ż t

0

kp1`Rs´q
ã´κ

pMpds,Υs´q ´Mpds, 0qq
P
ÝÑ 0 if α̃ “ 1.

We apply the Lenglart-Rebolledo inequality, which can be found as Theorem A.1.4 in
the appendix. For that purpose choose

Xt :“

ż t

0

Mpds,Υs´q ´Mpds, 0q

p1`Rs´q
κ´ã

and Yt :“ rXst.

Here Yt is the predictable compensator of X2
t and therefore X2

t ´ Yt P Mloc. For
every stopping time τ we know according to Theorem A.1.5 that EX2

τ “ EYτ . With
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arbitrary ε1, ε2 and fixed t large enough, the Lenglart-Rebolledo inequality yields

P
´”

ˇ

ˇ

ˇ
p1`Rtq

β´ã

ż t

0

p1`Rsq
ã´κ

pMpds,Υs´q ´Mpds, 0qq
ˇ

ˇ

ˇ
ą ε1

ı¯

“ P
´”ˇ

ˇ

ˇ
p1`Rtq

β´ãXt

ˇ

ˇ

ˇ
ą ε1

ı¯

“ P
´”

X2
t ą ε21p1`Rtq

2pã´βq
ı¯

ď P
´”

sup
sďt

X2
s ą ε21p1`Rtq

2pã´βq
ı¯

ď
EpYt ^ bq

ε21p1`Rtq
2pã´βq

` P
`

rYt ě bs
˘

ď
b

ε21p1`Rtq
2pã´βq

` P
`

rYt ě bs
˘

(8.24)

for any b ą 0. As p1 ` Rtq
2pβ´α̃q tÑ8

ÝÝÝÑ 8, the first term in line (8.24) tends to zero.

Now with Toeplitz’s lemma, hspΥs´,Υs´q ´ 2hspΥs´, 0q ` hsp0, 0q
sÑ8
ÝÝÝÑ 0 implies

p1`Rtq
´2pβ´α̃qYt

“ p1`Rtq
´2pβ´α̃qrXst “

ż t

0

dr
ş.

0
pMpdτ,Υτ´q ´Mpdτ, 0qqss

p1`Rs´q
2pκ´ãq

p1`Rtq
2pã´βq

“

ż t

0

hspΥs´,Υs´q ´ 2hspΥs´, 0q ` hsp0, 0q

p1`Rs´q
2pκ´ãq

dRs

p1`Rtq
2pã´βq

tÑ8
ÝÝÝÑ 0.

Consequently

P
`

rYt ě bs
˘

“ P
ˆ„

Yt
b

loomoon

Ñ0

ě 1

˙

Ñ 0 as tÑ 8,

hence the second term in line (8.24) tends to zero. Analogously, in the case α̃ ă 1,
choosing

Xt :“

ż t

0

Mpds,Υs´q ´Mpds, 0q

φ̄s´p1`Rs´q
κ

and Yt :“ rXst

it holds true that

P
´”

ˇ

ˇ

ˇ
p1`Rtq

βφ̄t

ż t

0

p1`Rsq
´κφ̄´1

s´ pMpds,Υs´q ´Mpds, 0qq
ˇ

ˇ

ˇ
ą ε1

ı¯

“ 0.

Verification of (III). We show

p1`Rtq
βφtk

ż t

0

p1`Rs´q
´κφ´1

s Mpds, 0q
D
ÝÑ Np0,Σq.

It is sufficient to show

p1`Rtnq
βφtnk

ż tn

0

p1`Rs´q
´κφ´1

s Mpds, 0q
D
ÝÑ Np0,Σq,
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for an arbitrary sequence tn Ò 8. Therefore we investigate the sequence of locally
square integrable martingales

Mn
s :“ p1`Rtnq

βφtnk

ż stn

0

p1`Rr´q
´κφ´1

r Mpdr, 0q

for some fixed s ą 0. Note that Mn
s P M2

loc as pRqtě0 and pφqtě0 are deterministic

and
şt

0
asMpds,Υs´q PM2

loc by general assumption in the introduction. Applying the
central limit theorem Theorem A.1.6 in the appendix, we show

Mn
1

D
ÝÑM where M „ Np0,Σq.

For that purpose we verify the Lindeberg-type and variance-type conditions in The-
orem A.1.6 with Xn :“Mn

s PM2
loc.

In the next steps we choose S “ t1u and M˚
t :“

şt

0
Mpds, 0q.

Verification of the Lindeberg-type condition. We have

@
nPN

@
sě0

∆Mn
s “ k

p1`Rtnq
β

p1`Rstn´q
κ
φtnφ

´1
stn∆M˚

stn .

Therefore

|∆Mn
s |

2
“ k2 p1`Rtnq

2β

p1`Rstn´q
2κ
|φtnφ

´1
stn∆M˚

stn |
2
ď k2 p1`Rtnq

2β

p1`Rstn´q
2κ
|φtnφ

´1
stn |

2
|∆M˚

stn |
2

ď

$

’

’

&

’

’

%

C p1`Rstn´q
´2κp1`Rstnq

2ã

p1`Rtnq
´2β`2ã

p∆M˚
stnq

2 if α̃ “ 1

C p1`Rtnq
2β

p1`Rstn´q
2κ
φ̄2
tnφ̄

´2
stnp∆M

˚
stnq

2 if α̃ ă 1.

and thus

r|∆Mn
s | ą δs “

„

ˇ

ˇ

ˇ
k
p1`Rtnq

β

p1`Rstn´q
κ
φtnφ

´1
stn∆M˚

stn

ˇ

ˇ

ˇ
ą δ



“

„

|φtnφ
´1
stn∆M˚

stn | ą
δ

k

p1`Rtnq
´β

p1`Rstn´q
´κ



Ă

„

|φtnφ
´1
stn ||∆M

˚
stn | ą

δ

k

p1`Rtnq
´β

p1`Rstn´q
´κ



Ă

$

’

’

&

’

’

%

„

|∆M˚
stn | ą C p1`Rtnq

ã´β

p1`Rstn´q
´κp1`Rstnq

ã



if α̃ “ 1
„

|∆M˚
stn | ą C p1`Rtnq

´β

p1`Rstn´q
´κ
φ´1
tn φstn



if α̃ ă 1.
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Instead of r|∆Mn
s | ą δs for all δ Ps0, 1s we investigate the set

Gε
s,tn :“

$

’

’

&

’

’

%

"

x P Rd : |x| ą ε
p1`Rtnq

ã´β

p1`Rstn´q
´κp1`Rstnq

ã

*

if α̃ “ 1
"

x P Rd : |x| ą ε
p1`Rtnq

´β

p1`Rstn´q
´κ
φ´1
tn φstn

*

if α̃ ă 1

for all ε Ps0, 1s. With the inequalities above, as well as S “ t1u and t “ 1 we get by
Assumption 8.3.1

@
ωPΩ

x21r|x|ąδs ˚ ν
Mn

t

“ x21r|x|ąδs ˚ ν
Mn

1 “

ż 1

0

ż

Rd
x21r|x|ąδsν

Mn

pds, dxq

ď

$

’

’

’

&

’

’

’

%

C
ż tn

0

ż

Gεs,tn

p1`Rs´q
´2κp1`Rsq

2ã

p1`Rtnq
2pã´βq

x2νM
˚

pds, dxq if α̃ “ 1

C
ż tn

0

ż

Gεs,tn

p1`Rs´q
´2κφ´2

s

p1`Rtnq
´2βφ´2

tn

x2νM
˚

pds, dxq if α̃ ă 1

ď

$

’

’

’

’

&

’

’

’

’

%

C

ştn
0

p1`Rsq2ã

p1`Rs´q2κ

ş

Gεs,tn
x2νM

˚

pds, dxq

p1`Rtnq
2pã´βq

if α̃ “ 1

C

ştn
0
p1`Rs´q

´2κφ´2
s

ş

Gεs,tn
x2νM

˚

pds, dxq

p1`Rtnq
´2βφ´2

tn

if α̃ ă 1

P
ÝÑ 0 as tn Ñ 8.

Verification of the variance-type condition. We show rMns1
P
ÝÑ Σ. With

rφtnφ
´1
r Mpdr, 0q, φtnφ

´1
r Mpdr, 0qss “ φtnφ

´1
s ¨ φtnφ

´1
s rMpds, 0q,Mpds, 0qs

looooooooooomooooooooooon

“hsp0qdRs

“

$

’

’

’

&

’

’

’

%

p
ś

0,tn
q2

p1`Rtnq
2ã

p1`Rsq
2ã

p
ś

0,sq
2
hsp0qdRs if α̃ “ 1

φ̄2
tnp

ś

0,tn
q2

φ̄2
sp
ś

0,sq
2
hsp0qdRs if α̃ ă 1

“

$

’

’

&

’

’

%

p1`Rsq
2ã

p1`Rtnq
2ã

´

ź

s,tn

¯2

hsp0qdRs if α̃ “ 1

φ̄2
tn

φ̄2
s

´

ź

s,tn

¯2

hsp0qdRs if α̃ ă 1

and the boundedness of
ź

s,tn
, the dominated convergence theorem yields for α̃ “ 1

that

rMn,Mns1 “ k2

ż tn

0

p1`Rs´q
´2κ

p1`Rtnq
´2β

drφtnφ
´1
r Mpdr, 0q, φtnφ

´1
r Mpdr, 0qss
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“ k2hsp0q
1

p1`Rtnq
2pã´βq

ż tn

0

p1` obp1qqp1`Rs´q
2pã´κqdRs

» k2hsp0q

ştn
0
p1`Rs´q

2pã´κqdRs

p1`Rtnq
2pã´βq

nÑ8
ÝÝÝÑ

$

&

%

k2hp0q
1

2pã´ κq ` 1
if β “ 2κ´1

2

0 if β ă 2κ´1
2

and for α̃ ă 1

rMn,Mns1

“ k2

ż tn

0

p1`Rs´q
´2κ

p1`Rtnq
´2β

drφtnφ
´1
r Mpdr, 0q, φtnφ

´1
r Mpdr, 0qss

“ k2hsp0qφ̄
2
tnp1`Rtnq

2β

ż tn

0

p1` obp1qqp1`Rs´q
´2κφ̄´2

s´dRs

» k2hsp0qφ̄
2
tnp1`Rtnq

2β

ż tn

0

p1`Rs´q
´2κφ̄´2

s´dRs

“ k2hsp0q

ştn
0
p1`Rs´q

´2κφ̄´2
s´dRs

ştn
0
φ̄´2
s´dp1`Rsq

´2β `
ştn
0
p1`Rs´q

´2βdφ̄´2
s `

ştn
0

drφ̄´2
. , p1`R.q

´2βss

“ k2hsp0q

ż tn

0

p1`Rs´q
´2κφ̄´2

s´dRs

N

´

ż tn

0

´2βp1`Rs´q
´2β´1φ̄´2

s´dRs

`

ż tn

0

φ̄´2
s´2ãp1`Rs´q

´2β´α̃dRs `

ż tn

0

drφ̄´2
. , p1`R.q

´2β
ss

¯

» k2hsp0q

ştn
0
p1`Rs´q

´2κφ̄´2
s´dRs

ştn
0
φ̄´2
s´2ãp1`Rs´q

´2β´α̃dRs `
ştn
0

drφ̄´2
. , p1`R.q

´2βss

“ k2hsp0q

ştn
0
p1`Rs´q

´2κφ̄´2
s´dRs

ştn
0
φ̄´2
s´2ãp1`Rs´q

´2β´α̃dRs ´
ştn
0
φ̄´2
s´4ãβp1`Rs´q

´4β´α̃´1∆RsdRd
s

» k2hsp0q

ştn
0
p1`Rs´q

´2κφ̄´2
s´dRs

ştn
0
φ̄´2
s´2ãp1`Rs´q

´2β´α̃dRs

nÑ8
ÝÝÝÑ

$

&

%

k2

2ã
hp0q if β “ 2κ´α̃

2

0 if β ă 2κ´α̃
2

,

respectively. Note that the last convergence follows according to Toeplitz’ lemma
A.1.2.

Proof of Lemma 8.3.1. We only have to change part (III) in the proof of Theorem
8.3.1. For that purpose we use the theorem of Crimaldi and Pratelli (Theorem A.1.7
in the appendix). Choose

ât :“ kp1`Rtq
βφt M̂t :“

ż t

0

p1`Rs´q
´κφ´1

s Mpds, 0q
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and check conditions (a), (b) and (c) of their theorem. We only consider the case
α̃ “ 1, as the proof for α̃ ă 1 is similar.

Verification of (a).
With the definitions of ât, φt and the condition ã ą 1

2
ą β, we have

â2
t ď Cp1`Rtq

2βφ2
t ď Cp1`Rtq

2β
p1`Rtq

´2ã
Ñ 0

and thereby ât Ñ 0.
Verification of (b).
We show that the squared process converges to zero:

´

E sup
0ďsďt

|ât∆M̂s|

¯2

ď E sup
0ďsďt

|ât∆M̂s|
2

ď E sup
0ďsďt

˜

´1`Rs

1`Rt

¯ã
ś

0,t
ś

0,s

p1`Rtq
β

p1`Rs´q
κ
|∆Ms|

¸2

ď E sup
0ďsďt

¨

˚

˚

˚

˝

ź

s,t

´

1`
∆Rs

1`Rs´

¯ã

loooooooooooomoooooooooooon

ďC

p1`Rtq
β´ã

p1`Rs´q
κ´ã
|∆Ms|

˛

‹

‹

‹

‚

2

ď C
E sup0ďsďtp1`Rs´q

2pã´κq|∆Ms|
2

p1`Rtq
2pã´βq

tÑ8
ÝÝÝÑ 0.

Verification of (c).
We show

(i) â2
t rM̂ st

P
ÝÑ Σ (ii) â2

t

`

rM̂ st ´ rM̂ st
˘ P
ÝÑ 0.

Part (a) yields ât Ñ 0.
Verification of (i).
Consider rM̂ st:

rM̂ st “

ż t

0

p1`Rs´q
´2κrpφ´1Mpdr, 0qq, pφ´1Mpdr, 0qqss

“

ż t

0

p1`Rs´q
2pã´κqhsp0qdRs.

We obtain

k2
p1`Rtq

2β
pφtq

2rM̂ st “ k2

şt

0
p
ś

s,tq
2p1`Rs´q

2pã´κqhsp0qdRs

p1`Rtq
2pã´κq

“ k2hp0q

şt

0
p1` obp1qqp1`Rs´q

2pã´κqdRs

p1`Rtq
2pã´κq

loooooooooooooooooooomoooooooooooooooooooon

Ñ 1
2pã´κq`1

.
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As a result we have

â2
t rM̂ st

P
ÝÑ Σ with Σ :“

k2hp0q

2pã´ κq ` 1
.

Verification of (ii).
Following the arguments of the previous calculation yields

â2
t

`

rM̂ st ´ rM̂ st
˘

“

şt

0
p1` obp1qqp1`Rs´q

2pã´κqdp

“:Ls
hkkkkkkkkikkkkkkkkj

rM˚
ss ´ rM˚ssq

p1`Rtq
2pã´κq

.

As the term obp1q in this expression does not effect the asymptotic result, it is sufficient
to show

p1`Rtq
2pβ´ãq

ż t

0

p1`Rs´q
2pã´κqdLs

P
ÝÑ 0. (8.25)

By definition of the compensator, L P Mloc holds. Note that (8.25) holds if we can
show

p1`Rtq
2pβ´ãqE sup

sďt

ˇ

ˇ

ˇ

ˇ

ż s

0

p1`Rr´q
2pã´κqdLr

ˇ

ˇ

ˇ

ˇ

ÝÑ 0.

According to Davis’ inequality (Theorem A.1.3 in the appendix),

p1`Rtq
2pβ´ãqE sup

sďt

ˇ

ˇ

ˇ

ˇ

ż s

0

p1`Rr´q
2pã´κqdLr

ˇ

ˇ

ˇ

ˇ

ď Cp1`Rtq
2pβ´ãqE

d

ż t

0

p1`Rs´q
4pã´κqdrLss

ď C
E
b

ř

sďtp∆M
˚
s q

4p1`Rs´q
4pã´κq

p1`Rtq
2pã´κq

` C
E
b

şt

0
p1`Rs´q

4pã´κqhsp0q2∆RsdRs

p1`Rtq
2pã´κq

, (8.26)

where the last inequality follows with
?
a` b ď

?
a`

?
b, a, b ě 0, and

rLst “
ÿ

sďt

p∆Lsq
2
“
ÿ

sďt

`

∆rM˚
ss ´∆rM˚ss

˘2

“
ÿ

sďt

`

p∆M˚
s q

2
´∆

ż s

0

hrp0qdRr

˘2
“
ÿ

sďt

`

p∆M˚
s q

2
´ hsp0q∆Rs

˘2

“ 2
ÿ

sďt

`

p∆M˚
s q

4
` phsp0q∆Rsq

2
˘

“ 2
ÿ

sďt

p∆M˚
s q

4
` 2

ż t

0

hsp0q
2∆RsdRs.
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Convergence of the first term in the right side of (8.26) is shown via Jensen’s inequality:

˜

E
b

ř

sďtp∆M
˚
s q

4p1`Rs´q
4pã´κq

p1`Rtq
2pã´βq

¸2

ď
E
ř

sďtp∆M
˚
s q

4p1`Rs´q
4pã´κq

p1`Rtq
4pã´βq

tÑ8
ÝÝÝÑ 0.

In order to verify convergence of the second term in the right side of (8.26), we apply
Kronecker’s lemma (Lemma A.1.3 in the appendix) to

ż t

0

p1`Rs´q
4pã´κqhsp0q

2∆Rs

p1`Rs´q
4pã´βq

dRs ď C
ż t

0

∆Rs

p1`Rs´q
4pκ´βq

dRs ă 8.

8.4 Special Distribution Results

In this section we derive asymptotic normality results for the special companion al-
gorithms [RM-J], [KW-H], [KW-F-2], [KW-F-1] in a semimartingale context.

Theorem 8.4.1. For the leading algorithm [RM] (6.2) or [KW] (6.3) let the assump-
tions of Theorem A.1.2 or Theorem 8.1.1, respectively, hold true. Let Assumption
8.3.1 hold, where the condition on the components of Gs is replaced as follows. De-
pendent on the algorithm let

β ď γ and κ “ α̃ ´ γ for [RM-J] (6.4)

β ď γ and κ “ α̃ ´ 2γ for [KW-H] (6.5)

β ď 2γ and κ “ α̃ for [KW-F-2] (6.6)

κ “ α̃ for [c-KW-F-1] (6.7).

Then

p1`Rtq
β
pΥt ´ υ

˚
q

D
ÝÑ Npµ,Σq if β “

2κ´ 1

2

p1`Rtq
β
pΥt ´ υ

˚
q

P
ÝÑ µ if β ă

2κ´ 1

2
.

The parameters µ and Σ are given in the following way. In all settings of algorithms
[KW-H] (6.5) and [KW-F-1] (6.7), as well as [KW-F-2] (6.6), if f P C2, µ “ 0 holds
true. For algorithm [KW-F-2] (6.6), if even f P C3, the bias is

µ “

$

’

’

’

’

’

&

’

’

’

’

’

%

ãc2

2|S|pã´ 2γq

ÿ

iPS

B2

Bx2
i

fpz˚q if α̃ “ 1 and β “ 2γ

c2

2|S|
ÿ

iPS

B2

Bx2
i

fpz˚q if α̃ ă 1 and β “ 2γ

0 if α̃ ď 1 and β ă 2γ.
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For [RM-J] (6.4) the bias is

µ “

$

’

’

&

’

’

%

ãcf2pz˚q

ã´ γ
if α̃ “ 1 and β “ γ

cf2pz˚q if α̃ ă 1 and β “ γ

0 if α̃ ď 1 and β ă γ.

Furthermore for [RM-J] the variance is

Σ “

$

’

&

’

%

pã{cq2

2pã´ α̃ ` γq ` 1
hpυ˚q if β “ 2pα̃´γq´1

2
and α̃ “ 1

ã

2c
hpυ˚q if β “ 2pα̃´γq´1

2
and α̃ ă 1,

for [KW-H]

Σ “

$

’

&

’

%

pã{c2q2

2pã´ α̃ ` 2γq ` 1
hpυ˚q if β “ 2pα̃´2γq´1

2
and α̃ “ 1

ã

2c2
hpυ˚q if β “ 2pα̃´2γq´1

2
and α̃ ă 1,

and for [KW-F-1] as well as [KW-F-2]

Σ “

$

’

&

’

%

ã2

2ã´ 1
hpυ˚q if β “ 2α̃´1

2
and α̃ “ 1

ã

2
hpυ˚q if β “ 2α̃´1

2
and α̃ ă 1.

Remark 8.4.1. At first sight one might be confused why [KW-F-2] always has a bias
term µ “ 0 for f P C2, but if f P C3 there are settings such that µ ‰ 0. This is due to
the fact that by Assumption 8.3.1 β must be chosen small enough such that β ď p

2
χ

and hence we have β ă 2γ for f P C2.

Proof of Theorem 8.4.1. All we have to do is to check that our assumptions also fulfill
the assumption on the decomposition of the term Gs in Theorem 8.3.1. We first take
a closer look at the Gs-terms of companion algorithms [KW-F-2] (6.6) and [KW-F-1]
(6.7). A simple calculation concerning algorithm [KW-F-1] (6.7) yields

Gs ´ υ
˚
“

1

|S|
ÿ

iPS
fpZs´q ´ fpz

˚
q

“
1

|S|
ÿ

iPS
fpz˚q `∇fpz˚qpZs´ ´ z˚q `Op}Zs´ ´ z˚}2q ´ fpz˚q

“ O
`

}Zs´ ´ z
˚
}

2
˘

,

such that choosing l “ 0 and χ “ 2 yields the result. A Taylor expansion for the case
of algorithm [KW-F-2] (6.6) yields

Gs ´ υ
˚
“

1

2|S|
ÿ

iPS
pfpZs´ ` cseiq ` fpZs´ ´ cseiqq ´ fpz

˚
q
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“
1

2|S|
ÿ

iPS

ż 1

0

cs
` B

Bzi
fpZs´ ` tcsq ´

B

Bzi
fpZs´ ´ tcsq

˘

dt` fpZs´q ´ fpz
˚
q

“
1

2|S|
ÿ

iPS

ż 1

0

cs
` B2

Bz2
i

fpz˚q2tcs ` op}Zs´ ´ z
˚
}q ` opcsq

˘

dt` fpZs´q ´ fpz
˚
q

“
1

2|S|
ÿ

iPS

`

c2
s

B2

Bz2
i

fpz˚q ` opcs}Zs´ ´ z
˚
}q ` opc2

sq
˘

` fpZs´q ´ fpz
˚
q

“
1

2|S|
ÿ

iPS

B2

Bz2
i

fpz˚qc2
s `O

`

}Zs´ ´ z
˚
}

2
˘

` o
`

c2
s

˘

.

It doesn’t matter whether f is two or three times differentiable, as we cannot get rid
of the term 1

|S|
ř

iPS
B2

Bz2
i
fpz˚qc2

s. Consequently the decomposition is given by

l :“
c2

2|S|
ÿ

iPS

B2

Bx2
i

fpz˚q, ι :“ 2γ, χ :“ 2, η :“ 2γ.

For algorithm [RM-J] (6.4) we get

Gs ´ υ
˚
“

1

cs

´

fpZs´ ` csq ´ fpZs´

¯

´ Jz˚ “

ż 1

0

∇fpZs´ ` csqdt´
ż 1

0

Jz˚dt

“

ż 1

0

pJZs´`tcs ´ Jz˚qdt

“

ż 1

0

pJz˚ ` f
2
pz˚qpZs´ ´ z

˚
` tcsq ` opZs´ ´ z

˚
` tcsq ´ Jz˚qdt

“ f2pz˚qcs `Oprsq ` opcsq.

Hence we decompose as

l :“ f2pz˚q, ι :“ γ, χ :“ 1, η :“ γ.

Finally, for [KW-H] (6.5)

Gs ´ υ
˚
“

1

c2
s

´

fpZs´ ` csq ` fpZs´ ´ csq ´ 2fpZs´q
¯

´Hz˚

“
1

c2
s

´

ż 1

0

cs∇fpZs´ ` tcsqdt` fpZs´ ´ csq ´ fpZs´q
¯

´Hz˚

“
1

cs

´

ż 1

0

∇fpZs´ ` tcsq ´∇fpZs´ ´ tcsqdt
¯

´Hz˚

“

ż 1

0

ż 1

´1

t∇2fpZs´ ` tucsqdudt´Hz˚

“

ż 1

0

ż 1

´1

t
´

∇2fpz˚q `∇3fpz˚qpZs´ ´ z
˚
` tucsq

` opZs´ ´ z
˚
` tucsq

¯

dudt´Hz˚
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“

ż 1

0

2t
`

∇2fpz˚q `∇3fpz˚qpZs´ ´ z
˚
q ` opZs´ ´ z

˚
q
˘

`
“u2

2
t2csp∇3fpz˚q ` op1qq

‰1

´1
dt´Hz˚

“

ż 1

0

2t
`

∇2fpz˚q `∇3fpz˚qpZs´ ´ z
˚
q ` opZs´ ´ z

˚
q
˘

dt´Hz˚

“
“

t2
`

∇2fpz˚q `∇3fpz˚qpZs´ ´ z
˚
q ` op|Zs´ ´ z

˚
|q
˘‰1

0
´Hz˚

“ Op|Zs´ ´ z˚|q.

Similarly as before, choose

l :“ 0, χ :“ 1.

8.5 Itô Type and Recursive Stochastic Approximation Algorithms

We now turn to Itô type and time-discrete algorithms which are special cases of the
semimartingale model.

Corollary 8.5.1. Consider the generic Itô type algorithm [c-Gen-Comp] (6.11) with
f P Cp. Let conditions (A) and (cD) from Assumption 6.1.1 and 6.3.1, respectively
as well as

σspyq ď Cp1` |y|q and lim
sÑ8

ΥÑυ˚

σspΥq “ σpυ˚q

hold. If α̃ “ 1 assume ã ą 1{2. If α̃ ă 1 assume ã ą 0.
The leading process Z shall converge to z˚ in the almost L2 sense with rate p1`sq´p.

Assume l, ι, ν, χ ą 0 such that Gs can be decomposed as

Gs “ ls `Op}Zs ´ z˚}χq ` opmsq,

with ls :“ lp1` sq´ι and ms :“ p1` sq´η. Moreover choose β with β ď p
2
χ, β ď ι and

β ď η.
Then

p1` tqβpΥt ´ υ
˚
q

D
ÝÑ Npµ,Σq if β “

2κ´ 1

2

p1` tqβpΥt ´ υ
˚
q

P
ÝÑ µ if β ă

2κ´ 1

2
.

Bias and variance are given by

µ “

$

’

’

&

’

’

%

ãl

ã´ ι
if α̃ “ 1 and β “ ι

l if α̃ ă 1 and β “ ι

0 if α̃ ď 1 and β ă ι.
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and

Σ “

$

’

&

’

%

ã2

2ã´ 1
σpυ˚q2 if β “ 2κ´1

2
and α̃ “ 1

ã

2
σpυ˚q2 if β “ 2κ´1

2
and α̃ ă 1.

Before turning to the proof, we present a corollary to Theorem 8.4.1.

Corollary 8.5.2. Consider the algorithms [c-RM-J], [c-KW-H], [c-KW-F-2] and [c-
KW-F-1] with f P Cp. Let conditions (A), (cD) from Assumption 6.1.1 and 6.3.1,
respectively,

σspyq ď Cp1` |y|q and lim
sÑ8

ΥÑυ˚

σspΥq “ σpυ˚q

hold. If α̃ “ 1, assume ã ą 1{2. If α̃ ă 1, assume ã ą 0. The leading process Z shall
converge to z˚ in the almost L2 sense with rate p1`sq´p. Depending on the algorithm,
assume

β ď γ, β ď
p

2
and κ “ α̃ ´ γ for [c-RM-J]

β ď γ, β ď
p

2
and κ “ α̃ ´ 2γ for [c-KW-H]

β ď 2γ, β ď p and κ “ α̃ for [c-KW-F-2]

β ď p and κ “ α̃ for [c-KW-F-1].

Then

p1` tqβpΥt ´ υ
˚
q

D
ÝÑ Npµ,Σq if β “

2κ´ 1

2

p1` tqβpΥt ´ υ
˚
q

P
ÝÑ µ if β ă

2κ´ 1

2
.

Here, the bias µ and the variance Σ are defined in the following way.
In the case that f P C2 in algorithm [c-KW-F-2], and for all settings of algorithms

[c-KW-F-1] and [c-KW-H], µ “ 0 holds true. For algorithm [c-KW-F-2], if even
f P C3,

µ “

$

’

’

’

’

’

&

’

’

’

’

’

%

ãc2

2|S|pã´ 2γq

ÿ

iPS

B2

Bx2
i

fpz˚q if α̃ “ 1 and β “ 2γ

c2

2|S|
ÿ

iPS

B2

Bx2
i

fpz˚q if α̃ ă 1 and β “ 2γ

0 if α̃ ď 1 and β ă 2γ.
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For [c-RM-J] (6.4) the bias is

µ “

$

’

’

&

’

’

%

ãcf2pz˚q

ã´ γ
if α̃ “ 1 and β “ γ

cf2pz˚q if α̃ ă 1 and β “ γ

0 if α̃ ď 1 and β ă γ.

Furthermore for [RM-J] the variance is

Σ “

$

’

&

’

%

pã{cq2

2pã´ α̃ ` γq ` 1
σpυ˚q2 if β “ 2pα̃´γq´1

2
and α̃ “ 1

ã

2c
σpυ˚q2 if β “ 2pα̃´γq´1

2
and α̃ ă 1,

for [KW-H]

Σ “

$

’

&

’

%

pã{c2q2

2pã´ α̃ ` 2γq ` 1
σpυ˚q2 if β “ 2pα̃´2γq´1

2
and α̃ “ 1

ã

2c2
σpυ˚q2 if β “ 2pα̃´2γq´1

2
and α̃ ă 1,

and for [KW-F-1] as well as [KW-F-2]

Σ “

$

’

&

’

%

ã2

2ã´ 1
σpυ˚q2 if β “ 2α̃´1

2
and α̃ “ 1

ã

2
σpυ˚q2 if β “ 2α̃´1

2
and α̃ ă 1.

Proof of Corollaries 8.5.1 and 8.5.2. We verify the assumptions of Theorems 8.3.1
and 8.4.1. Due to our assumptions, the conditions of Corollaries 7.4.2 and 7.4.3 are
also valid. This guarantees the existence of a function St Ò 8 with St|Υt| Ñ 0
a.s. Definitions and notations of the proof of Corollaries 7.4.2 and 7.4.3 are reused.
Note that the decomposition of Gs or its special form for non-generic algorithms,
respectively, was already given there. The Lindeberg-type condition can be shown
using the continuity of the Brownian motion, since

µW pr0, ts ˆ Γq “
ÿ

0ăsďt

1t∆WsPΓu “
ÿ

0ăsďt

1t0PΓu

“
ÿ

0ăsďt

0 “ 0 for all Γ P BdpRzt0uq, t P R`,

yields νW pr0, ts ˆ Γq “ 0 for all Γ P BdpRzt0uq and t P R`.
The condition

ÿ

0ďs

1tã∆Rs“p1`Rs´qu ă 8
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follows from ∆Rs “ 0 since Rs :“ s. Computing

Q

ż .

0

Mpds, yq
U

t
“

ż t

0

σ2
spyqdrW.ss “

ż t

0

σ2
spyqds

yields hspyq “ σ2
spyq and therefore

lim
sÑ8
yÑυ˚

hspyq “ lim
sÑ8
yÑυ˚

σ2
spyq “ σ2

pυ˚q “ hpυ˚q.

Furthermore, we conclude

|hspyq| “ |σ
2
spyq| ď dC2

p1` |y|q2 ď C,

as Υ converges a.s.

Assumption 8.5.1. Let conditions (A) and (dD) from Assumption 6.1.1 and 6.3.3
hold.

(dD2) sup
n

E
`

V 2
n | Fn´1

˘

ă 8 P-a.s.,

(dD3) E
`

V 2
n | Fn´1

˘ nÑ8
ÝÝÝÑ h̃ P-a.s., and

(L) sup
n

E
`

V 2`δ
n

˘

ă 8 P-a.s. for all δ ą 0

Now we turn to a result on time-discrete generic algorithms.

Corollary 8.5.3. Consider the algorithms [d-RM-J], [d-KW-H], [d-KW-F-2] and [d-
KW-F-1] with f P Cp. Let Assumption 8.5.1 hold. If α̃ “ 1 choose ã ą 1{2. If
α̃ ă 1 choose ã ą 0. The leading process Z shall converge to z˚ in the almost L2

sense with rate n´p. Assume the existence of constants l, ι, ν, χ ą 0 such that Gn can
be decomposed as

Gn “ ln `Op}Zn ´ z˚}χq ` opmnq,

with ln :“ ln´ι and mn :“ n´η. Moreover assume a β with β ď p
2
χ, β ď ι and β ď η.

Then

nβpΥn ´ υ
˚
q

D
ÝÑ Npµ,Σq if β “

2κ´ 1

2

nβpΥn ´ υ
˚
q

P
ÝÑ µ if β ă

2κ´ 1

2
.

The bias is

µ “

$

’

’

&

’

’

%

ãl

ã´ ι
if α̃ “ 1 and β “ ι

l if α̃ ă 1 and β “ ι

0 if α̃ ď 1 and β ă ι.
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and the variance

Σ “

$

’

&

’

%

ã2

2ã´ 1
h if β “ 2κ´1

2
and α̃ “ 1

ã

2
h if β “ 2κ´1

2
and α̃ ă 1.

Before presenting the proof we formulate another corollary of Theorem 8.4.1. Re-
sults for algorithms [d-KW-F-2] and [d-KW-F-1] for f P C3 have already been shown
by Mokkadem and Pelletier [28].

Corollary 8.5.4. Consider the algorithms [d-RM-J], [d-KW-H], [d-KW-F-2] and [d-
KW-F-1] with f P Cp. Let Assumption 8.5.1 hold. If α̃ “ 1, assume ã ą 1{2. If
α̃ ă 1, assume ã ą 0. The leading process Z shall converge to z˚ in the almost L2

sense with rate n´p. Depending on the algorithm, assume

β ď γ, β ď
p

2
and κ “ α̃ ´ γ for [d-RM-J]

β ď γ, β ď
p

2
and κ “ α̃ ´ 2γ for [d-KW-H]

β ď 2γ, β ď p and κ “ α̃ for [d-KW-F-2]

β ď p and κ “ α̃ for [d-KW-F-1].

Then

nβpΥn ´ υ
˚
q

D
ÝÑ Npµ,Σq if β “

2κ´ 1

2

nβpΥn ´ υ
˚
q

P
ÝÑ µ if β ă

2κ´ 1

2
.

Here, the parameters µ and Σ are defined in the following way. In the case that
f P C2 in algorithm [d-KW-F-2], and for all settings of algorithms [d-KW-F-1] and
[d-KW-H], µ “ 0 holds true. For algorithm [d-KW-F-2], if even f P C3,

µ “

$

’

’

’

’

’

&

’

’

’

’

’

%

ãc2

2|S|pã´ 2γq

ÿ

iPS

B2

Bx2
i

fpz˚q if α̃ “ 1 and β “ 2γ

c2

2|S|
ÿ

iPS

B2

Bx2
i

fpz˚q if α̃ ă 1 and β “ 2γ

0 if α̃ ď 1 and β ă 2γ.

For [c-RM-J] (6.4) the bias is

µ “

$

’

’

&

’

’

%

ãcf2pz˚q

ã´ γ
if α̃ “ 1 and β “ γ

cf2pz˚q if α̃ ă 1 and β “ γ

0 if α̃ ď 1 and β ă γ.
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Furthermore for [RM-J] the variance is

Σ “

$

’

&

’

%

pã{cq2

2pã´ α̃ ` γq ` 1
h if β “ 2pα̃´γq´1

2
and α̃ “ 1

ã

2c
h if β “ 2pα̃´γq´1

2
and α̃ ă 1,

for [KW-H]

Σ “

$

’

&

’

%

pã{c2q2

2pã´ α̃ ` 2γq ` 1
h if β “ 2pα̃´2γq´1

2
and α̃ “ 1

ã

2c2
h if β “ 2pα̃´2γq´1

2
and α̃ ă 1,

and for [KW-F-1] as well as [KW-F-2]

Σ “

$

’

&

’

%

ã2

2ã´ 1
h if β “ 2α̃´1

2
and α̃ “ 1

ã

2
h if β “ 2α̃´1

2
and α̃ ă 1.

Proof of Corollaries 8.5.3 and 8.5.4. We verify the assumptions of Theorem 8.4.1.
Due to our assumptions Corollaries 7.4.5 and 7.4.6 apply. This guarantees the ex-
istence of an increasing process St Ò 8 such that St|Υt| Ñ 0 a.s. The definitions and
notations of the proof of Corollaries 7.4.5 and 7.4.6 are reused. These corollaries also
yield the decomposition and alternative representations of Gn.

Calculating the quadratic variation

„
ż .

0

Mpds, yq



t

“

„
ż .

0

ṼsdRs



t

“
ÿ

nďt
nPN

V 2
n p∆Rnq

2
“

ÿ

nďt
nPN

V 2
n

yields the predictable quadratic variation

R
ż .

0

Mpds, yq

V

t

“
ÿ

nďt
nPN

E
´

Ṽ 2
n | Fn´1

¯

“
ÿ

nďt
nPN

E
`

V 2
n | Fn´1

˘

.

As hnpy1, y2q “ E pV 2
n | Fn´1q, convergence and boundedness of hn are assured by

hnpy1, y2q “ E
`

V 2
n | Fn´1

˘ nÑ8
ÝÝÝÑ h a.s.

and

sup
n
hn “ sup

n
E
`

V 2
n | Fn´1

˘

ă 8.

Since hnpy1, y2q and hnpyq are independent of y1 and y2, we get

E phspΥs´q ´ 2hspΥs´, 0q ` hsp0qq “ E phn ´ 2hn ` hnq “ 0.
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As ã is not necessarily integer-valued, we conclude

ÿ

0ďs

1tã∆Rs“p1`Rs´qu “
ÿ

0ďs

1tã“1`tsuu ď 1 ă 8.

In central limit theorems for triangular schemes of random variables it is well-
known, that the Lindeberg type condition is implied by the Lyapunov type condition.
In order to show the Lindeberg type condition in our context, we use assumption (L)
which corresponds to a Lyapunov type condition. Dependent on the choice of α̃ we
have two kinds of Lyapunov type conditions. If α̃ “ 1 consider

şt

0
p1`Rsq2ã

p1`Rs´q2κ

ş

Gεs,t
x2νM

˚

pds, dxq

p1`Rtq
2pã´βq

ď

şt

0
p1`Rsq2ã

p1`Rs´q2κ

ş

R x
2νM

˚

pds, dxq

p1`Rtq
2pã´βq

ď

şt

0
p1`Rsq2ã

p1`Rs´q2κ

ş

R x
2Nspω, dxqdCs

p1`Rtq
2pã´βq

ď C

şt

0
p1`Rsq2ã

p1`Rs´q2κ

ş

R x
2Nspω, dxqdRs

p1`Rtq
2pã´βq

ď C
řttu
i“1

p1`iq2ã

i2κ

ş

R x
2Nipω, dxq

p1` ttuq2pã´βq

ď C
řttu
i“1

i2ã

i2κ

ş

R x
2PpVi|Fi´1qpdxq

ttu2pã´βq
ď C

řttu
i“1 i

2ã´2κEpV 2
i | Fi´1q

ttu2pã´βq

ď C
řn
i“1 i

2ã´2κEpV 2
i | Fi´1q

n2pã´βq
(8.27)

for t “ n P N. We made use of the relations

νM
˚

pω, dt, dxq “ Ntpω, dxqdCt, where Ct “ rM˚
. st,

with M˚ “
şt

0
Mpds, υ˚q as given in Theorem 8.3.1 and Ntpω,Aq “ P

`

Vt P A | Ft´1

˘

.
More details on the latter identities can be found in the book of Jacod and Shiryayev
[18, Chapter II] or a paper of Wang [43].

In order to show that (8.27) tends to zero in probability, we consider its expectation
value and apply Jensen’s inequality, Hölder’s inequality and Kronecker’s lemma:

˜

E
řn
i“1 i

2ã´2κE
`

V 2
i | Fi´1

˘

n2pã´βq

¸1` δ
2

ď E
řn
i“1 i

p2ã´2κqp1` δ
2
qE
`

V 2`δ
i | Fi´1

˘

n2pã´βqp1` δ
2
q

ď

řn
i“1 i

p2ã´2κqp1` δ
2
qE
`

V 2`δ
i

˘

n2pã´βqp1` δ
2
q

ď

ˆ

sup
j

EV 2`δ
j

˙ řn
i“1 i

p2ã´2κqp1` δ
2
q

n2pã´βqp1` δ
2
q

ď C
řn
i“1 i

p2ã´2κqp1` δ
2
q

n2pã´βqp1` δ
2
q

nÑ8
ÝÝÝÑ 0.
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In the last step Kronecker’s lemma was applied in the following way:

n
ÿ

i“1

ip2ã´2κqp1` δ
2
q

i2pã´βqp1`
δ
2
q
“

n
ÿ

i“1

i´p2κ´2βqp1` δ
2
q
ď

n
ÿ

i“1

i´p1`
δ
2
q
ă 8 ñ lim

nÑ8

řn
i“1 i

p2ã´2κqp1` δ
2
q

n2pã´βqp1` δ
2
q

“ 0

If α̃ ă 1 we have to show the Lyapunov type condition

şt

0
p1`Rs´q

´2κφ´2
s

ş

Gεs,t
x2 νM

˚

pds, dxq

p1`Rtq
´2βφ2

t

P
ÝÑ 0

which is handled by following the preceding steps one by one.



9 Concluding Remarks

There are several good reasons to average leading algorithms. If for example in the un-
averaged Kiefer-Wolfowitz algorithm (6.3) we choose as “ ap1`Rsq

´1, the additional
assumption a ą 1´2γ

2λmin
has to be made. Actually we need assumptions concerning the

smallest eigenvalue of the Hessian although even the regression function f itself is
unknown. Similar problems arise for the Robbins-Monro algorithm. This is one of
the main disadvantages of unaveraged algorithms, which does not arise in averaged
algorithms.

As mentioned in the introduction, the results concerning the companion algorithms
keep valid if in (6.4), (6.5), (6.6) or (6.7) we replace the leading process pZtqtě0 by its
averaged process pZ̄tqtě0. The same is true for the time-discrete and time-continuous
special cases. Consequently replacing Z by its averaged process Z̄ does not seem to
improve the asymptotic properties of the companion algorithms alone.

If we choose ãs “ ãp1 ` Rsq
´1 in the companion algorithms, we also have to make

a stricter assumption ã ą 1{2 on the constant and not only ã ą 0. But as its form
is pretty simple, namely ã ą 1{2, and therefore independent of further knowledge of
f , there is no disadvantage in having an unknown f . Actually it is easy to see, that
an optimal choice is ã :“ 1, as it reduces the variance in the asymptotic normality
results. In an averaged companion algorithm choose ãs “ ãp1`Rsq

´1`ε for arbitrary
ã ą 0. It is expected that averaging yields optimal rates also with ã P p0, 1{2s.

This thesis only handled simple estimators for the parameters of interest as special
cases. In 1997 Dippon and Renz [12] presented a modification of the gradient estimate
in the Kiefer-Wolfowitz algorithm. It is an extension of ideas from Fabian [15]. With

a p-times differentiable f at z˚ they can obtain n
1
2
p1´1{pqpZn ´ z˚q

D
ÝÑ Npµ,Σq. The

main idea is to achieve better rates by increasing the number of observations. It is
possible to improve the almost sure rate of convergence and the asymptotic distribu-
tion properties of the companion algorithms by using more advanced estimators. For
example estimators using more observations or a random design as described in the
first part of this thesis. With the template of the generic algorithms this thesis should
provide all required tools.
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A Appendix

By P we denote the space of predictable processes. Furthermore let V (and V`) be
the (increasing) processes of finite variation. With Mloc we denote the set of local
martingales. The following lemma is essential for almost-sure convergence results.

Lemma A.1.1 (Generalized Robbins-Siegmund). Let X ě 0 be a special semimartin-
gale with X “ X0 ` A`M where A P V X P and M PMloc. Furthermore let

A ď A1
´ A2 with A1, A2

P V` X P and A1
´ A P V`

be fulfilled. Then

"
ż 8

0

1

1`Xs´

dA1
s ă 8

*

Ď tX Ñu X tA2
8 ă 8u a.s.

Proof. The lemma was originally stated in [22]. A detailed proof can be found in
[37].

Remark A.1.1. Note that the notation tX Ñu denotes the set of all ω P Ω for which
X converges to a not further specified value. This is not necessarily the value we want
to show X converges to.

Lemma A.1.2 (Generalized Toeplitz-Lemma). Let X be a semimartingale and L P
V` X P with L0 “ 0 then

"

L8 “ 8

*

X

"

Xt Ñ x

*

Ď

"

p1` Ltq
´1

ż t

0

Xs´dLs Ñ x

*

a.s.

Proof. As no proof of the result could be found in literature, it is given here. For
all ε ą 0 there exists a Tε such that |Xt´ ´ x| ď ε on the set tX Ñu X tt ą Tεu.

Furthermore we can find a T1 ą Tε such that sup
sPr0,t^Tεs

|Xs´ ´ x|
Lt^Tε
1`LT1

ă ε. Obviously

xpLt ´ L0q “

ż t

0

xdLs

holds and therefore

x “ lim
tÑ8

xpLt ´ L0 ` L0 ` 1q

1` Lt
“ lim

tÑ8

xpLt ´ L0q

1` Lt
` lim

tÑ8

xpL0 ` 1q

1` Lt
“ lim

tÑ8

xpLt ´ L0q

1` Lt
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“ lim
tÑ8

1

1` Lt

ż t

0

xdLs.

Then, for t ą T1,

ˇ

ˇ

ˇ

ˇ

1

1` Lt

ż t

0

pXs´ ´ xqdLs

ˇ

ˇ

ˇ

ˇ

ď
1

1` Lt

ż t

0

|Xs´ ´ x|dLs

“
1

1` Lt

ż t^Tε

0

|Xs´ ´ x|dLs `
1

1` Lt

ż t

t^Tε

|Xs´ ´ x|dLs

ď sup
sPr0,t^Tεs

|Xs´ ´ x|
Lt^Tε ´ L0

1` LT1

` 1tTεătu ¨ ε

ă 2ε.

Lemma A.1.3 (Generalized Kronecker-Lemma). Let X be a semimartingale and
L P V` X P with L0 “ 0 then

"

L8 “ 8

*

X

"

p1` Ltq
´1

ż t

0

Xs´dLs Ñ

*

Ď

"

Xt

Lt
Ñ 0

*

a.s.

Proof. Kronecker’s lemma follows directly from Toeplitz’ lemma. Alternatively a
direct proof can be found in the book of Liptser and Shiryayev [23, Lemma II.5.3].

Theorem A.1.1 (Minkowski’s inequality for integrals). Let pS1, µ1q, pS2, µ2q be mea-
sure spaces and f : S1 ˆ S2 Ñ R a measurable function. Then

ˆ
ż

S2

ˇ

ˇ

ˇ

ż

S1

fpx, yqdµ1pxq
ˇ

ˇ

ˇ

p

dµ2pyq

˙
1
p

ď

ż

S1

ˆ
ż

S2

ˇ

ˇ

ˇ
fpx, yq

ˇ

ˇ

ˇ

p

dµ2pyq

˙
1
p

dµ1pxq

for 1 ă p ă 8.

Proof. The proof can be found in the book of Hardy, Littlewood and Pólya [17,
Chapter 6.13].

The following lemma is inspired by the ideas of Dippon and Walk [13].

Lemma A.1.4. Let Rt be deterministic with R0 “ 0, Rt ě 0 monotonously increasing
with

ż 8

0

p1`Rsq
´1´εdRs ă 8 for all ε ą 0.

Moreover let pVtqtě0 be Rd-valued, adapted with E}Vt}2 ă 8 and E}
şt

0
pVs´´EpVs´qqdRs}

2 “

OpRtq. Furthermore let bs “ bpp1`Rsq
´βq as well as b ą 0 and β ą 1{2. Then

›

›

›

ż 8

0

bspVs´ ´ EpVs´qqdRs

›

›

›
ă 8 a.s.
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Proof. Integration by parts yields

ż t

0

bs´pVs´ ´ EpVs´qqdRs

“ bt

ż t

0

pVs´ ´ EpVs´qqdRs ´

ż t

0

´

ż s

0

pVu´ ´ EpVu´qqdRu

¯

dbs

´

ż t

0

d
”

b.,

ż .

0

pVτ´ ´ EpVτ´qqdRτ

ı

s
.

Hence with Markov’s inequality and Minkowski’s inequality for integrals,

E
›

›

›

ż 8

0

bs´pVs´ ´ EpVs´qqdRs

›

›

›

2

ď

ˆ

3b2
8E

´

ż 8

0

pVs´ ´ EpVs´qqdRs

¯2

` 3
´´

E
›

›

›

ż 8

0

´

ż s

0

pVu´ ´ EpVu´qqdRu

¯

dbs

›

›

›

2¯ 1
2
¯2

` 3E
›

›

›

ż 8

0

d
”

b.,

ż .

0

pVτ´ ´ EpVτ´qqdRτ

ı

s

›

›

›

2
˙

ď

ˆ

3b2
8E}

ż 8

0

pVs´ ´ EpVs´qqdRs}
2
` 3

´

ż 8

0

´

E}
ż s

0

pVu´ ´ EpVu´qqdRu}
2
¯

1
2
|dbs|

¯2

` 3E
›

›

›

“

b.,

ż .

0

pVτ´ ´ EpVτ´qqdRτ

‰

8

›

›

›

2
˙

ď

ˆ

3b2
8E}

ż 8

0

pVs´ ´ EpVs´qqdRs}
2
` 3

´

ż 8

0

´

E}
ż s

0

pVu´ ´ EpVu´qqdRu}
2
¯

1
2
|dbs|

¯2

` 3E
›

›

›

“

ż .

0

bβp1`Rτ q
´β´1dRτ ,

ż .

0

pVτ´ ´ EpVτ´qqdRτ

‰

8

›

›

›

2
˙

ď

ˆ

3b2
8R8 ` 3C

´

ż 8

0

a

Rs|dbs|
¯2

` 3E
›

›

›

ż 8

0

bβp1`Rsq
´β´1

pVs´ ´ EpVs´qq∆RsdR
d
s

›

›

›

2
˙

ď

ˆ

3b2
8R8 ` 3β2b2

´

ż 8

0

p1`Rsq
´β´ 1

2 dRs

¯2
˙

` 3

ż 8

0

b2β2
p1`Rsq

´2β´2E}pVs´ ´ EpVs´qq}2p∆Rsq
2dRd

s

˙

ď

ˆ

3b2
8R8 ` 3β2b2

´

ż 8

0

p1`Rsq
´β´ 1

2 dRs

¯2
˙

` C
ż 8

0

p1`Rsq
´2β´2

p∆Rsq
2dRd

s

˙

ď

ˆ

3b2
8R8 ` 3β2b2

´

ż 8

0

p1`Rsq
´β´ 1

2 dRs

¯2
˙

` C
ż 8

0

p1`Rsq
´2βdRs

˙
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ă C ă 8.

Corollary A.1.1. Let the conditions of Lemma A.1.4 hold with E}
şt

0
pVs´´EpVs´qqdRs}

2 “

Op1q. Moreover assume an R-valued process pktqtě0 to be predictable, for all t ě 0
bounded from above and below, such that bs :“ ksp1`Rs´q

´β, β ą 1{2. Then

›

›

›

ż 8

0

bspVs´ ´ EpVs´qqdRs

›

›

›
ă 8 a.s.

Proof. From the proof of Lemma A.1.4 it follows

E
›

›

›

ż 8

0

bs´pVs´ ´ EpVs´qqdRs

›

›

›

2

ď

ˆ

3b2
8E}

ż 8

0

pVs´ ´ EpVs´qqdRs}
2
` 3

´

ż 8

0

´

E}
ż s

0

pVu´ ´ EpVu´qqdRu}
2
¯

1
2
|dbs|

¯2

` 3E
›

›

›

“

b.,

ż .

0

pVτ´ ´ EpVτ´qqdRτ

‰

8

›

›

›

2
˙

. (A.1)

The first term on the right hand side of (A.1) clearly tends to zero. The second one
is bounded by

´

ż 8

0

´

E}
ż s

0

pVu´ ´ EpVu´qqdRu}
2
¯

1
2
|dbs|

¯2

ď sup
sPr0,8s

´

E}
ż s

0

pVu´ ´ EpVu´qqdRu}
2
¯1{2

ż 8

0

|dbs| ă 8.

Finally

E
›

›

›

“

b.,

ż .

0

pVτ´ ´ EpVτ´qqdRτ

‰

8

›

›

›

2

ď

ż 8

0

k2
sp1`Rs´q

´2β´2E}Vs´ ´ EpVs´q}2p∆Rsq
2dRd

s

ď sup
sPr0,8s

›

›k2
sE}Vs´ ´ EpVs´q}2

›

›

ż 8

0

p1`Rsq
´2β´2

p∆Rsq
2dRd

s

ď C
ż 8

0

p1`Rsq
´2βdRs ă 8

completes the proof.

Lemma A.1.5. Let as :“ ap1 ` Rs´q
´α with Rt P V` X P, R0 “ 0 and α P p0, 1s.

Then
ş8

0
a2
s∆RsdRs ă 8 implies

ż 8

0

p1`Rs´q
´1´εdRs ă 8 for any ε ą 0.
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Proof. Itô’s formula yields

ż t

0

p1`Rs´q
´1´εdRs

“ ´
1

ε

`

p1`Rtq
´ε
´ p1`R0q

´ε
˘

´
ÿ

0ăsďt

"

´
1

ε

´

p1`Rsq
´ε
´ p1`Rs´q

´ε
¯

´ p1`Rs´q
´ε´1

pRs ´Rs´q

*

.

The first term tends to 1
ε
p1 ` R0q

´ε. A Taylor expansion of the second term with
ζs P r0, 1s and tÑ 8 yields

ÿ

0ăsď8

"

1

ε

´

p1`Rsq
´ε
´ p1`Rs´q

´ε
¯

` p1`Rs´q
´ε´1

pRs ´Rs´q

*

“
1

2
pε` 1q

ÿ

0ăsď8

p∆Rsq
2

p1`Rs´ ` ζs∆Rsq
2`ε

ď
1

2
pε` 1q

ÿ

0ăsď8

ˆ

∆Rs

1`Rs´

˙2

ď
1

2
pε` 1q

ÿ

0ăsď8

ˆ

∆Rs

p1`Rs´q
α

˙2

“
1

2
pε` 1q

1

a2

ż 8

0

a2
s∆RsdR

d
s ă 8.

Lemma A.1.6. Let X be a semimartingale and Y be a predictable process of finite
variation. Then

rX, Y st “

ż t

0

∆YsdXs.

Proof. The proof is given in Jacod et al. [18, Proposition I.4.49].

The following conditions are needed to show an almost L2-convergence rate of the
Robbins-Monro algorithm. (C.f. Theorem 8.1.1.)

Assumption A.1.1.

• f : Rd Ñ R has a Lipschitz-continuous gradient.

• There exists an z˚ with ∇fpz˚q “ 0.

• The processes pasqsě0 and pcsqsě0, which the statistician has to choose, are left-
continuous and satisfy

as, cs ą 0 as, cs Ó 0
ż 8

0

asdRs “ 8

ż 8

0

ascsdRs ă 8.
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• For every i P t1, . . . , du and x P Rd, we have

ż 8

0

a2
s

c2
s

hiis pZs´q

1` }Zs´}2
dRs ă 8, where hiis pzq :“

dr
ş.

0
Mipdt, zqss

dRs

.

• If the process pRsqsě0 is not continuous, then the following condition should also
hold:

ż 8

0

a2
s∆RsdR

d
s ă 8.

Theorem A.1.2 (Almost L2-convergence rate of the Kiefer-Wolfowitz algorithm).
We assume the existence of a positive, deterministic, monotonously increasing process
pStqtě0 with St Ò 8 and St}Zt} Ñ 0 a.s. for Z defined in the Kiefer-Wolfowitz
algorithm (6.3). Let Assumption A.1.1 be valid. Assume that f is two or three times
differentiable at z˚ with a continuous Hessian around z˚ and

@
i,jPt1,...,du

@
0ăSă8

D
0ăKă8

}x} ď S ñ sup
tPr0,8q

|hijt pxq| ď K a.s.

as well as

ż 8

0

a2
s

c2
s

dRs ă 8 a.s.

In the case α ă 1, we assume that the Hessian of f is positive definite at z˚, and in
the special, yet important, case α “ 1 we further stipulate λmin ą

1´2γ
2a

, where λmin

denotes the minimum of the eigenvalues of the Hessian. Then, for all ε ą 0, there
exists a process pYtqtě0 such that

P
„

@
tě0

Yt “ Zt



ě 1´ ε

and

E}Yt ´ z˚}2 “ Opp1`Rtq
β̃
q

with

β̃ :“ maxt1´ α ´ 2pp´ 1qγ, 1´ 2α ` 2γu , if f is p times differentiable at z˚

where p P t2, 3u.

Proof. This theorem has been shown by Schnizler [37, Theorem 3.1].

Theorem A.1.3 (Davis’ inequality). Let T be a stopping time and M P Mloc with
M0 “ 0. Then there exist constants c and C that are independent of T such that

cErM,M s
1{2
T ď E sup

sďT
|Ms| ď CErM,M s

1{2
T .
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Proof. The proof can be found in the book of Liptser and Shiryayev [23, Ch. I.5].

Theorem A.1.4 (Special case of the Lenglart-Rebolledo inequality). Let X and Y
non-negative, F-adapted and càdlàg (right continuous with left limits) processes, and
X0 “ Y0 “ 0, Y P V`. Let Y dominate the process X in the sense that for each
stopping time τ

EXτ ď EYτ .

If, in addition the process Y is predictable, then for each stopping time T with PpT ă
8q “ 1 a.s. and all numbers a ą 0, b ą 0

P
ˆ

sup
tďT

Xt ě a

˙

ď
1

a
E
“

YT ^ b
‰

` PpYT ě bq.

Proof. The proof can be found in [23, Theorem 3, p. 66].

Theorem A.1.5. Let A be a process of finite variation with A0 “ 0 with locally
integrable total variation. Then there exists one and only one predictable process
Ã of finite variation with A0 “ 0 with locally integrable total variation, such that
A´ Ã PMloc or equivalently EAτ “ EÃτ for any stopping time τ .

Proof. The proof can be found in [23, Theorem I.6.3].

Remark A.1.2. A process Ã from the previous theorem is also called compensator of
A.

Definition A.1.1. Let pΩ,F ,F,Pq be a stochastic basis with F “ pFtqtě0 and PpFq.
The predictable σ-field is the σ-field on ΩˆR` that is generated by all right-continuous
processes (considered as mappings on Ω ˆ R`). By pE, Eq we denote a Lusin space,
i.e. E is a Borel subspace of a compact metric space, and E the corresponding Borel
σ-algebra. Furthermore we use the notations Ω̃ :“ ΩˆR` ˆE, F̃ :“ F bBpR`q b E
and P̃ :“ P b E .

As a random measure on R` ˆ E we define the family µ “ tµpω; dt, dxq | ω P Ωu
of non-negative measures µpω; .q on pR` ˆ E,BpR`q b Eq where ω P Ω, such that
µpω; t0u ˆ Eq “ 0.

Let X “ Xpω, t, xq be a non-negative F̃ -measurable function. Then for ω P Ω and
t P R` we can define the Lebesgue integral pX ˚ µqt “

ş

r0,tsˆE
Xpω, s, xqµpω; ds, dxq.

A random measure µ is called predictable, if the process X ˚ µ is predictable for
every predictable function X.

Let X be an adapted càdlàg Rd-valued process. Then, according to [18, Proposition
II.1.16], we can define an integer-valued random measure, called jump measure, on
R` ˆ Rd by setting

µpω; dt, dxq “
ÿ

są0

1t∆Xspωq‰0uεps,∆Xspωqqpdt, dxq,

where εa denotes the Dirac measure at point a.
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For every measure µ and probability measure P we can define the Doléans measure
MP

µ on pΩ̃, F̃q, by

MP
µ pdω, dt, dxq :“ Ppdωqµpω; dt, dxq.

For every non-negative F̃ -measurable function Xpω, t, xq define

MP
µ pXq :“

ż

Ω̃

Xpω, t, xqMP
µ pdω, dt, dxq “ EpX ˚ µq8.

Furthermore we define that µ belongs to Ṽ`P if MP
µ p1Ω̃q ă 8, Ω̃n P P̃ and Ω̃n Ò Ω̃. A

predictable random measure ν is called compensator of a random measure Ṽ`P if for
any non-negative P̃-measurable function X “ Xpω, t, xq we have MP

µ pXq “ MP
ν pXq.

According to [23, Theorem I.3.2.1], each random measure µ P Ṽ`P possesses the unique
(P-a.s.) compensator ν.

Let X “ pXt,Ftq and Xn “ pXn
t ,Fn

t q, n ě 1, be semimartingales, S a non-empty

subset of R`. Then the expression Xn df pSq
ÝÝÝÑ X denotes the weak converge of a

sequence of distributions of vectors pXn
t1
, . . . , Xn

tmq, n ě 1 to the distribution of a
vector pXt1 , . . . , Xtmq for each finite subset tt1, . . . , tmu P S, while the expression

Xn df pSq
ÝÝÝÑ X (G-stable) means that

lim
n

EξhpXn
t1
, . . . , Xn

tmq “ EξhpXt1 , . . . , Xtmq

holds for every bounded function hpx1, . . . , xmq that is continuous in all variables
px1, . . . , xmq and for each bounded G-measurable random variable ξ, where G is a

sub-σ-algebra of F . If S consists of a single point S “ tt1u, then instead of
df pSq
ÝÝÝÑ we

write
D
ÝÑ, which means convergence of random variables in distribution.

Theorem A.1.6 (Central Limit Theorem). Let Xn “ pXn
t ,Fn

t q P M2
loc, X

n
0 “ 0,

n ě 1, S a nonempty subset of R`, G Ď
Ş

ně1 Fn
0 and conditions

(I) x21r|x|ąδs ˚ ν
n
t

P
ÝÑ 0, for all δ P p0, 1s and all t P S (Lindeberg-type condition),

(II) rXnst
P
ÝÑ rXst, for all t P S (variance-type condition),

hold. Then

Xn df pSq
ÝÝÝÑ X (G-stable).

Proof. The proof can be found in [23, Theorem II.5.5.4].

Theorem A.1.7. Let pΩ,A,Pq be a probability space with a filtration F “ pFtqtě0

satisfying the usual conditions. Moreover let M̂ “ pM̂tqtě0 be a càdlàg d-dimensional
martingale and pâtqtě0 a family of invertible dˆ d matrices. Let the following condi-
tions hold, as tÑ 8:

(a) }ât} Ñ 0
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(b) E
´

sup0ďsďt }ât∆M̂s}

¯

Ñ 0

(c) âtrM̂., M̂.stâ
T
t

P
ÝÑ Σ .

Then the random vector âtM̂t converges A-stable to the Gaussian distribution Np0,Σq
as tÑ 8.

Proof. Theorem and proof are given in a paper of Crimaldi and Pratelli [7, Theorem
2.2].
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Nomenclature

D “ pDtqtě0 A randomization process or a deterministic disturbance function

W “ pWtqtě0 Brownian motion

Mloc local martingales

M2
loc locally square integrable martingales

|M a locally square integrable martingale representing the observation

noise in [Ker-Rand-1] and [Ker-Rand-2]

x¨, ¨y inner product of the Euclidean space Rd

rXst quadratic variation of the process X

} ¨ } norm of the Euclidean space Rd

rX.Y st covariation of the processes X and Y

rXst predictable quadratic variation of the process X

rX, Y st predictable covariation of the processes X and Y

M c purely continuous part of the local martingale M (note M c KMd)

Md purely discontinuous part of the local martingale M (note M c K

Md)

Rc continuous part of the process R

Rd
t sum of all jumps of the process R “ pRsqsě0 up to time t

∆Xt jump height of the process X “ pXsqsě0 at time t

tX Ñu the set of all events such that X8 exists and is a finite random

variable

Xt´ left continuous version of Xt, whereas X is a process

∇fpxq gradient of the function f at x

EpMq stochastic exponential of the process M

op¨q Landau symbol

Op¨q Landau symbol

E expectation value

P probability measure

ZT
t process Z “ pZtqtě0 stopped at time T

177



178 Nomenclature

t¨u Gauss bracket

max maximum

min minimum

sup supremum

inf infimum
P
ÝÑ convergence in probability
D
ÝÑ convergence in distribution

» asymptotically equal

P set of predictable processes

V set of real-valued processes that are càdlàg, adapted, starting at

zero with paths of finite variation on compacts

V` set of processes belonging to V with non-decreasing paths
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