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Abstract

Methods of stochastic approximations are used for the recursive estimation of parame-
ters of an unknown function which can only be observed with noise. These parameters
are for example roots or extreme points. For root-finding the Robbins-Monro algo-
rithm

Zni1 = Zn — a,Yn(Z,)  with Y, (2) = f(z) — M,,

and a, > 0 is very common. In order to estimate extrema of multivariate functions
f: R? — R the Kiefer-Wolfowitz recursion

Zn+1 = Zn - anYn(Zn)

with

1
Yo(2) = — (f(z + cpei) — ML) - (f(z — Cn€i) — Mn_z) }ie{l,...,d} ’

2¢c,,
a, >0, ¢, > 0, is widely used. Here only Y;,(Z,) is observable, but not its individual
components. Moreover at each iteration step of the Kiefer-Wolfowitz recursion 2d
observations are required. In order to reduce the number of observations, randomized
stochastic approximation algorithms were introduced, such as

ap _
Zni1 = Zy — ipnl {(f(z+ cuDy) — M) = (f(z = caDy) — M)}
n
with a d-dimensional random sequence D,, and D' it’s component-wise inverse.
These require only two observations per step. Over the years many extensions of
such randomized algorithms were developed. Of a special interest is

Zir = Zn — Z—:Dnl (f(z + caDy) — M}

which requires actually only one observation per step, using slightly stronger con-
ditions. However one condition, that all these algorithms have in common, is the
assumption of D,, being independent and identically distributed (i.i.d.). This makes
an extension of such algorithms to a path-continuous setting impossible. In this thesis
a unification of the preceding procedures is presented and extended to a semimartin-
gale setting. For that purpose D,, is no longer assumed to be i.i.d. and thereby more
sophisticated methods of proof are to be performed.

il



iv Abstract

The first chapter gives a historical introduction to stochastic approximation in
general. Moreover semimartingale settings and randomized algorithms are introduced
as well as their benefits. After that, a generic randomized semimartingale algorithm
is presented. It does not only establish the theory for not yet investigated time-
continuous randomized procedures but also contains all known time-discrete special
cases as well as non-discovered ones.

Chapter 2 investigates the almost sure convergence of the generic algorithm. Spe-
cial cases in a semimartingale, time-continuous and time-discrete setting are derived.
It turns out that the presented framework also offers the possibility to handle deter-
ministic perturbation functions which yield the same a.s. convergence results as the
randomization processes. Particular examples of useful randomization are handled as
well. The chapter closes with visualization of simulation results.

In the third chapter almost sure convergence rates are derived. Again the rates of
the randomized semimartingale setting are shown to hold true in the special cases
that were presented in previous chapters. Finally the different perturbation designs
are compared by simulations of the empirical L2-error.

Based on methods for the estimation of roots or extreme points, the second part of
this thesis presents a generalized companion stochastic approximation method of the
form

Yo — Tpot = —n Yoot + @nYo(Zy), With @, > 0, Y, (Z,) = Gu(Z,) + ’f—”Mn(zn).

an
Here Z,, is generated by a leading algorithm, like the Robbins-Monro or the Kiefer-
Wolfowitz procedure and Y, (Z,) stands for the noisy observation at Z, of the pa-
rameter of interest. The individual components of }N/H(Zn), namely the value of the
estimator G,,(Z,,), as well as its measuring error M,,(Z,,), are not observable. Compan-
ion algorithms can be interpreted as a solution process of a generalized semimartingale
stochastic integral equation of the form

t aS(GS - TS_>dR5 + f ko M(ds, T,_).

0

Tt:TO—i_JV

0

The asymptotic behaviour of this process T = (1});>0 is discussed. The dicussion is
based on the work of Mokkadem and Pelletier where two companion-type algorithms
for the underlying Kiefer-Wolfowitz algorithm were presented, but only in a time-
discrete setting.

The first chapter of the thesis’ second part gives a technical motivation for the
time-discrete companion algorithms of Mokkadem and Pelletier, that apply to the
Kiefer-Wolfowitz algorithm.

In the sixth chapter, a general semimartingale-type companion algorithm is pre-
sented. This generalizes the ideas of Mokkadem and Pelletier in two ways. On one
hand, it presents a companion to an arbitrary stochastic approximation algorithm, and
not only to the Kiefer-Wolfowitz algorithm. For example companion algorithms for
the Robbins-Monro procedure but also new companions for the Kiefer-Wolfowitz pro-
cedure can be derived. On the other hand, the algorithm is presented in a semimartin-
gale framework. It turns out, that it includes time-discrete as well as time-continuous



Abstract v

settings. We show consistency of the general semimartingale-type companion algo-
rithm and consider special settings in the semimartingale context. Corresponding
results in a time-continuous and a time-discrete framework are derived. It unfolds,
that the consistency results of Mokkadem and Pelletier are special cases of the time-
discrete framework.

The seventh chapter is devoted to the rate of convergence of the general algorithm.
We consider special settings of the algorithms of the previous chapter. We point out
how the rate of convergence depends on the gain processes (a;)i=0, (¢t)i0, (G¢)i>o0,
(ki)i=0 and the smoothness of f in the leading algorithm. Consequently we discuss
settings in which the underlying and the companion algorithm cannot simultaneously
converge at an optimal rate. Again, time-continuous and time-discrete settings are
established as special cases.

Chapter eight establishes asymptotic normality results. For that purpose an al-
most L?-convergence result of the underlying algorithm is used. In contrast to the
Kiefer-Wolfowitz algorithm, there was no such result for the Robbins-Monro algo-
rithm before. After showing this missing almost L2-result, we attend to asymptotic
normality under parameter settings given in the previous chapters.






Zusammenfassung

Die Methoden der stochastischen Approximation werden zur rekursiven Bestimmung
von unbekannten Parametern einer Funktion verwendet, die nur mit Rauschen be-
obachtet werden kann. Diese Parameter sind beispielsweise Null- oder Extremstellen.
Zur Ermittlung von Nullstellen hat sich der Robbins-Monro Algorithmus

Zni1 = Zn —a,Yn(Z,) mit  Y,(z) = f(2) — M,,

und a, > 0 etabliert. Fiir die Schiatzung von Extremstellen ist das Kiefer-Wolfowitz
Verfahren

Zn+1 = Zn - anYn(Zn)
mit

1
Yo(2) = — (f(z + cpei) — ML) - (f(z — Cn€i) — Mn_z) }ie{l,...,d} ’

2c,
a, > 0, ¢, > 0 weit verbreitet. Hierbei ist nur Y,,(Z,) beobachtbar, aber nicht seine
einzelnen Komponenten. Desweiteren werden fiir jede Iteration des Kiefer-Wolfowitz
Verfahrens 2d Beobachtungen benétigt. Um diese Anzahl verringern zu konnen, wur-
den randomisierte stochastische Approximationsverfahren eingefiihrt, wie beispiels-
weise

Toir = Ty — %D;l ((f(z + D) = M) = (f(z = caDy) — My )}

mit einer d-dimensionalen Zufallsfolge D,, und D! als deren komponentenweiser In-
versen. Diese benotigen lediglich zwei Beobachtungen pro Schritt. Mit den Jahren
wurden vielerlei solcher randomisierter Algorithmen entwickelt. Von einem speziellen
Interesse ist

Zn+1 = Zn_ Z_:Drjl {f(z+ann) _Mrj}

bei welchem nur eine einzige Beobachtung pro Schritt geniigt, auch wenn die Vor-
aussetzungen leicht verschérft werden miissen. Eine Bedingung jedoch, die alle diese
Verfahren gemeinsam haben, ist die Eigenschaft, dass die D,, unabhénging und iden-
tisch verteilt (u.i.v.) sind. Dies macht die Erweiterung solcher Algorithmen in einen
pfadstetigen Kontext unmoglich. Diese Thesis stellt die Vereinheitlichung der zuvor
prisentierten Verfahren vor, welche zudem in einen Semimartingalrahmen erweitert

vil
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werden. Daher wird D,, nicht mehr als u.i.v. vorausgesetzt und weitergehende Metho-
den sind anzuwenden, um die Beweise durchfiithren zu kénnen.

Das erste Kapitel gibt eine historische Einfithrung in die stochastische Approxima-
tion. Desweiteren werden Semimartingal- und Randomisierungsverfahren vorgestellt
sowie deren Vorziige. AnschlieBend wird ein generischer randomisierter Semimartin-
galalgorithmus présentiert. Dieser umfasst nicht nur die Theorie der bisher nicht un-
tersuchten zeitstetigen randomisierten Verfahren, sondern auch alle bekannten zeit-
diskreten Spezialfille und auch noch nicht entdeckte.

Kapitel 2 behandelt die fast sichere Konvergenz des generischen Verfahrens. Spe-
zialfille sowohl in einem zeitstetigen als auch in einem zeitdiskreten Rahmen werden
vorgestellt. Es stellt sich heraus, dass der prisentierte Kontext die Moglichkeit bietet,
deterministische Storungsfunktionen zu verwenden, welche die selben fast sicheren
Konvergenzresultate liefern wie die Randomisierungsprozesse. Zudem werden speziel-
le Beispiele von nutzbringender Randomisierung behandelt. Das Kapitel schliefft mit
der Visualisierung von Simulationsresultaten.

Im dritten Kapitel werden fast sichere Konvergenzraten hergeleitet. Auch hier wird
gezeigt, dass die Raten des Semimartingalverfahrens sich auf die in den vorigen Kapi-
teln vorgestellen Spezialfille iibertragen. Am Ende werden den verschiedenen Designs
von Stérungen mithilfe der Simulation des empirischen L?-Fehlers verglichen.

Begriindet auf den Methoden zur Schatzung von Null- oder Extremstellen wird im
zweiten Teil der Arbeit ein verallgemeinertes begleitendes stochastisches Approxima-
tionsverfahren der Form

Y, -V, 1=—-a,T, 1+ &n}N/n(Zn), mit a, > 0, }N/n(Zn) =G,(Z,) + ];—nMn(Zn)
vorgeschlagen. Hierbei wird Z, erzeugt durch einen zugrundeliegenden Algorithmus,
wie dem Robbins-Monro- oder dem Kiefer-Wolfowitz-Verfahren, und Y,,(Z,,) steht fiir
die verrauschte Beobachtung des zu schétzenden Parameters an der Stelle Z,. Die ein-
zelnen Komponenten von Y,,(Z,), also der Wert des Schétzers G,,(Z,), sowie dessen
Messfehler M, (Z,), sind nicht getrennt beobachtbar. Begleitende Verfahren kénnen
als Losungsprozess verallgemeinerter semimartingalartiger stochastischer Integralglei-
chungen der Form

t

t
T, =T+ J , (Gs - TS,>dRS + f ko M(ds, Ty )
0 0

interpretiert werden. Neben den bereits erwidhnten zeitdiskreten Verfahren sind hier
auch zeitkontinuierliche Verfahren enthalten. Es wird das asymptotische Verhalten
dieses Losungsprozesses T = (Y,)iso diskutiert. Diese Uberlegung fufit auf der Arbeit
von Mokkadem und Pelletier, in der Begleitalgorithmen in einem zeitdiskreten Zu-
sammenhang zum zugrundeliegenden Kiefer-Wolfowitz Verfahren vorgestellt wurden.

Das erste Kapitel des zweiten Teils der Arbeit gibt eine heuristische Begriindung
fiir die Form des Begleitalgorithmus von Mokkadem und Pelletier. In diesem wird
zusédtzlich zum Kiefer-Wolfowitz-Algorithmus, welcher die Minimalstelle behandelt,
noch der Funktionswert geschétzt.

Im sechsten Kapitel wird ein verallgemeinerter semimartingalartiger Begleitalgo-
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rithmus vorgeschlagen. Dieser erweitert die Ideen von Robbins und Monro in zweierlei
Hinsicht. Zum einen stellt er einen Begleitalgorithmus fiir ein beliebiges stochastisches
Approximationsverfahren dar, und nicht lediglich zum Kiefer-Wolfowitz- Algorithmus.
Beispielsweise werden ein Algorithmus zum Robbins-Monro-Verfahren und ein wei-
teres Verfahren fiir den Kiefer-Wolfowitz-Algorithmus hergeleitet. Zum anderen wird
der Begleitalgorithmus in einem Semimartingal-Zusammenhang dargestellt. Entspre-
chende Ergebnisse im zeitdiskreten und im zeitstetigen Kontext ergeben sich als Spe-
zialfdlle. Es stellt sich heraus, dass die Resultate von Mokkadem und Pelletier in den
zeitdiskreten Ergebnissen enthalten sind.

Das siebte Kapitel widmet sich der Konvergenzgeschwindigkeit des verallgemei-
nerten Verfahrens. Wir betrachten spezielle Fassungen der Algorithmen des vorigen
Kapitels. Es wird untersucht, wie die Konvergenzgeschwindigkeit von den Schrittwei-
tenprozessen (a¢)i=0, (Ct)i=0, (Gt)t=0, (kt)t=o und von der Glattheit von f im zugrun-
deliegenden Verfahren abhéngt. Somit werden auch Szenarien diskutiert, in denen der
fithrende und der begleitende Algorithmus nicht jeweils mit optimaler Rate konver-
gieren. Wie zuvor, wird auf zeitdiskrete und zeitstetige Fassungen eingegangen.

In Kapitel acht werden Ergebnisse zur asymptotischen Normalitat préasentiert. Hier-
fiir wird ein Resultat zur fast-L?-Konvergenzrate des zugrundeliegenden Verfahrens
verwendet. Im Gegensatz zum Kiefer-Wolfowitz-Algorithmus liegt ein solches Resultat
fiir den Robbins-Monro-Algorithmus nicht vor und muss zunéchst erarbeitet werden.
Daraufhin widmen wir uns der asymptotischen Normalitdt unter den Parametern des
vorigen Kapitels.
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] Introduction

This part of the thesis deals with optimization of systems with multiple unknown pa-
rameters by randomized stochastic approximation in a semimartingale context. Before
presenting the results, a historical overview is given.

1.1 Historical Introduction

Stochastic approximation has its origin in the 1950s, when Robbins and Monro [33]
presented a recursive algorithm for finding the root z* of an unknown increasing
function f: R — R, where the statistician only has noisy observations of the function
values. They suggested a recursion of the form

Zni1 — Zn = —a, Yo (Z,)  with Y, (2) := f(2) + M,(2), (1.1)

where M, (z) represents the additional noise of f at z. This procedure resembles
Newton’s method

n

in numerical analysis. At step n + 1 the user observes the function f at the point Z,,,
receiving a noisy function value Y,,(Z,). Unlike Newton’s method, for the Robbins-
Monro algorithm usually no observation of the gradient V f nor noisy observations of
it are assumed to be available. Instead of the gradient one uses a damping sequence
(ay,) which is chosen by the experimenter. A typical choice is a, := a/n with a > 0.
Robbins and Monro [33] proved that (Z,,) converges in probability to the root z* of
f.
On this basis Kiefer and Wolfowitz [20] suggested in 1952 an algorithm for the search
of stationary points related to minima. Like Robbins and Monro they did not assume
an observable gradient V f. Instead it was estimated by (2¢,) ™' (f(z+¢,) — f(z—cn))
with a sequence (¢,) tending to zero. Hence the recursion is of the form

Zpi1 — Zp = —a,Yn(Z,)  with Y, (2) := % (f(z +cn) — flz—cn) + Mn(z)>

Common choices to achieve convergence are a, := a/n and ¢, := cn™? with v €
(0,1/2). Stationary points for maxima can be found by changing the recursion to
Zni1 — Zy = +a,Y,(Z,), but in the following we will stick to minima. Kiefer and
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Wolfowitz showed convergence in probability for their algorithm.

In 1954, Blum [3] presented a multidimensional extension of the Robbins-Monro
recursion to handle multivariate functions f: R? — R¢. Furthermore he suggested a
multi-variable Kiefer-Wolfowitz recursion

Zn+1 - Zn = _anYn(Zn)

with

1

Y,(z) = e {f(z+cnei) = f(z —cnei) + Mustic (1.2)

where f: R? — R, and M, ; comprising the observation noise. Note that in each
iteration step in 2d observations have to be made. Asymptotic normality of
both kinds of processes (Z,), generated by and (L.2)), was first shown by Sacks
[36] in 1957. In 1967 Fabian [15] suggested a modified estimator Y,,(z) for the gradient
of f at z, if differentiability of f of odd order p > 3 can be assumed. He showed that his
estimate, which is based on d(p—1) observations, achieves the a.s. and L?-convergence
rate n~@=D/@P)*e e > 0 and n~®P=1/(2P) respectively. Therefore it approaches the
rate of the Robbins-Monro process, which is n="/2, if f is differentiable of any order.
Dippon and Renz [12] constructed an unbiased estimator. It is worth to mention, that
Chen [6] showed in 1988 that the rate n~®~1/()) is optimal.

A ground-breaking innovation regarding the Robbins-Monro method was suggested
by Polyak [31] in 1990. Instead of the original algorithm he considered an averaged
Robbins-Monro scheme with slowly decaying weights a,, = an™, where 0 < a < 1.
It turned out that except of f'(z*) > 0 no assumption on the usually unknown first
derivative of f has to be made. In the classical context the asymptotic variance is
given by (a?0?)/(2af'(2*) — 1) such that a should not be chosen too large in order
to attain small variance. But the stability condition f’(z*) > 1/(2a) requires a to be
chosen large enough. When using averaged algorithms this dilemma does not arise
as no condition relating a and the derivative of f is necessary. Although using a
Robbins-Monro algorithm with asymptotic rate less than n~/2, its averaged process
achieves rate n~"/2? and is optimal regarding the variance. Hence, the averaged scheme
has asymptotic and stability benefits over the original algorithm. In 1996 and 1997
Dippon and Renz [111 12] applied Polyak’s ideas to a Kiefer-Wolfowitz algorithm with
weighted means. Important surveys of time-discrete stochastic approximation are the
books of Ljung et al. [24] and Duflo [14].

Even though It6 published his epoch making contributions on stochastic integral
equations in the 1940s, it took until the 1970s when Nevel’son and Has’minskii
[29] studied stochastic approximation processes which are generated by the follow-
ing stochastic integral equations of It6 type. To estimate the root of f: R — R
in a time-continuous framework with a d-dimensional Brownian motion (W;);>¢ and
diffusion function o: [0,0) x R — R?,

t t
Zy = Zy — J asf(Zs)ds — J asos(Zs)dWy, (c-RM)
0 0
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and to estimate the minimum of f: R — R, with a 1-dimensional Brownian motion
(Wi)i=0 and diffusion function o: [0,0) x R — R,

Zi - Zo—f 2 (f<zs+cs>—f<zs—cs>)ds—f -

0 2Cs 0 2Cs

0s(Zs)dWs.  (c-KW-1D)

In the same book they treated consistency, rate of convergence and asymptotic nor-
mality of the Robbins-Monro algorithm in both, the recursive and the It6 framework.
Furthermore they showed consistency of the It6 type Kiefer-Wolfowitz algorithm.

Until the end of the 1980s time-discrete and time-continuous algorithms were trea-
ted separately. In the second half of the 20th century, the foundations of stochas-
tic analysis were established. As a generalization of Ito-processes, semimartingales
were investigated. Semimartingales offer a self-contained integration theory and can,
roughly speaking, be considered as the sum of a process of finite variation on compacts
and a local martingale. As a consequence Levy processes are included and thereby
time-discrete recursions as well. Then in 1989 Melnikov [27] found a unification of
time-discrete and time-continuous algorithms within a semimartingale framework. Af-
terwards, together with Rodkina [34] and Valkeila [42], consistency as well as asymp-
totic normality of the Robbins-Monro process and consistency of the Kiefer-Wolfowitz
process were shown. The conditions for these results however are very technical and
hard to verify. A few years later, Lazrieva, Sharia and Toronjadze [22] suggested the
solution of

t t
Zy = Zo— f Hy(Z,_)dR, — f M(ds, Z,_),
0 0

with Z,_ the left-continuous modification of Z,, as a general semimartingale version
of the Robbins-Monro process. The choices Hy(Zs_) := asf(Zs) and M(ds, Z,_) :=
asodWy as well as Hy(Zs_) := anf(Z,—1) and M(ds, Zs_) := a,V,, show how the Itd
type and the recursive Robbins-Monro algorithms are embedded in the semimartingale
framework as special cases. For the proof of consistency they showed a generalized
Robbins-Siegmund theorem, which in turn is based on a multiplicative decomposition
theorem. Thereby the conditions of their theorem are weaker and less technical then
those of Melnikov et al. [42]. Furthermore Lazrieva et al. showed asymptotic normality
of the original and the averaged process in a path-continuous semimartingale frame-
work. In 2010 Schnizler [37] studied the related Kiefer-Wolfowitz algorithm in detail.
However, to prove asymptotic normality he did not need to assume path-continuity.
One of the main disadvantages of the Kiefer-Wolfowitz algorithm is that it requires
2d observations of f in each iteration step. In order to handle this high-dimensional
problem, several algorithms have been suggested that need only two evaluations per
step. Kushner and Clark [21] suggested a method which estimates the gradient of f
at X, by estimating the directional derivative along a randomly chosen direction of
the unit sphere S?. Spall [38] formulated an alternative approach, namely simulta-
neous perturbation stochastic approximation (SPSA), choosing a distribution Fgp on
R? which is the d-fold tensor product of a symmetrical distribution concentrated on
RA\{0}. Possible distributions are for example the Bernoulli distribution or the uni-
form distribution concentrated on the vertices of the cube [—1,1]¢. In 2002 Dippon
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[10] unified such two-measurement randomized stochastic approximation algorithms
by using a randomized kernel gradient estimate

Y,(2) = LK(Dn) {(f(z+ caDy) = Wii) = (f(z — cuDp) — Wao) }

2c,
with a kernel function K : R? — R¢ and random vectors D,, € R? satisfying E(K (D,,)®
D,,) = 14. In 1997 Spall [39] presented SPSA1, an estimator

Y, (2) = ch,;l {(f(z+cDy) = W,3)}, with D™ := (1/DW, ... 1/DD),
n
that only needs one evaluation per iteration step. Therefore the question arises how
one can extend Dippon’s ideas to such one-measurement algorithms.

All these randomized procedures are in discrete time. In this thesis an abstract algo-
rithm in a semimartingale framework is suggested, including both, one-measurement
and two-measurement algorithms. Semimartingales are the largest class of integra-
tors for which an integral of the form Sé H,dX,, with H alocally bounded predictable
process, is closed, and hence a powerful calculus is available. Obviously time-discrete
as well as It type versions of one- and two-measurement algorithms follow as special
cases. But also more general settings, where observations can only be taken at random
times, are possible. Apart from theoretical interest there is a large field of applica-
tions that explicitly use general semimartingale models, and not only time-discrete or
time-continuous special cases. Some of them are presented in later sections.

Classical Robbins-Monro algorithms are known to converge with rate n =1/
standard Kiefer-Wolfowitz type algorithms converge with a rate not better than n~
Therefore it seems natural to prefer Robbins-Monro in stochastic gradient optimiza-
tion whenever the gradient is available. But in some circumstances it is preferable
to apply a Kiefer-Wolfowitz algorithm instead of a stochastic gradient method. We
point out the examples given by Spall [40, Ch. 6.2].

, Whereas
1/3

e Calculating the gradient can be too costly in time or computational steps.
e There can be human errors by doing the derivations.

e In complex calculations there is the possibility of software coding errors in the
implementation of the algorithm.

e Computer algebra packages may have difficulties with the gradient calculations
in high dimensions.

e When applying so-called automatic differentiation methods, one needs huge
knowledge of the "inner workings“ of the software.

Additionally, sometimes it is sensible to formulate a root-finding problem as a
stochastic gradient optimization problem. Typical for the Robbins-Monro algorithm
is the assumption that the infimum of (z — 2*)” f(z) over a compact set not contain-
ing x* must be positive, which directs the process to the direction of the root of f.
Loosely speaking this means, one has to know, whether the function f is increasing
or decreasing in the vicinity of the root. Ruppert [35] was one of the first who treated
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this problem. Instead of finding the root of f(x) one minimizes g := ||f]*. Now, for
the optimization algorithm the assumption (z — 2*)"Vg(z) is bounded away from 0
on a compact set not containing x* has to be fulfilled. Here, one only has to know
whether ¢ has to be minimized or maximized. As the problem is user-defined this
is, in contrast to the mean-reverting assumption, always clear. Due to the fact that
randomized stochastic approximation algorithms work very well with only one or two
measurements per iteration step, and that the rate of convergence of n~'/? can be
approached arbitrarily closely, it represents a very powerful alternative.

1.2 General Assumptions

In the following, results on consistency of an abstract semimartingale algorithm of
the form are given. We specialize this setting to one- and two-measurement
randomized kernel gradient estimators and . On this basis, time-continuous
and as well as time-discrete and (2.14) special cases are derived.
Apart from the proof of consistency for algorithm (2.14]), which has been done by
Dippon [10] under slightly different assumptions, all results are completely new.

We use the following notations. The tensor z ® y: R? — R? is the linear mapping
{y, > , where x and y are two vectors in RY. The open ball around x with radius

¢ is given by U (z). Considering a multi-index m = (my,...,my) € N¢ the length
my + ...+ myg is denoted by |m| and m! means m4!- ... my!l. The m-th power of a
vector x € R? is defined as z™ = 2™ - ... - z/}'*, where we assume that 0° := 1. The
differential operator V™ with respect to x is defined by i af;?)lm Y agz;in -. The notation

X; ~ Y, means that X, and Y; are asymptotically equal, i.e. lim;_, X;/Y; = 1. We
make the general assumption, that all relations, unless explicitly otherwise specified,
shall hold a.s.

1.3 General Semimartingale Algorithms

We consider a stochastic basis (2, F,F = (F;)=0, P) satisfying the usual conditions.
This means that Fy contains all P-null sets of F, and that the filtration F is right-
continuous. On this basis a random variable Z;, a random field M € R? and processes
(at)i=0, (Ct)i=0, (Di)i=0, and (R;)i=o are defined. The processes (a;)i=0 and (¢;)i=0
shall be predictable with respect to IF, and moreover (Z—:)t>0 has to be locally bounded.
Furthermore it is assumed that (R;);so is increasing, cadlag (i.e. right-continuous with
left-sided limits), predictable with respect to F, and Ry = 0 as well as ARy = 0 hold.
The process (D;);=o is assumed to be Re%-valued and predictable with respect to F.
By M2 _(P) we denote the set of locally square-integrable martingales with respect
to P and F. The random field {M (¢, D;_,v): t > 0,v € R4} is F-adapted for all
v € R% Furthermore for every t > 0, v € R? the relations M (¢, D;_,v) € M _(P) and
5 (M (ds, Dy, v))i=0 € M3, (P) hold.

By o and O we denote the Landau symbols. Moreover, for a stochastic process
(Xt)i=0, we write X; = op(ry) if ¢ is increasing to infinity and (X;/r;) is bounded
a.s. Moreover R% denotes the purely discontinuous part of the process R. By AR,

we define the jump R, — R;_. We note that AR, = de. The covariation and
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the predictable covariation processes of (X;)i>o and (Y;)i=o are denoted by [X,Y];
and [X,Y;, respectively. The unit vectors of the Euclidean space R¢ are written as
€1,...,€4-

In the subsequent sections, it is shown that the stochastic integral equation [Gen-
Rand]

t t
Z, = Zy — f S F(D,_, s, Z, )dR, — | “M(ds,D,_, Z,_) (1.3)

0 Cs 0 Cs

can be considered as an abstract formulation of randomized stochastic approximation
procedures of various forms. In this stochastic differential equation, the process D
represents the incorporated randomization that can be chosen by the statistician. As
D is assumed to be predictable, the notation D,_ instead of D, seems superfluous here.
However the arising time-discrete special cases are easier to compare with already
existing results, when D and Z have the same index in the same iteration step. We
note that the function F' is a composition of predictable processes and thus predictable
as well. Hence

d t
Z”O (F(Dr-verZ,)aR,) | = L IF(Do_,co, Z,)|PARARS  (1.4)

i=1

holds true. Equation unifies randomized one-measurement and two-measurement
stochastic approximation procedures. In the following this will be investigated in
detail. It is worth mentioning that algorithms with 2m, m € N, simultaneous mea-
surements are included in the two-measurement framework. Details can be found
in the papers of Fabian [15], Dippon and Renz [11], [I2] and Dippon [10]. But also
three-measurement or other odd-valued measurement algorithms are included in .
Even a deterministic D, is feasible. A sufficient condition for the existence of these
integrals including F', is that F' is continuous in its arguments. In an analogous way
the terms of the second integral in , which include M, are defined. The stochastic
integral equation is assumed to be well-defined. We are interested in the asymp-
totic behaviour of the process Z. Therefore we assume the existence of a unique
strong solution on [0, 0). Existence and uniqueness of stochastic integral equations
are well-investigated in the book of Protter [32].

In this thesis a function K: R — R with E(K (D,_)®D,_) = 1, is called a kernel
function. Here 1, denotes a d-dimensional diagonal matrix such that all diagonal
entries are 1, whereas 1 denotes a d-dimensional vector with all entries equal to 1.
Assume the existence of M such that K(Ds_)M(ds, Zs_) equals M(ds, Ds_, Zs_) or
2M(ds, Ds_, Zs ). As special methods to estimate the minimum of f by employing
one-measurement and the two-measurement randomized kernel gradient estimations
[Ker-Rand-1] and [Ker-Rand-2] there are stochastic integral equations given by

t t

Zy=Zo— | LKD) {f(Zs- +c;Dy ) YR, — | ZK(D, )M (ds, Z,-)  (1.5)

0 Cs 0 Cs



1.3 General Semimartingale Algorithms 9

and

%=t [ B KD+ eD, )~ (7 DR,
0 2¢s

- f: ;CSSK(DS)M/(ds, Z,_) (1.6)

respectively. Note that in these instances F' consists of the function f: RY — R and
the kernel function K as follows:

PO 2. ) - | KPNIZe + 0D, )} in (9)
T BEDe N f(Ze- + eiDsn) = f(Zs- — esDs2)} - in (LG).

2

Moreover the classical Kiefer-Wolfowitz algorithm

" a, ',
Zt = ZO - J() 2, {f(Zsf + Csei) - f(Zsf - Csei)}ie{l 77777 d}dRs - J;) 2CSM(dS’ Zsf)
is included in this framework by setting F(D;_, ¢s, Zs_) = %{f(ZS, +cse;) — f(Zs- —

Csei)}ie{l ..... d}-
Throughout the rest of part one of this thesis the following general conditions shall
hold.

Assumption 1.3.1.

o The function F': R? x R x RY — R? is differentiable with respect to c. Here V¥
denotes the k-fold derivative with respect to c.

o Let F' be factorizable at ¢ = 0 with respect to d and z in the sense that there
are measurable functions fo: R? - R, fi: R? - R?, go: R? — R? and g;: R —
R4 such that for all k € {0,1}

VIZF(de’ Z) = gk(d)fk(z) (17)

o The norm of g1(.) is defined as the Frobenius norm, i.e.

lg1()] == [ 23 25 1910l

i=1j=1
o F' is affine in the sense of

VEF(d,c,2) = VEF(d,0,2 + cd) for all ke {0,1},de R? and ze R?.  (1.8)

In both, and (L.6)), we find go(d) = K(d), g1(d) = K(d)®d and fi(z) = Vf(2).
However in (1.5) fo(z) = f(z) whereas in (1.6)) fo(z) = 0 holds true.






2 Almost Sure Convergence

In this chapter almost sure convergence is investigated. We begin with a general
result on a generic semimartingale algorithm. Later on, kernel-based algorithms are
derived, which in turn include interesting continuous-time and discrete-time special
cases. Moreover several possible applications, randomization designs and simulations
are presented.

2.1 A General Semimartingale Algorithm

We state conditions, which are helpful for the investigation of almost sure convergence
of Z defined in (1.3).

Assumption 2.1.1. Let Assumption hold.

(A) Lipschitz condition for fi(.): There exists a constant L such that for all z, z €
R4,

1fi(z1) = filz2)]| < Ll — 2.
(B) There exists a unique point z* such that V.F(d,0,2%) = 0 for all d € R,
(C)
vV 3 v <f1(z),z—z*>20(e).

4 1
€20 C(e)>0 {zeR¥|e<|z—2*| <1}

(D) The processes (at)i=0, (¢t)i=0 satisfy

atact>0 at,Cth

o0 oo
J asdR, = o J asc,dRy < 00.
0 0

(E) If (Ry)i=o is not pathwise continuous we furthermore assume that

Q0
J a?AR,dR? < .

0

11
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(F) Forallt = 0 let g1(D;) have non-negative eigenvalues and | g, (Dy)|||De| be square
integrable such that for any t =0, E(g1(D;)) > ¢y with ¢ > 0 and

[ ao(on(pe) - (D, ) )ar, < =

0

j " ey (191 (DOIDw-] ~ E(lgr (D) ID-|)) 4R, < o,

[ (D10 - Bla(DOFI D) AR R <

U lg1(Ds-)]? - (Hgl(Ds,)HQ))ARSng < .

(G) Assume for all s € [0,0) and all z € R? that E(gy(D,_))fo(z) =0,

* 1
Jo m <ZS ,90(Ds_) fo(Zs))dR,| < o0

and

* a2 1 2 F 2 d
L C—Sm!\%(DsJH 1 fo(Zs-)|IPAR,ARS < 0.

(H) For everyie{l,...,d} and x € R? assume

d[SO(M(dT7 DT*> Z))l']s
dR, '

oo@? h”(Z -) i

Theorem 2.1.1. Let Assumption be fulfilled. Then the process (Zi)i=o, gener-
ated by algorithm (1.3)), converges almost surely to the point z* fulfilling f1(z*) = 0.

Remark 2.1.1. Note that in this theorem, instead of F' we could consider an explicitly
time-dependent F. This enables us to minimize more general problems. One way to
handle these cases is to modify Assumption such that L is replaced by L, and in
conditions with a,, the as,-terms are replaced by asL,, where L, is a time-dependent
process. However, in the following sections we restrict ourselves to time-independent
functions F' to avoid technicalities.

Remark 2.1.2. As
t t
J d[R, R], :J d[R, RS+ ) (AR,)> = ) (AR,) f AR, dR?
0 0 0<s<t 0<s<t

holds true, we can write AR,dR? instead of d[R., R.];. In the following we use this
identity without explicitly mentioning it.
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According to ([1.4)) and the affine condition ([1.8)),

i” (F(Dr-ser Z,)aR:) | = E \F(D...c. 2, P AR.R!

i=1 Y0

t
_ J |F(Dy_,0,Z, + csDy )| AR, AR
0

holds true.

Remark 2.1.3. Condition (G) is fulfilled, for example if Z is time-discrete and D is a
i.i.d. process. Cf. the paper of Dippon [I0] and the references therein.

Remark 2.1.4. In the two-measurement algorithm (1.6)), which is investigated later,
fo(z) = 0 for any z € R? and therefore E(go(D,-)) fo(z) = 0 holds for any z € R
Hence (G) is trivially fulfilled in such cases.

Remark 2.1.5. Assume that fo(z) is sublinear in the sense that there exist positive
constants C, Cy such that Cy (1+]|z]) < fo(2) < Co(1+]2]). Moreover let F(d,0, z) =
90(d) fo(2) such that, for all t > 0, E(go(D;)) = 0 and E(|lgo(D;)|?) < oo hold true.
Consequently the second condition of (G) can be replaced by

[ (1D = E(lon(D) 7)) AR < o

and

© q?
J —“ AR AR? < .

0C2

The first condition in (G) can be replaced by additionally assuming a random time
T(w) < oo such that

o0
Qg
J _gO(Ds—)dRs

T(w) Cs

Jw; —{Zs, go(Ds-) fo(Zs-))dR,

0 1_1_“27”2 gC(O})—FC(UJ)

and

“ a
J —Sgo(DS_)dRS < 0O
0

Cs

Remark 2.1.6. Theorem still holds true if the process (D;);s0 is replaced by a
deterministic, periodic function and the expectation values of terms including D, are
substituted by the mean over the period. In this case with a sublinear fo(z) as in the
previous remark, we can employ the bound

ff—éi——<a,%< i Zo)dRy < C(w) + Cw)

o 1+[Z]?

with a predictable (k;);>0 and |k;| bounded for all ¢ = 0. Such a k is tolerable due to



14 2 Almost Sure Convergence

the fact that we can find deterministic functions D such that | §” D,dR,[* = O(1).
For many random processes D, useful for our purposes, we typically cannot achieve
rates better than E| {; D,_ —~E(D,_)dR,|? = O(R,). However we also create processes

D with rate E| SS D, —TE(D, )dR,|* = O(1). More details are given in the examples
of the following sections.
Remark 2.1.7. Assumption (H) is fulfilled if 2" (2) < C¢(1 + |[?) with §’ Z—EC’;dRS <

o, or if h%(z) < C as well as SSO Z—;dRS < o hold.

Proof of Theorem (2.1.1. Without loss of generality let z* = 0. We consider the
stochastic integral equation

t a t a
Zy = Zy— J ZF(Dy_, s, Zs_)dRy — | =*M(ds, D,_, Z,_).

0 Cs 0 Cs
The main idea of this proof is to bound X; := | Z,|? = (Z,, Z,) by A' — A% + M,
with predictable, increasing processes A!, A? and a local martingale M. Lemma
applied to A® yields convergence of X. Convergence of X to 0 follows by investigation

of A? and a contradiction to the assertion of the same lemma.
Integration by parts yields

dZ,, 2, = —2%<ZS,, F(D,_,c,, ZS,)>dRS . 2%<Zs,, M(ds, D,_, ZS,)>
Cg Cs

2 d .
+ a_; dl:f (F(DT*? Cr,y ZT*)dRT)l]
% o 0 s
2
+ 25 N F(D. e, 2, )W AR(M(ds, Dy, 7,0 )
s i=1
+a—§zd:d[f(i\/[(d D, 7))
Cg 0 7—7 T—) T—)) s

This can be decomposed as Sé dZ,, Z,) = Sé dA, + Sé dM,, with

t t
(2 F(Di-e0n Z) YR, + f

2
%\ P(D,_, ey, Z, ) PAR,ARY
0 Cs

N Jti—gid ([L(M(dT, D._, Z,2))ils — [J

0 (M(dT7 DT—7 ZT—))i]s)

(2.2)



2.1 A General Semimartingale Algorithm ‘ 15

where (A;)i=0 € V NP as F is predictable and due to the definition of the predictable
quadratic variation. The first and second term in the definition of ]\7[; are in M. as
the integrands are predictable and the integrators are local martingales. By definition
of the compensator, the third term in the definition of M, is in M,..

We employ the Lipschitz condition (A) to show that

L(F(Dosc0 Z0) ~ e5F(D0.20) - F(D.0,2.0)|

Cs

1 1
- (f Vo F(Dy_tes, Zo )dt + F(D,_,0,Zs_) — eV F(Ds_, 0, Zs_)
0

Cs

— F(D,_,0, 7, )H

1 1
(f ¢V F(D,_,tey, Zy_)dt — ¢,V F(D,_,0, Zs_)) H

Hgl J(i(Zo +te,Dy ) = fi(Z,0) |t
< g1 (Ds )l Ds—les L (2.3)

and analogously

1 2
_F(Dsfa Cs, Zsf) - VCF<DS*7 07 Zsf) + VCF(D877 0; Zsf)H

Cs

1 2
F(D,_c., ZS,)H _
Cs

_ Mol VeF(Dytes, Zs) = Vo F(D,, 0, Z,_)dt + clstS" 0,7,)
+ V.F(D,_,0, ZS_)H2

<4 L VeF(Ds-stes, Zoo) = Ve (Dy-, 0, Zo )t + %nF(DS_,o, Z,)|?
+3|V.F(D,_,0, Z,_)|? ’

3
Hgl J((Zee + teD,) — (ZO) [t + S1P(D, 0.2 )
+ 3|V .F(D S_,O,Zs_)HZ

1
3
< 31D )1 | Plteifdt 4 SIF(D.-, 0,20 ) + 3VF (D 0,20
0 s
3
< LoDV PID, AL + SIF(D, 0,207 + 3IVF(D, 0.2 (2.4)
hold. From ([2.3) we conclude
Qs
—2— Zs—aF Ds—a 87ZS—
SO
- —2%<ZS_, F(Ds_,cy, Zs_) — ¢;VeF(Dy_,0,Z,_) + ¢;V.F(Ds_,0,Z,_)
Cs

_F(Ds—a0> Zs—) +F(Ds—a07 Zs—)>



16 2 Almost Sure Convergence

— ~20,(Z,,VeF (D, 0,2, )y = 22( Z, , F(D,,0,Z, ) )
Cs
= 22( 7, (D, 0, 2, ) = eVeF(D, 0, Z,) = F(D,,0,Z,) )
Cs

< —20,{Zo_, VoF(D,_,0, Zs_) ) — 2%<Zs_, F(D,_,0, ZS_)>
Cs

+ 2] g1 (D)l Ds— | Lascs|| Zs—| .- (2.5)
Polarisation identity, (2.5)) and ({2.4)) yield
A — Ay
t a ta2
- _zf —8<ZS_,F(DS_,CS,ZS_)>dRS +J —=|F(Ds-, s, Zs—)|* AR AR
0 Cs o Cs
taz d .
+J o d[f (M(dr, D, Z, )i,
o Cs i=1 0
rt ta
< -2 | alZ.,V.F(D._,0,Z._) YR, 2J —S<Zs_, F(D,_,0, Zs_)>dRs
Jo 0 Cs
t t
+2 [ 19 DI D Laed| ZioJdR + [ @lon(Do)PID.-PEL2AR AR
JO 0
t 2 t
+3 a—;HF(DS_,O, Zo )|PARARY + 3f a?||V.F(D,_,0, Z,_)|*AR,dR?
Jo Cs 0
t az d .
# | %[ (@ Dz,
o Cs i=1 0
t t a
<2 | gD )IDs- | Lase| Z,-|dR, + 2| f “(Z F(D,,0,2,.) )dR,
0 0 Cs

t
— 2f as<Zs,, V.F(D,_,0, Zs,)>dRs

tO t
n j 2|1 (Do )2 Do PRLARARY + sf

2
% |F(D,_,0, Z,)|2ARAR!
0 Cs

0
t t 2 .
- 3f a?|V.F(D,_,0,Z,_)|*AR,dR? +f %Zd[f (M (A7, Dr_, Z:_))ils
0 0 s ;=1 0

_9 L t as{Zy—, g1(Ds_) f1(Zs-) YdR,

t
n j 2| (Do )2 Do PELPARARY + sf

2
% |P(D, 0, Z, ) PAR,AR!
0 0 Cs

t
- 3J a?|V.F(D,_,0,Z, ) |*)AR,dR?
0

s [ %Y aif outann. 2.

0 i=1
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We decompose the right side of the previous inequality into

t
A= = [ 200 (DD 2o ledB +2] [ 42 F(D 0,20
+ [0, et arar
+3f —|F(D,-,0,Z,_)|>ARdRY
0

- 3f a?|V.F(D,_, cs, Zs_)||PARAR?
0

t
CAZ A2 = 2J as<Zs_,gl(Ds_)fl(ZS_)>dRs,
0

such that A < A!' — A%, According to conditions (C) and (F), A% > 0 holds true.
Moreover, 0 < A2 < A' — A, and hence the conditions of Lemma are fulfilled.
In order to make sure that (Z;);¢ converges, we show

o0 1 L
—  _dA = a.s.
U T+ 1z 8<“} as

This is done by the investigation of the following terms. Assumptions (F), (D), (E)
and (G) yield

o0
1
2 f e (DID.|Z, e, LdR,
o TT 12
o0
< f 91 (D) | Do ac, LR,

CU (ls (DD = E(lgn (Do) Do) ases

ie f E(|g:(D._) | D_|)asc. LR,

< O

Y

o0
1
— g1 (D P Ds_|Pa? L2 AR AR?
J;) 1+ ||Zs—H2Hgl( )H H ” sts s

<[ @Al (DFID.? - Blln(DOPID-P) AR

v [ AL (D)PID )ARAR! < =
0
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and

sfo L %D, 0.7 )PARAR
o L+ Z—|? ¢ T T

—sfo L (D)o Z ) [PARR, < o
- 0 1+ HZ57H2 Cg gO s— 0 s— S S .

Furthermore, by assumption (G), it holds true that

2”00 L %y F(D. 0,7, ))dR
0 1+ HZsi”2 CS S— S—Hy S— S

© 1 Qg 7
-9 f mc—s<25_, (90(Ds—) — E(go(Ds-))) fo(Zs—-))dRs

0

+ 2 < Q0.

© 1 a i
L 1+ (2|2 g<ZS— ,E(90(Ds-)) fo(Zs—) )R

Using the Lipschitz continuity condition, the Cauchy-Schwarz inequality and condi-
tions (E) and (F) we obtain

o0
1
3| ———d?|V.F(D,_,0,Z,_)|?AR,dR?
| e JPARLAR!
(00
=3 | ——5dVF(Ds-,0,Z,_) = V. F(D,_,0,0)|? AR, AR
|
3 L 2.2 ) - F(0) PARAE!
Jy Tr1z e P A A,
<3 —L 212 (D. P17, PARAR!
b Tz :
00

a2 (I (DI ~ Bl (D)) ) AR AR

+cf 2L7E(|g:(D, ) )AR.R?
0

< Q0.

Finally, by condition (H),

© 1 a? - © a2 Rhi(Z,.)
—— = d[| (M(d7, D, Z))ile = | =—2TdR, < w0
Jo L+ [ Zs-|? c2 [L( (dr )il L 21+ |Z, |2

holds true. Consequently it is shown that (Z;);>0 converges. We now show that Z
converges to the stationary point of F. This is proven by contradiction. It is already
shown that

Q={|Z,]* =} n {45, < oo}

However, as the smallest eigenvalue of g;(D) is not strictly greater than zero we
cannot employ the previous decomposition A < A' — A% and especially the term A2
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to establish a contradiction. For that purpose assume that there exists a set N < 2
of non-zero probability, such that for all its elements our stochastic integral equation
does not converge to the stationary point. The following considerations are done on
this set N. This means, we assume that Z does not converge to zero. Now we choose
another decomposition with an A% which is more useful. Let

t t
Qs
Al - A= f 20g1(Ds )1 D ||Z-le,LAR, +2 f 42, F(D, 0.2, )

t
+ 2‘ f 0y(Zy_,VoF(D,_,0, Z,_) — E(g1(Dy_)) fi(Zs_)
f I9:(Do )21 D, a2 L* AR AR
+SJ —=|F(Ds-,0,Z,-)|°ARdR!
0

+ 3f a2|V . F(Ds_, cs, Zs_ ) |*PAR,dAR?

f —zi f (d7, Dr, Z, )il

CA2 4 A2= 2 L t as<ZS_, E(gi(Dy_)) fl(ZS_)>dRs,

and note again that A < A' — A2 holds true. On the contrary to the previous part
of the proof we can now utilize that Z converges. By assumption on N for almost all
weN

3 3 V¥ es|Z] <1/

e*>0 sp 5280

We imply this property to bound the following term:

U ||ZS—H2 —— —aZ,_V.F(D,_,0,Z,_) — E(g1(D,_)) f(Zs_))dR,
Q0 1 ~ )
2 L m“s<zs—791(Ds—>fl(Zs-) = E(g1(Ds-)) /1(Z,-))d R,
” d ©J) ~f .
- L 1+ Z _”2“52 z.” (Z (91 )= E(gl(Ds_)))( | f”(Zs_))dRs

d

o 1 < @) 25
A e AR (000 ~E0.) T e

a
o T+ P at A

A e (S 00 - B0, U 7 20)

0+ 7=1

[ (o0 -Bw0.)

o+

J=1

<

<C(w)+C
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All other terms in the expansion of {(1 + |Z,_|?)~*dA} have already been handled
before. Now also for the new decomposition it is shown that

Q= {|Z.]* =} n {45 < o}
Now the set N is used to find a contradiction to the fact that Q = {A% < oo} holds.
Note that

o] o0
A2 f A2 + A2 = 2 f 0 Zo Bl (D) Zec) YR, + A3
0 0

We already know that Z converges for almost all w € 2, but for all w e N its limit is
not 0. Recall that for almost all w e N

3 3 V €< Z| <1/€

e¥*>0 sg s=so

Therefore for almost all w € N it follows that
w ~
A2 9 J 0 Zo Bl (D) o Ze) YR, + A3
080 ]
~2 [ a2 Bla(D)A(Z) )R,
0

r2[ 0z BaD N AZ ) iR+ 2

> C(w) + 20(c) f 0B, — o0

Sso+

which is a contradiction to Q = {A2% < o0}. Consequently such a set N cannot exist,

and Z, =5 0 is proven. Due to the convexity-type condition (C) this stationary
point is a minimizer of fj. O]

2.2 Algorithms Using Kernel-Based Gradient Estimates

Now we state assumptions for algorithms of the one- and two-measurement forms
(1.5) and (|1.6)), respectively. For that purpose we formulate corresponding specialized
conditions of Assumption [2.1.1]

Assumption 2.2.1. Let conditions (D) and (E) from Assumption hold.
(kA) The gradient of f: R? — R satisfies the Lipschitz condition

v AV(z) = Vi)l < Liz =yl

z,yeR4
with a constant L.

(kB) There exists a z* such that V f(z*) = 0.
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(kC) The gradient at z* satisfies the following condition:

3 v (Vf(z),z—2")=Cle

€20 C(e)>0 {zeRé|e<|z—2%|<1}

(kF) For all s € [0,0) let

E(K(Ds-)®Ds-) =14,  E(|Ds- || K(Ds-)[*) < o0 and E (| K (D,-)[?) < .

Moreover
U as )®D,_ — E(K(D37)®D37)>dRs <o

| j " e (JK(DID.|? ~ B (DD [))dR| < o

[ @22 (101K (D)2 = BD K (D) AR < o

[ (1o PIs DO - BRI (D)) AR < o

(kG) For the one-measurement algorithm (1.5 we assume there exists a random time
T(w) < oo such that

as
A ,K
U eI

< Cw) + C(w)

)

° . d ‘
f =Y K(D,)"dR,

m(e) Cs i

[ S0 - m0. )

forall s =0, E(K(D;-)) =0,

3 ¥ G+ z]) < f(z) < Co(1 +[2]),

C1,02=20 zeRd

UO —§<|K( )H2_]E(HK(Ds—)H2)>ARSdR§ -
and

© g2
f —“ AR, R? < 0.

2
o Cs
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(kH) For everyie {1,...,d} and z € R?

@ Wi(z,) i d
J;) C2de <OO’LUZthh ( ) =

where M was introduced on page @

Corollary 2.2.1. Let Assumption be fulfilled. Then the process (Z;)iso0, gener-
ated by the one- or two-measurement algorithms (1.5)) or (1.6]) converges almost surely
to the minimizing point of f.

Proof of Corollary|2.2.1. We show that the assertion is a consequence of Theorem
211 Set

F(Ds-, ¢, Zs-)
VK (Ds- ) f(Zs— + csDs-) for algorithm (1.5])
LK (Do) f(Zs- + esDy) — f(Zy— — csD,_)}  for algorithm (T.6).

We obtain

VeF(Ds-,cs, Zs-)

B (K(DS_) ® Ds_)Vf(ZS_ + csDs) for alg.
YN K(Dy-)® Dy ){Vf(Zs- +¢sDys-) + Vf(Zs— — Dy )} for alg. (L6).

We show that Assumption implies conditions (A), (B), (C), (F), (G) and (H) in
Assumption [2.1.1] Note that according to the factorizing and the affine condition

V.F(d,¢,2) = V.F(d,0,2 4+ cd) = g1(d) fi(z + cd) = (K(d) @A)V (2 + cd)

holds true for any z € R? in both algorithms and . Consequently fi(z )
Vf(z) for any z € R% Therefore condition (kA), (kB) and (kC) imply (A), (B)
and (C), respectively. Choosing ¢1(d) := (K(d) ® d) yields (F) from (kF). With
go(d) := K(d) the first part of condition (G) follows by

~ KD, )f(x for algorithm .-1.5
F(D,,0,2) = golD, Vol = { KD+ orithin (L)
0 for algorithm (1.6]),

such that it is trivially fulfilled for (1.6)). For (1.5) we get

Joo L 97 (D) folZ,))dR
o 1+HZ‘97H2 Cs s—> 90 s—)JO\Hs— s

0 1 \
:J;) ma <Zs 7K D )f(Zs—)>dRs

W) + C(W)UO ‘;— Z K(D, )
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® q d . .
o)+ )| B Y KD - BE(D. )
< Q0.

To show the second assumption of (G) we note that

| K (Do) f(2)[*  for algorithm (L.5)

||F(DS—707I)H2 = .
0 for algorithm (|1.6])

and apply a Taylor expansion and the sublinearity condition form (kG) to prove

[P <@+ [2)? <c+[=]?).
Then

o]
1
L 111z e U \F(D0.2, ) PARAR!

0 1 ag ) ;

o0 2
<c f KD, >|\2ARSdR§

<c|[" % (1w - BUK D, AR

+cf S]E(HK( )\|2)>ARSdR§<oo.

Finally choosing M (ds, D,_, x) := K(D,_)M(ds, ) assumption (kH) yields (H). O

Remark 2.2.1. It is worth mention' g that consistency of the classical Kiefer-Wolfowitz
algorithm follows from Theorem 1| by setting go(Ds—) = 1, g1(Ds_) = 14 and

. o if k e {0,2)
filZe-) = {ka(zs_) if f = 1.

2.2.1 An Application in Analog Computing

In current machine learning applications deep learning architectures are performing
extremely well [I6]. However computation increases as dimensionality of the input
space increases. In such designs the computation is performed concurrently, CPUs
however run sequentially. To overcome this fact, GPUs are widely used. But these
are power hungry as well. The following examples show how analog computing offers
an alternative.

Analog VLSI (very large scale integration) implementations are working in a slow
but massively parallel fashion. Moreover they are tolerant with respect to inaccuracies,
while digital computers only accept two states and ignore values in the middle (to
achieve noise immunity).
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Off-chip learning is effective as long as training is performed in the loop. However,
I/O bandwidth limitations make systems with a large number of weight parameters
impractical. On-chip learning on the other hand provide autonomous, self-contained
systems which are able to adapt continuously in the environment they are operating
in. A detailed description can be found in a paper of Cauwenberghs [5].

Backpropagation, definitely the most common way to train neural networks, can
have vanishing or exploding gradients when training classical recurrent neural net-
works. Hence it is better to either use an advanced recurrent neural network ar-
chitecture, such as LSTM (long short-term memory), or to optimize with another
algorithm. In the following, we see how randomized stochastic approximation can be
used for such problems.

Cauwenberghs [4] considered a recurrent neural network with continuous-time dy-
namics:

d S (n) :
T it = ~Tig + leij o(zj(t) — 0; )+ €ir, te(tntnrr),i€{l,... 6},
=

with unknown states and thresholds w;; and 6;, observable neuron state variables z;
and external inputs ¢;, the sigmoid activation function ¢ and a fixed time constant 7
governing the dynamics. Hence 36 weights w;; and 6 thresholds ¢, are to be estimated.
The usage of external input is not essential in this model. Hence we could choose €
to be zero. However one can use € as a teacher forcing signal €;; := )«y(:cgftr — Tiy)
with a constant A\, a symmetrical and monotonically increasing function v: R — R
and z{*" the target output signal. Let Z be a 42-dimensional vector, representing the
weights and thresholds. We are looking for a value z* such that {z,;(2*): t € [0,0)}
tracks {z(2*): t € [0,00)} the best. However at each iteration step n we only have
information on x; at a single point ¢ in time and not for the complete time interval. Due

to this lack of information, we choose a loss function £,,(Z,) which can be considered

as a noisy observation of the path of |z —z,(Z,) ng[o tn.1)- Lhen the loss function to
be minimized in a discrete-time setting is £,(Z,) := |2}*" | — 4,,,(Z,)[?. This leads

to the learning algorithm

Zi1 = Zo = Dug(LalZu + enDa) = LalZa = uDy)).

Cauwenberghs successfully implemented this model on an analog VLSI and used it
for tracking a circular target trajectory.

In Maeda’s and Wakamura’s paper [26] recurrent neural networks with a simultane-
ous perturbation learning scheme are considered. In contrast to ordinary correlation
rules, this method can be applied to analog learning and the learning of oscillatory
solutions of recurrent neural networks. They considered the implementation of a Hop-
field neural network with a field-programmable gate array (FPGA). With examples
of Hopfield neural networks for analog and for oscillatory targets they showed the
feasibility of such a learning scheme. Moreover it can be used for trajectory learning.
Usually backpropagation through time (BPTT) is employed to propagate an error
quantity through time from the current state to a state which is several time steps
in the past. Such a procedure is complicated as it takes a long time to compute the
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modifying quantities that correspond to all weights. Moreover its realization on a
hardware system is hard as well. This is where simultaneous perturbation has its
benefits. It is easy to implement and the modification of all weights can be done
without the need of a complicated error propagation through time. Unlike Hebbian
learning, it can also be applied to analog problems. Furthermore it is not necessary
to work with an energy function.

In contrast to digital computation, analog neural circuits require a smaller number
of elements and less power consumption. Moreover parallel information processing is
possible and therefore high-speed operation can be expected. Additional information
can be found in a paper of Maeda and Kusuhashi [25].

Time-continuous stochastic approximation methods fit perfectly for such models,
as no artificial discretization has to be done. Then the optimization problem to be
solved is

t
Zt = ZO - f 2as Dsf{ﬁs(Zsf + Cstf) - Ls(Zsf - Cstf)}dRs-

0 4Cs

Some recent analog computing applications can be worth considering. Sarpeshkar
et al. [9] showed how the behaviour of genetic circuits can be modelled by analog
circuits. They used analog electronic circuits to model interactions between proteins
and DNA in a cell with a remarkable accuracy. When treated as an analog device,
one single transistor has an infinite number of possible conductivities. However when
it is treated as a binary switch, there are only two possible states. Hence in such
a case, one would need a large number of transistors to model a large number of
concentrations.

In another paper [8] the opposite thing was done: Bacterial cells have been trans-
formed into living calculators.

Recently Sarpeshkar et al. [1] suggested a compiler which enables faster program-
ming of analog devices instead of programming by hand. Differential equations can be
translated into current flows and voltages. The laws of physics yield that the voltages
and currents across an analog circuit will balance out. When the variables in a set
of differential equations are encoded by those voltages and currents, then varying one
will also vary the others. This is in contrast to the inner workings of a digital circuit.
There time has to be split into a huge amount of intervals and the equations have to
be solved in each of these intervals. Moreover a transistor in such a circuit can only
represent one of two possible values instead of a continuous range of values.

Hence analog computers seem to be a good application of time-continuous ran-
domized stochastic approximation algorithms. This motivates the deduction of time-
continuous special cases of our original randomized stochastic approximation algo-
rithms and [I.6] which will be done in subsection [2.2.3]

2.2.2  An Application in Model-Free Control

In 1998 Spall and Cristion [41] considered the problem of developing controllers for
a nonlinear, stochastic system whose equations are unknown. Consider a general
dynamic process X which is typically involving nonlinear dynamics and stochastic
effects. Instead of X, only a sequence of discrete-time measurements of a process Y,
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which is a noisy observation of a function of X, is observable. In tracking applications
Yi.1 is compared with a target value Ty, 1. On the basis of this information the goal is
to choose a sequence of corresponding controls (u(Zy)) with u(Zy) := w(Zy; Yy, Tke1)
to optimize a function of future system measurements Y;,; via Z; in such a way that
these measurements approach the target values T}, in a certain sense. The structure
of u is fixed but might be unknown and Z represents the parameters to be optimized.
Assume the system dynamics and the measurements are given by

Xps1 = X + f(Z; Xi) + My,
Y}c = h(Xk) + Nk,

with £ = 0,1,2,... where f(Z; Xy) := f(u(Z, Yy, Tiy1); Xx) and h are typically un-
known nonlinear functions and M} as well as N}, are noise terms. An optimal Z can
be found by minimizing a loss function L related to the next measurement Yj,1,
comparing Y1 with a target value Ty,1. A common choice of Ly is the regularized
least squares loss function

Li(Z) = (Yier = Ter1) AYis1 — Ti) + u(Z)" Bu(2) (2.6)

with positive semidefinite matrices A and B representing the weight put on large
deviations from the target and the cost of large values of u(Zy). The parameter Z
only affects L via u. Note that, except of the dependence on Z, the structure of u is
left open. We can consider it as a direct approximator given no analytical structure
of the measurements. Spall and Cristion also considered more general forms of u
where previous measurements and controls are available as well. Besides that, they
presented a model where u is a neural network and Z are the weights to be optimized.
We seek for an optimal Z* minimizing the expectation value of £;. Namely

8Zk B 8Zk 6’u

:0atZk:Z*

must hold. Note, that sometimes in control literature, the expectation value is re-
placed by a conditional expectation given the previous measurements and control. But
it turns out, that under standard assumptions yielding the interchange of derivative
and integral, both are minimized by the same Z*. Namely if we denote the conditional
expectation by E*, then 0E*(Ly)/0Z; implies E(OE*(Ly)/0Z;) = JE(E*(Ly))/0Z: =
OE(Ly)/0Z; = 0. Since f and h are not completely known we are unable to compute
the term O0E(Ly)/0Z, which includes 0h/0X.1 and 0f/0uy. For the unregularized
least squares loss function this is illustrated by

O(Yip1 — Tir)?
07y,

oh  of oux
an+1 6uk 8Zk ’

=2(Yit1 — Tsn)

Consequently a Robbins-Monro type algorithm cannot be applied as the derivative

is unavailable. As the number of parameters could be hundreds, Spall and Cristion
preferred SPSA1 and SPSA instead of the standard Kiefer-Wolfowitz algorithm. Thus
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their algorithms are of the form
Zy = Zp-1 — arg(Zr-1)

where the I-th component of g(Zy_1), I = {1,...,p} is given by

k in the one-measurement, and
A ¢k Dy
9(Zy—1) = o)
P in the two-measurement form.
¢k Dy

The estimates £,(f) = Ly(Zk—1 t ¢ Dy) make use of the observed Y,ffl) and u®)(2).
In the tracking loss function from the beginning this means

Lu(Z) = (V] = T ) TAYS] = Tir) + (@2 (2))" Bu®)(2).

Assume now, that system dynamics and measurements are not time-discrete but have
the following semimartingale form

X, = Xo+ f F(Z; X, )dR, + f M(ds, X,_) (2.7)
0 0

The functions f and h are unknown nonlinear functions governing the system dynam-
ics and the measurement process, respectively. Note that only (Y;)io is observable.
Consider a randomized semimartingale stochastic approximation algorithm given by
"a
Zy =2y — | =K(Ds_){L(Zs- + c¢sD,_)}dR, (2.9)

0 Cs

or

t

Qs

Zy = Zy— f o K(Dy ){L(Zs— + ¢sDs_) — L(Zs— — csD,_) }dR,, (2.10)
0 S

with an appropriate loss function £,. Given an initial guess Z; of the parameter 7, it

can be shown that under certain regularity conditions the solutions of these stochastic

differential equations approach the optimal Z*.

2.2.3 Continuous-Time Algorithms

The preceding results have interesting special cases. We begin with the [to type
stochastic integral equations [c-Ker-Rand-1] and [c-Ker-Rand-2] given by

t t
Zy = Zy — %K(DS){f(ZS +¢aDy) s — %K(Ds)
0 “s 0 Cs

ol(Z)aw?  (2.11)

d
s
=1

J
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and

Zy = Zy— L ;CSSK(DS){f(ZS +¢Dy) — f(Zs — ¢sDy) }ds

_ f 9 K(Ds)iag(zs)dwg (2.12)

with 07: R, x R —» R and independent standard Brownian motions (W; )0, defined
on the standard basis.
Consider the following assumptions.

Assumption 2.2.2. Let (kA)-(kC) from Assumption hold.

(kD’) Let (ay)i=0, (¢t)i=0 be continuous processes satisfying

o0 o0
ag, ¢ >0 ag, ¢ |0 f a,ds = oo f asc,ds < co.
0 0

(kF’) For all t = 0 let the R%-valued, continuous random process (Dy)i=o and the
measurable function K: R4 — R? fulfil E(| K (Dy)||D¢l*) < o0 and E(K (D) ®
Dy) = 14. Moreover assume

U s s) @ Dy — E(K(Ds) ®Ds)>ds‘ < w
| f ases (1 (D s>Hllell2—E(HK<DS>H||DS||2>)ds\ <o,

(kG’) For the one-measurement algorithm (2.11) we assume: There exists a random
time 7(w) < 00 such that

S)(i)ds

UOO ﬁ%@s’ K<D8>f(Zs>>dS‘ <Cw) +Cw

J
7(w) CS

| f > (K(D)? ~ B(K(D,)")ds| < o,

for all s = 0, E(K(Dy)) = 0.

(kH’) For every j € {1,--- ,d}

ds < o

JOO a2 oi(Z,)’

o G142

holds.

Remark 2.2.2. Note that the conditions in (kG) concerning the jump part AR are
superfluous in condition (kG’). For the same reason there is no condition (kE’).
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Corollary 2.2.2. Let Assumption[2.2.9 hold. Then the strong solution (Z;);=o of the
Ito type algorithms (2.11)) or (2.12) converges to the minimizing point of the function

f.

Proof. We put the result down to Corollary [2.2.1] Setting R, := s assures assumptions
(D) and (kG). Assumptions (E) and (F) follow immediately from the continuity of

the processes Z and D, respectively. Setting M (ds,z) = Zd ol (x)dW/ we find

JK’ dsxﬂt

d
-|J, o ) S oianz], [, = [ 1. ||2k1<of<>§<x>[dwg’,dwmt

. d
- | IK@IE R eitar

hence choosing A% (x) := (| K (D,)[? S, (09 (x)); yields (kH) from (k). 0

Example 2.2.1. We establish two randomized It6 type stochastic approximation
algorithms. An overview of time-discrete examples can be found for instance in the
paper of Dippon [I0]. By definition, the directional derivative is

lim fs(x + hv) — fs(z)

h—0 h

., velR%
Hence,
(2t D)) ~ @V (Z)D+ L (2)
and
S f(Z+ D)) — f(Ze— D)} ~ 4V f(Z)D

hold true. Assuming E(D;® D;) = é]ld, this motivates an Ito type version of the one-
and two-measurement random direction stochastic approximation

t t

Zy = Zo— | SDfu(Z, + e;D)}ds — | LD,aw,

0 Cs 0 Cs

and

" ag " ag
Zy = Zy — s Zs+st_sZs_std_
= 2= | SEDARZo D)~ L2~ eDjas - | 5
where for the first one we additionally assume ED, = 0.
A possible choice for D for d-dimensional problems is the Brownian motion on the
(d — 1)-sphere S with an initial value generated by a uniform distribution on the
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sphere. A Brownian motion on the unit sphere S of RY, d > 3, can be constructed
by applying the function ¢: RN\{0} — S,z — z|z||~! to the d-dimensional Brownian
motion B = (B4, ..., By). This yields a stochastic integral Y = (Y7,...,Yy) = ¢(B),
which according to Ito’s formula is given by

B
IBI - B

B; — B; n—1 B,
dY, = ———— ] :
|B? "2

21— 2B, — dt  withi,j=1,....d.
ZoBpP 2 |BP

Now the process Z, defined by the time change

Zy(w) = Ya(t,w)(w) with a(t,w) := B(t,w) 1 Bt w) J HBH2

is a Brownian motion on the unit sphere S. Details can be found in the book of
(Oksendal [30].

We now turn to the special case d = 2, and verify the conditions of Assumption
that involve the process D. Here, with a 1-dimensional Brownian motion B,
Y = ¢'® = (cos(B),sin(B)) is a Brownian motion on the unit circle. With a random
variable U ~ Unif[0, 27) independent of the standard Brownian motion B we find

o fcos(By+U)\ . [cos(By)cos(U) — sin(B;)sin(U)
E(D) = E (sin(Bt + U)) —E (sm( By) cos(U) + cos(B,) si (U)>

- Btz 0+ iy 0) - ()
Now consider
(i 2 0)) @ (i 1)
_ cos(B; + U)? sin(By + U) cos(B; + U)
E (sin(Bt + U) cos(B; + U) sin(B; + U)? )

and calculate the matrix entries
E(cos(B; + U)?) = E((cos(Bt) cos(U) — sin(By) sin(U) )

)2
= E(COS(Bt)Q cos(U)? — 2 cos(By) sin(By) cos(U) sin(U)

+ sin(B;)? sin(U)2>
= E(cos(B;)*)E(cos(U)?) —2-0- 0 + E(sin(B;)*)E(sin(U)?)
- %E(COS(B,:)Q + sin(By)?) = %,

E(sin(B; + U) cos(B, + U))
= E((sin(Bt) cos(U) + cos(By) sin(U)) - (cos(B) cos(U) — sin(By) sin(U))>
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= E(sin(Bt) cos(BQ)IE(cos(U)2 — sin(U)Q)
+ E(sin(U) cos(U))IFﬂ(cos(Bt)2 - sin(Bt)2> =0

and
E(sin(B, + U)?) = ]E((sin(Bt cos(U) + cos(B,) sin(U))2>
—E <sin(Bt)2 cos(U)? + 2sin(B;) cos(By) cos(U) sin(U)
+ cos(By)? sin(U)2>
= E(sin(By)*)E(cos(U)?) + 2 0- 0 + E(cos(B,)*)E(sin(U)?)
= %E(Sin(Bt)Q + cos(By)?) = %
Consequently

]E cos(B; + U) ® cos(B;+U)\) _1/(1 0
SiIl(Bt + U) sin(Bt + U) N 2 0 1
and thereby the choice K (D;) = 2D, makes sense to achieve E(K(D;)) = E(2D;) =0

and E(K(D;) ® D;) = 1, for any t > 0.
Next we turn to assumptions (kG’) and consider

Uooo (K (D) ~E(K (D) )ds| < .

For that purpose employ Lemma[A.1.4] Tt is sufficient to show that the rate-condition
of the second moment is fulfilled. This is shown component-wise. As U is not time-
dependent, and we are only interested in an asymptotic result, it is sufficient to
consider cos(B;) and sin(B;) instead of cos(D;) and sin(D;), respectively. In order to
show

E‘Lt cos(Bs)ds‘2 = O(t),

[t6’s formula and Itd’s isometry yield

t 2 t 2
EU COS(BS)dS’ = QIE‘— cos(By) + cos(By) — J sin(B;)d Bs
0 0

2

¢
< 4E‘— cos(B;) + cos(By)|* + 4E| J sin(B,)dB;
0

t 2 t
<C+ 41@‘ J sin(B,)dB,| <C+¢ J E(sin(B,)?)ds = O(t).
0 0

In the same way E| Sé sin(B;)ds|? = O(t) holds.
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Now we show

IEU; (K(D)® D, ~E(K(D) @ DS)>(jk)ds‘2 — o)

for each k. j e {1,...,d} to verify (" a, (K(Ds) ® D, —~E(K(D,)® DS)>ds < o from

condition (kF"). We calculate the corresponding matrix entries. Again it is sufficient
to consider cos(B;) and sin(B;) instead of cos(D;) and sin(D;), respectively. It6’s
formula and It0’s isometry yield

E| JO (2cos(By) — 1)ds?

¢ ¢
= Ej f cos(2B,)ds|* < CE| cos(2B;)?| + C + CE| f sin(2B,)dB,|?
0 0

t
<C+ cf E|sin(2B,)2ds = O(t).

0

Analogously we find
t
E| f (2sin(B,) — 1)ds|?
’ t t
= E| f —cos(2B,)ds|* < CE| cos(2B,)?*| + C + CE| f sin(2B,)d B |?
0 0
t
<C+ CJ E|sin(2B,)[*ds = O(t)
0
and
¢
E| J 2 sin(By) cos(By)ds|?
0

Bt 1 . BO 1 . 2 ¢ 2 2
< CE‘ - ? - Z_l sm(ZBt) + 7 + Z SlIl(2Bo)| + CE| f COS(BS) st|
0

t
< CE(B}) + CE|sin(2B,)?| + C + cf Ecos(B,)*ds = O(t).
0

As |K(Ds)| = 2 and |Ds| = 1 it holds
| K(D)|Ds|* = E(IK (D) || Ds[?) = 2 — E(2) = 0.

This shows the remaining condition of (kF”). For a one-dimensional stochastic ap-
proximation algorithm it is worth mentioning that the 0-sphere is not connected and

therefore not useful. But for that case a counterpart can be found just by setting
Dy = cos(B, + U).

Example 2.2.2. For another example we return to the d-dimensional case and let

_ d
D' = (1/DY, ..., 1/D!NT
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Then the It6 type simultaneous perturbation stochastic approximation (SPSA) algo-

rithms (2.11]) and (2.12)) would be given by

t t
Zy = ZO_J d Ds_l{f(Zs+Cst)_f(Zs_Cst)}dS_f s
0 2¢Cs 0 2¢s

D;taw,

and

tCL ta
Zy=Zy— | =D;Yf(Zs+ cD,)}ds — f —D;'dW,.
Cs

0 0 Cs

However in a time-continuous framework it must be possible that D, equals zero for
some t. It is hard to find distributions fulfilling the corresponding conditions on D;
and K (Dy).

Example 2.2.3. For D consider the deterministic, 27-periodic function

D= (Gth)) with v e 0.0)

We calculate the counterparts for the expectation values in (kF’) and (kG’):

1 21 1 27
Sl J Dydt = — cos(t g4 _ ¢
27 Jo 21 J, \sin(t)

Qi sz D, ® Dydf — I ( cos(t)?  sin(t) cos(t)) Qi — 1 (1 0) ‘
™ Jo 2

o J, \sin(¢)cos(t)  sin(t)? 01

and

Moreover, for ¢ > 0,
1 t
1| s = o)
t" Jo

and
1 t
1 [ (D@D, - tajasf = o)
0

hold true. Obviously the bounds are also of order O(t), such that we can apply Lemma
analogously to the previous examples, such that the remaining conditions of
(kF”) and (kG’) are verified. However having bounds of order O(1) also gives us
the possibility to apply Corollary and thereby make less strict conditions for
one-measurement algorithms.

Example 2.2.4. This example is similar to the previous one. However now the path
of D consists of sub-paths which we sample without replacement. Let the process D
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go along one of the paths

e (20) e o ()

sin(t) sin(—t)
with ¢ > 0 for m > 1 times each. More precisely, let the process D start at Dy =
(1,0)T. At every time t = km, k € Ny it is Dy = ((—1)*,0)7 where we sample
without replacement, from initially m upper arcs and m lower arcs, which direction
to choose next. Obviously the probability which path to choose next is dependent on

the previously chosen paths. Every 2m steps no paths are left to choose from and the
complete sample experiment will be repeated. In this case

t
E| | Dat = o)
0
and

t
EJX@@@—MWW=@U
0

hold, although D is not deterministic. This is an example for a dependent perturbation
where Corollary is applicable to verify the integral conditions in (kF’) and (kG’).
2.2.4 Discrete-Time Algorithms

We carry on with the time-discrete recursive algorithms [d-Ker-Rand-1] and [d-Ker-
Rand-2] given by

Zy = Zn1 — P K(Dpy) (F(Zoor + caDu_y) + Vi) (2.13)

Cn

and

Zp = Ty — 2K (Do) ({f(Zus + enDnt) = f(Zoos — caDu1)} + Vo) . (2.14)

2c,,
Consider the following assumptions.

Assumption 2.2.3. Let (kA)-(kC) from Assumption hold.

(kD7) Let (a,), (c,) be sequences satisfying

ee] ©¢]
Apy Cp >0 QpyCn L 0 a, = 0 Zancn<oo.

n=1 n=1

(kE”) Assume

o0
2
a; :
=1
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(kF”) For all n = 0 let the R4-valued random process (Dy)n=0 and the measurable
function K : R* — RY fulfil

E(K(Dn) ® Dn) =10, E(|Du|*|K(Da)[*) <0 and  E(|K(Dy)[*) <o

Moreover assume
< o0

‘i ( Dn1) ® Dyy = E(K(Dp1) ® Dyy1)

< o0

IZ U Cr (HK(anl)H | Do I* = E(| K (Do)l Dna )

< 0.

)

)

\i @2 (1D P K (Do) P~ E(Du | K (D) )| < o0,
12 2 (IDaaPIE (D) P = E(1Dua | K (D))

(kG”) For the one-measurement algorithm (2.13) we assume: There exists a stopping
time 7(w) < oo such that

T e KD ()

32 S (K (Da) ~ B (D, 1)) < o,

n=1 i=1

e

foralln =1, E(K(D,-1)) =0

)

3 v Gl +2]) < f(2) < C2(1 + |2]),
C1,02=20 zeRd

>

n=1

;KQL\D | 3@[\3

(I (Du-) 2 = E(K (Do) ) )| < 2.

and

(kH”) Assume

sup E|K(Dp_)Vol? | Gn) <0 and E(K(D,_1)Vy | Gn) =0 a.s.
neN
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where Gy, = o(Zy, ..., Zn_1,D1,...,Dy_1).

Corollary 2.2.3. Let Assumption [2.2.9 hold. Then the strong solution (Z,) of the
time-discrete recursive algorithms (2.13) or (2.14), respectively converges to the min-
imizing point of the function f.

Proof. Tt is sufficient to check the assumptions of Corollary We only investigate

recursion (2.13)). The case for (2.14) follows analogously. Set F(Ds_,cs, Zs—) =
K(Ds_)f(Zs— + csDs—). We extend the sequence (V},) to a time-continuous process

(Vi)e=o defined by

‘,\/,'_ ‘/1 fort =0
b V., forn—1<t<nwithneN.

Furthermore we define

M(ds, D,_,z) := K(D,_)V,dR, and R, := max{n} = |s] for 5 > 0.
ne

n<s

These definitions are used for

t
J M(ds, D,_, z) J K(D,_)VidR, = Y K(Dyy_1)Vo(AR,) = Y K(Dy1)Vi,
0 n<t n<t
neN neN
= Z K(Dn71>vn = Ht.
n<t
neN

We now show that Sé M (ds, Ds_, x) is a martingale with respect to F = Fr,, t = 0.

E(H, | Fo) = E(H, | Fio) = Y E(K(Dn1)Va | Fia))

n<t
neN
= Y E(K(Dy )Va | Ao+ D, E(K(Dn1)Va | Fis)
n<|s| [s]<n<t
neN neN
= Z K(Dn_l)Vn +0 = Z K(Dn—l)vn = Hs
n<|s| n<|s|
neN neN

We get for n e N

Vi(AR;)

|
||'M:
Ky |§

In — 2o = — Z_j D ){f(Zj-1 + ¢;Dja
Z ]1{f(]1+cj

HM:
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Writing recursion ([2.13)) in a telescoping series yields

n

Zn—Zo=Y.(Zj— Zj—1) = — Z (Dj-)Uf (Zj1 + ¢ D; Z

j=1

As a consequence it is sufficient to verify the assumptions of the theorem of the
semimartingale case. Assumptions (D) and (E) follow by

o0 0 o0
J a,dR, = ) a;(AR;) = > a; =
j=1

0

j=1
0 0 a0
f ascsdR; = 2 ajci(AR;) = Z ajc; < 0,
0 i=1 j=
and
o0 0 o0
f a?AR AR, = Y a}(AR;)* = ) af < o0,
0 j=1 j=1

Noting that dRs = d|s]|, assumptions (kF) and (kG) follow obviously from (kF”) and
(kG”), respectively. Finally we deduce (kH) from (kH”). Knowing that

fMds D, )] = JK OVidR,]y = D E (K(Dao1)*VA(AR,)? | Foi)
neN
= Y E(K(Dy-1)’V;? | Fuci)
neN

it is sufficient to show

o0 a2 hm(Z
s (R, < D, 1)*V?| F,_1) < .
| SreiT Z & DV Fa)

As the sum consists of positive terms only, we can apply the monotone convergence
theorem:

2
n 272 a, 2
EZ E Dy1)’Vii | Fuct) = ) SE|K(Dy1)V,
neN ” neN T
Finally, Holder’s inequality yields

2
2 2 an
D CZIE!K( )Vl < (ileleEK(Dnl)Vn” ) 2 2 =%

neN 1 neN

]

Example 2.2.5. Imagine an irreducible, stationary Markovian chain (D, ),>1 that
moves along the vertices of the hypercube [—1,1]¢ and has a symmetric transition
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matrix. For instance, consider two kinds of settings.

e D moves to vertices to which it is connected via a common edge or stays at the
same vertex. All these events shall have the same probability. All other vertices
are not accessible in one step.

e D must leave the current vertex. It moves to vertices to which it is connected
via a common edge with same probability. All other vertices are not accessible
in one step.

The verifications of both settings are done in the same way. More specifically we will
consider irreducible, symmetric, doubly stochastic transition matrices.
Choose K(D,,) := D,,. Then for any i € {1,...,n} it holds

s _ JE(DID) = E((D))?) =1 if j =k
E(K(D)® Di)" = {E(Dg'Df) 1=1-1+4(-1)?*) =0 ifj+#k.

Note that in this case Random Direction Stochastic Approximation (RDSA)

Zn+1 = Zn — %Dn {(f(Zn + CnDn) - Wn,l) - (f(Zn - CnDn> - Wn,2)}
and Simultaneous Perturbation Stochastic Approximation (SPSA)
Zn+1 Z - _D {( Z + Cn n) - Wn,l) - (f(Zn - CnDn) - Wn,Q)}

are identical. In order to achieve moment conditions like E(K(D,)) = 0 we choose
the initial value Dy uniformly distributed on {—1,1}¢. Consequently E(Dy) = 0 € R%.
Due to stationarity, E(K(D,)) = E(D,) equals zero for any n.

Now we show that 3%, g-:(K(Dn) . E(K(Dn))) < o in (kG") is fulfilled. For
that purpose verify the conditions of Lemma [A.T.4] The only non-obvious one is

E| Z DiH2 =
i=1
First note that

EX,Y)=) Y@ yP(X =2Y =y) =) > (& pPY =y| X = 2)P(X = 2).

Let 0 and ¢’ denote elements of the set of all vertices of our hypercube. In our setting,
symmetry yields > ;0 = 0. Bringing these ideas together yields

E(D;, Djy = > .Y (6,6"P(D; = &' | D; = 6)P(D; = 6).

o o

Due to stationarity, P(D; = §) = 2% for all j. Note that the 2¢-dimensional transition
matrix from D; to D;,1, which we denote by M in the following, is an irreducible,
symmetric, doubly stochastic matrix. For every stochastic matrix, 1 is an eigenvalue.
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According to the Perron-Frobenius theorem for stochastic matrices [19, Thm. A.2.4],
all eigenvalues have absolute value < 1. For an irreducible, non-negative matrix A,
the spectral radius p(A) is a positive, simple eigenvalue of A. Hence the eigenvalue
1 has algebraic (and thereby geometric) multiplicity 1. As M is a stochastic matrix,
the eigenvector related to eigenvalue 1is vy := (1,1,...,1)T = 1. In order to calculate
M™, we diagonalize M by A := TTMT. It is of the form

1 0 0
A= 0 ')\2 0
S
0 e 0 )\Qd
The remaining eigenvalues X, ..., \g are either —1 or have absolute value less than 1.

Note that there is no eigenvalue —1 if M is primitive. This however does not apply
to all possible matrices in our example. The matrix

0 1/2 1/2 0
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0

for example has eigenvalues 1, —1 and 0.
Now the n-th power of A is

10 0
0 A ... 0

A" = ’
ST
0 0 Az

Calculating M™ = TA"TT with

v v Vod T v v

yields the desired matrix. Due to the special form of the eigenvector v, all entries of
M™ consist, amongst others, of a summand with eigenvalue 1 divided by the squared
length of its eigenvector, namely 1 - 2% This very same summand appears in every
matrix entry. All other summands consist of the other eigenvalues and are not nec-
essarily the same for each matrix entry as their corresponding eigenvector is not a
multiple of 1. Hence we use different arguments for them in the next step.

Now calculate E{Dg, D,,) by multiplying each component of M™ with its corre-
sponding (4, 0") and the probability P(Dy = §) and then summing up all entries. As
a result we get

1 1 / 2d n
E(Dy, D, < @Zzﬁ@,ayucéxk.

o o
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The first term on the right side represents the impact of the eigenvalue 1 and sec-
ond term stands for the remaining ones, those structure is not so handy, as their
corresponding eigenvectors are less trivial. Due to symmetry

PG Z<5 25> Z<5 0) =0,

o o

hence the first term vanishes. Now compute

n—1 n—1  2¢
D IE(Dy, Dy < X C YN
=0 =0 k=2

There are two possibilities for A. Either it is —1 or [A\;| < 1. As 7 (—1) < o0 and
the geometrlc series converges, we can find a bound C which is independent of n such

that 37 B(Dy, D,,> < C. Finally

B o - S ES .0y <0 Z -

=0 j=0

Now check 3, a, (K(Dn_l) ® Dyt — E(K(Dy 1) ® Dn_1)> < o in condition

(kF"). By a component-wise investigation of the entries we show

E| Y, (K(D:)® D;) —E(K(D) @ D)|* = O(n).

Note that all principal diagonal entries of (K (D;) ® D;) — E(K(D;) ® D;) are zero.
All other entries, namely

(wmr0m)-sxmon))* - (ko100)"

for j # k, behave in the same way as E|| >, | D, ;|? which was just proven to be
O(n). Namely we consider

E((D; ® D;) —E(D; ® D;), (D; ® D;) — E(D; ® D;))

_22(<<5®5 (DZ-@Di)),((5’®5’)—E(Dj®Dj))>

6 ¢

P(D, = §' | D; = §)B(D; = 5)),

where for matrices X and Y, (X, Y") denotes the Frobenius inner product, which means
that the elements of the matrices shall be multiplied element-wise and then summed

up. Then, similarly as before, ), ((5@ )) —E(D; ® Dl)> = 25<(5 ®9) — ]ld> = 0.

Just consider the non-diagonal entries ) 6@ . 50U with i # j. Then summing over
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the 27 vertices ¢ yields

) ] 2d 2d
25(1).5(3) — (5 ) 1+§ . (_1)) = 0.

)

Consequently we can cope with the simple, maximum eigenvalue 1 of the transition
matrix. All other eigenvalues are either —1 of have absolute value less than 1 and can
be handled as before. As |K(D,)| = ||D,| = v/d, it holds

|K(Dn)|* = E(IK(Dn)|?) = d —E(d) =0.

Thus condition S%_, % <HK(Dn_1)H2 - E(HK(Dn_l)u?)) < o in (kG") holds. All

n=1 E
assumptions of (kF”) including the norm of K(D,,) or D,, follow with the same argu-
ment.

Example 2.2.6. Let D follow the deterministic, periodic sequence of the 3-dimensional
vectors

1 1 1 1 ~1 ~1 ~1 ~1
T R O T O T O O (S I S T O |
1 1 ~1 ~1 ~1 ~1 1 1

The mean of these vectors is zero. Moreover 22:1 D, ® Dy, = 13. As the sequence of
vectors is deterministic and periodic,

E| ), Dil* = | 3, DilF = 0(1)
i=1 i=1

and
E|D; ® D;|> = | D; ® D;|> = O(1)

hold true. This is sufficient to apply Lemma [A.T.4] for which we only need the rate
O(n). But we could even apply Corollary and thereby make less strict conditions
for one-measurement algorithms.

Remark 2.2.3. Tt is worth to mention that deterministically perturbated algorithms
where already handled by Bhatnagar [2]. However much stricter assumptions were
made there and only time-discrete algorithms were considered.

Example 2.2.7. Consider D to follow the vertices of a d-dimensional cube that are
sampled without replacement. After 2¢ steps, when no vertices are left to choose, we
start again sampling from all vertices. Here

E| Y, Dif* = O(1)
i=1
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and
E|D;® Di|* = O(1)
hold. Hence this is an application for Corollary with a non-deterministic D.

A part of the following result has already been shown by Dippon [10] under slightly
different assumptions. There only the two-measurement algorithm ([2.14) was in-
quired. The rest of the corollary is new.

Corollary 2.2.4. Let all conditions of Corollary[2.2.3 hold and furthermore assume
that (D,,)n>1 is not predictable but a sequence of i.i.d. random variables. Then the
strong solution (Z,) of the time-discrete recursive algorithms or , respec-
tively converges to the minimizing point of function f.

Proof. The proof is a direct consequence of Corollary [2.2.3] noting that most condi-
tions of assumption (kF") are fulfilled due to the Khintchine-Kolmogorov convergence
theorem.

Alternatively one can follow Dippon’s approach [10] to consider (Z,, Z,,) and follow
similar steps as in the proof of Theorem [2.1.1, Decompose it into

|Z,? = (E(ZuI* | Zo.- . Zos Doy D)

+ (1Zal> = B(IZal? | Zo,., Zn, Doy ... Da)).

The first summand represents the predictable part and the second one the martingale
part. The bounds

’i ( Dn1) ® Dyy = E(K(Dp1) ® Dyy1)

ﬁg

Il
—_

MS;

@2 (1Da 1[I K (Daa) P = E(I Dot || (D))

n=1

)

anen (1K (Du )| Dot |2 = B(K (Da )1 Do) | < o0
)
)

‘Z (HDn PIE (Do) 2 = E(| Do | K (D))

from condition (kEF”) are trivially fulfilled. For example

‘iE(an (K(Du1) ® Duy = E(K (Do 1) ® Du))|Zo0s- s Zu1s Do, Daa)|
n=1

00
= )Z Qp, (E(K(Dn_l) ® Dn—l | Zo, ceey Zn—l» D(), ey Dn_g)
n=1

CE(K(Dp_1) ® D,H))’
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I

’i an (B(K(Dy 1) ® Dy1) = E(K(Dy 1) ® Dy 1) )|

n=1
0.

For the same reason the terms

a

© 1 i
‘7;1 T_<Zn—1, K(Dn—l)f<Zn—1>> )

Zn—l ||2 Cn

d

CL2

|3 % (1K (D)~ B (D))

n=1 N

in (kG”) can be handled, as the summands turn to zero after applying the condi-
tional expectation to them. Note that this alternative approach is not applicable for
dependent perturbations (D,,),>1-

O]

Remark 2.2.4. In a continuous-time framework we do not have such a process (D;);=o
which is path continuous, D;, and D;, are i.i.d. for ¢; # t,, and satisfies the moment
conditions like E(K(D;)) = 0 and E(K(D;)® D) = 1,4 in order to achieve consistency
of (Zt)i=0.

A comprehensive description of time-discrete examples with i.i.d. randomization
can be found in [I0, Chapter 5].

2.2.5 An Application in Wing Design Optimization

This application deals with the design of a wing shape such that the lift L to drag D
ratio (L/D-ratio) is maximized with the wing weight as a constraint. The equations
which show the relation of L and D with the quantities to be optimized, are very
complex. In the following paragraph, the underlying equations and the relation to
the parameters to be optimized, are presented. A detailed description of this example
can be found in a paper of Xing and Damodaran from 2002 [44].

We begin with the description of the numerator. Here L is defined as L = CpqS,
with ¢ = %,OV2 the dynamic pressure, p the density of the air, V' the flight speed,
Cr = Crqaa the lift coefficient, with « the angle of attack and Cp, = 27TAR/(2 +
V4 + (ArB/n)2(1 + tan® \/52))) the lift curve slope. In the lift curve slope expres-
sion, Ap = b*/S is the wing aspect ratio, b the wing span, A\ the wing sweep an-
gle, n the airfoil efficiency factor, 3 = 1 — M? the compressibility factor, and M
the Mach number. The total drag is defined by D = CpqS, with total drag co-
efficient Cp = Cp; + Cpo, induced drag coefficient Cp; = C%/(mAge) and zero-lift
drag coefficient Cpy = C;FQ. Here e = 4.61(1 — 0.045A4%%)(cos \)*1® — 3.1 is the
wing planform efficiency factor, C; = 0.455/(log,, Re)*®*(1 + 0.144M?)°% the sur-
face skin-friction coefficient, which in turn is a function of the Reynolds number Re,
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F = (1+(0.6/(z/c)m)(t/c) +100(t/c)*) (1.34 M8 (cos \)*2), t/c the airfoil thickness-
to-chord ratio, (x/c),, the chord-wise location of the maximum thickness-to-chord
ratio, and @) a factor which stands for interference effects on drag. The weight of
the wing is Wying = 0.0106(Wag N, )02 S5%622 %75 (¢ /c) 704 (cos A) ™!, with design gross
weight Wy, and ultimate load factor ..

The variables to be optimized are angle of attack «, wing span b, mean aerodynamic
chord ¢, sweep angle A and wing weight Wn,. Additionally the following constraints
are made:

1.0deg < o < 10.0deg 10.0 < b < 50.0

3.5 <c<10.0 0.0deg < A < 35.0deg

0.5 < Ag < 15.0 Weing < 2473(1D)
Hence

D(Z)
f(Z) = 7) + Zmax(o,g](Z))Z
jeJ

with Z = (a,b,c, A\, Wying)? and J the number of conditions, is to be minimized

with Z representing the five design variables and the design constraints g;(Z) < 0
formulated as inequality constraints.

Xing and Damodaran simulated this optimization problem with simultaneous per-
turbation stochastic approximation (SPSA), simultaneous annealing (SA) and a ge-
netic algorithm (GA). It turned out that SPSA reached the stopping criteria after
383 iterations, where GA took more than 13000 and SA more than 9000 iterations.
Moreover SPSA is easier to implement.

It is worth mentioning that the same authors also investigated other aerodynamic
shape design optimization problems with the SPSA method in 2005 [45].

2.2.6 A Neural Network Application

Consider a neural network with d weights to be optimized. Typically such a problem
is solved by gradient descent. If not all sample data points are accessible, a stochastic
gradient descent procedure is a typical choice. Now we go one step further and assume
no knowledge of how the weights are connected. Thus, the exact function representing
the neural network is not accessible. The reason could be that the network structure
is too complicated or simply unknown. This means we cannot compute the gradient
of our loss function directly and Kiefer-Wolfowitz type algorithms come into play. As
mentioned in the introduction these algorithms require 2d observations per iteration
step. Especially in high-dimensional online optimization problems the system might
change faster than the corresponding weights can be estimated. For this purpose
randomized stochastic approximation algorithms are a good choice. With the ideas
in this thesis it is even possible to optimize problems where the randomization has
some dependency restrictions.
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2.3  Simulations

This section occupies with the comparison of Kiefer-Wolfowitz, one- and two-mea-
surement algorithms. The simulations should give some recommendations when to
use which procedure. Besides the almost sure convergence rate and the asymptotic
L?-error, which are simulated in the following sections, there is also the quality crite-
rion pre-convergence. This is important as in real-world applications the number of
iterations cannot be infinite. Hence it makes sense to also compare the procedures in
the first few iteration steps.

The following plots consider stochastic approximation of the minimum of the func-
tions R® — R: (21,79, 23)7 — Z?Zl x? for the two-measurement algorithm and a
linearly continued variant

y P iffml <1
R? — R: (21,29, 23)" — Zyi with y; = i if o ’
im1 |z else,

i €{1,2,3}, for the one-measurement algorithm, where the latter grows linearly out-

side the unit cube. The step sequences are chosen as a,, = 2/(20+n), ¢, = 1/n'/%. We

denote our stochastic approximation process by Z = (Z,)n>0 = (Zﬁl), z. ZS)))Z?O.

The starting value is Zy = (=5, —5, —5)7. For each algorithm 10000 observations are
made. The observation noise is Bernoulli distributed with values +1. In order to keep
the algorithms comparable, we do not update at each iteration step. For example,
the classical Kiefer-Wolfowitz algorithm keeps the same values in each component for
the first 2d = 6 iterations. Then an update at every component is done, which is
followed by freezing the values for another six steps. As the name implies, the two-
measurement algorithms need two evaluations per iteration step. Hence we update it
every second step. One-measurement algorithms are renewed in each step.

2.3.1 Comparison of One- and Two-measurement Algorithms and Kiefer-
Wolfowitz

We begin with the simulation (Figure of the classical Kiefer-Wolfowitz procedure

Qn,
Zn+1 =2y, — % {f(ZTL + Cnei) - f<Zn - Cnei) + M"vi}ie{l,...,d}

in R3. Note that it needs 2d = 6 function evaluations per update.
Next we turn to the two-measurement (RDSA) in Figure

Zn+1 = Zn - &Dn {(f(Zn + CnDn) - Wn,l) - (f(Zn - CnDn) - Wn 2)}

2¢,, ’
and the one-measurement random direction stochastic approximation algorithm (RDSA1)
in Figure [2.3

Qn

Zn+1 = Zn - Dn {(f(Zn + CnDn) - Wn)} .

n
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Figure 2.1. The three components of a simulated path of a regular Kiefer-Wolfowitz
procedure in R3

These use an i.i.d. noise process. A stronger fluctuation of the one-measurement
algorithm is observable. The lack of a second, symmetrical, evaluation which could
give more stability yields a worse behaviour.

Dependent (Markovian) noise algorithms use a noise process on the vertices of
a cube, with a random vertex as starting value. The process changes the sign in
exactly one dimension d € {1,2,3}. The probability for each dimension is 1/3. The
two-measurement version (RDSA) is presented in Figure 2.4] It’s one-measurement
counterpart (RDSA1) on the other hand (Figure does not indicate to eventually
converge when simulating 10000 evaluations. However using an alternative gain a,, =
2/(200 + n), yields another impression (Figure [2.6). Nevertheless these plots show a
drawback of one-measurement stochastic approximation procedures.

Another example for dependent perturbation is sampling without replacement from
the directions

(1, 1,07 (=1, -1, -7, (-1, 1, 0", (1, -1, )", (1,1, -1, (-1, -1, )7,
(-1,1,-D)7%, (1, -1, -1)".

When all directions are chosen, the replacement experiment will be repeated. The
one- and two-measurement simulations are given in Figures [2.7] and [2.8], respectively.

Deterministically perturbated algorithms start at a random starting value, but fol-
low a deterministic rule: Starting with an arbitrary value one first changes the sign
of the first dimension then the second, and so on. The period is of length 2d. If we
started the simulation with Dy = (1,1,1)”7, D in (RDSA) and (RDSA1) periodically
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Figure 2.2. The three components of a simulated path of a two-measurement procedure
with i.i.d. perturbation in R?
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Figure 2.3. The three components of a simulated path of a one-measurement procedure
with i.i.d. perturbation in R?
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Figure 2.4. The three components of a simulated path of a two-measurement procedure
with dependent perturbation
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Figure 2.5. The three components of a simulated path of a one-measurement procedure
with dependent perturbation
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Figure 2.6. The three components of a simulated path of a one-measurement procedure
with dependent perturbation and a, = 2/(200 + n)
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Figure 2.7. The three components of a simulated path of a one-measurement procedure
with dependent perturbation without replacement
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Figure 2.8. The three components of a simulated path of a two-measurement procedure
with dependent perturbation without replacement

had the values
(L, 1,05 (=1,1, D)7, (=1, -1, D", (=1, -1, =) (1, -1, -1, (1,1, 1),

The corresponding simulations are given in Figures 2.9 and 2.10]

Now we present another procedure with deterministic directions which has a close
similarity to the classical Kiefer-Wolfowitz algorithm and shall hence be called pseudo-
Kiefer-Wolfowitz algorithm. It’s simulation is shown in Figures and 2.12] The
direction is 6-periodic with D in (RDSA) and (RDSA1) periodically having the values

(1,0,0)%,(0,1,0)%, (0,0, )", (—1,0,0)", (0, —1,0)%, (0,0, —1)7".

That is to say D; = (1,0,0)%, Dy = (0,1,0)7, until D; = D; and so on. In contrast
to the regular Kiefer-Wolfowitz algorithm, each evaluation requires not 2d function
evaluations but only one. Although this procedure looks similar to the classical Kiefer-
Wolfowitz algorithm, it is actually nothing else but the deterministic procedure we
simulated before with D concentrated on the vertices of a rotated hypercube. For this
reason we omit its simulation in the following sections.

The comparisons of one- and two-measurement algorithms show that the first ones
are very sensitive about poorly chosen initial values Z,. If additionally the random
perturbations are showing into an unfavourable direction, the iterates Z, move away
from the solution even further. Hence it is useful to investigate one-measurement
algorithms when they already start in the point which they actually shall converge
to. This is done in the following subsection. As an intermediate result, it seems
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Figure 2.9. The three components of a simulated path of a two-measurement procedure
with deterministic perturbation
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Figure 2.10. The three components of a simulated path of a one-measurement procedure
with deterministic perturbation
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Figure 2.11. The three components of a simulated path of a Pseudo Kiefer-Wolfowitz
procedure (one-measurement)
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Figure 2.12. The three components of a simulated path of a Pseudo Kiefer-Wolfowitz
procedure (two-measurement)



2.3 Simulations 53

that two-measurement algorithms are more robust at the first few iteration steps,
where one-measurement algorithms seem to have no benefit beyond requiring fewer
evaluations per iteration step.

2.3.2 Comparison of One-measurement Algorithms Starting at the Ex-
tremum of f

Now we compare one-measurement algorithms with each other. In contrast to the
previous simulations we start at Zy = (0,0,0)7, i.e. the extremum we are actually
searching for, and regard only 1000 evaluations. All other settings remain as before.
We begin with i.i.d. (Figure and Markovian (Figure perturbation settings
for which E| 37-} Di|> = O(n) holds true.

1.0-
05-
component
~ S
~ 00- — 50
—_ Z(3)
_05_
_10_

1 1 1 1
0 250 500 750 1000
total number of single noisy function evaluations

Figure 2.13. The three components of a simulated path of a one-measurement procedure
with i.i.d. perturbation

Next we turn to algorithms for which E|Y—) D> = O(1) holds. This is the
case for sampling without replacement (Figure and deterministic (Figure
perturbation. It is observable that the latter two algorithms behave better at the
first evaluation steps. This becomes particularly obvious if one looks the paths up to
step 250.

The simulation of one single path gives a first impression on its behaviour though it
is not very representative for the whole process. For that reason in the next subsection
its empirical L?-error is investigated.
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Figure 2.14. The three components of a simulated path of a one-measurement procedure
with Markovian perturbation
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Figure 2.15. The three components of a simulated path of a one-measurement procedure
with dependent (sample without replacement) perturbation



2.3 Simulations 5%

1.0-
‘ fM ; ‘ component
2, oo- ‘%NM “M .\fm{\r‘y\# "M‘“emw - ZEZ
| \/N R W AN o
—05-

0 250 500 750 1000
total number of single noisy function evaluations

Figure 2.16. The three components of a simulated path of a one-measurement procedure
with deterministic perturbation

2.3.3 L2-Convergence of Algorithms Starting at the Extremum of f

In order to provide a fair comparison of the individual algorithms, we estimate the
L2-error empirically. The parameters are a, = 2/(70 + n), ¢, = 1/n'/%, and starting
value Zy = (0,0,0)T. For each algorithm N = 1000 paths with n = 10000 single
observations, which equals the number of evaluation steps in one-measurement al-
gorithms, were performed. We begin with the one-measurement procedures. The
empirical L?-errors of these paths are given in Figure .17}

This plot upholds the assumption that algorithms with E| Y-} Dp[> = O(1)
have a better behaviour at the first evaluation steps than algorithms for which only
E| 3 ~s Di? = O(n) only holds true.

Next (Figure we apply the same setting to Kiefer-Wolfowitz and the two-
measurement procedures. Note that similar to the previous simulations we freeze
the iterations for two or six evaluations. In two-measurement procedures the rate
of B|| 3.7~) Dy|? seems to have no effect on the pre-asymptotic behaviour. This is
not very surprising, as due to symmetry our theorems and corollaries (cf. Corollary
on these algorithms did not need a condition including E| 37=) Dy|? or E(Dy,).
Note that the pre-asymptotic behaviour of multi-measurement algorithms is generally
better than that of one-measurement. Although at very few steps the Kiefer-Wolfowitz
procedure has lower error, this changes after about 1000 evaluations. This is due to
the fact that the process is frozen three times as long as the the other simulations in
this plot. If we only compared with the total number of iterations without regarding
the evaluations per step, this would look completely different.

In the following chapter we occupy with the almost sure convergence rate of random-
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Figure 2.17. Empirical L?-error of Z, generated by one-measurement procedures
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Figure 2.18. Empirical L%-error of Z, generated by Kiefer-Wolfowitz and two-
measurement procedures
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ized algorithms. The associated simulations yield more insights into which procedure
to prefer in which situation. Apart form already visible pre-asymptotic differences the
plots of the L2-converge rate can point out differences for large numbers of iterations.
Moreover it should be noted that the asymptotic L?-error is also dependent on the
form of f. In order to exclude the possibility that the simulated behaviour changes
for a different f we would need more advanced results like asymptotic normality.






3 Almost Sure Convergence Rate

After the verification of consistency, the question arises how fast the process (Z;)i=o
defined in ([1.3)) converges towards the minimizing point z* of fy. Again we present a
general framework for semimartingales and deduce special cases.

3.1 A General Semimartingale Algorithm

We define 7;(0) := &(0 §, asdR;), where &(.) is the stochastic exponential, and inves-
tigate how ¢ can be chosen such that

Y(8)| 2 — 2*| — 0 a.s.

can be assured. Note that the stochastic exponential is the solution of Z; = 1 +
Sé Zs dXs, Xo = 0 which is given by &(X) := exp (Xt — %[X, X]t) [Tocsct (1 +
AX,)exp (—AX, + $(AX,)?). In that context we need additional assumptions that
are given below.

For the sake of simpler proofs let Dy as well as all functions which are only de-
pendent on D,_ be bounded. The function F': R? x R x RY — R? is called p-smooth
at (c*, z*) if for all d € R?

HVCF(d, ¢, z) — Z ! VIVRV F(d, ¢, 2%)(z — 2%)" (¢ — ¢*)™?

71,1!77/2!

nyi: ni|<my
no: Ne<mso
mi1+ma<|p|—1

_ 0(”2 . Z*Hm1+51> + O(|C— C*|m2+e2>

with €1, €, € [0,1) and my +€; +ma+e = p—1 holds, and E|g;(Ds)|? < oo for i € {1,2}
and any s € [0,0). Note that this definition employs the multi-index notation which
was already defined in Section

Now we extend the general Assumption to p-smooth functions F.

Assumption 3.1.1.

e I is factorizable at ¢ = 0 with respect to d and z in the sense that there are
measurable functions fi,: R — R?" gr: R — R such that

VIVEF(d,0,2) = gr(d) V. fe(z)  forle{0,1} and 1+ ke {0,...,|p|}. (3.1)

29
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e I is affine in the sense of

ViF(d,c,2) = VEF(4,0, 2 + cd) for ke {0,...,|p|}. (3.2)

As mentioned before, D, as well as all g,(D,_) with k € {0,...,|p|} are bounded.
Define V, fl(z*) =: H,«. In applications later, we observe that H,+ coincides with
the Hessian of a function f at z*. This condition will be naturally fulfilled in all
our applications. Its largest and smallest eigenvalues are denoted by Apax or Amin,
respectively.

We formulate the following assumptions.

Assumption 3.1.2. Let Assumption and conditions (A)-(G) in Assumption
hold. Assume F': R? x R x R? — R? p-smooth with p = 2 at (c*, 2*).

(D)

e}
f Ys_(0)asc? AR, < o0
0

(F)

’JOO Ys—(9)as § (gm+2(Dsf) - E(gm+2(Dsf)))fm+2(z*)CT+1dRs < o0

(G)

‘ f 1 (5)%<Zs_, F(D,_,0,Z, ))R,| < o

2
o 1+ ()| Ze—? "
and let for every i€ {1,...,d}

J"O a2 v: (O)|F(Ds-,0, 2, )|?
o & 1+7(0)|Z-|?

AR AR? < .

If p =3 assume B (gn_1(Ds_)) frn_1(z*) = 0 for any m e {3,... ., |p]|}.

(H) Foreveryic{l,...,d} and all z € R? let

Jw @ A2 (O)hi(Z,.)

&s _ d[§,(M(dt, D, 2))is
o E1+72(0)|Z.|? '

dR;

dR, <o  where h"(z):

The following theorem and its associated corollaries are new.

Theorem 3.1.1. Let Assumptz’on hold. Then for all § € [0, Apin) the solution
Z of algorithm (1.3) satisfies

%(8)|Z — 2| 2 0 a.s.
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Proof. Without loss of generality, let z* = 0. The idea of the proof is similar to that
of Theorem [2.1.1, We investigate (;(8)Z;,7:(8)Z;) instead of | Z;*. With integration
by parts and Taylor expansions, we find a decomposition that is handled with Lemma

[A1.1] Integration by parts yields

22(5) = 7(8) () = &, (25 fo a.dR, + JO 52a2d[R, R]s>

_¢&, <25 f ‘4, dR, + 87 f agARSngl)
0 0

as well as
dyZ(0) = 72_(9) (20as;dR, + 6°a2ARdR,) .
Using integration by parts as well as Lemma results in

1 0)Zs, Ze) — 75 (0)Zo, Zo)

= J; 7527(6)d<ZS, Zsy + d; (Zs_, Zs,>dfyf(5) + L d[fyz(é), (Z,Z)]s
- [z [ 2w s [ aren,
_ V2 ($)A(Z,, Z5) + r (Zo, 2o 5072(0) + f (2(8) 22 (8)) 2. 2),

- V(8)A Zs, Z) + L t<Zsf,Zsf>d7§(5)

J

t
= _QJ 73(5)%<Z5—a F(Ds—a Cs, Zs—)>dRs
0 S

t CL2
; f 22(8)%

0 C

t a2 &
+ | 22(0)=

| 2%y

t t
L g2 f 22 (8)|Zo |22 AR.AR? + J 22(5)d AT,
0 0

|F(Dy-, ¢s, Zs—)|* AR, dR?

. t
d[f (M(dr, D, Zo ))ila + 25J 02 (8)|Z,_ PR,
0 0

where dM, is given in (2.2). With the same arguments as in the proof of consistency
Sf) Y2(8)dM, € My, follows. Now we have
1
—F(Ds_,cs,Zs—) =V, V. F(Ds_,0,0)Zs_
Cs
+ V. F(Ds-,0,Zs_) — V., V.F(Ds_,0,0)Zs_ +C
_B,

= gl(Ds—)szl(())Zs— + Bs =+ Cs

where Hy = V. f1(0), Cy := LF(D,_, c,, Zy_) — V. F(D,_,0, Z,_).

. Cs
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We conclude

1

gIIF(Ds—, Cs, Zs-) > < 3 g1(Dsm) P2l Zo— P + 3| Bs]* + 3] C
and

1
__<F(Ds—) Cg, ZS—)7 ZS—>
cS

< _<Zs—>gl(DS—)vzfl(O)ZS—> + ||BSH||ZS—H - <CS7 Zs—>

= _)\min<Zs—7 (gl(Ds—) - E(gl(DS—)>)Zs—>
— /\minHZs—H2 + HBSHHZS—” - <Osa Zs—>'

A Taylor expansion at (0,0) yields the following asymptotic behaviour of Bi:

_ HVCF(DS_, 0,0) + V.V.F(D,y_,0,0)Zs — V.V.F(D,_,0,0)Zs_

+ 1Dy ol Zs- )|
~ ol Z,- ).

|B,| = HVCF(DS,, 0,7, ) — V.V.F(D,_,0,0)Z,_

Furthermore ||Bs|? = o(| Zs_||*). This holds true for any smoothness order p > 2 of
F.

The investigation of Cs depends on the smoothness of F' at (c¢*,2*). In the case
where F' is p-smooth with p € [2,3), it is already known from the proof of consistency,

namely equations ([2.3) and ({2.4)), that

. 1
—Cs < Hor(Ds) || Ds- | Les = —F(Ds-, 0, Zs-),
with T:= (1,...,1)” and
2 2
IG5 < gngl(Ds—)IIQHDs—H2L26§ + S F(Ds-, 0, Z )|

If F is p-smooth with p > 3, there exists a 6 € [0, 1] such that

1
- (F(Ds—> Cs, Zs—) - Csch(Ds—a 07 Zs—))
Cs

1 1
- (F(Ds_, 0. Zo-) + eVeF (D, 0, Z,-) + SV2F(D, -, ey, Z,-)

Cs

Cs

e, V.F(D,_,0, ZS_))

1 1
- (F(Ds,, 0, Z,-) + 5¢2V2F (D, b, ZS,))

Cs

1 1
—F(Di,0,Z,2) + 56 ViF (D, 0y, 2, )

Cs
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1 1
= —F(D,-,0,Z,_) + 565 (VZF(DS_, 0,0) + vzng<Ds—> 0,0)Z,- + 0<HZS—H)

Cs

+ Z vm+2F D,,0,0)0"cl" + o(6"~2ci2))

_ C_ISF(DS_,O, Z.) + 50 (Do) (2(0) + V. o(0) 2o + (1 Z.- 1)

T Z 2D Voo 0087+ g1y (D o7 ))

1
= . —F(Ds-,0,Zs) + ga(Ds-)Ocs| Zs-|))

lp|—2
+ Z gm+2 fm+2( )O(Cgﬁ_l) +O(C€_1)

=0

and
2
1CI” < ZNF (D, 0, 20 )|° + IV (Do, bes, Zo )|
2 2
< SIF(D, 0,2, )]
+ 5c2<uv2F(Ds,, 0,0)[2 + [V.V2F(Dy_,0,0)Z,_|> + o(| Z,_|”)
o xym+2 m _m 2 p—2 p—2
+ Z v F(D,_,0,0)0™c"| + o(672c22)
= gIIF(Ds—,O, Zo )P +0(c) + O] Zo-|?) + o] Zo-|?) + O(c)
2
= SIF(Ds,0, Z )P + O(c5) + O Zo- ).
Note that for two-measurement algorithms like ([1.6)) it actually holds true that
2
1CI” = ZIF(Ds-, 0, Z0)|” + O(c5) + O Ze- 1)

For one-measurement algorithms this would only be guaranteed by an additional
assumption like f5(0) = 0 and thereby |V2F(D;_,0,0)|* = 0. We find

—F(Ds,0,Z,) + O(cy) if Fis p-smooth with p € [2, 3)
o JIFOD. 0.2+ 0z, )
+ S o (D) frura (0)O(e )
+o(ct™1) if ' is p-smooth with p > 3.

We seek for predictable processes (A} )= and (AZ%);>¢ of finite variation with

V(0K Ze, Z) = 15 (0){Zo, Zoy < Ay — A} + N,
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where N; € M2 _. Using the asymptotic behaviour of B, and Cj, we find that the
following decomposition makes sense. Choose

t
A =2 f 73<5>as<<5 — Auin) | Ze | + Bs|Zs—“) A5

0

+ +
Api=2 J v§(5>a8<<5—kmm>llzs-2+BSIZS—”> Af

0

2D f V()0 Zo, (01(Do) — B (D)) Zo_ YR,

0

t t
3 f ()02 BJPARARY + (3]g1 (Do )X 2 + 67) f 22(8)a21 2, |PARL R

max
0 0

t t
+ 2| 200aCoz R 43 [ 2O)IC AR AR
0 0

N f: 73(5% > de.(M(dT, Ds . Zo )ils

=1

and

¢
N, = J Vf(é)dMs,
0

with dM, as given in ([2.2)).
We are now prepared to prove

0
1 1
Jo L+ 7327(5)<ZS,7287>dA5 < . (3.3)

A quick calculation yields

t

(8) = exp(0a,AR,) (exp <5J ) a.dR.) [] (1+60.AR,) exp(~63,0R,))

0 O<s<t
. (1 + 5(~ltARt) exp(—é&tARt)

which is a useful representation for the investigation of This, together

1
1492 (Zs—,Zs_)"
with the assumptions §; a?AR,dR? < o0 and | a,dR, = o0, implies

Y:(9)
= (5>

Let us now expand (3.3]) with the definition of A'. The first term in this expansion is
handled by showing that

= (1+0a:AR;) = (1 + 0p(1)) = C(w).

+
Ty <<6—Amm>ZsH2+\BS|HZSI) _o.

so(w) s=so(w)
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By the assumption that Ay, > § and |Bs|| = o(||Zs—|) for increasing s, there exists
such an sy because the term in the brackets is negative for an sy large enough. On
the other hand

i _.I_ a

so(w)
<awj 2(0)aud R, < .
From Theorem we know that (Z;);=0 converges. Moreover there are no explosion
times as (Z;);>0 is a strong solution of the stochastic integral equation ([1.3)). Conse-

quently sup, | Z;| < C(w) < co. Therefore there exists a stopping time 7(w) such that
the second term in the expansion of (3.3|) can be handled as follows:

2)\min

T 20)as -
L 1+7§7(5)|\Z5—H2<ZS_’(gl(Ds_) E(g1(Ds-))) Zs—

< Cw) +C(w)

Q0

a,(91(De) — E(91(D,)))

’TOJ

(w)
o) +0)| [ e ((D.0) ~ Bl (D)) )ar

< O

The fourth term in the expanded (3.3)) is bounded by
0 2 2 2 o)
.
CJ (%@)) °@§M ”2§ARde Q)J‘ﬁARﬂRﬂ<w
o \7s-(0)/) 1+7_(0)|Zs| 0
and the seventh term by

o[ (%) T c?de Do

S =1

o0

Vi (O)h(Zs) a

< SdR < 0.
L L4+ 72 ()| Zs—]? 2

The remaining terms dependent on By or C§, respectively. We make use of the fact,
that they are bounded almost surely and we know their asymptotic properties.
Investigation of the third term leads to

o} 2 2
75 (6) ]| Bs| > d
: a®AR,dR"
fo L+ 2_(9)] Z,-|

© )\ RO 4
< O]+ Cw) Lm (%_w)) 1572 0)] 2, P T

<am+C@U‘ﬁA&aﬁ<w.

0

For the fifth summand we distinguish two cases. If F' is p-smooth at (0,0) with
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€ [2,3), it holds

F )\ R0
Uo (”Z((D) 1+’YZ( )| Z,_ H2<CS,ZS_>anRS

< C(w) f Vs—(0)ascsd R
0

Q0
s 0o (Ze  F(Dy 0,7, ))
“’)U -0 T )z

dR;| < oo

and, if F' is p-smooth at (0,0) with p > 3, then

U <CS’Z ) wdR.
1+%

Nz "
» Z,_,F(D,_,0,Z,))
<Cw+CwJ 82_(5%<S’ S
e R R R O [P E

70N
ree [ (25)
(@lZoc] + Z0ET grsal Do) nsa 00 + 7 )2 (6)| 2|

L+ ()1 Z-|?
J~oo 2 %<Zs—aF(Ds—7oazs—)>

a,dR,

SCW) +CW)|]  %-(9)

() cs L+ (9)]Zs-|?

+ C(w) f aSCSdRs + C(w)‘f Vs— (5>a5 Z gm+2(Ds—)fm+2(0)an+1dRS
0 0 m=0

Q0
+ C(w) f Yo (8)ascP AR,

0

* o, na{Z F(D,,0,7,)
<o rew| O
00 lp|—2 ~
+C(W)Jo ascsts"‘C(w)‘f ")/5_(5)(15 E<gm+2(Ds—))fm+2<0)cs
Oo lp]—2 : B
+C(w) ), d)as Z <gm+2 E(9m+2(Ds—))fm+2(0)>cs
L Cw) fo (0)as\dR,
© Ly as{Ze F(Dy,0,Z,)) Ny
clorsew] O @], wedk
0 lp]—2
| 3@ Y (302(De0) = Elamia(De)) Fra0))

L ew) J e (8)ancLdR, < .
0
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Finally we have two cases for the sixth term as well. If F' is p-smooth at (0,0) with
p € [2,3), we use that SSO Ys—(8)ascsdR, < o0 together with Sgo asdR; = oo implies
Ys—(0)cs — 0 and hence

0 2 2.2
75 ()| Cs [P
ARdR,
Jo L+ 72 (0)]1 Zs-|1?
7 (1-(0)es)%ag

e | T

o 2 2172 2
V2 (8)a2L?| Z,| .
AR.d
*C@WL@1+viwna42 Radl,

AR, dR?

@ ) :
- : F(D,_,0,Z,_)|?AR,dR!
€6 || ST GO0 2P AR

< C(w) + C(w) J a?AR,dR?

0

a2 ’}/27((5> 2
Clw ls s F(D,_,0,Z, )|?AR,dR? < .
( )JO Cg 1+ }3—(5)“28—“2 H ( 70’ )H =

If F'is p-smooth at (0,0) with p > 3, we make use of the facts that
1
G2 < Cw) (2 Ze- | + ¢ + SIF (D=0, Z,)?)
holds for an s larger than 7(w) and that y,c¢, — 0 implies v2¢2 — 0, to conclude
) (8 2 2 (§ C, 2
o \7s-(0)/) 1+7%-(0)]Z|

0

<) +e) |

(W)

(ci + 73,(5)&) a?AR,dR?

Pai 5 (9)
- == F(D,_,0,Z, )|’ AR,dR?
+0W) | Sl F (D 0.2, ) PARER:

< Q0.

Hence v2(0)||Z:|? converges by Lemma [A.1.1]
Following the arguments of [37] in the same way an investigation of A? yields that

our algorithm converges to z* = 0, the minimizing point of fj .
According to Lemma we know that

Q = {70 Z]* =} n {A7 < o},

Assume now that there exists a set N of non-zero probability on which v2(8)||Z;?
does not convergence to 0. A contradiction to = {A% < oo} completes the proof.
Note that

AL = [ A2 25> 2 | 2000 (0 A 12 P+ IBIZec]) AR+ 3

0 0
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and || Bs| = o(|Zs_||). Consequently there exists an sj(w) < oo such that for all
s = s(w) the relation |B,| < 5(Amin — 6)[|Zs—| holds true. As Ay, > 0 we conclude
for all s > s{(w) that

— 1 —
(6 = M) 1 Zo- 2+ 1Bul1Z6-1) = (6= Min) 1 Z6- 2 + 5 i = )1 24 2)

N =

()‘min - 5)HZ5—H2-

It is already known that the process v2(8)|Z|? converges for almost all w € Q. But
according to our assumption it does not converge to 0 for all w € N. This implies that
for almost all we N,

33 v <O

® 2
€*>0 s% t=s

Bringing these ideas together with sy := max{s}, s3} yields

0 —
AL > 2 j (6 = M) 152 + 1B Zs- ) an2(O)dR, + AF

o0 o0

a7 (8)| Zo_|PdRy = (A — 5)@[ a,dR,

o0 S0
f asdRg — J asd R, ) = 0
0 0 B

>0 ~ N ~ ~

=0 <(Rsy—Ro)<0

> (Amin — 0) f

S0 0

for almost all w € N, which leads to the desired contradiction and completes the proof.
m

3.2 Algorithms Using Kernel-Based Gradient Estimates

From Theorem [3.1.1] we can deduce many interesting special cases. We begin with
the most general ones for semimartingales and proceed with time-continuous and
time-discrete settings.

We have results for the one- and two-measurement algorithms and . The
concept of p-smoothness is simpler in these cases. The function f fulfils the p-smooth
condition at z* if

1
_ _oxm * _ L ym|l _ *|p—1
Vi = Y Vi - 2 = oz ).
m<|p|—1
We furthermore assume, that D and K (D) are bounded and therefore
E(| K (Ds)|? | Ds*#7Y) < o0

holds true.
The following assumptions are important.
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Assumption 3.2.1. Let conditions (kA)-(kC), (kF), (kG), (D) and (E) from As-
sumption and condition (D) from Assumption hold.

(lg:\ﬁ) If p > 3 assume

[ e,

0 m

(K (D)D) ~ E((K(D,-)Di*) ) et aR,

[p]—2
<

0

as well as E (K (D)D) = 0 for all m with |m| € {3,...,|p|} for algorithm
[3) and

s

UOO Vs—(0)as ) ((K(DS_)Dgﬁ“) - E((K(DS_)DgﬁH)))cgdeS
0 k

&

< O

Il
—

as well as B (K(D)D7"') = 0 for all m with odd length |m| € {3,...,|p|} for
algorithm (|1.6)).

(l;\é) If p = 3 we furthermore assume E (K (Ds)DI*™') = 0 for all m with |m| €
{3,...,|p|} for algorithm ([1.5)).

(kH) Let for everyie {1,...,d} and all z € RY

d[§, (K (Dy)M(dt, 2))i]s
dR, ’

* a? 73—(5)}1?(25—) i
fo c_gl " 73_(5)]\ZS,H2dRS < oo where hY(z):=

where M was introduced on page B

Remark 3.2.1. Random variables fulfilling the moment conditions of (/;\é) can be
generated with the help of a Vandermonde matrix. Details can be found in the paper
of Dippon [10} section 5.2].

Corollary 3.2.1. Let Assumption hold, and assume a continuous Hessian H
around z*. Assume that f is p-smooth at z* with p = 2. Then for both, the one-
measurement (1.5 and the two-measurement (1.6]) algorithm, for all 0 < § < Apn

t—00

() Z — 2| = 0 a.s.

holds.

~

Proof. We trace the result back to Theorem @ Conditions (D), (E) and (D) are
also assumed there. In the proof of Corollary [2.2.1] we already showed that (A), (B),
(C), (F) and (G) follow from (kA), (kB), (kC), (kF) and (kG). It remains to show
that (k?ﬁ’), (l;\é) and (k?ﬁ) yield (F), (G) and (H), respectively. It holds true that

i 0 if k is even.

F(2) = {V f(z) if kis odd
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Condition (F) follows from (l;‘\ﬁ’) by gr(Ds_) = K(D,_)D%_ and
E(g1(Ds-) = E(K(Ds-) ® Ds_) = 1,. Hence

foo%— (6)% <91 (Ds—) - E(QI(DS—))> dR,

0

< 0.

[ e @a (@D - 12)ar,

0

Moreover for (1.5

‘ LOO Vs—(0)as N <9m+2(DS*) - E(gm+2<DS*))) fm+2(2*)CT+1dRS

m=0

- U:O Yo (8)as lpJ_2((K(DS)D;”+2> - E((K(Dsf)Dg”j?))) V™ (7, )R,

< 0

and for ((1.6)), as fx(z) = 0 if k is odd,

< Q0.

Now we turn to (G). For the one-measurement algorithm (T.5), the first condition
of (G) holds by assumption and E(go(Ds-)) = E(K(Ds-)) = 0 by (kG). The two-
measurement (1.6 case is verified as fy(z) = 0. Turning to the last part of (G)

yields

*a? v2(0)
=5 s F(D,_,0, Zs_)|*ARydR?
ﬁ>é1+vi®N&P|( ) :

0 2 2 9
7 (5) ) a 73—(6> , )
— s Zs F(Ds_,0,Z; )||"ARdR;
Jo (73_(6) 21120z )|

{0 for algorithm (1.5

P al v (O f(Zs))?
ST AR AR? for algorithm (T
C(w)fo 21472 (2. R RS  for algorithm (1.6))

< 0.

Choosing M (ds, D,_,z) := K(D,_)M(ds, z) yields (H) from (kH). O
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3.2.1 Continuous-Time Algorithms

Likewise consistency, the almost-sure convergence rate includes an interesting special
case for the Ito setting.

Assumption 3.2.2. Let [ be p-smooth at z* with p > 2. Assumption holds
with (kD’) replaced by as == a(l +t)7 a >0, aswell as ¢, == c(1+t)"2, ¢ >0, and
(kH’) replaced by Y7_, 0¥ (x) < C(1 + |lz]) for allie {1,...,d}.

(ﬁ) If p = 3 and algorithm (2.11)) is used, assume

2

Uoos ag JZ ( D,)D"+?) — E((K(DS)D?”)))cL”“ds’ -

0 m=0

as well as E (K(D,)D?"™') =0 for all m with |m| € {3,...,|p]}.
If p = 3 and algorithm (2.12) is used, assume

Lol _y
U Sa, Y <(K(DS)D§7"“) —E((K(DS)ngJrl)))cgmds‘ <o

0 m=1
as well as E (K(D)D?"™") =0 for all m with odd length |m| € {3,...,|p]}.
(IEET’) For the one-measurement algorithm let
[ 2 KD
0

o’ 11 %2,

<

If p = 3 we furthermore assume E (K (D;)D*™') = 0 for all m with |m| €
{3,...,|p|} for algorithm (2.11)).

Corollary 3.2.2. For the Ito type stochastic integral equations (2.11)) and - let
Assumption [3.2.9 hold. For p-smooth f at z* with p = 3, the Hesszan H of f shall
exist and be continuous around z*, and Ay, > gpal.

Then

(1+8)°Z — 2% — 0 a.s.

for all 6 € (0, pz;pl).

Proof. 1t is sufficient to show that the conditions of Corollary are fulfilled. In
both corollaries, (kA), (kB) and (kC) are assumed. Due to the continuity of the It6
type stochastic integral equation, (kG) and (E) are trivially fulfilled. Hence it remains
to verify that conditions (kG), (D)~(F), (D), (kF) and (kH) hold. As well as in the

proof of consistency we choose Rs := s and M(ds,x) := Z;l Lol (x)dW(s). The
path-continuity of (R;):>¢ transfers to (7:(J))e=o-

(5) = & (5 L anRS) _¢ <5a L 1 i Sds) — exp(daln(l + 1)) = (1+6)*
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Condition (ﬁ’ ) follows due to Ry = s. Moreover assume a sufficiently small € > 0.

According to our conditions, 0 < § < Ay, holds. We can show (f?) by choosing
J € (0, %j), which yields

0

o0 o ) )
J f}/s— (5>ascsts = CLCJ (1 + )G(S 1— 2p ds < a/CJ (1 n S)%—E—l—jds
0 0 0

0
= acf (1+s)'ds < .
0

Assumption (1%}’1 ) follows by

0 2 6]1“2_
[ e )2 “an,
o T4 <>|\Zs_\| E

)2 a2 0 1+ Z.)2 a2
= Zj 2&;ds < CJ 7?(5) (1+ ]Z]) 5 a—;ds
1+7s ||Z 1% e 0 L+ %) 22

<1

OO 2 ag 2a5 2422

0

=C| (1+ S)T_g_Q_TdS < CJ (14 5) ' “ds < 0.
0 0

Condition (F) is a direct consequence of (kF”). The choice of (a;)¢=0 and (¢t)i=o yields
(D) form (kD’). In an analogous way, (kG’) implies (kG).
[l

3.2.2 Discrete-Time Algorithms

We proceed with a time-discrete special case. In the following results we obtain the
same rates of convergence as in the previous subsection.

Assumptlon 3 2.3. Let f be p-smooth at z* with p = 2. Assumption[2.2.3 holds for

algorithms (2.13) and (2.14)), with (kD”) and (kE”) replaced by a, := an™', a > 0,
and ¢, 1= cniTP, c> 0.

(lgﬁ’ ) If p = 3 and algorithm (2.13)) is used, assume

[p]—2

S Wae 37 (K (D) DI — E((K(Dy 1) Dp) )| < o0
k=1

as well as E (K(Dk)Dm_l) =0 for all m with |m| € {3,...,|p]|}.
If p = 3 and algorithm (2 1S used, assume

ol

\Z Fap 3] (KD D) ~ B((K (D)D) )| <

m=1

’U
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as well as E (K(Dg)Dy™") = 0 for all m with odd length |m| € {3,..., |p|}.
(lg@/”) For the one-measurement algorithm (2.13)) let

i Tk 1 25 (Zy—1, K(D—1) f(Zk—1))
Ch 1+ k2| Zp—a|?

< 0

k=1

and

iai 25 |f(Ze-)|?

—k < 0.

= a1+ kY| Zq)?

If p = 3 we furthermore assume E (K(Dk)Dm 1) = 0 for all m with |m| €

{3,...,|pl} for algorithm (2

Corollary 3.2.3. Let Assumptz'onm [3.2.5 hold. If f is p smooth at z*, the Hessian H
of f exists and is continuous around z*, and Ay, > 52—, then

n°| Z, — 2*| — 0 a.s.

for all 6 € (0, 1’2;1)

Proof. Likewise the previous proof, it is sufficient to verify the conditions of Corollary
3.2.1] Hence we show that conditions (kG), (D)~(F), (D), (k:F) (kG) and (k:H) hold.
Conditions (kA), (kB) and (kC) are assumed in both corollaries. We choose the same

notations as in the proof of consistency of the recursion. Together with Ry := |s| and

as := as~ ! a Taylor expansion, and using that In(1 + x) ~ z for z « 1 holds, yield

- o on) {11+ 5) <o (S )

1t 4
=: O}y exp (a(SZ ;)
i=1

where Cj) — Cy € (0,0) as t — 0. Investigating this exponential term yields

4]
exp (a(sZ ) exp ( f édl’) = ltJatS

as well as

[t] 1 ] 1 1l ¢
exp a52 — | =exp|ad+ a52 - | <exp|ad+ aéj —dz | = exp(ad)|t|®
=1’ i’ 1t

where the inequalities in the previous term follow by the integral test for convergence.
These results enable us to verify the assumptions of the semimartingale case with
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7:—(8) replaced by [t]%°. Assume a sufficiently small € > 0. With the conditions on 4,
the bound

Q0
o—1-2-1 p=1_._q_p=L L
[T e D Mk S ) P

0 neN neN neN

yields (D). Condition (/;\F ) follows due to Ry = s. In order to show (k/\FI ), we

use the positivity of the processes [SJQ“‘SZ—Eh?(ZS_) and AR, as well as the monotone
convergence theorem. Positivity enables us to investigate the expectation only. The
latter, together with Holder’s inequality, yields

o0 2 -1
1) J [5J2“5a—;h?(28_)dR8 <CE) E(K(D.)V;} | F, )P
0 Cs neN

< (supBIK(D)1) 3 o7
neN neN
<C Z n ¢ < .

neN

Validity of condition (k?é) follows analogously. The choice of (a,) and (¢,) yields (D)
and (E) via (kD”) and (kE”), respectively. Assumptions (F) and (kG) follow directly
form (kF”) and (kG”), respectively. O

3.3 Simulations

After the almost sure convergence rates were derived, we deal with simulations to find
out how processes behave when they are maximally weighted such that convergence
is still achieved. Moreover it is an interesting question, whether they have the same
empirical L?-error and which have a better pre-asymptotic behaviour. It should also
be noted that all processes with a perturbated direction can be modified such that it
reaches a rate close to n~/2. Details can be found in Section 5.1 in Dippon’s paper
[10]. Therefore these procedures are superior to the Kiefer-Wolfowitz algorithm which
reaches a maximum almost sure convergence rate close to n~/3. These special settings
of D are not simulated in this thesis.

3.3.1 L2-Convergence Rate of One-measurement Algorithms Starting at
the Extremum of f

As in Subsection [2.3.3, we choose a,, = 2/(70+n), ¢, = 1/n'/% and starting value Z, =
(0,0,0)T. For each algorithm N = 1000 paths with n = 10000 single observations
were simulated. The estimated L2-errors of Z, are given in the following plots. In
Corollary we found out that n’Z, converges with € [0,1/3). In Figure [3.1] Z,
is multiplied by n'/3. Convergence of n'/3Z, in any sense is not proven in this thesis,
under the same assumptions as above. However it is well-known that the classical
Kiefer-Wolfowitz procedure converges with L%rate n'/? under similar conditions to

the assumptions of Corollary [3.2.3]
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1.0-

23T
n“"Z.Za

Perturbation

deterministic sampling
—— sampling without replacement
—— sampling with replacement
Markovian sampling

0 2500 5000 7500 10000
total number of single noisy function evaluations

Figure 3.1. Empirical L2-error of n'/3Z, generated by one-measurement procedures

Next, in Figure 3.2, we investigate n'/*Z, with all other settings as before. In
addition to the almost sure convergence rate, this plot also raises the conjecture that
the L-convergence rate is near n'/?. Note that all procedures seem to have the same
limit. A reason for that could be that the distributions of all chosen perturbations
D are too similar in our simulations. Different constructions of D might yield other
results.

3.3.2 L2-Convergence Rate of Two-measurement Algorithms Starting at
the Extremum of f

After the investigation of one-measurement algorithms we devote ourselves to two-
measurement procedures. In order to make the comparison more complete we also
include the classical Kiefer-Wolfowitz algorithms which even takes 2d evaluations per
iteration step. These simulations can be found in Figure 3.3l Note that the scale
of the vertical axis depends on the number n of iterations, where the horizontal is
scaled with the number v(n) of evaluations. In order to make this plot, |Z,|?* is
multiplied by (v(n)/6)%? for the Kiefer-Wolfowitz procedure, as in this case we have
6 evaluations per iteration step, hence v(n) = 6n holds true. Analogously multiply
|Z,|? by (v(n)/2)*? in the two-measurement algorithms.

The Kiefer-Wolfowitz algorithm has the lowest L2-error for large n. All two-
measurement algorithms show a very similar pre-asymptotic behaviour. The asymp-
totic L2-error seem to coincide for Markovian perturbation and sampling with replace-
ment. These are the procedures for which | > | D; — E(D;)|*> = O(n) holds. For
the procedures with || Y. | D; — E(D;)|* = O(1), namely deterministic and sampling



76 3 Almost Sure Convergence Rate

0.10-
o
N
= c
N
N
—
c
Perturbation
—— deterministic sampling
—— sampling without replacement
—— sampling with replacement
—— Markovian sampling
0.01-

0 2500 5000 7500 10000
total number of single noisy function evaluations

Figure 3.2. Empirical L2-error of n'/4Z, generated by one-measurement procedures

i
0.100-
o
N
= c
N
@
«_  0.010-
Perturbation
—— Kiefer-Wolfowitz
—— deterministic sampling
—— sampling without replacement
0.001- —— sampling with replacement
—— Markovian sampling
0 2500 5000 7500 10000

total number v(n) of single noisy function evaluations
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without replacement, the asymptotic L?-error seems to be a little bit larger. In one-
measurement settings the results are different. We observed a different pre-asymptotic
behaviour but a similar asymptotic L?-error.

The reader might have noticed, that in Figure the error of Kiefer-Wolfowitz is
lower although in Figure [2.18]it was higher. This is due to the fact that the process
is weighted by the number of iterations n and not by the number of single function
observations. If instead we weighted with the latter, this would result in Figure
3.4 Hence in this respect Kiefer-Wolfowitz seem to behave weaker. However, this

c
N
= c
N
Q
N/\
c
N—r
>
0.010-
Perturbation
Kiefer-Wolfowitz
deterministic sampling
—— sampling without replacement
—— sampling with replacement
0.001- Markovian sampling

0 2500 5000 7500 10000
total number v(n) of single noisy function evaluations

Figure 3.4. Empirical L?-error of v(n)/3Z, generated by Kiefer-Wolfowitz and two-
measurement procedures

effect is more pronounced in high dimensional problems. This would be extreme if
we simulated not only a 3-dimensional optimization problem but had hundreds of
parameters to be adjusted.

In all simulations one-measurement algorithms perform worse than two-measurement
algorithms or the Kiefer-Wolfowitz procedure. Moreover they have a similar be-
haviour. However concerning the pre-asymptotic behaviour, we distinguished two
subclasses. The methods with | Y. | D; — E(D;)|* = O(1) behave better than the
methods with only | >, D; — E(D;)|* = O(n). Such a difference does not occur in
two-measurement settings. This behaviour seems to be independent of the function f,
however we have no rigorous proof for this claim. It is worth mentioning that methods
with | ", D; — E(D;)|? = O(n) could even fulfil | Y} | D; — E(D;)|* = O(n*) with
a € (0,1). A more detailed investigation on this asymptotic behaviour as well as the
study of the L2-error of Z,, with respect to a could be interesting.






4 Concluding Remarks

In this part of the thesis, many known as well as new results were derived from a
generic, semimartingale-type, randomization algorithm. Consistency and almost sure
convergence rate results transfer directly to these special cases. This general formula-
tion gives the opportunity to build new algorithms, just by employing this framework.
One key message is that multiple-measurement procedures are more robust than one-
measurement, procedures, especially at the first iteration steps. If one can afford a
second observation per step, one should prefer to do so. But that’s not expensive
compared by the savings in high-dimensional problems where we need 2d observa-
tions in the regular Kiefer-Wolfowitz case. If randomization is to be avoided, then
the presented deterministic perturbations have the same dimension-reducing effect.
Moreover a variety of randomization as well as deterministic perturbation designs
were introduced. Due to the general assumptions, a whole bunch of new methods can
easily be constructed.

An open issue is the derivation of asymptotic normality results. However, with the
almost sure results at hand together with the methods presented in the second part
of this thesis, the main difficulties appear to be tractable.
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5 Introduction

This part of the thesis is on companion algorithms. These always refer to a leading
algorithm as for instance the Robbins-Monro or Kiefer-Wolfowitz procedure. An
introduction to these and stochastic approximation in general can be found at the
beginning of the previous part.

5.1 Previous Work

In 2006 Mokkadem and Pelletier [28] suggested an algorithm to estimate the minimizer
of f: RY — R and its minimum simultaneously. As a companion to the Kiefer-
Wolfowitz algorithm ((1.2)),

Zn+1 - Zn = _anYn(Zn)

with

1

Yn<z) = % {f(Z + Cnei> - f(Z - cnei) + Mn,i}ie{l ,,,,, d}

which estimates the minimizing value z* of f, they suggested the recursion

~

Tosr = (1 = @n) Y + @nYn(Z) (5.1)

to estimate the minimum f(z*), where Y,,(2) is a noisy estimator of the function value
f(2) and the sequence (a,) tends towards zero. The basic idea of procedure (5.1)) is
to calculate a weighted mean of f/n(Zn) In the following the algorithm generating
Z,, will be denoted as leading algorithm. Here the term ?n(Zn) in (5.1) should not
be confused with Y,,(Z,) in the leading Kiefer-Wolfowitz algorithm. It is worth to
mention that a related learning rule is given in the book of Ljung et al. [24, Ch. 4].

Now we show that the explicit representation for is a weighted mean. For that
purpose choose the sequence (b,) with b; > 0 for all i € N such that a, = b,/ >, b;
holds. Consider the weighted mean

Z?:l bz?z(Zz)
Z?:l bi

Tn-i—l =

83
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then

Thi1— Tn

_ Z?:l bszz(Z%) Zyz_ll bzf/sz)

N Zn bi Z? 11 bi

_ () (3 ) - (S b) (25 072

B (X 0 (X bi)

(20 ) (0 620 + b Z0)) = (0 b+ b ) (0 0iYi(20)
bi)(

)

<Z?:1 Z) Z?:_f bz)
(Z)paz) - b (S5 0Y(2)
(Zz 1b )(Z?—ll bz)
oz b(TEeN@) v
B T
= @Yo (Zy) — @n T

Z?;ll b,?;(Zz)
Sl

As aresult T fulfills recursion ((5.1]). Consequently we can consider (5.1)) as a weighted

mean
n+1 — n
Zz‘:l bi

of noisy function observations Y, (Z,). For example let Y,(Z,) = f(Z,) + Mn(Zy).
Then

Tn+1 _ Z?:l blK(Zl> _ Z?:l bzf(Zz) + Z?:l szz(Zz) (52)

Z?:l bi Z?:1 bi Z?:1 b;

According to Toeplitz’s lemma (Lemma the first term in converges to
f(z*) for Z; — z*. A law of large numbers can be applied to achieve the second term
asymptotically vanishing.

Mokkadem and Pelletier [28] basically used two different methods to estimate the
function value f(z*). The first one reuses the function evaluations taken by the
Kiefer-Wolfowitz algorithm setting

where

Y,i(Z,) = (f(Zn + cnei) + f(Zn — cne;) + Mm(Zn)>

with M,,; representing the observation noise, S a nonempty subset of {1,...,d}, and
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|S| denoting the cardinality of S. Note that we do not need observations in all dimen-
sions to make the algorithm work. Unfortunately it turns out that it is impossible to
choose the sequences (a,), (¢,) and (a,) such that (Z,) given in and (1, given
in converge simultaneously with optimal rates (c.f. Corollaries [7.4.3| and [7.4.6)).
As another algorithm they investigated the average of |S| function evaluations

V(7)) = % 23/”,1-(2”), where Y, ;(Z,) = ( F(Z) + Mn,i(zn)) (5.3)

When using in , T, is not explicitly dependent on (¢, ), but only implicitly
via Z,. Hence it is possible to choose (a,), (¢,) and (a,) such that optimal convergence
rates can be achieved simultaneously. However, |S| additional function evaluations
per iteration step are required.

It is worth mentioning, that a slight modification of the second estimator was

presented in [28] as well. Instead of Z,, a weighted mean Z,, := %CQ " C2Z; was

. £ (2
i=1"4

inserted, which results in replacing }N/n(Zn) by

1

YV (Z,) = 5 M Yoi(Za), with Y,,4(Z,) = ( £(Za) + Mm-(Zn))

€S

As the convergence rate of (Z,) transfers to (Z,), they found out that it does not
improve the convergence rate of (T,,) given in , albeit there are good reasons to
prefer (Z,) instead of (Z,,) in the leading algorithms (e.g. the dilemma of asymptotics
and stability mentioned earlier in Section . This is based on the fact that only
the rates and not the bias or variance of the asymptotic distribution of the leading
algorithm is employed to investigate the companion algorithms.

In this thesis the ideas of Mokkadem and Pelletier are generalized to the semi-
martingale framework. Weaker assumptions on the smoothness of the function f are
used. A new, generic algorithm is presented, without prescribing how to construct
Y. It is formulated in such a general way that it can easily be applied to further
algorithms. Besides generalizations of the original companion algorithms of Mokka-
dem and Pelletier, two new algorithms are suggested. The first one estimates the
Jacobian of f at the root as a companion algorithm to the Robbins-Monro algorithm.
The second one estimates the Hessian of f at the minimizer on the basis of a leading
Kiefer-Wolfowitz algorithm. Time-discrete as well as time-continuous versions follow
as special cases.

5.2 General Assumptions

We now state assumptions that shall hold true for the rest of the thesis. We consider
a stochastic basis (Q, F,F = (F;)i=0, P) satisfying the usual conditions. This means
that Fy contains all P-null sets of F, and that the filtration F is right-continuous.
On this basis an Fy-measurable random variable Ty and a random field (M (t,v));=0
are given, with v € R, v € R% or v € R¥?, depending on the algorithm. Define
processes (ay)i=0, (¢t)i=0, (ar)i=0 and (k;);=o that are predictable with respect to F,
and (k¢):>o is locally bounded. Furthermore it is assumed that (R;);s¢ is increasing,
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cadlag (i.e. right-continuous with left-sided limits), predictable with respect to F,
Ry = 0 as well as ARy = 0. By M2 _(P) we denote the set of locally square-integrable
martingales with respect to P and F. The random field (M (t,v));>o is F-adapted,
the relation (M(t,v))i=0 € MZ_(P) holds for every v € R, v € R? or v € R¥? and
(§; ks M(ds, Ty))is0 € M3 (P) is satisfied.

By o and O we denote the Landau symbols. Moreover, for a stochastic process
(X1)i=0, we write Xy = op(ry) if r, is increasing to infinity and (X;/r;) is bounded
a.s. If imy o a;/b; = 1, a; and b, are called asymptotically equal, which is denoted
by a; ~ b,. Moreover R? denotes the purely discontinuous part of R. By AR, we
define the jump R; — R;_. We note that AR, = de. The covariation and the
predictable covariation processes of (X;)i=o and (V)0 are denoted by ([X,Y];)i=0
and ([X,Y])s=0, respectively. The unit vectors of the Euclidean space R? are written
as ey, ...,eq. By C (and C(w)) we denote a non-negative, real, generic constant (which
also depends on w € ). If not stated otherwise, the statements concerning random
variables and stochastic processes are to be interpreted in the almost surely sense.

5.3 The General Semimartingale Framework

The generic companion algorithm [Gen-Comp]

t

t
T, = To + f a:s(Gs . T8_>dRS + J ko M(ds, T, ), (5.4)
0 0

is run to estimate v* consistently by T,;. Essentially, in (5.4) we assume that the
process (Y;);>o can be decomposed in a finite variation part and a local martingale,
and that there exists an intermediate process (G;);=o which in general cannot be
observed directly but approximate the quantity of interest v* sufficiently fast. Un-
der appropriate conditions this will force T; to converge to v* almost surely. In
the algorithms of Mokkadem and Pelletier, introduced in Section [5.1], G; is given as
2IS) ™ Xies F(Zie +cres) + f(Zi— + crey) or |S| 7 Y f(Zi-), Zy is generated by the
Kiefer-Wolfowitz algorithm, and v* = f(z*). Later on we deal with Robbins-Monro
and Kiefer-Wolfowitz type leading algorithms although this general framework is not
restricted to those two. The observation noise of Gy — T,_ is absorbed by M. More-
over, in this thesis we make the general assumption that for there exists a unique
strong solution Y on [0,00). The starting point Ty is a random variable or a fixed
point. In practice the statistician chooses Tg either deterministically or in a random
fashion. The processes (a;)i=0 and (k¢);=0 have a damping effect. It will turn out,
that they must be chosen to be positive and monotonously decreasing to zero. The
rate of convergence of (G;);=0 and (k;)i=0 to zero is important as well. If the rate is
chosen too slowly, T, in will not converge, whereas choosing it too high doesn’t
ensure the convergence to v* anymore. Typically one chooses R; := |t| or R, :=t. In
the first case new observations are only taken at times ¢ € N, whereas in the second
case there is a continuous update of data. The semimartingale framework of ,
however enables to chose (R;):>o as a stochastic process. For example it is possible to
model a situation in which new updates of data can only be taken at random times.



6 Almost Sure Convergence of Companion
Algorithms

In this chapter, consistency of companion algorithms is investigated. After proving
consistency of the generic algorithm, companion algorithms for the Kiefer-Wolfowitz
algorithm and the Robbins-Monro algorithm are investigated. These can be R, R%-,
or R¥4_valued. For the sake of clarity assume the companion process (Y;)i=o to be
R-valued. A generalization to R% and R%*?-valued processes is straightforward.

6.1 Consistency of the Generic Algorithm

Usually the first and most important question concerning an estimator is if it is
convergent. Typically if it is not, further investigation is redundant. Moreover many
results, as for instance on the rate of convergence, assume consistency. In order to
show strong consistency we state the following conditions.

Assumption 6.1.1.

(A) (G0 is an adapted left-continuous process with Gy == v* P-a.s.

(B) Let (at)i=0 satisfy

o0
dt > 0, &t l 0 and f &sts = 00.
0

(C) Assume

o0
J 6.|Gs — v*|dR, < .
0

(D) For all y € R assume there exists a process (ki)i=o with

d[§, M(dt, y)]s
dR, '

© ohs(Tse
fo k?%,;g_)d}%s<oo where  hg(y) :=

(E) If the process T is not purely continuous, assume

J a?AR,dR? < .
0

87
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Theorem 6.1.1. If Assumption is satisfied, then for (5.4), T, — v* P-a.s. as
t — oo.

Remark 6.1.1. Condition (C') ensures that the leading algorithm converges sufficiently
fast to z*.

Remark 6.1.2. Sufficient conditions for assumption (D) are hy(y)
together with " k2K,dR, < co. Even simpler it is to assume h,(y) <
with § k2dR, < oo.

Remark 6.1.3. Condition (E) guarantees that the damped jumps a,AR; tend to zero.

< K(1+ |yP?)
C < o together

Remark 6.1.4. Note that under appropriate conditions the rates of convergence of
(Zy)i=0 transfer to that of some weighted average process (Z;)i=o, c.f. Schnizler [37],
Theorem 4.1]. Consequently the result of Theorem holds true if we replace
(Zt)120 by (Zi)e=0 in algorithm (5.4).

Proof of Theorem[6.1.1. We consider the stochastic integral equation (5.4). Without
loss of generality let v* = 0.

The idea of the proof is to bound X := T2 by Al — A2 + M, with predictable,
increasing processes A, A2 and a local martingale M.

In a first step the Robbins-Siegmund lemma (Lemma in the appendix) applied
to Al yields P-a.s. convergence of X. Applying the same lemma also to A? yields P-a.s.
convergence of X to 0. In that second part, the punchline is different from consistency
proofs of classical stochastic approximation algorithms like Robbins-Monro or Kiefer-
Wolfowitz. Application of the Robbins-Siegmund lemma for the consistency proof of
companion algorithms has not been performed before. Mokkadem and Pelletier used
a different method for which they needed unlike stronger assumptions and traced it
back to a consistency theorem on Robbins-Monro algorithms.

Application of integration by parts [32, I11.6.Cor. 2| yields

dr? = 27, dY, +d[Y]s,
where
T, dY, = @Y, G, dR, — a, Y% dR, + kX, M(ds, T,_)
and
d[Y]s = a%(Gs — T4 )’ AR AR + 2a.ky(Gy — Yo )AR M (ds, T, )
T kgd[f M(ds, T )]s
0

= a’G?AR,dR? — 2a’G, Y, AR AR’ + @*Y?_AR.AR?
+ 20k G ARM (ds, Ty ) — 2a.k T ARM (ds, Ty_)

+ k:gd[f M(ds, T, )]s,

Therefore we have

dY? = 2a,Y,_G.dRs — 2a,Y2_dR, + 2k Ys_M(ds, Ts_)
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+ @’G?*ARR? — 2a*°G,Y,_ARAR? + a*Y? AR,dR?
+ 20,k G ARM (ds, Ts_) — 2a.ks T ARM (ds, Y_)

+ kﬁd[f M(ds, T )].. (6.1)
0
In order to apply the Robbins-Siegmund lemma, we define
dA} = 2a,| Ty G |dR, + 2a%|G Y, |ARAR? + a>G?*ARAR? + a2Y% AR,dR?
+ k2d U M (ds, TS_)}
0
—dA? := —2a,7%_dR,

AM, := +2k, Yo M(ds, T, ) + 2.k, G, ARM (ds, Y,_)
— 20,k Y AR M (ds, T,_)

+k2d (UO M (ds, TS_)L - HO M (ds, Ts_)D .

09]

S

If we can show L W

converges and S;O dA? < o0.
o0
1
We now bound the term J ——
o 1+7TZ_

0 ¢] Q0
_ TGyl lf 5

S dsg_ S Sd 3 .
La1+T§_R 20a]G|R<oo

dA! < o, the Robbins-Siegmund lemma yields that (Y)=o

dAl. Assumption (C) yields that

For the second and the third term it holds by assumptions (A) and (E)

"Gl ant <c [ wanan
Jo O T2 ARR: < C(w) ) a; AR AR < ©

and

o]

o 1
f a2 —GZARAR! < C(w) J a2AR,AR? < oo,
o 1+7TZ 0

respectively. With condition (E) the fourth term is bounded by

o] TQ 0
J al—= AR dR? < J a?AR,dR? < 0
o 1+T5 0

and the last term, according to assumption (D), is bounded by

00] 5 1 . o0 ) 1
JO ks 1+ T2 d[JO M(ds, Ts—)]s = J;) kswhs(Ts—)dRs < 00.
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As a result, we conclude

0¢] 1 1
———dA, < ow.
JD 1+712 7

Therefore the Robbins-Siegmund lemma (Lemma[A.1.1)) yields that (T?);¢ converges
and A2 < 0 a.s.

The convergence of T to 0 is shown by contradiction. For that purpose assume a
set N of non-zero probability on which the solution of the stochastic integral equation
does not converge to zero. We will deduce a contradiction to

Q= {A2 <}

As proven before, T converges for almost all w € €2, but by assumption for all w e N
the process does not converge to 0. Hence it follows for all w e N

3 3 v &</
In A? the term

t
f a, Y% dR,
0

is non-negative. Consequently, with condition (B),

o S0 0
A2 > J asY2_dR, = f a, Y2 _dR, +f a,T3_dR,
0 0 so+
o0

>C+e*f asdRy = 0.

o+
This is a contradiction to what we have shown before. Consequently the set N cannot
exist. We conclude Y7 — 0 and thereby T, — 0 a.s. for ¢t — 0. O
6.2 Consistency of Special Algorithms
We consider two types of leading algorithms, namely the Robbins-Monro algorithm

[RM]

Zy = Zo— Jt asf(Z, )R, — f a,M(ds, Z,_) (6.2)
0 0

and the Kiefer-Wolfowitz algorithm [KW]

7y = Zy — Lt ;CSS {f(ZS_ + csei) — f(Zs — csei)}‘ d}dRS - J
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In both cases Z, is assumed to be Fy-measurable and z* to exist as the limit of the
unique solution of (Z;);>0 in [0, c0) and denotes the parameter that is approximated by
the corresponding leading algorithm. These parameters are the root of f estimated
by the Robbins-Monro algorithm and the minimizer of f estimated by the Kiefer-
Wolfowitz algorithm, respectively.

Let us consider semimartingale versions of two novel algorithms. To estimate the
Jacobian v* := J,« at the root of f: R? — R? on basis of a leading Robbins-Monro
algorithm use [RM-]]

t ~

T, = Ty + f i, ({l(f(zs_ ey — f(Zs_))} _ Ts_>dRs o[ % aras, ).

0 Cs 0 Cs
(6.4)
As an estimator of the Hessian v* := H,« of f: R — R at a minimizer based on
[KW] consider [KW-H]
! 1
To=To+ J A {§<f(zs te) + f(Ze —c) — 2f(ZS))} — T, |dR,
0 s
La
+ c—;M(ds, Tso). (6.5)
0 %s

Besides that, semimartingale versions of the algorithms to estimate v* := f(z*) on
basis of a leading [KW] that were presented by Mokkadem and Pelletier are surveyed:
Algorithm [KW-F-2]

T, =Ty + f a ({% Y F(Ze + i) + [(Zoe — csei)} — TS> dR,

0 €S

+ J LG M(ds, T,) (6.6)

which recycles the observations made in the leading algorithm (6.3)), and [KW-F-1]

t

thTo-i-f

0 0

s (f(ZS_) - TS_) dR, + Jt a,M(ds, Ty ), (6.7)

requiring an additional observation. To keep notations simple, all proofs in this the-
sis referring to these two algorithms (6.4) and (6.5) are only covered in the one-
dimensional case, albeit an extension to the multi-dimensional setting is straightfor-
ward.

Assumption 6.2.1. Let Assumption hold and replace conditions (A), (C) and
(D) by the following ones.

(Asp)  Let

f: R — R with J be Lipschitz continuous in [RM-J] (6.4),
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f: R - R with H be Lipschitz continuous in [KW-H] (6.5)),
f:R* = R with Vf be Lipschitz continuous in [KW-F-2] (6.6)),
f:RY - R with V f be Lipschitz continuous in [KW-F-1] (6.7).

(Csp) There exists a left-continuous adapted process (1¢)e=o with ry — 0 P-a.s. for
t — oo such that |Z; — z*|| = O(ry) P-a.s. and

= [

a,rsdRy, < o0 and ascsdRy < o0 for [RM-J] (6.4)),
Jo Jo
[ ("
asrsdRs < o0 and ascsdRs < oo for [KW-H] (6.5)),
Jo JO
(° s
asr2dR, < o0 and asc;dRs < oo for [KW-F-2] (6.6)),
Jo JO
e
a,r2dRy < o0 for [KW-F-1] .
Jo
(Dsp) Let
[ (a5 \ > hs(Ts)
= M-
)y <Cs) T T dRs < for [RM-J] (6.4),
[ (s \” he(Ts_)
) <c_§ T+ 12 dRs < o0 for [KW-H] (6.5)),
(" 5 hs(Ts)
o dRs < for [KW-F-2] and [KW-F-1] (6.7)).
JO s—

Theorem 6.2.1. Let Assumption hold. Then the companion algorithm, given
as the solution of (6.4]), (6.5), or (6.7) is consistent, i.e. T, — v* P-a.s. as

t — 0.

Proof. We trace the result back to Theorem Algorithm (5.4)) can be rewritten
as

t t
(Gs ot (T, — v*))dRs + J ko M(ds, T, ).

rors [
0

0
Depending on the considered companion algorithm, we get G from , (6.5)), (6.6)
or (6.7) and perform a Taylor expansion. The convergence rates that are achieved in
the terms of the expansion enable us to deduce the validity of assumptions (A) and
(C) from (Asp) and (C'sp).

Considering algorithm [KW-F-2] as given in , a Taylor expansion yields

G, —v*
1 *
< 2|S‘ Z(f(zs— + Csei) + f(Zs— — csei)) — f(z )
€S
2|S‘ <J <Cseu Vf(Zs— + tcsez) Vf( s— tcsel >dt)
€S
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+\f( -) = f(2)]
<J <cSeZ,Vf (Zs_ +tese;) — Vf(Zso)

+Vﬂ44—Vﬂ4_—m@»mﬂ

FIS(Z) — )
<e 3 ([ el (Lhesed + Liteel)at) + 1120 - 52

O(e3) +1£(Z-) = f(=9)].

Furthermore
17 = 1) < [ 1 = 20+ 2 = 2
- Ll |Zs = 2* |V F(z* + t(Zs- — 2%)) = V(=) dt
e A L (LA

holds, because V f(z*) is equal to zero. Consequently

Gy — 0" = O(|Z,- — 2*|?) + O(&) = OG2) + O(2). (6.8)

S S

An analogous calculation for algorithm (6.7)) results to
G, —v* = 0(?). (6.9)

Investigating algorithm (6.4 yields

rl

= J JZS_—i-tcsdt_ Jz*

~(FZte) = 1(20) - T -

Cs

1
J\ JZS_-HfCS - Jz*dt‘
0

rl

= J Iz, ttee — Iz, + Iz, — Jz*dt‘
0
rl

L\ Zs_ +tcs— Zs |+ L|Zs— — z*|dt'

N

0

O(cs) + O(rs).

Finally, for algorithm (6.5])

0—12<f(ZS_ )+ f(Ze — ) — Qf(Zs—)> — s

S

1
t
f - <JZS,+tcS + JZS,_tcs>dt — H.«
0

Cs
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1 1
J J t(HZs_mCS—HZ*>dudt‘
0 J-1
rl

1
= J ( t(HZS_thqu — HZS_ + HZS_ — Z*)d’ddt'
0 J-1

rl

1
= ‘J ( tHZS_thuchU’dt - Hz*
0 J

-1

rl

1
- J F |t|L|tucs| + L| Z,— — z*\)dudt‘ = O(cs) + O(rs),
0 J-1

holds where H, denotes the Hessian of f at z. As a result we have
G, —v* = {O(CS) +O(r,)  for [RM-J] (64) and [KW-H] (6.3). (6.10)

Consequently we deduced the validity of assumption (A) from (Asp). Now (6.§),
and ((6.10)) are used such that

rC (w) J:Oow) as(r2 + c)dR, for [KW-F-2] (6.6)

. e C(w) J ; a,r2dR, for [KW-F-1] (6.7)
fo 1l < Cl C(w) J ’ Gy(cs +1,)dR,  for [RM-J] (6.4)
kC(w) L(w) as(cs + r5)dRs  for [KW-H] (6.5))

directly yields (C) from (Csp). Condition (D) follows from (Dsp) by replacing k2 by
(as/cs)?, (as/c?)? or a2, respectively. O

6.3 Ito-Type and Recursive Stochastic Approximation Algorithms

Consider the It6 type, continuous generic companion algorithm [c-Gen-Comp]

t

t
T, =T+ J ds(GS . Ts>ds + f ko (T,)dW,, (6.11)
0

0

under the following assumptions.

Assumption 6.3.1.

(cA) There exists an adapted continuous process (Gy)i=0 with Gy 2%, v* P-a.s.

(¢B) (at)i=0 is continuous with

o0
dt > 0, glt i 0 and f deS = Q0.
0
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(cC)

o0
f as|Gs — v¥|ds < o
0

(cD)

0 2
2 O (TS)
J;) ks Tfrgds < 0.

Corollary 6.3.1. Let Assumption hold. Then the solution process (Yi)i=o of the
Ité type stochastic integral equation [c-Gen-Comp] given in (6.11) converges almost
surely to v*.

Proof. Without loss of generality let v* = 0. Setting Ry := s and M(ds,y) :=
os(y)dW, we get the corresponding Ito type stochastic integral equation from the
semimartingale stochastic integral equation. Moreover (cA) yields (A). Condition
(B) is directly deduced from (c¢B). Assumption (c¢C) implies (C'). Continuity of
(Rs)s=0 yields assumption (F). Assumption (D) follows from (¢D) by

[ s = 1] otwawa = [ 2was

0 0

and h,(y) = 02(y). Consequently all conditions of Theorem are verified and the
corollary is proven. O

The following algorithms are the It6 type stochastic integral equations of the Rob-
bins-Monro algorithm [c-RM]

Zy =2y — Jt asf(Zs)ds — f asos(Zs)dWy (6.12)
0 0

with diffusion function o: R, x R? — R%4 and a d-dimensional standard Brownian
motion W, and Kiefer-Wolfowitz algorithm [c-KW]

t d
—Z— | & ) — — .6 ij j
Z = Zo JQ {12+ o)) = [(Z, = cyei)ds + Y, 0 (Zs)dWS}ie{l , (613)

0 CS ]:1 7777

with diffusion function ¢”: R, x R — R and d independent 1-dimensional standard
Brownian motions W7. Detailled analyses can be found in Lazrieva et al. [22] and
Schnizler [37].

In an analogous way to the semimartingale case we may deduce time-continuous
algorithms [c-RM-J], [c-KW-H], [c-KW-F-2] and [c-KW-F-1] as special cases.

Assumption 6.3.2. Let Assumption hold, with (cA), (cC') and (cD) replaced
by the following conditions.

(cAsp) Let

f:RY — R* with J be Lipschitz continuous in [c-RM-J],
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f:RY - R with H be Lipschitz continuous in [c-KW-H],
f:RY - R with V f be Lipschitz continuous in [c-KW-F-2] and [c-KW-F-1].

(cCsp)  There exists a continuous adapted process (ri)i=o with r, — 0 for t —
such that | Zy — z*|| = O(r¢) P-a.s. as well as

0 ¢] (0

[‘ asrsds < oo and J ascsds < o for [e-RM-J],
%o %o

F asrsds < oo and J ascsds < o for [e-KW-H],
‘JOOO rQOO

W a,r2ds <o and J dscids < o for [c-KW-F-2],

0
asrids < oo for [e-KW-F-1].

0

Ple)

J

o

For [c-KW-H] and [c-KW-F-2], (¢s)s=0 is the non-negative process from the
leading Kiefer- Wolfowitz algorithm.

(cDsp) Let

0 ~ 2 9 T
Jo <Z—:) (178_5 ng ds <o for [c-RM-J],
 (as)" o2(Xy)
L <§) [qeds = Jor [eKW-H)
* 50, (Ys)
f ay 15+ ¥z ds < o for [c-KW-F-2] and [c-KW-F-1].
0 S

Corollary 6.3.2. Under Assumption the solutions of the Ité type stochastic
integral equations [c-RM-J], [c-KW-H], [c-KW-F-2] and [c-KW-F-1] converge almost
surely to v*.

Proof. Without loss of generality let v* = 0. Setting R, := s and M(ds,y) :=
os(y)dW, we get the corresponding It6 type stochastic integral equation from the
semimartingale stochastic integral equation. This also implies (Asp) and (C'sp) from
(cAsp) and (cCsp). Following the proof of Corollary yields (B), (D) and (F)
such that all conditions of Theorem [6.2.1] are fulfilled. m

Now we consider a generic time-discrete companion algorithm [d-Gen-Comp]
Ty — Tt = an (Gn - Tn_l) + ka Vi, (6.14)

under the following assumptions.

Assumption 6.3.3.

n—0

(dA)  There exists a sequence (G,) with G,, —— v* P-a.s.
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(dB)  The sequence (a,) satisfies

0]
in >0, G |0 and ) a, = .

n=1
(dC)
0
Z an|Gp — V¥ < 0
n=1

(dD) Let >."  k? < oo and

n=1"n

supE|V,|? <o and E(V, | F,_1) =0

neN
where Fp, := Fp (L1, Vi, ..., Lo, Vi),
(dE)

0
a2 < o
a’n

n=1

Corollary 6.3.3. Under Assumption the solution process (Y,,) of the recursive
algorithm [d-Gen-Comp| given in (6.14]) converges almost surely to v*.

Proof. We define R, := max (n) = |s], s =0 and M(ds,y) := V,dR,. where

neN,n<s

- Vi ,t=0
V=
Vo, ,n—1<t<n,neN

is a time-continuous extension of V,,. We write

Lt M(ds,y) = Lt ViR, = > Vo(AR,) = Y Vo= >V, = H,.

n<t n<t n<t
neN neN neN

With F, := Fg, we find

i) (Ht | fs> —E(Hi | Fls) = D, E (Vo | Fy))

n<t

neN
= 2L EValFa)+ 2, E(ValFa)
n<|s| |s]<n<t
neN neN
=Y Va+0=>V,=H.
n<s n<s
neN neN

Consequently (H,) is a martingale with respect to F; := Fg,, t = 0.



98 6 Almost Sure Convergence of Companion Algorithms

Now we are prepared to derive recursion [d-Gen-Comp] given in (6.14]) from the
stochastic integral equation [Gen-Comp] (5.4). We find

Tn—To—f s (Gy — T, )dRs+f ks M (ds, T,_)

0

= Y4 (G — Y1) (AR)) +ZkV (AR;)

j=1 7j=1
:ia Gj— ;1) +Zkv
j=1 j=1

It suffices to check conditions (B), (C), (D) and (£) from Assumption |6.1.1] In order
to show (D) we write

f M(ds, )], = [f VR = Y B (VAAR) | Fat) = SIE (V| Fus).

n<t n<t
neN neN

The monotone convergence theorem and Holder’s inequality yield

f k2h (s )dRs <E) EE(V} | For) = D KRV < <SupEV2) Yk < .

2
T neN

neN neN neN

Vality of Assumption (B) and (C') follows from
Q0 o0 0
J .G AR, = Y ;Gi(AR)) = ) 4;Gj <
0 j=1 j=1

Condition (F) follows obviously from (dFE) by
0¢] 0¢]
a?ARAR? = ) a2 < .
) )

Consequently all conditions of Theorem [6.1.1| are verified. O]

We also investigate time-discrete special cases of (6.2) and (6.3)):

Zyp = Zn-1 = —an{f(Zn-1) + Va} (6.15)
Ly — Lp_y = __{f( -1+ Cn€Z) f(Zn—l - Cnei) + V’rf}ie{l ,,,,, d} (6'16)

which we denote by [d-RM] and [d-KW], respectively.

There are obvious time-discrete variants of [RM-J], [KW-H], [KW-F-2] and [KW-
F-1] which we denote as [d-RM-J], [d-KW-H], [d-KW-F-2] and [d-KW-F-1]. For these
special cases we formulate the following assumption.

Assumption 6.3.4.
Let Assumption[6.3.9 hold with (dA) and (dC) replaced by the following conditions.
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(dAsp) Let

f:RY — R* with J be Lipschitz continuous in [d-RM-J],
f:RY - R with H be Lipschitz continuous in [d-KW-H],
f:R* - R with Vf be Lipschitz continuous in [d-KW-F-2] and [d-KW-F-1].

(dCsp)  There exists an adapted process (1 )neny with r, — 0 for n — o such that
| Z,, — 2*| = O(ry) P-a.s. as well as

o0 oo

Z aprn < 0 and Z AnCp < 00 for [d-RM-J],

n;]- n;l

Z anTn < 0O and 2 AnCyp < 00 for [d-KW-H],

n;l n;l

Z 02 d Z i, C d-KW-F-2 d
apr <00 an anc, < oo for [ [, an

n;l n=1

Z anr? < oo for [d-KW-F-1].

n=1

For [d-KW-H] and [d-KW-F-2], (¢;,) is the non-negative process from the
leading Kiefer- Wolfowitz algorithm.

(dDsp)  Moreover let (dD) hold with ks replaced by (as/cs), (as/c?), as or as, for
algorithm [d-RM-J], [d-KW-H], [d-KW-F-2] or [d-KW-F-1], respectively.

Corollary 6.3.4. Under Assumption the iterates of the recursive algorithms
[d-RM-J], [d-KW-H], [d-KW-F-2] and [d-KW-F-1] converge almost surely to v*.

Remark 6.3.1. Almost sure convergence of [d-KW-F-2] and [d-KW-F-1] has already
been shown in [28] under the assumption of a three times differentiable f at z*. Here
f is assumed to have a Lipschitz continuous gradient at z* only. However it is fair
to say that a rate r; for leading [KW] can only be achieved if f is at least two times
differentiable.

Proof. We follow the steps of Corollary[6.3.3] We define R := max (n)=|s],s=0
neN,n<s
and M (ds,y) := VidR,, where

~ Vi ,t=0
‘/;532{1 )

Vo, . n—1<t<n,neN

is a time-continuous extension of V,,. We write

Lt M(ds,y) = f ViR, = > Vo(AR,) = Y Vo= >V, = H,.

0 n<t n
neN neN neN
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With F, 1= Fr, we find

E (Ht | fs> =E(H, | Fg) = > E(V, | Fy)

n<t
neN
= D EValFg)+ X E(ValAy)
n<|s| [s]<n<t
neN neN
= > Va+0=>V, = H.
n<s n<s
neN neN

Consequently (H,) is a martingale with respect to F, := Fg,, t = 0.
Now we derive recursion [d-KW-F-1] from the stochastic integral equation [KW-F-1]

(6.7):

n n

as (f(Zs—) - Ts—) dRs + L ksM(dsa Ts—)

T, -7y =

D —

i (f(Zj—1) = Tjo1) (AR;) + i k;Vi (AR;)

7=1

i (F(Zima) = i) + ) KV
j=1

I
NGk
jSH

<
Il
_

<
Il
—

||
=
Q

Algorithms [d-RM-J], [d-KW-H] and [d-KW-F-2] follow analogously. Clearly (dAsp)
implies (Asp). Conditions (B), (Dsp) and (E) follow from (dB), (dDsp) and (dE)
in the same way as shown in the proof of Corollary Vality of Condition (C'sp)
follows from

00 0 0
f as(r2 + AR, = Y a;(r] + E)AR;) = Y a;(r] + &) < o,

0 j=1 7j=1
0 o0 0
J ales + r)dRy = 3 5(cs + 1) (ARy) = Y is(e; +1y) < o,
0 7=1 7j=1

and

00 0 o0
f ds(cs + 1 )dRy = > a(c; + 1) (ARy) = > dj(e; + 1) < o0,
O .

respective to [d-KW-F-1], [d-KW-F-2|, [d-RM-J] and [d-KW-H]. Consequently all
conditions of Theorem [6.2.1] are verified and the corollary is proven. O
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6.4 Simulations

The following plots show the leading and companion algorithm together in one figure.
Although a random initial value would work as well, we manually choose fixed starting
values for the processes to keep the plots clear. All companion processes are chosen
to have an initial value Tg = 0. The one- or two-dimensional leading algorithms all
start at 5 or (5,5), respectively. In all simulations we set a,, = n~! and a, = n~t. As
observation noise standard normal distributed random variables are chosen.

We begin in Figure with the investigation of the companion algorithm [RM-]]
which estimates the first derivative at the root of a function, which in turn is estimated
via the Robbin-Monro procedure.

Z-WWWM

1- process
z
—Y
0 -
_1 -
0 2500 5000 7500 10000
iteration

Figure 6.1. Paths of Robbins-Monro process Z and companion [RM-J] process T related
to the function z — 2z + sin(z2) with ¢, = 2n~4

In Figure the paths of Kiefer-Wolfowitz and [KW-H] are shown. The latter
estimates the second derivative at the minimum.

Finally we focus on [KW-F-2] (Figure and [KW-F-1] (Figure which both
estimate the function value at the point of the location of the minimum of R? —
R: (21,29)T = 2 + 22 + 1 which in turn is estimated by a leading Kiefer-Wolfowitz
algorithm.

It is remarkable that the [KW-F-1] and the [KW-F-2| algorithms are very robust
against the observation noise. There is hardly any difference between both companion
paths. Another detail to notice is that the paths of [RM-J] and [KW-H] are approach-
ing their respective point of interest very early in contrast to [KW-F-1] or [KW-F-2].
This can be explained easily as both, the first derivative of z — z + sin(z) for [RM-J]
as well as the second derivative of z — 2% + cos(z) for [KW-H] are bounded for any z.
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3-
2-
process
1- — A
—Y

0 2500 5000 7500 10000
iteration

Figure 6.2. Paths of Kiefer-Wolfowitz process Z and companion [KW-H] process T related
to the function z — 22 + cos(z) with ¢, = 2n=/%

3-
2-
process
—_ 2(1)
1- e 2(2)
- Y
0-

0 2500 5000 7500 10000
iteration

Figure 6.3. Paths of Kiefer-Wolfowitz process Z = (Z(1), Z()T and companion [KW-F-2]
process T related to the function (zq, zz)T — z% + z% + 1 with ¢, = n~1/6
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process
Z(l)

— 0
Y

o

0 2500 5000 7500 10000
iteration

Figure 6.4. Paths of Kiefer-Wolfowitz process Z = (Z(), Z()T and companion [KW-F-1]
process Y related to the function (z1, ZQ)T — z% + z% + 1 with ¢,, = n~1/6

This comes from the assumption, that the function in [RM] and the first derivative
in [KW] must be Lipschitz. The function value in [KW-F-1] or [KW-F-2] however is
highly dependent on the value z where it is located. One way to handle this disadvan-
tage could be to start the companion algorithm not at the same time as its leading
algorithm. Then it would not be misled by poorly chosen initial values. Moreover
it is observable that [KW-F-1| decreases a little bit faster than [KW-F-2]. This is
due to the fact that the latter averages four function evaluations per iteration step.
Hence the effect of negative noise, which pushes the curve down, is very unlikely. The
relatively smooth paths of [KW-F-1] or [KW-F-2] can be explained by a higher almost
sure rate of convergence which is almost n~"/2 and n='/3, respectively, whereas [RM-J]
and [KW-H] have a rate close to n~/4 and n~'/%, respectively. A detailed derivation of
almost sure convergence rates of companion algorithms is given in Chapter [7} Espe-
cially almost surely convergence rates of companion processes with parameters chosen
in the same way as for the simulated paths presented above are presented in Section
[7.4.7] In Chapter [§ asymptotic normality of the companion processes is investigated.
Under the settings of current simulations, Section [8.5yields that [KW-F-1] and [KW-
F-2] converge with rate n="/2 and n~'/3, respectively. Moreover they have asymptotic
bias 0 and 3/2, respectively. [RM-J] converges unbiasedly with rate n~/%. Finally
[KW-H] converges with rate n~'/¢ and asymptotic bias 0.






7 Almost Sure Convergence Rate of Com-
panion Algorithms

Once consistency is ensured, the question arises how fast the process (Y;);>o converges.
Later, in order to establish asymptotic normality, we need YT to converge at an a.s.
rate.

7.1 Semimartingale Companion Algorithms

For fixed 6 = 0, we define 7,(d) := &(0 §; a,dR,), t = 0, where &(.) is the stochastic
exponential, and investigate the set of § such that

Y ()| Ty —v*| — 0 as.

Note that the stochastic exponential of a semimartingale X is the solution of T; =
1+ Sé Y, dX,, Xo =0, which is given by &(X) := exp (Xt — %[X, X]t) H0<s<t(1 +
AX,)exp (—AX, + £ (AX,)?), c.f. Protter [32].

7.2 Almost Sure Convergence Rate of the General Algorithms

We consider the following conditions.

Assumption 7.2.1. In addition to (A), (B) and (E) from Assumption let the

following conditions hold true.
(@

o0
f e (8)3.|G — v*]dR, <
0

(D) ForallyeR

[ g

o d[§, M(ds,y)];
+ 3 (6)T? '

dR;

dR < oo where hg(y) =

105
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Theorem 7.2.1. Let Assumption hold. Then for all 0 < 6 < 1, the solution of
the companion algorithm [Gen-Comp] given in (5.4)) satisfies

(8)[ T, — v*| =55 0 P-a.s.

Proof. The proof is similar to that of Theorem [6.1.1 Let v* = 0. We investigate
(72(8)Y?);50 instead of (Y2);59. We apply the Robbins-Siegmund lemma (Lemma
in the appendix) to a decomposition of (v2(6)Y?);=o. Integration by parts
yields

25) = () = &, (25 [[aar+ 5 [ aar. RL)

0

— & <25 J ‘G, dR, + 87 f diAdeRﬁ)
0

0

as well as
dy2(8) = v2_(8) (20asdRs + 6*a?AR,dRY) .

Integration by parts, Lemma and ((6.1)) yield

¢ rt ¢
()T~ 2(5)T2 = f 2 ()T, + [ T2 dy2(0) + f d[(6), 7],

0 JO

t rt t
- f 2 )T, + [ T2 av200) + f AY3(6)dT?

0 JO

- [+ [ Tano) + [ 6260 22 opar:

© ~+
)

0 JO
t pt

= [ YZ_dy2(6) + | A2(6)dY?
0 JO

t t
- QJ 73(6)d5T5—G8dR8 - 2J 73(5)&8G5T5—AR8C1R§
0
t

t
—2 [ H0artar + | FOECARAR:
0 0

t

t

+ f 73 (0)a;T3_ARARY + J VHO)RM (dr, T5)]s

0 0
t

t
2 f 672 (6)T2_dR, + & J 22 (5)T2 G2AR. AR
0 0

t
+ J dM,
0
where

AM, == +27%(8) kYoM (ds, Y,_) + 292(0) sk, G, AR M (ds, T,_)
— 292(8)asks Y s ARM (ds, Y, )
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w202 ([ arar ot -1 [ aran o).

The first, second and third term in the definition of ]\Z are in M), as the integrands
are predictable and the integrators are local martingales. By definition of the com-
pensator, the fourth term in the definition of M, is in M. In order to apply the
Robbins-Siegmund lemma (Lemma we bound 72(8)Y? < A} — A2 + M, with

t
Al = QJ 2(0)as| T s_Gy|dRy +2f 2(8)as|G Y5 | AR, AR?
0

t
+ f 2(8)a*G?*AR,AR? + J 2(0)a*T?_ AR AR?
0
t
+ f V2 (6)k2A[M (ds, Ts_)]s + 67 J V2 (6)Y2_a*AR,dR? (7.1)
0

0
t

—A? = (2 - 20) f a2 (6)Y2_dR,. (7.2)
0

Now we assess

t
1

dA}. A quick calculati £.(3.4)) yield

L1+7§(5)T§ +- A quick calculation (c.f. (3.4)) yields

Y(6) = Y- (6)(1 + da: ARy)

which is a useful representation of 7;(d) to investigate

f L g (73)

o 1+792.72

This, together with the assumptions { G2AR,dR? < o and §; a,dR, = o0, stated in
(B) and (FE), respectively, implies

7:(6) = (14 daAR;) = (1 + 0p(1)) < C(w).

Now we replace the integrand in ([7.3)) by (7.1)). The first term in that substitution
can be bounded by

0
1 ~
J[; 1_{_72 (5)T2 73(6)GS|TS—Gs|dR5

@)\ T
gL (ma)) T A2 (gyre o (0)a:lCild e

< C(w)f e (8)i|GuldR, < o
0

where the last inequality holds by condition (C’) In the same way we can bound the
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purely discontinuous term

Q0 1 )
fo 1+ 42 (0)T2 V2(0)as|Gs Y- | AR AR

0 2
78 (5 75— 5 Ts— ~
s;L (7&25) 1+wgvarl°@‘®a*G*AR*”ﬁ

< C(w)J e (8)3,|G LR, < .
0

The third term is handled with condition (E) as follows:

o0
1 -
JO 1+ A2 (5)T2 752(5)G2G§AR5C1R§

0 2
Vs ) 1 3
- J;J (75((5>>> 1+ 727 (5)’1‘27 Fyg— (5)33G§AdeRf

< C(w) J 72 (8)a’G*ARR?
0

N

Q0

C(w) J a?AR,dR?
0

< 0.

The second to last inequality holds for the following reason. By assumption (B)

Q0
J asdRy = o0
0

holds true. Additionally by condition (C'),
ee}
J vs—(0)as|Gs|dRs < 0.
0

This implies v, (6)|Gs| — 0 and hence 72 (§)G* — 0. Concerning the fourth term in
the expansion of ([7.3)) we once more apply (E) to get

” 1 2 8\ =2~02 d JOO 9 d
< o )
JO 1+ 73_(5)T?_ Vs ((S)CLSTszRSdRS C(W> . GSAR dRs < 0

This bound is used to handle the sixth term as well. Finally the fifth term can be

handled with (D) as follows:

“ 1
| e o)

0
1
<C 2 (0)kZhy(Ys)dR, < 0.

@ | T O AR, <

0
1
As a result we conclude that J dA! < co. Therefore, according to

o 1+ (0)T%
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Lemma , Y2(8)Y? converges. Furthermore the same lemma yields that A% < co.

The convergence of (7:(0)Y)i=o to 0 is shown by contradiction. For that purpose
assume a set IV of non-zero probability on which the solution of the stochastic integral
equation does not converge to zero. We will deduce a contradiction to

Q= {A2 <}

As proven before, (74(0)Y)i=0 converges for almost all w € Q, but by assumption for
all w e N the process does not converge to 0. Hence it follows for all w e N

3 3 vV < TI< /e

e*>0 S0 s=380
As 0 <4 < 1 holds, A%, namely (2 —26) § dsv2_(8)Y2_dR,, is non-negative. Conse-
quently, with condition (B),

A2 — (2— 26) J 22 (8)a, 2 dR,
0

o0 S0 a0
> cf 72 (§)a, Y2 dR, = cJ 72 (8)a, Y% dR, +C f 72 (8)a, Y2 dR,
0 . 0 so+
>C+e*f a,dRy = o0.
S0+

This is a contradiction to what we have shown before. Consequently the set N cannot
exist. We conclude ?(6)Y? — 0 and thus 1;(6)Y; — 0 a.s. as t — oo. O

7.3 Almost Sure Convergence Rate of Special Algorithms

In order to examine algorithms [RM-J], [KW-H], [KW-F-2] and [KW-F-1] given in
(6.4)—(6.7)), it makes sense to replace assumption (C') by the following one.

Assumption 7.3.1. Let Assumption hold.

(Csp) Dependent on the leading algorithm replace condition (Csp) by

[ e, + raar < for R3] @,
| e @ites s rgar, <o gor i) @),
J S e (@) + )R, <0 for [KW-F-2] (63),
J ) Yo (8)asr2dRy < o0 for [KW-F-1] (6.7).

Moreover assume

(Dsp) For all y € R
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T2 0T dRs; <  for [RM-J] (6.4),

|+ 12 (012 dR, <  for [KW-H] (6.5),
~ o)

Gy ()T dRs < for [KW-F-2] (6.6),

dRS < for [KW-F-1] (6.7)),

(&

(-
[e=)

&
=)
w
[S—y
+
2
CIJ
/—\
(o)
~—
;-.%
RN

_ Al M(ds, )]s
dR,

Theorem 7.3.1. Let Assumption hold. Then for the solutions of the companion

algorithms [RM-J] (6.4), [KW-H] (6.5), [KW-F-2] and [KW-F-1] (6.7)

t—00

Vo ()T — v —> 0 a.s.
0<<1

where hg(y) :

Proof. From the proof of almost sure convergence, we already know how (Asp) is
employed to show

O(cs) + O(rs)  for [RM-J] (6

O] 10 for [KW-H] 5
’ O(r?) + O(c?)  for [KW-F-2]
O(r?) for [KW-F-1] (6.7)).

Consequently (Asp) and (C'sp) imply (A) as well as (C'). Hence this theorem follows
directly from Theorem [7.2.1] O

7.4 1to Type and Recursive Stochastic Approximation Algorithms

In this section almost sure convergence rates for Ito type and recursive stochastic
approximation algorithms are explored. Like in Chapter [6] generic as well as special
types of companion algorithms are investigated. Before we go into the details, we first
have to understand the rates of the underlying algorithms. This is the purpose of the
following subsection.

7.4.1 Rates of the Underlying Algorithms

It is shown by Lazrieva et al. [22] that if as = a(1 + R,)™! amongst other conditions
in the Robbins-Monro algorithm (6.2)) then

vV (1+R)’|Z:— =% — 0 as.
pe[0,3)

N|—=
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Moreover, setting as = a(1 + R,)™" and ¢, = ¢(1 + R,)™7 as well as assuming further
conditions in the the Kiefer-Wolfowitz algorithm (6.3]), Schnizler [37] shows

V 1+ R)’|Z— 2| — 0 as.,

pe[0,p)

where

p 1= min {v(p— 1)7%—7},

if f is p-times continuously differentiable at z* with p € {2,3}. The optimal p is
achieved for v = 1/(2p), if f is p-times continuously differentiable at z* with p € {2, 3}.
Then we obtain that p is of the form

. p-—1

Py
The papers of Fabian [15], Dippon and Renz [12] and Dippon [10] deal with modified
Kiefer-Wolfowitz algorithms in order to achieve higher rates of convergence. But
usually one requires more observations or randomization of the estimator. These
algorithms are not handled here.

We point out settings of (as)s=0, (¢s)s=0 and (as)s>o for which the companion al-
gorithms [c-KW-F-2] or [c-KW-H] and their leading algorithm [KW] don’t converge
simultaneously with optimal rate. Analogously such a trade-off can be achieved for
[RM-J] and its leading algorithm [RM].

7.4.2 1t6 Type Stochastic Approximation Algorithms

Now we turn to a generic Itd type result for the almost sure convergence rate of
companion algorithms.

Corollary 7.4.1. Consider the Ité type companion algorithm [c-Gen-Comp] (6.11]).
Let Assumption and o4(y) < C(1 + |y|) hold. Set ay = a(1+s)7', a >0, and
ks = k(1+5)™", k> 0. Assume §; 75(6)ds|Gs —v*|ds < o0 P-a.s. Then almost surely

(141)°|7; —v*| 250
for all 6 € [0,k —1/2).

Proof. The corollary is traced back to Theorem [7.2.1] As in the proof of Corollary
6.3.2] we choose Rg := s and M (ds,y) = os(y)dW (s). Continuity of (R;);>o implies
continuity of (7;(0));=0. Hence

(8) = & (5J asts) — exp (5 fu 4 s)—lds> — exp (6In(1 + 1)) = (1 +1)°.

0 0
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Condition (D) follows by

o2 ()h(Ta)  2(3)02(T) © 2E)(1+ T2,
L I 12 (o)yxe redfi = f E el \CL 2o

0

Y2(8)k2ds = C(w) f (1 + 5)272%ds

0

<c@) |

0
< 00.

Due to continuity, (E) holds and condition (C) follows by

0 0
J Ys—(0)as|Gs|dRs = J vs(0)as|Gslds < co.

0 0

Analogously (B) follows from (¢B). Consequently all conditions of Theorem are
fulfilled. ]

In the following corollary (as)sso0, (¢s)s=0 and (@s)s=o are chosen such that the
companion algorithm converges with optimal rate § € [0, %) This does not neces-
sarily mean, that the leading algorithm converges optimally as well. Moreover, for
algorithms [c-RM-J]| and [c-KW-H] there is no possible choice of (as)s=0, (¢s)s=0 and
(@s)s=0 such that they converge with optimal rate 6 € [0, %) and consequently these

algorithms are not mentioned there, but handled in a later corollary.

Corollary 7.4.2. Consider the Ito type stochastic integral equations [c-KW-F-2] and
[e-KW-F-1]. Let Assumption and os(y) < C(1 + |y|) hold. Set a > 0, a5 =
a(1+ )71, and a; = a(1 + s)~* with a > 0. In case of f being p-times continuously
differentiable at z*, consider the following cases.

Companion Algorithm D Cs )

[e-KW-F-2] 2 c(1+5)71 | [0,3)
[e-KW-F-2] 3 c(1+5)71 | [0,3)
[e-KW-F-1] 2 c(1+s)~7 | [0,1)
[e-KW-F-1] 3 Jel+9)7s |[[0,3)

Then almost surely (1 + t)°| T, — v*| =5 0.

In this corollary we had settings for which the leading algorithm [c-KW] and the
companion algorithm [c-KW-F-2] don’t converge simultaneously each with optimal
rate. Moreover we did not have settings in which [c-RM-J] and [c-KW-H] converged
at an optimal rate simultaneously with their respective leading algorithm. These cases
are handled in the following. Here we choose (as)s=0, (¢s)s=0 and (@s)sso such that
the leading algorithm converges with optimal rate and give the resulting rate for the
companion algorithm.
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Corollary 7.4.3. Consider the Ité type stochastic integral equations [c-KW-F-2], [c-
RM-J] and [c-KW-H]. Assume that the leading algorithm converges with optimal rate.
Let Assumption and o4(y) < C(1 + |y|) hold. Set ay = a(l+s)7', a >0, and
as = a(l+s)"t, a> 0. In case of f being p-times continuously differentiable at z*,
assume one of the following cases.

Companion Algorithm D Cs )
[e-KW-F-2] 3 c(l1+s)”

N

[e-RM-J] 1 c(1+s)”

D=

=
S
=
S~—

[c-KW-H] 3 c(l1+s)”

t—00

Then almost surely (1 +t)°|T; — v*| —= 0.

Proof of Corollaries|7.4.9 and[74.3 The corollary is traced back to Theorem [7.3.1]
As in the proof of Corollary we choose R, := s and M (ds,y) = os(y)dW (s). In
the same proof we already showed

%(0) = (L +1)°
and how to deduce (B) and (D) from (cB) and (cD), respectively. Continuity of
the paths directly yields (E). The rest of the proof deals with the verification of the
conditions of (C'sp).
Assume a sufficiently small ¢ > 0. For the companion algorithms to estimate the
minimum we have

J Yo (8)asr2dR, = CJ (1+5)°71720ds
0 0

rngo(l +s)21"37ds  in [c-KW-F-2] for f e C2, d € [0, %)
Cl 1+ s)27 1757 ds  in [-KW-F-2] for fe C?® §¢€0,1)
<ACE 1 +s)2 737 ds  in [cKW-F-1] for f € C2, §€0,1)
Clo(1+s)27"57ds in [-KW-F-1] for fe C? € 0,1)
(CS(1+s)371757¢ds  in [cKW-F-2] for fe C? de0,3)

and

Q0 Q0
J Ys_ (8)ascidR, = C2f (1+s)°7172ds
0

~—

Cl'(1+5)77'727ds in [-KW-F-2] for f e C?, € [0,
o1+ s)z"1"37¢ds in [c-KW-F-2] for f e C®, d € [0,
Cl (1 +s)57 75 ds in [c-KW-F-2| for f € C?, § € [0,

/
N
e

Wi NI N
S~—

~—
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< Q0.

For the companion algorithm [c-RM-J] we find the bound

a0 o0 a0
J Ys_(0)ascsd Ry = J (1+5)°17ds < CJ (14 5) ' ds < o,
0 0 0

and for [c-KW-H]

0 o0
J Ys—(0)ascsd Ry = CJ (1+s)°7177ds
0 0

o0
CJ (1+s) ’_1_’_6ds
0

Finally

7.4.3 Recursive Stochastic Approximation Algorithms

We also have analogous results for the time-discrete setting. In the following corollaries
we achieve the same rates of convergence as in the previous subsection.

Corollary 7.4.4. Consider the companion algorithm [d-Gen-Comp] (6.14)). Let As-
sumption hold. Set a, = an™, a > 0, and a, = n~ ', @ > 0. Assume
n—oo

> n(0)an|Gy — v*| < 0 P-a.s. Then almost surely n’|Y,, — v*| === 0 for all
5 €[0,1/2).

Proof. This corollary is ascribed to Theorem | Define V, and M (ds, y) as in the
proof of Corollary [6.3.4f Choose Ry := |s|, a5 := s 1, as = as~ ' and ¢, := ¢s™7. The
definition of &, exp(In(z)) = = and a Taylor expansion yield

<6szs>—ﬁ<l+%>~exp £e049)
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with a term Cjy such that C) — Cy, with Cy € (0,0), for ¢ — o0. Since

and

ltJ 1 ltJ 1 LtJ 1 5
exp ((5 2 ;) = exp <5 + (5; ;) < exp ((5 + 5L_1 ;dx) = exp(9)|t]°,

we can replace v, () by [t]° in Assumption . In order to show assumption (D),
we recall that |s]|?k2h,(T,_) is positive for all s. Therefore it is sufficient to show
ES§. hy(Ys_)|s]®k2dRs < oo. As in the previous proof, assume a sufficiently small
¢ > 0. Condition (D) is verified by

Efo ho(Yo)|s|®K2dR, =E Y E(Vf | F, _1) 2 ¢ C(supEV2> 3 ptee?

0 neN neN neN

<CZn_1_E < o,

neN

where we made use of the monotone convergence theorem and the fact that § is smaller
than x — % Moreover

Q0 a0
J Yoe (0)ais|Gs|dRs < € ) 4n(0)n| G| < o0
0

n=1
yields (C). O
Coming to special algorithms [d-RM-J]|, [d-KW-H], [d-KW-F-2] and [d-KW-F-1]
again, we begin with settings where the companion algorithms converge optimally.

Corollary 7.4.5. Consider the algorithms [d-KW-F-2] and [d-KW-F-1]. Let As-
sumption[6.3.9 hold. Set a, = an™', a >0, and &, = an™", @ > 0. In case of f being
p-times continuously differentiable at z*, assume one of the following cases.

Companion Algorithm P Cn )

[d-KW-F-2] 2 en~i | [0,1)
[d-KW-F-2] 3 en~i || 0,2)
[d-KW-F-1] 2 en~i || 0,2)
[d-KW-F-1] 3 ens || [0,3)

Then almost surely n®|Y, —v*| 2=2 0.

We now turn to the settings where only the leading algorithms converge with opti-
mal rate.
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Corollary 7.4.6. Consider the algorithms [d-KW-F-2], [d-RM-J] and [d-KW-H]. As-
sume that the leading algorithm converges with optimal rate. Let Assumption |6.5.
hold. Set a, = an™', a > 0, and a, = an™*, @ > 0. In case of f being p-times
continuously differentiable at z*, assume one of the following cases.

Companion Algorithm D Cn )

[d-KW-F-2] 3 en~s | [0,1)
[d-RM-J] 1 en~i | [0,1)
[d-KW-H] 3 cens || [0, 1)

Then almost surely n’| Y, — v*| =2 0.

Proof of Corollaries[7.4.5 and[7.4.0. As before these corollaries are also ascribed to

Theorem Define V, and M (ds,y) as in the proof of Corollary Choose

R, = |s], as := s7!, a5 := as™! and ¢, := ¢s77. In the proof of Corollary [7.4.4] it is
already shown that we can replace v;_(8) by |¢]° in Assumption [7.2.1] Moreover it is
shown there that (B) and (D) follow from (dB) and (D), respectively. We complete
the proof with the verification of (é’ sp). For the two companion algorithms estimating

the function value of f at z* we have

J |s|°asr2dR, < C Z nd1=2
0

neN
C>, ynz 727 for [d-KW-F-2] if f e C?, § € |0,
CYenn2 t737¢ for [d-KW-F-2] if fe C?, § € |0,
CY  n2 27 for [d-KW-F-1] if f e C?, d € [0,
; [ ] [
[ ] [

[

N

CY,nn2z t737¢ for [A-KW-F-1] if f e C?, § € |0,
CY i i for [&-KW-F-2] if fe C3, 6 e [0,

W N N N N
— N N N N

w

CY ynz 727 for [&-KW-F-2] if f e C2, 6 € [0,
<<{cy ynz i for [d-KW-F-2] if fe C3, § e [0,
CY yniT7i for [&-KW-F-2] if f e C3, 6 e [0,

W N N
N—

~—

For algorithm [d-RM-J], we find

o0
J [sjééscstS = Z nd T < C Z n 17 < oo,
0

neN neN
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and for [d-KW-H]
0 1 1
f [s[°@,csdR, = C Z n’r<C Z ns~1=57¢ < 0.
0 neN neN
Finally

f [3J5dsrsts =C Z nd=1=r

0 neN
_)C e n2-'727¢ for [d-RM-J]
S|y yne s for [d-KW-H]

completes the proof. O






8 Asymptotic Normality of Companion Al-
gorithms

In this section the asymptotic distribution of companion processes is identified. Know-
ledge of this distribution can be used to find optimal design parameters a, ¢, @ and k.
From now on, we assume that the process (R;);=o and especially the processes (a;);>0,
(¢t)i=0, (a¢)i=0 and (k;)i=0 are deterministic of the form

a c a k

S — - g=—— and k=—
“T O R YT U+Ro T @+ ROE MY TR

with a,c,a,k >0 and 0 < a,y,a,k < 1.

8.1 Almost L2-Convergence Rate

In order to show asymptotic normality of the companion algorithms , and
(6.7), we make use of Theorem in the appendix on the almost L2-convergence
rate of the Kiefer-Wolfowitz process [37, Theorem 3.1.]. A process (Z;);>o is said to
converge almost in L2, if for any € > 0, there is an event A, of probability > 1 — e,
such that (Z;1 4, )= converges in L?. For the companion algorithm (6.4]), which refers
to the Robbins-Monro process, we need a result on the almost L?-convergence rate
given in Theorem below.

Also useful is the following lemma, which can be found in [37] as Lemma 3.1. It
can be employed to handle the impact of the leading algorithms on the companion
algorithms.

Lemma 8.1.1. Let Z be a strong solution of the stochastic integral equation or
(6.3) on [0,00). If there is a strictly positive, monotone increasing process (Si)i=o that
satisfies Sy 1 o0 and Si||Z| — 0, then, for all €,§ > 0, a deterministic time T (e, ?)
exists with

]P’[ sup || Z:| > (5] < €.

t=T(e,0)

Remark 8.1.1. Choosing 7 := 1/4 (or 7 := 1/6) for two (or three) times differentiable

f, Theorem yields that there is a T such that, for all ¢ > T, the leading Kiefer-
Wolfowitz algorithm converges with rate —1/4 (or —1/3, respectively) in the almost

119
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L? sense. The following assumptions refer to the Robbins-Monro algorithm given in

(6-2).

Assumption 8.1.1.

(RM A) f: R?— R 4s Lipschitz-continuous.
(RM B) There exists a z* with f(z*) = 0.

(RM D) The weight process (as)s=o satisfies
Q0

as >0 as | 0 f asdRy = o0.
0

(RM E) For everyie{l,...,d} and x € R, we have

d[SO Mi(dtv Z), So Mj(dtv Z)]S
dR; '

0 hu(Z 7) B
2 s i %) N
L Tz 2 HZsf|!2dRS < o0, where h(z) :

(RM E*) Assume that f is continuously differentiable around z*,

v v 3V |z <C= sup |h(2)| <K,

3,j€{1,...,d} 0<C<o0 0<K <m0 zeRd te[0,00)

a0 0
J a?AR,AR? < 0 andf a?dR, < .
0 0

The following theorem on the almost L?-convergence rate is useful to investigate
companion algorithms with a leading Robbins-Monro algorithm.

Theorem 8.1.1 (Almost L?-convergence rate of the Robbins-Monro process). Con-
sider the Robbins-Monro process Z given in [RM] . Assume a positive, deter-
ministic, monotonously increasing function (St)i=o with Sy 1 00 and S¢|Z:| — 0 a.s.
Assumption shall hold true. Let J,« be the Jacobian of f at z*, and B as well
a8 Bmaz its minimum and mazimum eigenvalue, respectively. Moreover let ac € (1/2,1].
If a <1, assume P > 0; if @ = 1 assume Byin > 1/(2a). Then, for all e > 0, there
exists a process (Yy)i=o such that

P[thzZt]>1—e (8.1)
=0
and

E|Y; — z”‘H2 =0((1+ Rt)l_Qa). (8.2)

Proof. The proof is similar to that of Theorem 3.1 in [37] (Theorem in the
appendix) referring to the Kiefer-Wolfowitz algorithm. Without loss of generality we
may assume that z* = 0. We construct a process (Y;);>o with property . Next we
calculate ||Y;|? and show that its local martingale part is even a martingale. Finally
we establish a convergence rate for E|Y;|2.
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Construction of Y. As f is continuous and differentiable at z* = 0 we get
flx) = Jox + f(2) — Jox =t Jox + V(z)

where V(z) = o(||z]). Choose a p* € [2a — 1,1]. We distinguish the cases a < 1 and
a=1. If a =1 we have 2a8,n > 1 = p* > 0. Set

2 min * .
200min P71
R = 6 4(1
— if o < 1.
3

Note that this constant is strictly positive. The fact that V(z) = o(||x|) yields

|V (@) < pll.

p>0 §1>0 |z|<d

As k is strictly positive, it is acceptable to choose p = k. With € > 0 and choosing  :=
min{d;, 1}, Lemma [3.1.1] guarantees the existence of a deterministic time T'(¢, §) < oo
with

IP’([ sup || Z] < 5]) >1—e
t=T(e,5)

Recall that as = a(l + Rs—)~“. Conditions (RM D) and (RM E*) justify the impli-
cation

0 o0 ) o ) ; AR, o
J asdRy = 0 A J a;AR R, = J a;:AR,dR, < 0 = 0.
0 0 0 (1+ Ry )~

Together with the assumption that (Rs)sso is deterministic this yields for o = 1 that

2a6min - p*

AR, < ———— .
SEIO Sgso asAR, Za(ﬂmax + /{)2 (8 3)
and for oo < 1
ﬁmin -1 aﬁmin
AR, < —————— 1+ R < . 8.4
3.7 (“ o+~ LHHD 3p* (84)

Note that the times T'(¢,0), so and s; are all deterministic. For that reason

T max{7(e,0),s0} ifa=1
" | max{T(e,8),s,} ifa<1

is deterministic as well, and hence especially has the properties of a stopping time.
Consequently, as Z is an adapted cadlag process, according to [32, Theorem 4],

D:=if{t>T1]2] > 6}
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defines another, proper, stopping time. Now we are prepared to define (Y;);=0 by

Y, = ZP
tAD
=Zt]l[07T) (t) + Z%)]I[Tm) (t)]l[T;éD] + J dZ,

T+
= Zilpm (t) + Zrli1,0) (t)]l[T?éD]

t t
- f asf(Zs—)]l(T,D](S)dRs - f as]l(T,D](S)M(dSa Zs_).

T+ T+

Investigating the process (Y;)i=o on the set [D = o] yields

t

Yilip—o] = Zelpom)(t) + Lreo)(t) <ZT + J

dZs> = Zt]l[O,T) (t) + ]l[T700) (Zf)Zt = Z;.
T+

Consequently (Y;);>0 may differ from (Z;);=0 only on the set [D < oo]. From T >
T(e,8) we conclude sup,.r |Z < supp.q(.s | %] and therefore P(|sup.q|Z] <

6]) > P([supr(e,a) 17, < (5]) So according to

P(| ¥ % = Yi|) = B(D < 2]) + B((D = o2]) > B([D = 0]) = P([g 1) < 4))

>P(] swp 7] <6])=1-¢

t>T'(€,0)

the P-measure of such a set [D < o] is at most e.
From now on, we assume that ¢ > T holds. A straightforward calculation yields

t
Yil? = [Yal? +f dY,?

T+

= | ZF Viremy | + M + Z J azh! (Zs_)1(r,py(s)dR,

t

— QJ CLSf( ) Z _1 (T,D] ( )dR + J aif(ZS_)?]lmD] (S)ARSng),
T+ T+ 55

with a local martingale given by

e 3

i=1

t

t
J alf(Zs-)iARL(r.py(s) M (ds, Z,—) — J asZ._1(rp(s)M;i(ds, Z,_)

T+ T+

; L @212,)(5) ([Mi(dlr, Z,0)), — [Mi(dlr, Zrﬂs)) ' (8.6)

We furthermore have

tnD

Lir.py(8)Y: = Zr ]1(TD](L‘)]1[T¢D]+]1(T,D](t)J dZy

T+
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tAD t
= Z£ Vo) (t) + L(r,p) (t)f dZ, = 1 p,p)(t) (ZIQ + J de)
T+ T+
= V() ZP = Lirp)(t) Z,
as well as
Loy (O)[Ye-| = Lerp (0| Z—| < 61 ¢r,p(2). (8.7)

In order to bound the terms Y%, Z7 f(Z, ); and Y7, f(Z,_)? we establish some
inequalities. For a time s with s > T" we have

f(Zsf>i = (JOZSf)i + VZ<Zsf)

which yields

d
D (2 )z = —Z( JoZs-) + V{(Zs- >> Z,_
=1
< —Buinl Zo-I? + IV (Z, )1 Z,-
< ~Buinll Ze- 2 + 5l Z,- | (8.8)
and
d 2
2< ([ JoZs—| + |V < (Buax + £)?| Zs— | :
DI (2Nt = 1120 < (I oZo- | +| <Z )" < B + 22,2 (89)

Martingale property of M*. Next we show that the expectation value of the
local martingale (M;*);>r is zero. For that purpose we show that the local martingale
is even a martingale. This can be done by the fact [32 Ch. I1.6, Corollary 3| that a
local martingale M; with EM? < oo for all ¢ > 0 is also a martingale if and only if
E[M]; < oo for all t. As according to [23, p.60, Problem 7] for M € M2 _ with My =0
it holds E[M], = E[M]; for all ¢, it is sufficient to show E[M]; < co. Condition
(RM E*) will be employed repeatedly. Finally the expectation of a martingale starting
at zero is zero.

With and condition (RM E*) the second term in is handled in the
following way:

d .
supE[ZJ A L7, pysyMi(ds, Z,— )}
T+

t>T i=1 t

d t
— supE Y f 2270 () [ Mildr, Z,_), M;(dr, Z,_)].

t>T ij=1 T+

d t 0
<)) supEf a’Zi_ 7] 1 (q.py(s)h¥ (Z,_)dR, <cf a?dR, < .

S S— S—
ij=1 t>T T+ 0
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Before we investigate the first term, note

azf(Zs—)iARsMi(dSa Zs—) = azf(Zs—)iARsMid(dS? Zs—) + aif(Zs—)iARsMic(dS7 Zs—)
= a2f(Z, )i ARM{(ds, Z,_).

Now use this identity, (8.7), and condition (RM E*) to show
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In order to investigate the last term in we use the following fact. If M is a locally
square integrable martingale starting at zero, we have E[M], = E[M|, for all ¢ [23]
p.60, Problem 7]. Hence
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Consequently (M;*);>7 is a proper martingale.
Convergence rate of E||Y;|?. Now we investigate
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= (1+ R, )P dE|Y)[* + E|Y,-[*d(1 + R)P" +d[(1 + R )", E[Y[*],.  (8.10)

With (8.5) the expectation of ||Y;|? can be rewritten as
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f (Zf ZLTD())dRS.

Therefore the first term on the right hand side in (8.10]) can be bounded with the help

of and :
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Here we define vs := (Bpax + /<;)2(1i%fj)a and p := 1 — 2a. By Ito’s formula and a

Taylor expansion of f: z — (1 + 2)?" around R,_ with a ¥, € [0, 1] we get
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Hence for the second term on the right hand side in (8.10) we have
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By the mean value theorem there is a ¥; € [0, 1] such that

0 A(l + Rt)p* = (1 + Rt)p* — (1 + Rt_)p* = p*(l + Rt_ + ﬁtARt)p*_lARt

<
<p*(l+ R )P TTAR,.

Hence the last term in (8.10)) can be bounded in a similar way as (8.11)):
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where (%) is discussed below. All terms in the last inequality, especially v, are purely
deterministic. A combination of all bounds for the term on the right hand side of

B-10) yields
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where we made use of Uﬁ—gj)“ = op(1) and (*). Now we discuss (*). In the case o = 1
(8.3) yields
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Application of 1t6’s formula to the right hand side of (8.12) yields

t t
f a(1+ Ry EYP) <c | 1+ RoPAR,
T+ T+

t t

—Cc| da+R)"**+C| (1+R,_)P*2AR.R,.

T+ T+

Condition (RM E*) implies § (1 + R,_)**AR,dR, < o and thus by Kronecker’s
lemma
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which yields a convergence rate for StT L(T+ R,_)P**P2AR,dR,. Hence we have
(14 R)P'E|Y:|?> < (14 Rp)P" E|Y2|? + C(1 + R)P 7 + o(1)(1 + Ry )P trt2a—2
and
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Our assumptions and the choice of p* guarantee @ < 1 as well as —p* < p and
p=p+2a—2. As aresult

EY[? = 0((1+ R)) = O((1+ Ry )

holds and the theorem is proven. O]

8.2 Explicit Solution of a Stochastic Integral Equation

The following lemma, a representation for the solution of [Gen-Comp] , is em-
ployed to show asymptotic normality. As a general assumption for the generic com-
panion algorithm we already assumed the existence of a unique solution of [Gen-Comp]
on [0,00). Now we construct an explicit solution.

Lemma 8.2.1. Let G be a left-continuous adapted process with Gy 2%, v* P-a.s.
Choose k > 0, ks := k(1+ R,_)™", a > 0 and 4, := a(1+ R,_)~ such that {; a,dR, =

o and Sgo a?AR,dR? < o0 hold. Then the companion stochastic integral equation
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0
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where
~ t ~
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0
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0
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If a =1 and Yo, Laar,=1+r,_} < ©, the function (¢);=0 can be represented as

o=(+R)] ]

with

aAR, AR, \*°
Ho,t = H ((1 T + ]1{&ARS—(1+R5)}) (1 + o, Rs) ) (8.15)
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where [ [,, converges pointwise to a real number [, ast — oo.
In both cases, a =1 and a < 1,

[L= 17"
I
0,s
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holds true.

Proof. Insert (8.14)) on the right and left side of (8.13]). Equation (8.13) is equivalent
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to
dY, = @, (Gy — Yoo ) AR, + kM (dt, T,_)
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According to Lemma d[p, ¢~ 1T], = Agd (qﬁt_th) holds true. With this fact
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As a result both sides of (8.14]) are equal.

In order to show an alternative representation of ¢ we first investigate the argument
of the stochastic exponential in the definition of ¢:
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t ~
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For the case & = 1 we apply Itd’s formula with f/(z) = (1 + z)™":
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Equation (8.20]) yields
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To show convergence of [[,, we separate it into two factors [ [, and [[_, using a
stopping time 7. Choose 7 in such a way that the second factor can be approximated
by a Taylor expansion. Then convergence of [[_, and boundedness of [, yield
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convergence of [ [,,. Consider the following Taylor expansions:

a2z
ln(l—ax)z—ax—T—i—o( ?) for —1l<ar<1
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As assumptions SSO a,dRs = o0 and So a?AR,dRY < oo imply
holds true. With the two Taylor expansions above we obtain

In{1-— Ak, +aln( 1+ AR,
1+ R,_ 1+ R,_

i a2 AR, \? —
= _——— — h .
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This motivates the choice of the time
Ti=min{t > 7" |p,| <1 for all s > ¢}

which determines the decomposition [y, =[]y, -I],, The convergence p; 250
yields the finiteness of 7 < o0.

Now we analyse the logarithm of [ _,. Note that []_, consists of positive factors
! we have 1_%3; < #1 for all s > 7. Together with aAR, > 0 this
means aARg # (1 4+ R,_) for all s > 7. Bringing these ideas together yields
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imply convergence of In(] [,.,) and [ ], respectively.
Finally we prove boundedness of [[ ], |. We just showed that

aAR, AR, a
Ho,f _ H (1 — 1a+ R + ]l{aARs=(1+Rs)}> < H <1 + 1+ RS_)>

0<s<T 0<s<T

holds. The second factor is bounded as we have
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In the first factor we can neglect the term 1zar,—1+r,_)} as the set
{seR;:aARs = (1+ R,_)}

is finite.

The remaining term [ [,_,_. (1 — ok,

1+Rs_
consists of all factors with norm smaller than one, such that its norm is bounded by
one, too. Consequently we are done, when we can show that the remaining factor has

only a finite number of factors. The inequation

> is split into two factors. The first factor

aAR,
1+ R,_

> 1 implies AR, > —.

)1_

QDo

The finiteness of the set

2
{SER+:S<7/\ARS>—}
a

in turn is assured by R? < co. This proves the convergence of [ [, to a limit denoted

by [,

For the case & < 1 we reuse the representation (8.20) as well as
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in order to calculate the stochastic exponential &(X) = eX+—Xo—alX.X [T (1 +
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AX,)e 2%, This leads to the representation

L
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O<s<t

aAR;
_ H 1— T R + Laar,=(1+R, )}
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Finally we show that HOt converges as t — 0. Firstly we observe

m>~ x)~2 d . ~ dlx}%s 5—00
asdRs = oo and a:AR AR, < o imply a;ARs= - 0.
0 0 (1+ Ry)
Next, we make use of the well-known Taylor expansion In(1 — z) = — > £ if
2] < 1. As (287) > 0, this yields

AR, *1 aAR, \" AR, 1/ a&aAR, \?
(1 +'f%p_)a o n (1 +_]%t_>a (1 +_]%t_)a 2 (1 +_]%t_)a

1

for t sufficiently large. Consequently, with the previous inequation and a Taylor
expansion around R,_, for s sufficiently large

lng(exp<1—A(1+R) )<1(1‘1ATR:_W))
_;< 1+R)10‘+1n( %))
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. - aAR, 1 aAR, ?
<Z<1—dA<1+RS> T+ R)R _5(<1+Rs—>6‘) )

s<t

a2 AR, 2
<S(e-5) ()

with ps — 0, converges. The rest of the proof follows in an analogous way to the case
a=1.
Finally from |]_[07t | <C < o0 and Ho,t — | [ follows

[,

H&t = = (1 + Ob(l)) s — t pointwise.

HO,S

8.3 General Distribution Results

Having results on the almost L?-convergence rate of the leading algorithms, we are
prepared to formulate a theorem on asymptotic normality of the companion algo-
rithms.

Assumption 8.3.1. Assume X, Liaar,—a+r, )5} < ©, Sgo asdR, = o0,
§o a2AR,dR? < o,

h(v?) = lim, ho(y) = lim, hs(y, v%)
yHU* y"U*

where

d[go M(dt7 yl)? S() M(dtv yQ)]S
dR ’

hs(y1,y2) = hs(y) == hs(y, v),

and, for all € € (0,1], the Lindeberg type condition

' —(HRS);Z $erc Tz (ds, dz)
s,t

0 (1+Rs-
(14 Ry)*@=8
§o(1+ Ry_) 292 (. t 2T xvM* (ds, dz)

(1+ Rt)fwﬁbt_Q

-0 ast—> o0 ifa=1

-0 ast—>o0 ifa<l,

where M} = Sé M (ds,v*),

(1+R)*” Y
(14 Ry ) (14 Rst)&} fa=1

1+ R)™" L
e SIRARE

{x € ]Rd‘ ||| > €
&, =
{a: € Rd‘ ||| > €
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and v™* is the compensator of the jump-measure ™" of the local martingale M*. If
a =1 assume a > 1/2. If & <1 assume a > 0.

The process Z converges to z* in the almost L? sense with rate (1+ Ry )7P. There
are constants l,t,v, x > 0 such that G can be decomposed as

Gs =1+ O(| Zs— — 2*|X) + o(ms),

with I, := (14 Rs_)™" and m, := (1+ R,_)™". The constant 3 satisfies § < 5x, f <
and B < n.

Remark 8.3.1. In preceding representation of G, the term [, causes a bias term in
asymptotic normality results, whereas m, vanishes asymptotically. The condition
B < Bx guarantees, that the almost L*-convergence rate of Z is fast enough to still
achieve convergence of the disturbed process. For a leading Robbins-Monro process
with differentiable f typically p = 1/2 holds, whereas in a Kiefer-Wolfowitz process
only p=1/4 or p=1/3 for f € C? or f € C3, respectively, can be achieved.

Now we are ready to state an asymptotic normality theorem about a generic com-
panion algorithm.

Theorem 8.3.1. Let Assumption hold. Then

2k —1
(L+R)* (Y= v") B N(w,E)  ast— w0 if § = =
2k —1
(1+ R (T, —v*) S p ast — w0 if f < R2 .
Bias p and variance X are given by
al .
- ifa=1and =1
a—t
=131 ifa<1landp =1
0 ifa<landf <t
and
K’ 261
h(v* f B == and & =1
s {2a—r)+1 (W) B =T anda
k * : K— ~
%h(v) if B =2 and a < 1.

The previous theorem employs a condition of Lindeberg type, which uses the jump
measure of the compensator explicitly. The following corollary demands conditions
(S1) and (S2) that are an alternative, which is easier to interpret, to the Lindeberg
type condition.

Corollary 8.3.1. If we replace condition

0 1{:’_}5 2K S@e M (dS, dl’)

(1+ Rt)Q(a—5>

50 ast— o ifa=1
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Sé(l + R )72 0% (e t oM (ds, dz)
(1+ Ri)=6,”

-0 ast—> o0 ifa<l,

in Assumption by the following conditions
(51)

E suppe <, (1 + Rs—)Q(gHi)(A]Ws*)2 t—00
(1 + R,)2am1

E suppe < (1 + Ry )" 2(AM)? e
(1 _|_Rt)—2n+1¢;2

0 ifa =1

0 ifa<1

(52)

B (AMI) (1 + R)1O
(1 + Ry)4@—r)+2
EYa(AMHY 1+ R )00 o

(1+Rt) 4I~c+2¢t

0 ifa =1

then the conclusion of Theorem still holds true.

Proof of Theorem |(8.5.1. Without loss of generality we assume v* = 0. Now we anal-
yse (1 + R;)PY;, with T given in (8.14)). Due to Lemma and Slutsky’s theorem
it is sufficient to show

()

(1+ Ry)P¢: Yo 5o
(IT)
u+m%¢f¢;&%ﬂﬂ
0

(I11)

(1+RJ%$JX1+R&yﬂgwwm&mElegn
0

with ¢ and R defined in Lemma m
Verification of (I). In all settings 8 < 1/2 holds true. If & < 1

a

(1+-Rgﬁexp<—1 (1+-RgL%ﬁ [, 7050

———
|.l<C

—
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follows directly. When & = 1 we furthermore assumed a > 1/2. Therefore (1 +

R)?(1+ R)™% — 0 yields (1 + R,)?¢, Yo —> 0, as 8 —a < 0.
Verification of (II). According to Lemma [8.2.1]

exp(— (1 + Rt)17d> HOt ifa<1
1+Rr)] ] if @ =1

0,t

¢ =

holds true with HOt given in (8.15)) or (8.16)). We use the abbreviation

by = exp(—%(l + Rt)lfd) for & < 1.

The properties ’HOJ <C<wand[],, =[], imply Hos _ [L., = (1 +o0,(1)) for

[o,.
s — t. According to the dominated convergence theorem, instead of

t
(1+ Rt)%tf o7 AR, S
0
it is sufficient to show

(1+R) 5 (1 + R R, > p ifa=1
(1+ R)’¢: §; &5 AR, = if @ < 1.

Therefore our problem reduces to show

t
(1+ Rt)%tf ¢ AR, ~ H + H? + H? 5 11
0

ifa=1

where
( - t ~
(1+ Rt)ﬁ‘“J aG(1+ R, )*'dR, if & =1
H} = 9
(1+ Rt)%tf aGy(1+ R,_) %¢,*dR, ifa<1
\ 0
((1+Ry)" 1 Z (1+ R )*YsLaar=q+r,yy ifa=1
}12 __< O<s<t
t n T p o~
(1 + Rt)BQSt Z ¢5—1T$—]l{&ARS:(1+R57)5‘} ifa<l1
\ O<s<t
( ~ t ~
(1+ Rt)ﬁ‘“J k(1 + Ry )" (M(ds, Ts_) — M(ds, 0))
H} =< 9
(1+R)’q | o7 k(1 + R_) ™™ (M(ds, T,_) — M(ds,0)) iféa <1,
\ 0

The asymptotic equality of (1 + R,_)* and (1 + R,)® follows as §; a,dR,

= o0 and



138 ‘ 8 Asymptotic Normality of Companion Algorithms

§o @2ARdR, =, a?AR,dR? < o0 imply

AR,
1+ R,_

— 0. (8.21)

Actually we have

) 1+ R, \° _ AR, \*° _
1 )Y = i 1 ) =11 > 1 )%
(1+ Ry) (1+RS_)(+R ) <+1+RS_)(+R )

- /

~~
§—00

1

Analogous arguments yield the asymptotic equality of ¢, and ¢,. Consequently we
show:

(IL1) H 5 u (1L.2) H? 50 (IL.3) H? 50
Verification of (II.1). With the notation
Gy =1y + O(| Zs_|X) + o(ms) =: 1, + V,

we can split (II.1) into the tasks

(I1.1.1)

~ t ~ P

(1+ Rt)ﬁ‘“f aVi(l+ R,_)*'dR, -0 ifa=1
0
t
(1+ Rt)%tf aVi(1 + R,_) %7 dR, >0 ifa <1,

0
as well as
(I1.1.2)

. al )

i i £ 3=
(1+ Rt)ﬁ—“f al.(1+ R, )R, B e, TP=¢

0 0 if <t

for & = 1 and
_ [t L | ifB=
(1+ Rt)%tf il,(1+ R, )¢ dR, 5 =
0 0 iff<ue
for a < 1.
In the following steps we use the abbreviation
a—1
% ifa=1
Qs = (11 +}§t)a7a 71
LR 5 g

(1+ Ry) P,
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Verification of (II.1.1). Now we are prepared to verify

t
V V 3 V ]P lJ Qs,t‘/sts
0

€1>0 e2>0 tg t=to

>€1] < €9

with arbitrary but fixed €;, €5 > 0.
According to the almost L2-convergence condition in Assumption there exist
a process Y and a deterministic time 77 < oo such that for all ¢ > T} we have

2
(BIV) <EIYiP < K(1+R)™  and P([v yt:zt]) >1-9,

=
By definition of V; it holds
Vs = O(]| Zs—|I¥) + o(ms).
Hence we have

v o Vil < Al Ze ¥ + Bm

P>0 ”Zs— H» ms<p

with appropriate choices for the constants A and B.
As the conditions of Lemma hold, there exists a deterministic 75 < o0 such
that

P([sup 1Z:|| < p]) >1- 2
t=T> 4

Furthermore there exists a deterministic 73 < oo such that for all ¢ > T3 it holds
m < p. We define T' := max{T}, T, T3}. Consequently it remains to show

(| o)

t
<P ([ Q.,V.dR,

T+

t

T
J Qs,t‘/:SdRs + Qs,t‘/;dRs
0

T+
2%]u[

T
J Qs,t‘/sts
0

1),

T t
<P f QuVudR| = 2| ) +P Q. VidR,| =2 ). (8.22)
. o 21) T 21)
<V€—2 <Y€—2
2 2

We begin with the verification of the bound of the first summand in the last line
of . As (Z)i=0 is a strong solution of the corresponding stochastic integral
equation on [0,00), no explosion times exist and Z; — z* a.s. Consequently for all
t > 0 |Z;] < C(w) holds. Furthermore m is bounded. Combining these arguments
yields that there exists a constant C'(w) such that

Vi] < C(w) forallt <T.



140 8 Asymptotic Normality of Companion Algorithms

Therefore

( T
Cw) (1+R)| 1+ R._)"dR, ifa=1
—— ——~—— )0

<o —0 ~ ~- -
,t‘/sts < 4 T =*
Cw) (1+ R)°¢, (1 + R, %R, ifa <1
Y ,
<00 —0 ~~
\ <o

This yields almost sure convergence and therefore convergence in probability. Using

this fact we find
62
to t>t1 2 2 '

Therefore the first inequation in (8.22)) is proven. We now turn to the second bound
in the last equation of (8.22)):
Qs,t‘/;dRs

Pq >ED

T+ 2

< P(l Qs VsdRs| = %1] N lsup 17| < p}) + ]P’([sup | Zy| = p])
=T

T+
f 0, (AHZ I+ Bms dR, D
T+

<#([rprt=o]) (]

J Qs Vid R

t

t t
< 6—2 + P([ Qs tAHZS—HXdR —1:|) + ]P)<|: Qs,thsts = 6_1:|)
4 T+ 4 T+ 4
~24p tQ |Z,_[¥dR, +P fQB dR.| = &
= 1 st - 4A - st DM s| &= 4

(8.23)

We start with a bound for the second to last term in (8.23]). We have

o(|| [ )
(s z )= ([

t

QS tHZ f”XdRS

Qs,tHZsf HXdRs

€1 .
5o [ )

c t
Y
t=0 T+ 414
_a e
8 8

where the first bound is a direct consequence of the assumed almost L?-convergence
rate. The second inequation is shown next. The bound

E|[ViJ* < K(1+ R)™"
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implies
E|Y,| < Kz(1+ R)™% with y > 0.

Using Markov’s inequality and the latter result yields

t
|| [ Quivipan > 2]
[ e T 44
4A
< — Qs,t E|Y,-[*  dRs
€1 Jry ~—

<K3(14+R, )" 2X

4A ¢ - 1P
K3(1+ Ry)P~ J (1+ R, )" 1 2XdR, ifa=1
€1

< 14
(1+Rt%tf¢ (14 R,_) % 2XdR, ifa <1,

€1
Application of It6’s formula and a Taylor expansion of f: x +— (1 + z)* %X around

R,_ with a ¥, € (0,1) yields

t
f (1+RS_)@—1—%XdRS
0
a—§x )&—%X b
_ (14 R, )" EXAR,

a Q
a@—3X 0<s<t

Lia- PO (a—1-2)1 + Ro_ + 9,AR,)B2(AR,)?
2 2

1+ Rt)“"x —1 1 <a 1 _X) 1 (1+ R+ 0,AR,)" 2 * (AR,)?

g _P
2X 2 0<s<t

_ —
1 _ P xX—2
—§(a—1—§x) N (14 R+ 0,AR,)* (14 R + 9,AR,) 5 (AR,)
O<s<t
1 a=5X — ] ; _o_p
<! *gt) P +C > (1+R)"(1+ R) > ¥ (AR,)?
T2 O<s<t
(14 Ry)* 5x — 1+ R, ‘ py
< 1+ R,_ X (AR
Loy T (1+ R (AR,

———
=1+ 1285 =1+0,(1) by (8:21)

THRs_

a — Q
a 2 0<s<t
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Therefore, for & = 1, choosing A := Ze(a — Ex)K ™2,

AAK? (*(1+ R, )"~
J ( +RS ) _ dRs
€1 0 (1 + Rt)a—,é’
4AK3 p=ix (1+ R, )i25x
< anE <1+Rt> +C Z hl (AR,
(a B _X) 0<s<t 1 + Rt
=1if g = Ex 0 g
€2 rg_p
. {E 5 = 8x
0 if 3 <%x

holds. The convergence of the sum to zero follows by Kronecker’s lemma as f < §X
implies

L R, )" 25X
(1+ R,)a7?

(AR,)? CJ a?AR,AR? < 0.

0<s

In an analogous way, for & < 1, we can show that

JAKY f o -Vd*%"dR Ll 1A=
1+R0 0 iff<

STSIENTS
>

e

Now, for & = 1, we show that the last term in (8.23)) equals zero. For ¢ large enough
we have, using Ito’s formula in an analogous way as above,

t
(1+RJ9{[(1+RSW1"d&

T+
14+ R, )32
<— ([1+R)""4C ) (ARS)2< )~_ﬂ
a— 17— —— 0w (1 + Rt)a
=1 lf ﬁ=7] . ~ vl
H—OO>0 as above
2
< = if g
a—n

and therefore, for sufficiently large ¢,

_ [t _ 9
P(l(l + Rt)ﬂ“‘f (14 Ry_)* " R, = D = 0 holds.

T+ a—n

In a similar way, for & < 1 and ¢ sufficiently large, it is easy to show

P(DL+&W@ t¢;u+Rs)dnwﬁ>§1>=Qﬁﬁ<n

T+



8.3 General Distribution Results 143

Verification of (II.1.2). We have, for & = 1,

t
(1+ Rt)ﬂ‘&J al(1+ R,_) (1 + Ry_)*'dR,
0
t

=al(1+ Rt)ﬁﬁf (1+ Ry_)* ' dR,
0

- ~ ~
~ (14 R+ Ry
S
— a— 1L

0 if <t

and analogously, for & < 1,

t

I ifpg=u

o
(1+R) @f 0 iffB <t

al(1+ Rs_)"(1 + Ry ) %¢,'dR, — {
0

Verification of (I1.2). We have assumed that Y} _, 1izar,—+r,_)sy < . More-
over we know that (1;);>¢ converges and that there are no explosion times. Therefore,
if a =1,

(14 R,)*° Z (14 Re)*Ys-Liaar,—(1+R, )} |

O<s<t
<C(w) (1 + Rt)ﬂfaz 1aar,=1+R. ) 2%,0.
T =
° <

If @ < 1, one can show that

(1 + Rt>ﬁ(5t Z é;st—]l{aARS:(l+Rs_)&}|

O0<s<t

< C(w)(1+ Rt)ﬂq_ﬁtz]l{aARs:(HRs )3} = 0.

s<t

Verification of (II.3). Now we prove

(1+ Ry)P@ f k(1 + R, )" (M(ds, Ts_) — M(ds,0)) >0 if & = 1.

0

We apply the Lenglart-Rebolledo inequality, which can be found as Theorem in
the appendix. For that purpose choose

tM(ds, Ty M(ds,O)

X =
! 1+R )R

and Y; = [X]:.

Here Y; is the predictable compensator of X? and therefore X? —Y; € M. For
every stopping time 7 we know according to Theorem that EX? = EY,. With
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arbitrary €, €5 and fixed t large enough, the Lenglart-Rebolledo inequality yields

t

IP’(H(I + R,)P fo (1 + Ry)™ (M(ds, Ts_) — M(ds, 0))‘ > 61])
— IP(H(l + Rt)ﬁ‘&Xt) > 61]) _ P([Xf > (14 Rt)2<@—ﬁ>D

<IP’([85123X2>61(1+R)2(“ 5)]) 20 iY;%/;b) +P([Y; = b))

2+ }1)2(&—@) +P([Yi = b)) (8.24)

for any b > 0. As (1 + R,)2?~® 2%, o the first term in line ( - tends to zero.
Now with Toeplitz’s lemma, hy(T,_, Ts_) — 2hs(To_,0) + hy(0,0) =2 0 implies

(1+R,) 29y,
! d[SQ(M(dTa TT—) B M(dTa O))]S
(14 R,_)%(s—a)
(1+ Ry)*@H

Cho(Yso, Ty ) — 2hy(Ty—,0) + hy(0,0)

~ dR;
0 (1 + R57)2(Iiia) t—0o0
~ 0.
(1+ Ry)*@?

— (1 + R)26-9[x], = fo

Consequently

Y;
P([Y; = b]) :P([ zt 21]) —0ast— o,
——
—0
hence the second term in line (8.24]) tends to zero. Analogously, in the case & < 1,
choosing

Xt = and }/t = [X]t

fMdsT M (ds, 0)
1+ Rs)*

it holds true that
p([[a+r)a f:u + R (M(ds, To0) — M(ds,0))| > ) = 0.

Verification of (IITI). We show

(1+ Rt)%tkf(l + Ry ) "¢ M(ds, 0) 2> N(0,%).
0

It is sufficient to show

(1 BV [0+ R0 M ds,0) 22 N, 3),
0
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for an arbitrary sequence t, 1T c. Therefore we investigate the sequence of locally
square integrable martingales

Stn
M!:=(1+ Rtn)ﬁgbtnkf (1+ R,_) "¢, ' M(dr,0)
0
for some fixed s > 0. Note that M € M3 as (R);>0 and (¢)i=o are deterministic

and So asM(ds, Ys_) € M2, by general assumption in the introduction. Applying the
central limit theorem Theorem in the appendix, we show

M? 25 M where M ~ N(0,%).

For that purpose we verify the Lindeberg-type and variance-type conditions in The-

orem with X" := M" e M2 _.

In the next steps we choose S = {1} and M := Sé M (ds, 0).
Verification of the Lindeberg-type condition. We have

vV oV AM! =k (L + Ry,)"

—1 *
T 1, P, AM
neN =0 s (1+ Ry, )" tnPstn st

Therefore

14+ Ry,
kQ ( ! ) 2K|¢tn stn| ’A stn|2

AM"|? = o T )
[AM| (T

1+ Ry, .
kQﬁmﬂsmAMstnF

(1 + Ry, )72%(1 + Ry, )
(1 + Rt )—2ﬂ+2&

<
h 1 + R A * . ~
Cﬁd)t,ﬂsstn (AMstn) if @ < 1.
> 5]

d (1+Ry,)" ]

(AMZ )? ifa=1

and thus

. [ (14 R,)? _ .
HAMS ’ > 5] = kﬁ(@ngﬁstiAMﬁn

n Stn ’

k(l1+ Ry, )"

6 (1+R)™ "

k(1+ Ry, )~ ]
(1+ R,,)* "

(1+ Ry, ) (1 + Ry, )l

( + R, e~
[]A 3| > —<1 TRy —~¢y,. d)stn] if a < 1.

= ’ (btn Stl AM*

< |6, G, 1AM, | >

] ifa=1



146 ‘ 8 Asymptotic Normality of Companion Algorithms

Instead of [[AM?| > 6] for all § €]0, 1] we investigate the set

a—p
reR: |z > € (1+FRe,) if a=1
B (1+ Re,—) (1 + Ry, )
Sitn © (1 + Rt )7B
{l’ S Rdl |LU| > GWQ&M}Q%“L} ifa<l1

for all € €]0,1]. With the inequalities above, as well as S = {1} and t = 1 we get by
Assumption [8.3.]

Vo 2 jagsg) + 1)
we)

n

=X ]l [lz]|>6] * Vl J fdx ]l ‘x|>5 (dS dl‘)
R

1 2K 1 N
CJ J +?+R G +R) 22M (ds,dz)  ifa=1
€ tn
< < t 2% 1 —2
n 1 K "
J J 11__]; 25zi2 2™ (ds, dx) ifa<1
< t) ¢
f n N 2a
f) 1?12 S@f ds ,dx) e~
C fa=1
(1+ Ry )
<3 tn 9k 2 2. M*
o (1 4+ Re_) 72 ¢, Sﬁé z*vM (ds, dx)
*tn ifa<l1
\ (14 Ry,) 2P¢;?

P
— 0 as t, — oo.

Verification of the variance-type condition. We show [M"]; & . With

[¢tn¢;1M(dT’ O)» gbtngbr_lM(dT, O)]s = ¢tn¢5_ gbtngb [ (dS O) M(d87 0)]

:hsgg)dRs
(HO,tn)2 (1 + Rs)2a
1+ R, (To,)?

\ 22 2
¢, (1 o,) -
sz’syhs(())dfis ifa<l1

( 24
% (I1,) m(dr, ifa=1

2
% (L) none. e

ho(0)dR, ifd& =1

and the boundedness of H . the dominated convergence theorem yields for & = 1
that -

(1+R,)?

(1+ Ry,)2 [¢tn¢ 'M(dr,0), ¢, ¢, M(dr, 0)]

(M7 M, — k2 L
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) 1 f” 2(i—r)
= s p- 1 1 1 S— S
k*h <O)(1+Rtn)2(“‘5) ) (14 0p(1))(1 + Rs-) dR

o (14 Ry_)2@ndR,
(1+ Ry, )%@F)

) 1
b h<0)2(d— k) + 1

0 if g < 24

~ k2h5(0)

lf 6 _ 2r—1

2

n—0o0
R

and for & < 1
[M™, M™]

12 n (1 + RS,)_% -1 -1
=k L Wd[ﬁbtncbr M(dr,0), ¢y, ¢, M(dr,0)]s
= k?h(0)¢] (1 + Ry,)*" Jtnu +op(1))(1 + R, ) * ¢, %dR,
0
tn
~ k?hy(0)¢; (1 + Ry, )*” J (1+ Ry ) *¢2dR,
0
in —2Kk 1—2
_ k2 (0) o 1+ Ry )¢, 2dR,

| 147

- k2hs(0)f"(1 + Rs)2H¢§S2dRS/(Jt" “98(1+ R, )*14-2dR,
0 0
n _722~ 1+ Ry 7257ddRs nd _72, 1+ R —26 s
+JO¢Sa(+ ) +L _[¢. (1+R) ]>
~ k2h,(0) {"(1 + R,_) ¢, dR,

o 0.22a(1 + Ry_)72-dR, + §" d[¢2, (1 + R)~%],
(14 Ry )2%¢2dR,

UG 2d(1+ R 4 (1 + Ry_)=28dgs? + § d[¢72, (1 + R)-

2[9]8

= k*h,(0)

(1 + Ry-) %2R,

~ k2h,(0)=——2
) " 6:22a(1 + R,_)"2-4dR,
k2 o
n—o0 %h(()) lf ﬁ = '{T_(f
0 if B < 249

" $,22a(1 + Ry )"26-4dR, — (" ¢, 24a(1 + R,_)~1#-¢"LAR,ARY

respectively. Note that the last convergence follows according to Toeplitz’ lemma

A 12

]

Proof of Lemma[8.3.1. We only have to change part (IIT) in the proof of Theorem
8.3.1, For that purpose we use the theorem of Crimaldi and Pratelli (Theorem

in the appendix). Choose

b= k(1 + R)Pé N, = f (1+ Ry )"¢= M(ds,0)

0
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and check conditions (a), (b) and (c¢) of their theorem. We only consider the case
a = 1, as the proof for & < 1 is similar.

Verification of (a).

With the definitions of a;, ¢; and the condition a > % > (3, we have

2 <C(1+R)¥¢?2 <C1+R)¥P(1+R)™% -0

and thereby a; — 0.
Verification of (b).

We show that the squared process converges to zero:

~ 2 ~
(E sup \thMSD < E sup |a, AN,

0<s<t 0<s<t
2
1+ R,\a@ 1+ R,)?
< E sup ( * > Ho’t( + 1) |A M|
o<s<t \ N+ R/ [, (14 R )s

AR, \& (1+ R4
< Z E
= | L0 om) aop el

o /
~—

<C
Esup0<s<t<1 + Rs—>2(d_n)|AMs|2 t—00
(1+ Ry)2a5)

<C 0.

Verification of (c).
We show

(i) a[M, =% (i) a([M], —[M]) = 0.

Part (a) yields a; — 0.
Verification of (i).
Consider [M];:

(31, = f (1+ Ry ) 25[(67 M (dr,0)), (6~ M (dr, 0))],

t
_ f (14 Ry )29 (0)dR,.
0

We obtain

2(1 + R,_)*a % (0)dR,
(1 + Rp)2a)

§o(1+05(1))(1 + Ry )?@MdR,

(1 + Rt)2(a_ﬁ) '

K2(1+ R,)*%(¢y)2[ M, = k? oL,

= k2h(0)

o >

1
T 2(a—r)+1
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As a result we have

k2h(0)

HIVIPES> ith ¥ := ———.
| Ml: A 20a—r)+ 1

Verification of (ii).
Following the arguments of the previous calculation yields
=:Lg
- ——
' oy oL+ op(1) (L + Ry ) R ([M*], — [M*],)
- (1+ B2 |

As the term oy, (1) in this expression does not effect the asymptotic result, it is sufficient
to show

(1+ Ry)* f (1+ R,_)*@ 4L, 5 0. (8.25)
0

By definition of the compensator, L € M, holds. Note that (8.25)) holds if we can
show

(1+ R,)*P~DEsup

s<t

J (1+ RT_)Q(&‘“)dL,,‘ - 0.
0

According to Davis’ inequality (Theorem in the appendix),

(1+ R)*P~YEsup

s<t

< C(1+ Ry)*P- “)E\/J 1 4+ R,_)*a=nd[L,]

E\/qu (AM#*)(1 + R,_)iG
(1+ Rt)

IE\/SO 1+ R, )4a—np, ( 2AR,AR,
(1 +Rt) ’

f (1+ R,_)*@"dL,
0

<

(8.26)

where the last inequality follows with v/a + b < \/a + /b, a,b = 0, and

[L]: = Z(ALS)2 = Z(A[M*]s - A[M7),)*

_Z (AMF) — A J > = S (AM?Y? = hy(0)AR,)?
=2 ((AM?)" + (hs(0)AR,)?) = 2 (AMZ)* + 2f hs(0)’AR.dR,.

s<t s<t 0
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Convergence of the first term in the right side of (8.26]) is shown via Jensen’s inequality:

0.

E\/ Dot (AMZ)H(1 + Ry )Ha=r\ 2 _EX(AMI(L 4 RO
(1 + Ry)x@=p) S (1 + R,)iGA)

In order to verify convergence of the second term in the right side of (8.26|), we apply
Kronecker’s lemma (Lemma in the appendix) to

(1 + R, )*@=®p (0)2AR
[[ SRy m <

S ¢ ARS
S Oy R AR sC f

o (1+ R, )X

8.4 Special Distribution Results

In this section we derive asymptotic normality results for the special companion al-
gorithms [RM-J], [KW-H], [KW-F-2], [KW-F-1] in a semimartingale context.

Theorem 8.4.1. For the leading algorithm [RM] or [KW] let the assump-
tions of Theorem or Theorem |8.1.1}, respectively, hold true. Let Assumption
hold, where the condition on the components of G is replaced as follows. De-
pendent on the algorithm let

<y and kK=a&a-—v  for [RM-J] (6.4)
<y and kK=a—2y for [KW-H] (6.5)
B<2y and kK=a for [KW-F-2]
K= for [e-KW-F-1] (6.7)).
Then
(1+ R)*(Te —v*) > N, X))  if B = 5
‘ 2k — 1
(14 R) (X, = ") = h<——

The parameters p and X are given in the following way. In all settings of algorithms

[KW-H] (6.5) and [KW-F-1] (6.7)), as well as [KW-F-2] (6.6)), if f € C?, u =0 holds
true. For algorithm [KW-F-2] (6.6)), if even f € C3, the bias is

( &62 62 . o
2|S|(d—27)i€55$?f(z> ifa=1and 8 =2y
P e o2 ) o
mzﬁf(z) ifa<1and =2y
€S g
0 ifa<1and B < 2y.

\
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For [RM-J] (6.4)) the bias is

acNf—(z) ifa=1and g =~
a—7

=9 ef"(2%) ifa<1andf =7~
0 ifa<1andp <.

Furthermore for [RM-J] the variance is

y = {2 —(Z/i)i) —h(W) 8= 26yt o0 s g

gh(v*) if =201 ynda < 1,
2c
for [KW-H]
(a/c*)”
noJd2a—a+2y)+1
a * o 2E—2y)-1 N
@h(v) if === and a <1,

h(v*) ifﬁzw_zﬁ and & =1

2

and for [KW-F-1] as well as [KW-F-2]

~2

T h*) iff =2 apda =1

y=<2a-1 2
gh(v*) if B =2+ and & < 1.

Remark 8.4.1. At first sight one might be confused why [KW-F-2| always has a bias
term p = 0 for f € C2, but if f € O3 there are settings such that p # 0. This is due to
the fact that by Assumptlon 1] 8 must be chosen small enough such that 3 < &y
and hence we have 3 < 2v for f e C?.

Proof of Theorem [8.4.1. All we have to do is to check that our assumptions also fulfill
the assumption on the decomposition of the term Gy in Theorem [8.3.1] We first take
a closer look at the G,-terms of companion algorithms [KW-F-2] (6.6) and [KW-F-1]
(6.7). A simple calculation concerning algorithm [KW-F-1] yields

s — V" —|S|Zf 2*)

€S

Zf ) + V() Zom = 27) + O(|1Z- = 2* %) = f(27)

zeS
=(9(HZ——Z*|| )

such that choosing [ = 0 and y = 2 yields the result. A Taylor expansion for the case
of algorithm [KW-F-2] yields

Z f(Zs— + cse;) + f(Zs— — cse;)) — f(27)

€S

2|5!
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)

28] ZJ F(Zue+ t6) = 5 (2 = te)dt + £(2) = ()

€S

B me Cswf (2%)2tc, + o(| Zo- — ") + o(co))dt + f(Z,-) — f(=")
ies V0 )

= ﬁZ(Ci%f(Z*) +o(cs|Zs— — %)) + o(2)) + f(Zs=) — f(=¥)

)2+ O ([ Zs- — 2*?) + o () .

2|5

It doesn’t matter whether f is two or three times differentiable, as we cannot get rid
of the term I?I\ Dics aa—;? f(z*)c?. Consequently the decomposition is given by

=2 =2 = 2.
2|5\Z ) oi=2y, xi=2, n:i=2y

For algorithm [RM-J] (6.4) we get

1 1

V(2. +cs)dt—J Joadt

0

Gy —v* = l<f(Z5—+CS)_f(Zs—> — S :f

Cs 0

_ foluzs_ms Lt
= Jl(JZ* + (%) Zs — 2% + tes) + 0(Zs— — 2% + tes) — Jox)dt
= f(']'(z*)cS + O(rs) + o(cs).
Hence we decompose as
L= f"z"), =7 x:=1 n:=17.

Finally, for [KW-H] (6.5))

G0 = (J(Z ) + (2~ )~ 2/(2,0)) — Hos

C2

- 2(
CS

- %(Jl Vi(Zs +tes) —Vf(Zs — tcs)dt> — H .«
s 0

| —

1
J sV f(Zs— + teg)dt + f(Zs— — ¢s) — f(ZS_)) — H %

0

1 r1
:f J tV2f(Zs_ + tuc,)dudt — H
-1

ffl VEf(") + V() (Zse — 27 + tucy)

+o(Zs. — 2%+ tucs))dudt -
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- J 2 (V2 f(2*) + VP f(2*)(Zee — 2%) + 0(Zo- — 2%))

0

+ [%Qtzcs(v?’f(z*) +o(1)],dt — H.«

_ L (V2 (=) + VO (%) (Zoe — ) + 0(Zo- — 2))dt — Hon

[T + e — ) + ol — D]}~ s
- 0(|Z._ — ).

Similarly as before, choose

]

8.5 It6 Type and Recursive Stochastic Approximation Algorithms

We now turn to It6 type and time-discrete algorithms which are special cases of the
semimartingale model.

Corollary 8.5.1. Consider the generic Ito type algorithm [c-Gen-Comp/ (6.11]) with
f e CP. Let conditions (A) and (cD) from Assumption |6.1.1 and|0.5.1}, respectively
as well as

os(y) <C(L+y)) and  lim o,(T) =o(v7)
T—uv*

hold. If & =1 assume a > 1/2. If & < 1 assume a > 0.
The leading process Z shall converge to z* in the almost L? sense with rate (1+s)7P.
Assume I, 1,v,x > 0 such that G, can be decomposed as

G, =1+ O(HZS - Z*HX) + o(ms),

with Iy := (1 +5)™" and m, := (14 5)™". Moreover choose 8 with < £x, B <1 and
B <.

Then
2k —1

2
2k — 1

2

1+)2(0 —0*) B Np,D) i f=

(1+8)°(T = v*) S p if B <

Bias and variance are given by

al

P ifa=1and B =1
K=191 ifa<landfp =1
0 ifa<1andp <.
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and
@ o(w*)? ifg=2"Landa=1
y=<2a-1 2
%U(U*)2 if 8= and & < 1.

Before turning to the proof, we present a corollary to Theorem [8.4.1}

Corollary 8.5.2. Consider the algorithms [c-RM-J], [c-KW-H], [c-KW-F-2] and [c-
KW-F-1] with f € CP. Let conditions (A), (cD) from Assumption |6.1.1 and|0.5.1]

respectively,

os(y) <C(1+y]) and lim o4(T) =o(v*)

S$—0
Tov*

hold. If & = 1, assume a > 1/2. If & < 1, assume a > 0. The leading process Z shall
converge to z* in the almost L? sense with rate (1+s)™P. Depending on the algorithm,
assume

B <7, B < g and Kk=a&—~  for [c-RM-J]
<y, pB< g and Kk=a—2y for [c-KW-H]
B<2y, [<p and kK=a& for [c-KW-F-2]
B<p and K=a for [c-KW-F-1].
Then
8 %\ D 2’1 — 1
(L+0)°(Te —v*) > N(u,X)  iff=
. 2k — 1
(14T, — o) B g o<

Here, the bias i and the variance ¥ are defined in the following way.

In the case that f € C* in algorithm [c-KW-F-2], and for all settings of algorithms
[c-KW-F-1] and [e-KW-H], ;n = 0 holds true. For algorithm [c-KW-F-2], if even
fec?,

( CNZCQ 52
fa=1and =2
=9 A —
2]8\262f ifa <1 and B =2y
0 ifa <1 and B < 2y.

\
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For [c-RM-J] (6.4) the bias is

GCNf—(Z) ifa=1and g =~
a—7

=9 ef"(2%) ifa<1andf =7~

0 ifa<1andp <.

Furthermore for [RM-J] the variance is

~ 2 B
2 (Cf/j_) T 10(1}*)2 if = 2(0‘_27)_1 and & = 1
wo{2a—-a+y
220(1)*)2 if = % and & < 1,
c
for [KW-H]
a 02 2 . a—2~)— ~
v - )2a —(5/+ ;’y) TIOW) A= and G =1
%J(U*f if B = Mﬁ—gﬂfl and & < 1,
¢

and for [KW-F-1] as well as [KW-F-2]

~2

o 2;_ 10(v*)2 if =221 anda =1
ga(v*)2 if B=2" anda < 1.

2
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Proof of Corollaries|8.5.1] and|8.5.2. We verify the assumptions of Theorems [8.3.1
and Due to our assumptions, the conditions of Corollaries [7.4.2| and [7.4.3| are

also valid. This guarantees the existence of a function S; 1 oo with Si|T;] — 0
a.s. Definitions and notations of the proof of Corollaries [7.4.2] and [7.4.3] are reused.
Note that the decomposition of G or its special form for non-generic algorithms,
respectively, was already given there. The Lindeberg-type condition can be shown

using the continuity of the Brownian motion, since

P[0, xT) = > Tiawery = ), Tyoeny

O<s<t O0<s<t
= >, 0=0 forallT e By(R\{0}), te Ry,
O<s<t

yvields v ([0,¢] x T') = 0 for all T" € B4(R\{0}) and ¢t € R, .

The condition

Z Laar.=(1+R. )} <©

0<s
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follows from AR, = 0 since R, := s. Computing

UO M(ds,y)L = f o2 (y)d[W ], = f o2(y)ds

0

yields h,(y) = 02(y) and therefore

: S © 2 2/, %\ *
slggi hs(y) = JH% o, (y) = o7 (v*) = h(v").
y—v Yy—v

Furthermore, we conclude
hs(y)] = o2 (y)| < dC*(1 + [y])* < C,

as T converges a.s. O

Assumption 8.5.1. Let conditions (A) and (dD) from Assumption|0.1.1) and |6.3.5
hold.

(dD2) supE (V;? | Fei) < o0 P-a.s.,

(dD3) E (V2| Fuoi) =5 h P-a.s., and

(L)  supE (V?*) < oo P-a.s. forall§ >0

Now we turn to a result on time-discrete generic algorithms.

Corollary 8.5.3. Consider the algorithms [d-RM-J], [d-KW-H], [d-KW-F-2] and [d-
KW-F-1] with f € CP. Let Assumptz'on hold. If & = 1 choose a > 1/2. If
& < 1 choose @ > 0. The leading process Z shall converge to z* in the almost L?
sense with rate n™P. Assume the existence of constants [, v, v, x > 0 such that G,, can
be decomposed as

G = ln + O(|1Zn = 2*[X) + o(mn),

with I, := In~" and m, := n~". Moreover assume a 3 with f < 5x, B <t and 3 <.
Then
Pt = v) BN S) i =T
2k — 1
w0, — ) B o< =5
The bias is
al

— ifa=1and =1
a—1t

=11 ifa<landf =1
0 ifa<1andf <.t
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and the variance

~2

. 2~a 1h ifﬁzQ"Z’l and & =1
— ~a_
Sh if =25 and a < 1.

Before presenting the proof we formulate another corollary of Theorem [8.4.1] Re-
sults for algorithms [d-KW-F-2] and [d-KW-F-1] for f € C? have already been shown
by Mokkadem and Pelletier [28].

Corollary 8.5.4. Consider the algorithms [d-RM-J], [d-KW-H], [d-KW-F-2] and [d-
KW-F-1] with f € CP. Let Assumption hold. If & = 1, assume a > 1/2. If
a < 1, assume a > 0. The leading process Z shall converge to z* in the almost L?
sense with rate n=P. Depending on the algorithm, assume

b <7, b < g and K=a—2y for [d-RM-J]
B <7, B < g and Kk=a—2vy for [d-KW-H]
<2y, p[f<p and K=a for [d-KW-F-2]
B<p and K=ad for [d-KW-F-1].
Then
P00 v BN S) =
TLB(Tn—U*)ﬂ/L ifﬁ<2l§2_1.

Here, the parameters p and X are defined in the following way. In the case that
f € C? in algorithm [d-KW-F-2], and for all settings of algorithms [d-KW-F-1] and
[d-KW-H], 11 = 0 holds true. For algorithm [d-KW-F-2], if even f € C3,

( ac? o2 . o

21S|(@ - 27) &4 07 (2*) ifa=1and § =2y
P B

28] 24277 ifé <1 and B =2

Y ifa<1andf<2y.

For [c-RM-J] (6.4) the bias is
~ " *
ac~f—(z) ifa=1and g =~
a—7
=9 ef"(2%) ifa<1andf =7
0 ifa<1andp <.
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Furthermore for [RM-J] the variance is

~ 2 B
2 (Cf/j_) )+1h if =220 g =1

) if B =201 g a < 1,
2c

for [KW-H]

= 2\2 )
G (C}/Jcr;)Jrlh if B=20=20"1 g q =1

D a—« Y
a g = 26291 o0 s
202 if B ==2"5— and a < 1,

and for [KW-F-1] as well as [KW-F-2]

a2 _
5 1h if f=21 anda=1
Y =< 2a—

gh if =21 and & < 1.
Proof of Corollaries|8.5.5 and|8.5.4] We verify the assumptions of Theorem [8.4.1]
Due to our assumptions Corollaries [7.4.5] and [7.4.6] apply. This guarantees the ex-
istence of an increasing process S; 1 o such that S;|Y;| — 0 a.s. The definitions and
notations of the proof of Corollaries [7.4.5| and [7.4.6| are reused. These corollaries also
yield the decomposition and alternative representations of G,,.

Calculating the quadratic variation

UO M(ds,y)]t = UO f/sts]t = M VAR, =D V2

n<t n<t
neN neN

yields the predictable quadratic variation

U M“S’”L = Y E(V Far) = LE(VE | Fama).

n<t n<t
neN neN

As h,(y1,92) = E(V? | Fn_1), convergence and boundedness of h,, are assured by
ho(y1,y2) = E (Vn2 | fn_1) 2% hoas.
and
sup hy, = supE (V;? | F1) < 0.

Since h,(y1,y2) and h,(y) are independent of y; and yo, we get

E (hy(Ts-) — 2h,(Ts—,0) + hy(0)) = E (hy — 2h, + hy) = 0.
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As a is not necessarily integer-valued, we conclude

Z Laar.=+R. )} = Z Ta—iyspy <1 <0,

0<s 0<s

In central limit theorems for triangular schemes of random variables it is well-
known, that the Lindeberg type condition is implied by the Lyapunov type condition.
In order to show the Lindeberg type condition in our context, we use assumption (L)
which corresponds to a Lyapunov type condition. Dependent on the choice of & we
have two kinds of Lyapunov type conditions. If & = 1 consider

2a
0 11:1% S@e dS ,dz)
(1+ Rt)
2u 2a
' (11++RR9 SR *(ds, dz) So (11:;5 2 §g 2°Ny(w, dz)dC;
(1 + Rt)%l A) (1 + R,)2@5)
2a a

—c t%gﬂg 22N, (w d:B)dR <szlﬂ (1:12 {, 22 N;(w, dz)
h (1+ Ry)@ h (1 + [t])2@#)
o2t B P (dfc) _ oW P2 | Fy)
) [¢F) = i)

n '2&—2H]E V2 -Fz'—
< CZz:l ¢ ( i | 1) (827)

n2@-»s)
for t = n € N. We made use of the relations

VM (w,dt, dz) = Ny(w,dz)dC,,  where C;, = [M*],,

with M* = S(t) M (ds,v*) as given in Theorem and Ny(w, A) =P(V; € A | Fy).
More details on the latter identities can be found in the book of Jacod and Shiryayev
[18, Chapter II] or a paper of Wang [43].

In order to show that tends to zero in probability, we consider its expectation
value and apply Jensen’s inequality, Holder’s inequality and Kronecker’s lemma:

no 22k 2| T 1+3
(Ez E(V, \h))

1n2(@—B)
n a—2kK) 249 n a—2kK 2448
<E2z12(2 2 (V+|‘F*)<Zi12(2 2)1+ E(V+)
2@ A)1+3) n2@A)(1+3)
no(2a-2r)(1+3) n o (2a—2k)(1+93)
< SupEV2+5 Zz 1? <CZ@=1Z . 2
; J n2@ —-B)(1+3) n2@=p)(1+3)

2000.
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In the last step Kronecker’s lemma was applied in the following way:
n o (2a-26)(1+3) n no +(2a—2k)(1+2)
Z 2 Z (2r—26)(143) <ZZ 1+3) « o = lim Do ! 2 —0
S j2a-B) 1+3 - ~ n—w  p2a—B)(1+3)

If @ < 1 we have to show the Lyapunov type condition

Sé(l + R, )22 Seﬁg’t x? vM* (ds, dr) .
(1+ Re)=*7¢;

which is handled by following the preceding steps one by one.



9 Concluding Remarks

There are several good reasons to average leading algorithms. If for example in the un-
averaged Kiefer-Wolfowitz algorithm we choose ay = a(l+ R,)™', the additional
assumption a > 21;33] has to be made. Actually we need assumptions concerning the
smallest eigenvalue of the Hessian although even the regression function f itself is
unknown. Similar problems arise for the Robbins-Monro algorithm. This is one of
the main disadvantages of unaveraged algorithms, which does not arise in averaged
algorithms.

As mentioned in the introduction, the results concerning the companion algorithms
keep valid if in (6.4), (6.5). or we replace the leading process (Z;);=0 by its
averaged process (Zt)tgo. The same is true for the time-discrete and time-continuous
special cases. Consequently replacing Z by its averaged process Z does not seem to
improve the asymptotic properties of the companion algorithms alone.

If we choose a, = a(1 + R,)™! in the companion algorithms, we also have to make
a stricter assumption @ > 1/2 on the constant and not only @ > 0. But as its form
is pretty simple, namely a > 1/2, and therefore independent of further knowledge of
f, there is no disadvantage in having an unknown f. Actually it is easy to see, that
an optimal choice is @ := 1, as it reduces the variance in the asymptotic normality
results. In an averaged companion algorithm choose @, = a(1 + R,) !¢ for arbitrary
a > 0. Tt is expected that averaging yields optimal rates also with a € (0, 1/2].

This thesis only handled simple estimators for the parameters of interest as special
cases. In 1997 Dippon and Renz [12] presented a modification of the gradient estimate
in the Kiefer-Wolfowitz algorithm. It is an extension of ideas from Fabian [I5]. With
a p-times differentiable f at z* they can obtain nz(1=1/P)(Z, — 2*) B N(u,X). The
main idea is to achieve better rates by increasing the number of observations. It is
possible to improve the almost sure rate of convergence and the asymptotic distribu-
tion properties of the companion algorithms by using more advanced estimators. For
example estimators using more observations or a random design as described in the
first part of this thesis. With the template of the generic algorithms this thesis should
provide all required tools.
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A Appendix

By P we denote the space of predictable processes. Furthermore let V (and V*) be
the (increasing) processes of finite variation. With M,,. we denote the set of local
martingales. The following lemma is essential for almost-sure convergence results.

Lemma A.1.1 (Generalized Robbins-Siegmund). Let X > 0 be a special semimartin-
gale with X = Xo+ A+ M where Ae Y n'P and M € M,.. Furthermore let

A< A — A% with AV, A2e VY AP and A' — Ae YVt

be fulfilled. Then

|
{L 1+X8dAi<OO}§{X—>}m{A§O<OO} a.s.

Proof. The lemma was originally stated in [22]. A detailed proof can be found in
[37]. O

Remark A.1.1. Note that the notation {X —} denotes the set of all w € Q for which
X converges to a not further specified value. This is not necessarily the value we want
to show X converges to.

Lemma A.1.2 (Generalized Toeplitz-Lemma). Let X be a semimartingale and L €
YVt AP with Ly = 0 then

{LOO = oo} A {Xt — x} < {(1 + L)~ Lt X, dL, — :l:}a.s.

Proof. As no proof of the result could be found in literature, it is given here. For
all € > 0 there exists a 7T, such that |X;— — z| < € on the set {X —} n {t > T.}.

Furthermore we can find a Ty > T, such that sup |X,_ — :E|1LJ:+7; < €. Obviously
s€[0,tATe] 1
¢
l‘(Lt — LO) = J .TdLs
0
holds and therefore
o w(Ly—Lo+Lo+1) . w(L;— Lo) v(Lo+1) x(Ly — L)
v = fim 1+ L R By I iy s )
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t
= lim L J xd L.
t—oo | + Lt 0

Then, for t > T,

o 1
J (X, —2)dL| < J X, —zldL,
1+ L J 1+ L Jo
1 tATe 1 t
= X —x|dLs + Xso — z|dLy
1+Ltf0 | | 1~|—Lt£AT€| |
Lt/\T - LO
< sup | Xeo —x|————+ Ly - €
se[0,tAT.] | | I+ Lg (o<t}
< 2e.

]

Lemma A.1.3 (Generalized Kronecker-Lemma). Let X be a semimartingale and
LeVtnP with Ly = 0 then

{Loo = oo} N {(1 + L)t Lt X,_dL, a} c {)L(—: — O}G.s.

Proof. Kronecker’s lemma follows directly from Toeplitz’ lemma. Alternatively a
direct proof can be found in the book of Liptser and Shiryayev [23, Lemma I1.5.3]. [

Theorem A.1.1 (Minkowski’s inequality for integrals). Let (S1, 1), (Sa, p2) be mea-
sure spaces and f: Sy x Sy — R a measurable function. Then

(i) <1, ],

for1 <p < o0.

f(w,y)’pduz(y)); e

Proof. The proof can be found in the book of Hardy, Littlewood and Pélya [17,
Chapter 6.13]. N

The following lemma is inspired by the ideas of Dippon and Walk [13].
Lemma A.1.4. Let R; be deterministic with Ry = 0, Ry = 0 monotonously increasing

with

o0
J (14+ R, “dR, <o  for all e > 0.
0

Moreover let (V;)i=o be R-valued, adapted with E|V;||> < oo and E|| Sé(‘@_—E(\/;_))dRS||2 =
O(Ry). Furthermore let by = b((1 + Ry)™") as well as b >0 and 3 > 1/2. Then

M:O bs (Ve — E(Vi-))dR,| < 0 a.s.
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Proof. Integration by parts yields
¢
f b (Vs —E(V, ))dR,
’ t t s
b f (V.. — E(V,_))dR, - J ( f (Vi ~ E(V,2))dR, ) db,
0 0o “Jo

- f:d[b., fo (V- ~E(V;))dR,]

Hence with Markov’s inequality and Minkowski’s inequality for integrals,

E| f Vo))

<3b2 E( f (v, — IE(VS_))GURS)2
w3((E] ([ o >>dR)
+3EU d b,,J(v

1)
“1[)

165

2
<3b2EJ V.. —E(V,_))dR, |\2+3 f E|J '~ E(V, ))dR,| ) \dbs\)

+ BEH b, f (Vi — ]E(VT,))dRT]OOH )

<3b2 E| f Voo B Dar? +3( [ (B [ i - B0 AR ) lan)’

0

< (32X R, +3C . R|db,
< (wr+e([ Vi)

4 BEH J bA(1+ Ry) P~ (V,o — E(V,))AR,dR? )

0
0 2

< ( 32 Ry, + 352 1+ R,) % 2dR, )
<< +30 (L (1 + Ry) )

#3 [ R0+ R PRI - BRI

0

o0 2
< <3b§on + 352 (J (1+ RS)—ﬁ—%dRS) )

0

o0
+C J (1+ Rs)‘zﬁ‘Q(ARs)zde)
0

o0 1 2
< <3b§OROO + 3520 (J (1+ Rs)*B*EdRS) )
0

+ CJ (1+ Rs)%dRs)
0
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< C < .
O

Corollary A.1.1. Let the conditions of Lemmal|A.1.4 hold with E| Sg(%_—E(‘@_))dRs\P =
O(1). Moreover assume an R-valued process (ki)i=o to be predictable, for all t = 0
bounded from above and below, such that by := k(1 + R,_)~", 8> 1/2. Then

< 00O a.Ss.

|| 0utvie ~ BV par

Proof. From the proof of Lemma it follows

2

| f:c bo (Vs — B(V, ))dR,
< (21 [ v~ B ar e+ ([ (B [ i - BVNRE) a0
+ 38| b, L(VT_ - IE(VT_))dRT]OOH2>. (A1)

The first term on the right hand side of (A.1l) clearly tends to zero. The second one
is bounded by

([ (&1 [ v~ v par?) s

S 5 1/2 o0
< sup (E| j (Vi ~ BV, )R, ?) f dby| < oo.
] 0 0

s€[0,00

Finally
E|[o., L(VT_ ~E(VO)dR], [

0
< f E2(1+ Ry_)"#2E|V,_ — E(V,_)|*(AR,)*dR?
0

< sup [RE|V.- ~BOLP| | (14 R *(ARFdRS
] 0

s€[0,00

o0
< CJ (1+ R,)2PdR, < »
0

completes the proof. O
Lemma A.1.5. Let as := a(l + Rs_)~* with R, e VT nP, Ry = 0 and a € (0,1].
Then Sgo a’AR,dR, < o0 implies

Q0
f (1+ R, ) ' “dR, < o for any € > 0.
0
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Proof. 1t0’s formula yields

t
f (1+ R,_)"'"“dR,
0

= LRy Ry

- ¥ R e R 0 RO R - RO

O<s<t

The first term tends to %(1 + Ro)~¢. A Taylor expansion of the second term with
(s €10,1] and t — oo yields

Z{%((H—RS) (1+ Ry ) (1+ R,_ 6—1(R5—R5_)}

0<s<oo
(AR,)?
1+ Rs— + CSAR >2+€

(ﬁi)lam % (i)

0<s<oo
1
a2

= e+1

N

1
= 2(6 +1) 2AdeRg < .

h

]

Lemma A.1.6. Let X be a semimartingale and Y be a predictable process of finite
variation. Then

t
(X, Y], = J AY,dX,.
0

Proof. The proof is given in Jacod et al. [I8, Proposition 1.4.49]. O

The following conditions are needed to show an almost L2-convergence rate of the
Robbins-Monro algorithm. (C.f. Theorem [8.1.1])

Assumption A.1.1.
e f:R?— R has a Lipschitz-continuous gradient.
o There exists an z* with V f(z*) = 0.

e The processes (as)s=0 and (cs)s=0, which the statistician has to choose, are left-
continuous and satisfy

CLS,CS>O asacslo

o0 (o8]
J a,dR, = o0 J a,csdRg < 0.
0 0
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e Foreveryie{l,...,d} and x € R, we have

d[So Mz' (dta Z)]s
dR '

o0 a2 hu(Z _) -
s s 25) R here hit(z) =
L 21412 < o0, where hi(z)

o [f the process (Rs)s=o is not continuous, then the following condition should also
hold:

0
J a?AR,AR? < .
0

Theorem A.1.2 (Almost L?-convergence rate of the Kiefer-Wolfowitz algorithm).
We assume the existence of a positive, deterministic, monotonously increasing process
(St)i=0 with Sy 1 o and Si|Z;| — 0 a.s. for Z defined in the Kiefer-Wolfowitz
algorithm . Let Assumption be valid. Assume that f is two or three times

differentiable at z* with a continuous Hessian around z* and

3 |z <S= sup |h(z)] < K a.s.
i,5€{1,...,d} 0<S<on 0<K<o0 t€[0,00)

as well as

0 2
f —dR, < w0 a.s.

2
o Cs

In the case a < 1, we assume that the Hessian of f is positive definite at z*, and in

the special, yet important, case o = 1 we further stipulate \py, > %, where Amin

denotes the minimum of the eigenvalues of the Hessian. Then, for all € > 0, there
exists a process (Yy)i=o such that

P[thzZt]>1—e
t=0

and
E|Y; - =*|* = O((1 + R,)")
with
B :=max{l—a—2(p—1)y,1—2a+ 2y}, if f is p times differentiable at z*
where p € {2, 3}.
Proof. This theorem has been shown by Schnizler [37, Theorem 3.1]. O

Theorem A.1.3 (Davis’ inequality). Let T be a stopping time and M € Mye with
My = 0. Then there exist constants ¢ and C' that are independent of T' such that

cE[M, M1Y? < Esup |M,| < CE[M, M]}>.

s<T
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Proof. The proof can be found in the book of Liptser and Shiryayev [23, Ch. 1.5]. O

Theorem A.1.4 (Special case of the Lenglart-Rebolledo inequality). Let X and Y
non-negative, F-adapted and cadlag (right continuous with left limits) processes, and
Xo =Yy =0,Y € V. Let Y dominate the process X in the sense that for each
stopping time T

EX, < EY,.

If, in addition the process Y is predictable, then for each stopping time T with P(T <
) =1 a.s. and all numbers a >0, b >0

1
P (sup X = a> —E[Yr A b] + P(Yy = b).

t<T a
Proof. The proof can be found in [23, Theorem 3, p. 66]. O

Theorem A.1.5. Let A be a process of finite variation with Aqg = 0 with locally
integrable total variation. Then there exists one and only one predictable process
A of finite variation with Ay = 0 with locally integrable total variation, such that
A— A e M. or equivalently EA, = EA. for any stopping time 7.

Proof. The proof can be found in [23, Theorem 1.6.3]. O

Remark A.1.2. A process A from the previous theorem is also called compensator of
A.

Definition A.1.1. Let (Q, F,F,P) be a stochastic basis with F = (F;);>0 and P(TF).
The predictable o-field is the o-field on 2 xR, that is generated by all right-continuous
processes (considered as mappings on Q2 x R;). By (E, &) we denote a Lusin space,
i.e. E'is a Borel subspace of a compact metric space, and £ the corresponding Borel
o-algebra. Furthermore we use the notations Q:=QxR, xE, F:= FRBR,)®E
and P:=PQ®E.

As a random measure on Ry x E we define the family p = {u(w;dt,dz) | w e 2}
of non-negative measures pu(w;.) on (Ry x E,B(R;) ® &) where w € 2, such that
p(w; {0} x E) = 0.

Let X = X(w,t,z) be a non-negative F-measurable function. Then for w € Q and
t € R, we can define the Lebesgue integral (X = u); = S[O,t]xE X(w,s,z)u(w;ds,dx).

A random measure p is called predictable, if the process X = p is predictable for
every predictable function X.

Let X be an adapted cadlag Ri-valued process. Then, according to [I8, Proposition
I1.1.16], we can define an integer-valued random measure, called jump measure, on
R, x R? by setting

M(W, dta dLU) = Z ]l{AXS(w)#O}e(s,AXS(w)) (dtu d(L’),

s>0

where €, denotes the Dirac measure at point a.
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For every measure y and probability measure P we can define the Doléans measure
M} on (Q, F), by

P . .
ME (dw, dt, dz) := P(dw)p(w; dt, dz).

For every non-negative F-measurable function X (w,t, ) define
P - P —
MP(X) = L X (w, £, 2) M (dw, dt, dz) = E(X » 1)

Furthermore we define that p belongs to f/;; if ME(]IQ) <0, Q,ePand Q, 1 Q. A
predictable random measure v is called compensator of a random measure vV if for
any non-negative P-measurable function X = X (w,t,z) we have M (X) = MJ(X).
According to [23, Theorem I1.3.2.1], each random measure p € V5 possesses the unique
(P-a.s.) compensator v.

Let X = (Xy, F) and X" = (X}, F/), n > 1, be semimartingales, S a non-empty

subset of R,. Then the expression X" 4r09),

X denotes the weak converge of a
sequence of distributions of vectors (X7*,..., X' ), n > 1 to the distribution of a

vector (Xy,,...,X;,,) for each finite subset {ti,...,t,} € S, while the expression
xn YO, (G-stable) means that

lim EEA(X, ..., Xp. ) = BER(Xiy, ., Xa,,)

holds for every bounded function h(xy,...,z,,) that is continuous in all variables

(x1,...,2,) and for each bounded G-measurable random variable £, where G is a

ds (S
sub-o-algebra of F. If S consists of a single point S = {¢;}, then instead of 4B, we
write 2)’ which means convergence of random variables in distribution.

Theorem A.1.6 (Central Limit Theorem). Let X" = (X', F}') € M}, X =0,
n =1, S a nonempty subset of R, G < ﬂ@l F& and conditions

(1) 2*Ljg=g * 1} 50, forall6e (0,1 and allt€ S (Lindeberg-type condition),

(II) [X"|: 5 [X)s, for allte S (variance-type condition),

hold. Then
xn 45,k (G-stable).
Proof. The proof can be found in |23 Theorem I1.5.5.4]. ]

Theorem A.1.7. Let (2, A,IP) be a probability space with o filtration F = (Fi)i=o0
satisfying the usual conditions. Moreover let M = (Mt)tzo be a cadlag d-dimensional
martingale and (a;)i=0 a family of invertible d x d matrices. Let the following condi-
tions hold, as t — co:

(a) |a:]| =0
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(b) E <Sup0<8<t HthMSH) —0

(¢c) a[M, Ml 55 .

Then the random vector a; M, converges A-stable to the Gaussian distribution N(0, %)
as t — o0.

Proof. Theorem and proof are given in a paper of Crimaldi and Pratelli [7, Theorem
2.2]. 0
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Nomenclature

D = (Dt)t>0
W= (Wt)t>0
Mioe
M

M

Re
Ry
AX,
X -}

A randomization process or a deterministic disturbance function
Brownian motion

local martingales

locally square integrable martingales

a locally square integrable martingale representing the observation
noise in [Ker-Rand-1] and [Ker-Rand-2]

inner product of the Euclidean space R?

quadratic variation of the process X

norm of the Euclidean space R?

covariation of the processes X and Y

predictable quadratic variation of the process X

predictable covariation of the processes X and Y

purely continuous part of the local martingale M (note M¢ 1 M¢?)
purely discontinuous part of the local martingale M (note M¢ L
M9

continuous part of the process R

sum of all jumps of the process R = (Rs)s>0 up to time ¢

jump height of the process X = (Xj)s=0 at time ¢

the set of all events such that X, exists and is a finite random
variable

left continuous version of X;, whereas X is a process

gradient of the function f at x

stochastic exponential of the process M

Landau symbol

Landau symbol

expectation value

probability measure

process Z = (7)o stopped at time T

177



178 ‘ Nomenclature

|| Gauss bracket

max maximum

min minimum

sup supremum

inf infimum

LR convergence in probability

L, convergence in distribution

~ asymptotically equal

P set of predictable processes

V set of real-valued processes that are cadlag, adapted, starting at

zero with paths of finite variation on compacts

\Zas set of processes belonging to V with non-decreasing paths
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