Complex Singular Spectrum Analysis of Earth Orientation Time Series

Masterarbeit im Studiengang
Geodäsie und Geoinformatik
an der Universität Stuttgart

Yang LI

Stuttgart, Juli 2018

Betreuer: Prof. Dr.-Ing. Nico Sneeuw
Universität Stuttgart
Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Stuttgart, 20.07.2018
Ort, Datum

Yang L2
Unterschrift
Abstract

The separation of geodetic time series into a sum of a small number of independent and interpretable components is of great importance. Approaches such as Singular Spectrum Analysis (SSA) and Multi-channel Singular Spectrum Analysis (MSSA) have shown their advantage in this field.

The aim of this thesis is to develop theoretical aspects of Complex Singular Spectrum Analysis (CSSA) technique and demonstrate that CSSA can be considered as a powerful method of time series analysis. CSSA is a non-parametric method which extends SSA into bivariate time series analysis technique with complex values.

Using EOP time series in the time period spanning from 1960 to 2009, Chandler wobble (CW), annual wobble (AW) as well as a non-linear trend are successfully separated in both x and y direction by SSA and MSSA. This paper provides evidence for CSSA when performing tasks of EOP time series decomposition. CSSA functions quasi-equivalent with SSA and MSSA of polar motion time series analysis.

Key Words: SSA; MSSA; CSSA; EOP time series
Contents

Abstract i

1 Introduction 1
 1.1 Motivation ... 1
 1.2 The Earth Orientation Parameters (EOP) time series 2
 1.3 Window length choice of window length on polar motion series 4
 1.4 Structure of thesis ... 5

2 Singular Spectrum Analysis 7
 2.1 Background .. 7
 2.2 Methodology .. 8
 2.2.1 Decomposition ... 8
 2.2.2 Reconstruction ... 9
 2.3 SSA of polar motion time series in x direction 10
 2.3.1 Decomposition first 10 modes 11
 2.3.2 Reconstruction main components 14
 2.4 SSA of polar motion time series in y direction 16
 2.4.1 Decomposition first 10 modes 16
 2.4.2 Reconstruction main components 19

3 Multi-channel Singular Spectrum Analysis 21
 3.1 Background .. 21
 3.2 Methodology .. 22
 3.2.1 Embedding ... 22
 3.2.2 Covariance matrix 22
 3.2.3 Reconstruction ... 23
 3.3 MSSA of bivariate polar motion time series 23
 3.3.1 Separation of x_p time series 24
 3.3.2 Separation of y_p time series 29

4 Complex Singular Spectrum Analysis 35
 4.1 Background .. 35
 4.2 Methodology .. 36
 4.2.1 Generation ... 36
 4.2.2 Decomposition ... 36
 4.2.3 Reconstruction ... 36
4.2.4 Separation ... 36
4.3 CSSA of time series $x_p + iy_p$... 37
 4.3.1 Separation of real part x_p ... 37
 4.3.2 Separation of imaginary part y_p 41
4.4 CSSA of time series $y_p + ix_p$... 45
 4.4.1 Separation of imaginary part x_p 45
 4.4.2 Separation of real part y_p .. 49
4.5 Comparison CSSA on $x_p + iy_p$ with $y_p + ix_p$ 52
 4.5.1 Comparison of x_p main components 53
 4.5.2 Comparison of y_p main components 54

5 Summary and outlook ... 55
 5.1 Comparison CSSA with SSA and MSSA 55
 5.1.1 Reconstructed modes comparison 55
 5.1.2 Main components comparison 56
 5.2 Conclusion .. 59
 5.3 Outlook ... 59

Bibliography ... 61
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW</td>
<td>Annual Wobble</td>
</tr>
<tr>
<td>CSSA</td>
<td>Complex Singular Spectrum Analysis</td>
</tr>
<tr>
<td>CW</td>
<td>Chandler Wobble</td>
</tr>
<tr>
<td>EOF</td>
<td>Empirical Orthogonal Functions</td>
</tr>
<tr>
<td>EOP</td>
<td>Earth Orientation Parameters</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Component Analysis</td>
</tr>
<tr>
<td>LOD</td>
<td>Length Of Day</td>
</tr>
<tr>
<td>MSSA</td>
<td>Multivariate Singular Spectrum Analysis</td>
</tr>
<tr>
<td>RMS</td>
<td>RootMean Square</td>
</tr>
<tr>
<td>PC</td>
<td>Principal Component</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>SSA</td>
<td>Singular Spectrum Analysis</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>UT1</td>
<td>Universal Time</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Motivation

The purpose of time series analysis is to determine some of the system’s key properties which can then help understand and predict the system’s future behavior by quantifying certain features of the time series (Ghil et al., 2002). In the geodesy, data-driven methods, such as Empirical Orthogonal Function (EOF), Principal Component Analysis (PCA) and Independent Component Analysis (ICA), are used to smooth or model the geodetic time series (Dong et al. (2006); Rangelova et al. (2007); Forootan and Kusche (2012)). Singular Spectrum Analysis (SSA) in its turn is a generalization of PCA and Multi-channel Singular Spectrum Analysis (MSSA) is known as an Extended EOF analysis (Zotov and Shum, 2010).

Over the last two decades, SSA and MSSA have proven their usefulness in the temporal and spatial-temporal analysis of short and noisy time series in several fields of the geosciences and of other disciplines (Ghil et al., 2002).

The starting point of SSA and MSSA is to embed a time series in a vector space, to represent it as a trajectory matrix that generate the time series numerically (Ghil et al., 2002). But SSA can be just used of uni-variate time series analysis. And trajectory matrix for MSSA is too complex. So introduce CSSA whose trajectory matrix is simple and can analyze multivariate time series.

It is worth mentioning these two methods have been shown to be successful in decomposition of polar motion time series into a sum of trend, Chandler wobble, annual wobble and residual.

This thesis is trying to find out a new method, CSSA, to analyze bivariate time series by modelling them as a single-channel complex valued time series. It is important to note that CSSA is used for the first time to analyze polar motion observations. This thesis want to prove that CSSA performs well in multivariate geodetic time series.
1.2 The Earth Orientation Parameters (EOP) time series

The Earth Orientation Parameters (EOP) time series consists of polar motion in x direction x_p and y direction y_p, Universal Time (UT1), Length of Day (LOD), and celestial pole offsets of precession and nutation. This thesis will analyze polar motion observations from the year 1960 to 2009 both in x and y direction in time domain. It is shown as following:

![Polar motion time series](image)

Figure 1.1: Polar motion from 1960 to 2009 in x and y direction

Polar motion (or wobble) is the moving of the Earth’s rotation axis with respect to the conventional Earth-fixed reference system. Polar motion plays an important role in our understanding of the processes that drive changes in the Earth’s rate of rotation to change, solid Earth, atmosphere, and oceans (Malkin and Miller, 2010; Smylie et al., 2015; Höpfner, 2003). It has three major components:

1. A free oscillation called Chandler wobble with period about 435 days.

2. Annual oscillation (annual wobble) forced by the seasonal displacement of air and water masses, beating which each other, give the characteristic pulsating shape of the motion (Vondrák and Richter, 2004).

3. Trend.
The annual oscillation proceeds in the same direction as Chandler wobble with nearly a constant amplitude of about 0.1 arcsec. The mean pole has an irregular drift in the direction to the 80°W (Vondrák and Richter, 2004).

This secular motion is mainly due to glacial isostatic adjustment in Canada and Scandinavia, but sea-level changes, large-scale tectonic movements, mass shifts in the Earth’s interior and polar ice melting may also contribute to this trend. It is also called polar wander (Torge and Müller, 2012).

Meanwhile there are also some other free motions in addition to Chandler wobble, due to misalignments of rotational axis and figure axes related to the flattened Earth’s mantle, and inner and outer core (Torge and Müller, 2012).

These components for free motions will be seen together as residual. There has been some research about the decomposition. These decompositions for polar motion in x direction is shown as following:

Figure 1.2: Polar motion decomposition in x direction.

Decomposition in y direction is shown as following:

![Polar motion decomposition in y direction.](https://www.iers.org/IERS/EN/Science/EarthRotation/Ypole.html

1.3 Window length choice of window length on polar motion series

As mentioned in section 2, the window length L is the only parameter in the decomposition algorithms of embedding step. So it is really important to choose the proper window length. The selection depends on the objective of the study and on preliminarily information about the time series.

This selection of small values of L has the advantage of increasing the confidence in the results when the objective of the analysis present high frequencies (Oropeza and Sacchi, 2011a). Other authors have said that L has to be sufficiently large so that the main behavior of the time series to analyze is content in each lagged vector (Golyandina et al., 2001) and theoretical results tell us that L should only be large enough but smaller than $N/2$ (Hassani, 2007).

Polar motion time series has two periodic oscillations components with an integer period, for CW with periods of about 435 and AW with 365 days (Höpfner, 2003). Then it is advisable to take the window length proportional to the periods in order to get better
separability of these periodic components (Hassani, 2007). For polar motion time series analysis, in order to separate the oscillations components (CW and AW), also meanwhile the trend, the most appropriate window length L equals 12 to 13 years both in x direction and in y direction (Cui, 2015). As we know from the EOP data set, there are 20 observations per year, so the size of the window length in this thesis will be chosen as 240.

1.4 Structure of thesis

Chapter 1 gives motivation of the thesis with the study history and the application of the methods and introduction of Earth Orientation Parameters (EOP) time series. Then it gives the definition and content of polar motion which is the part we will analyze. What’s more, the explanation and pre-knowledge of polar motion are really helpful for the analysis.

The rest of this thesis is organized as follows. In Chapter 2, the introduction for SSA is given first with definition, study history and the usefulness. Then the algorithm of SSA is explained in mathematical formulas. What’ more, applying SSA of polar motion time series in x direction and then in y direction. At last, we will do some discussions for the results.

On the other hand, Chapter 3 introduces the expansion of SSA to multiple dimensions called MSSA. Background and algorithm of MSSA are given. And it shows the results for analyzing the polar motion time series both in x and y direction with MSSA. Finally, it gives the discussions on analysis.

Chapter 4 shows background and algorithm of Complex Singular Spectrum Analysis (CSSA) which is expansion of SSA in the complex field. Then it gives results of separating main components from polar motion time series with CSSA and does some discussions on the results got by different generations.

Chapter 5 compares the methods SSA, MSSA with CSSA and show the difference in figures. Then conclusion can be given by the comparison of this three methods. At last, it gives the conclusion and outlook of the whole thesis.
Chapter 2

Singular Spectrum Analysis

This chapter gives the background for Singular Spectrum Analysis (SSA) (Section 2.1) with its history and application, the basic algorithms for SSA with further details on the four main steps (Section 2.2), as well as the emphasizing in its application for decomposing polar motion time series that demonstrate its effectiveness in extracting main components (Section 2.3) and analyzing with amplitude and frequency got by fitting.

2.1 Background

In time series analysis, SSA is a nonparametric spectral estimation method. SSA can be an aid in the decomposition of time series into a sum of a small number of independent and interpretable components such as a slowly varying trend, oscillatory components and a structureless noise, each having a meaningful interpretation (Hassani, 2007). The name “Singular Spectrum Analysis” relates to the spectrum of eigenvalues in a Singular Value Decomposition (SVD) of a covariance matrix, and not directly to a frequency domain decomposition.

SSA are called the Caterpillar method (Golyandina et al., 2001) and Cadzow filtering (Trickett, 2008) in different fields. All this names of methods arise from different fields, but their methods are the equivalent. For instance, the Caterpillar method arises from time series analysis (Nekrutkin, 1996) and the Cadzow method was proposed as a general framework for signal enhancement, denoising images (Cadzow, 1988) and application for random noise attenuation (Trickett, 2008).

Areas where SSA can be applied are very broad: climatology, marine science, geophysics, engineering, image processing, medicine, econometrics (Golyandina et al., 2001). Hence different modifications of SSA have been proposed and different methodologies of SSA are used in practical applications such as trend extraction, periodicity detection, seasonal adjustment, smoothing, noise reduction (Golyandina et al., 2001). It is an important feature of SSA that the trends need not be linear and that the oscillations can be amplitude and phase modulated (Ghil et al., 2002).
The application of SSA consists of two complementary stages with four main steps – embedding, Singular Value Decomposition (SVD), grouping and anti-diagonal averaging. In the next section, the methodology will be explained in detail.

2.2 Methodology

Consider the real-valued time series \(Y = (x_1, x_2, x_3, \cdots, x_N) \) of length \(N \). The main purpose of SSA is to decompose the original time series into a sum of independent and interpretable components such as a slowly varying trend, periodic or quasi-periodic components and a structureless noise (Hassani, 2007).

This is followed by two complementary stages: decomposition and reconstruction. In the first stage, we decompose the time series in two steps. The first step is embedding original time series \(Y \) with lagged vector \(X_i \) into the trajectory matrix \(X \). The second step singular value decomposition represents trajectory matrix \(X \) as a sum of bi-orthogonal elementary matrices \(X_i \) whose rank is one. They will turn polar motion time series into the trend, Chandler wobble, annual wobble and residual according to their singular values. Reconstruction is the second stage. This stage includes two separate steps: grouping and anti-diagonal averaging. We reconstruct the original time series by grouping to make subgroups of the decomposed trajectory matrix and anti-diagonal averaging to reconstruct the new time series from the subgroups. Then it gives algorithm of the SSA technique.

2.2.1 Decomposition

1. First step: Embedding

 In the Basic SSA algorithm applied to a one-dimensional time series
 \(Y = (x_1, x_2, x_3, \cdots, x_N) \) of length \(N \). We map the time series \(Y \) into the lagged vectors, \(X_i = (x_i, x_{i+1}, x_{i+2}, \cdots, x_{i+L-1}) \).

 Then build trajectory matrix (Hankel matrix) with equal values on anti-diagonals:

 \[
 X = \begin{pmatrix}
 x_1 & x_2 & \cdots & x_L \\
 x_2 & x_3 & \cdots & x_{L+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_K & x_{K+1} & \cdots & x_N
 \end{pmatrix},
 \]

 (2.1)

 Where \(L \) is lag window length which is the single parameter of the embedding, and \(K = N - L + 1 \), with \(L < (N + 1)/2 \). Embedding is a standard procedure in time series analysis (Hassani, 2007).
2.2. Methodology

2. Second step: SVD
Let $S = XX^T$, $\lambda_1, \lambda_2, \ldots, \lambda_L$ are eigenvalues of the matrix S. $\sigma_1, \sigma_2, \ldots, \sigma_L$ are the singular values of X in the decreasing order and $\sigma_i = \sqrt{\lambda_i}$. Let $d = \max \{i : \lambda_i > 0\} = \text{rank}X$, U_1, U_2, \ldots, U_d be the corresponding left eigenvectors, and $V_i = X^T U_i / \sigma_i, i = 1, 2, \ldots, d$ be right singular vectors. Then the SVD of the trajectory matrix can be written as:

$$X = X_1 + X_2 \cdots X_d,$$

(2.2)

where $X = U \Sigma V^T = \sum_{i=1}^d \sigma_i U_i V_i^T, i = 1, 2, \ldots, d$. U_i (called ‘factor empirical orthogonal functions’ or EOFs) and V_i (called ‘principal components’) stand for the left and right eigenvectors of X. The collection $(\Sigma_i, U_i$ and V_i) is called $ith X$ eigen-triple(abbreviated as ET).

2.2.2 Reconstruction

1. First step: Grouping The grouping step corresponds to splitting the elementary matrices X_i into several groups and summing the matrices within each group (Has-sani, 2007). With a set of indices $I = \{i_1, i_2, \ldots, i_p\}$, the matrix $X_I = \sum_{i=p}^m X_i$. The spilt of the set of indices $J = \{1, 2, \ldots, d\}$ into m disjoint subsets I_1, I_2, \ldots, I_m, m depends on the type of time series. Each will reflect the properties of initial data components which have a meaningful interpretation. The representation is as follows:

$$X = X_{I_1} + \cdots X_{I_m}.$$

(2.3)

Eigentriple grouping is the procedure to choose the sets I_1, I_2, \ldots, I_m.

2. Second step: Anti-diagonal averaging
Each matrix $X_{i,j}$ would be transformed into a new time series from the subgroups of length N at this step. Z is set as the vector as $Z^{(i)} = \left(z^{(i)}_1, z^{(i)}_2, z^{(i)}_3, \ldots, z^{(i)}_N\right)$, where k is smaller than L. $Z^{(i)}$ is corresponds to the matrix X_{I_i}. Obtain the series by the averaging along anti-diagonals as:

$$z^{(i)}_k = \begin{cases} \frac{1}{k} \sum_{j=1}^k x_{j,k-j+1} & 1 \leq k < L \\ \frac{1}{L} \sum_{j=1}^L x_{j,k-j+1} & L \leq k < K + 1 \\ \frac{1}{N - k + 1} \sum_{j=K-k+1}^{N-k+1} x_{j,k-j+1} & K \leq k < N \end{cases}$$

(2.4)

Anti-diagonal averaging is applied to produce a reconstructed series $y = (y_1, y_2, y_3, \ldots, y_N)$. In this way, the initial series $Y = (y_1, y_2, y_3, \ldots, y_N)$ can be decomposed into a sum of the reconstructed series.
The initial time series $Y = (y_1, y_2, y_3, \cdots, y_N)$ can be reconstructed by

$$y_n = \sum_{i=1}^{m} z_{n}^{(i)} (n = 1, 2, \cdots, N).$$

(2.5)

2.3 SSA of polar motion time series in x direction

Originally, SSA utilized a trajectory matrix of time series in an eigen-spectra decomposition (Vautard and Ghil, 1989). SSA has also been employed to separate between signal and noise component not only for biomedical data but also for economic data (Hassani et al., 2012), estimate time series for signal reconstruction (Golyandina and Stepanov, 2005), in geophysics to study climatic records (Ghil et al., 2002; Chen et al., 2013; Dong et al., 2006; Rangelova et al., 2007), do the seismic data denoising and reconstruction (Oropeza and Sacchi, 2011a) and polar motion time series analysis (Miller and Malkin, 2013). However, our focus is its application to polar motion time series analysis in the time period spanning from 1960 to 2009 both in x direction and in y direction on separating main components for trend, Chandler wobble, annual wobble and residual.

x_p is polar motion time series in x direction. For polar motion time series analysis, in order to separate the oscillations components (CW and AW), also meanwhile the trend, the most appropriate window length L equals 12 to 13 years both in x direction and in y direction (Cui, 2015). So applying SSA method on x_p in these 4 steps with window length of $L = 240$. We choose the first 10 modes to analysis at the beginning to separate the main components for x_p.
2.3. SSA of polar motion time series in x direction

2.3.1 Decomposition first 10 modes

Applying SSA method on x_p time series. As a result, modes according to singular values are in the decreasing order. So there shows decomposition result of the first 10 modes. The plot is as following:

![SSA of x_p on modes 1--10](image)

Figure 2.1: Reconstructed modes 1–10 of x_p by SSA
In order to separate the reconstructed modes into different components, plot x_p amplitudes of oscillatory components as following:

As shown in the figure 2.2, the reconstructed mode 1, mode 2, mode 3 and mode 4 represent the main oscillatory components. In order to show the amplitude and frequency, use the curve fitting method ‘Sum of Sine’ (in cftool of Matlab) to fit the main oscillatory components in number of terms of 1. The fitting equation is shown as: $f = a_1 \sin(b_1 t + c_1)$, where a_1 is amplitude, b_1 is frequency, c_1 is phase and t is time. As a result, we get the curve fitting parameters as follows:

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode 1</td>
<td>0.07802</td>
<td>5.301</td>
<td>-44.83</td>
</tr>
<tr>
<td>mode 2</td>
<td>0.0744</td>
<td>5.304</td>
<td>-39.79</td>
</tr>
<tr>
<td>mode 3</td>
<td>0.04549</td>
<td>6.289</td>
<td>-0.9006</td>
</tr>
<tr>
<td>mode 4</td>
<td>0.04508</td>
<td>6.289</td>
<td>-2.491</td>
</tr>
</tbody>
</table>

Figure 2.2: x_p amplitudes on SSA reconstructed modes
1. Even if we do not have the priori information about these data, it is possible to conclude that the first four modes reconstructions corresponding to the first four singular values represent the main oscillatory components of the time series.

2. It is easily to figure out from figure 2.2 that both of them are the strongest components (mostly from 0.07 [arcsec] to 0.1 [arcsec]) among all Reconstructed mode. Besides, from the table below, it is obvious that reconstructed mode 1 and mode 2 for \(x_p\) have almost the same curve fitting frequency (5.301 [rad/year] for mode 1 and 5.304 [rad/year] for mode 2) and amplitude (0.07802 [arcsec] for mode 1 and 0.0744 [arcsec] for mode 2). As a result, the reconstructed mode 1 and mode 2 are seen as the same component and grouped into one component.

3. \(x_p\) reconstructed mode 3 and mode 4 are also oscillatory components but with smaller amplitude compared with mode 1 and mode 2. The amplitude curves of mode 3 and mode 4 are close to 2.2. The amplitudes are from 0.04 [arcsec] to 0.06 [arcsec]. As shown in 2.1, the frequency of mode 3 is 6.289 [rad/year] and the same as mode 4 which is higher than mode 1 and mode 2. As a result, reconstructed mode 3 and mode 4 are considered as the same oscillatory reconstruction component but different from the first two.

4. Reconstructed mode 5 for \(x_p\) in 2.1 is quite different from the rest of the first 10 modes. It is not a periodic signal but a trend. Meanwhile it is quite strong with continuous semi-linear feature, so it should be seen as one main component.

5. Reconstructed mode 6 for \(x_p\) is not trend but oscillation. But the amplitude is obviously smaller than the mode 1 to 4 and the period is not recognized. So it is neither periodic time series nor trend. So as the other modes. So it is not meaningful to study on these reconstructed components. The amplitude is smaller than 0.02 [arcsec] corresponding to the small singular values. They are neither periodic time series nor trend. As for the polar motion time series analysis, it is not important to study on these reconstructed components. So we just regard all the left part without mode 1 to mode 5 as residual.
2.3.2 Reconstruction main components

Group the x_p reconstructed mode 1 and mode 2 as CW, mode 3 and mode 4 as AW, other modes as residual. Reconstructed mode 5 is seen as trend. The main components are shown as:

![Figure 2.3: Main reconstructed components for x_p by SSA](image)

Figure 2.3: Main reconstructed components for x_p by SSA
2.3. SSA of polar motion time series in x direction

CW and AW are reconstructed by grouping modes. In order to analyze them, we got the curve fitting parameters by curve fitting method with equation 2.3.1.

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.1524</td>
<td>5.306</td>
<td>−42.39</td>
</tr>
<tr>
<td>AW</td>
<td>0.09057</td>
<td>6.289</td>
<td>−1.684</td>
</tr>
</tbody>
</table>

1. The first sub-figure of figure 2.3 is the original polar motion time series in x direction. The second one from reconstructed mode 5 of x_p is semi-linear and non-periodic. It is recognized as trend.

2. The sum reconstructed mode 1 and mode 2 is seen as CW in the polar motion time series analysis. The result is shown in the third sub-figure below. The fitting frequency of CW for x_p is 5.306 [Hz]. The equation to calculate the period is: $T = \frac{2\pi}{f}$. So period of CW is 1.184166 [year] which is 432.457 days. As explained polar Motion time series in 1, the period of CW is about 435 days (Höpfner, 2003). It is almost the similar to the period of CW, so the reconstruction of the CW by SSA is credible.

3. The sum of x_p reconstructed mode 3 and mode 4 are shown in the fourth sub-figure. It is seen as the AW. Its amplitude by fitting is 0.09057 [arcsec] and period calculated by equation 2 is 0.999 [year]. As we know, the period of AW is 1 [year] and the amplitude is 0.1 [arcsec] (Höpfner, 2003). So SSA is a feasible method for separating the AW from the x_p polar motion time series.

4. Residual of x_p is shown in the last one. It is the sum of the left reconstructed modes whose amplitude is smaller than 0.02 [arcsec]. They are not periodic time series or a trend. So we see them as residual.
2.4 SSA of polar motion time series in \(y \) direction

\(y_p \) is the polar motion time series in \(y \) direction. Applying SSA methods on \(y_p \) with the 4 steps with the window length of \(L = 240 \). As we know that singular value in the decreasing order, just choose the first 10 modes to analysis at the beginning to separate the main components.

2.4.1 Decomposition first 10 modes

Applying SSA on \(y_p \) time series and show the result of the first 10 modes corresponding to the singular values. The plot is as following:

![SSA of \(y_p \) on modes 1--10](image)

Figure 2.4: Reconstructed modes 1–10 of \(y_p \) by SSA
2.4. SSA of polar motion time series in y direction

In order to select the main components from the all reconstructed modes, we plot the amplitudes of the oscillatory components. The y_p amplitude of oscillatory modes shows as following:

![Graph showing oscillation amplitudes for y_p](image)

Figure 2.5: y_p amplitudes on SSA reconstructed modes

In order to show the amplitude and frequency of y_p main oscillatory components, we use the same curve fitting method of 2.3.1 as x_p. As a result, we get the fitting parameters as following:

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode 2</td>
<td>0.077752</td>
<td>5.305</td>
<td>−40.17</td>
</tr>
<tr>
<td>mode 3</td>
<td>0.07354</td>
<td>5.303</td>
<td>−41.62</td>
</tr>
<tr>
<td>mode 4</td>
<td>0.04198</td>
<td>6.293</td>
<td>−8.397</td>
</tr>
<tr>
<td>mode 5</td>
<td>0.04031</td>
<td>6.287</td>
<td>4.595</td>
</tr>
</tbody>
</table>

Table 2.3: Oscillatory modes’ fitting parameters for y_p by SSA
1. It can be easily figure out that the first reconstructed mode with the biggest singular value represents trend.

\[y_p \text{ reconstructed mode 1 in figure 2.4 is semi-linear with a strong feature for continuous growing up. It is easy to differ the mode 1 from the rest of the first 10 modes. So reconstructed mode 1 is seen as the main component for trend. The following four modes reconstruction represent the main oscillatory components of } y_p \text{ time series.} \]

2. The amplitude curve in figure 2.5 of reconstructed mode 2 and mode 3 for \(y_p \) looks quite similar. It is obvious that they are the strongest components among all reconstructed modes. Fitting amplitude for mode 2 is 0.077 752 [arcsec] and the frequency is 5.305 [rad/year]. For mode 3, fitting amplitude is 0.073 54 [arcsec] and frequency is 5.303 [rad/year]. With almost the same oscillations and amplitude, we see them as one component and the reconstructed mode 2 and mode 3 can be grouped into one component.

3. In figure 2.4, reconstructed mode 4 and mode 5 for \(y_p \) are also oscillatory components like mode 2 and mode 3 but with smaller amplitudes. As shown in figure 2.3, the fitting amplitude for mode 3 and mode 4 are around 0.04 [arcsec] and frequency around 6.29 [rad/year]. As a result, they are considered as the same reconstruction component.

4. \(y_p \) reconstructed mode 6 in figure 2.4 is not trend but oscillation. The amplitude is obviously smaller than the mode 2 to 4 and the period is not recognized. So it is neither periodic time series nor trend. As for polar motion time series analysis, it is not important to study on these reconstructed components because of the small amplitude. So as the left reconstructed modes. So we just regard all the left part without mode 1 to mode 5 as residual.
2.4.2 Reconstruction main components

Reconstructed mode 1 for y_p is seen as trend. Group the mode 2 and mode 3 as CW, mode 4 and mode 5 as AW, other modes as residual. The main components are shown as:

![Main reconstructed components for y_p by SSA](image)

Figure 2.6: Main reconstructed components for y_p by SSA
CW and AW are reconstructed by grouping modes. In order to analyze them, fit by curve fitting method of 2.3.1 to get the fitting amplitude and frequency.

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.151</td>
<td>5.304</td>
<td>-43.99</td>
</tr>
<tr>
<td>AW</td>
<td>0.0822</td>
<td>6.29</td>
<td>-2.21</td>
</tr>
</tbody>
</table>

1. Original polar motion time series y_p shows in the first sub-figure of figure 2.6. The second one shows trend which is from reconstructed mode 1 for y_p. It is semi-linear and non-periodic. Compared with figure 2.2 the trend for x_p, the singular value for y_p is bigger so the slope of the trend is larger and the tendency in the figure is more obvious. This is verified by the original time series in the first sub-figure.

2. The sum of reconstructed mode 2 and mode 3 for y_p is shown in the third sub-figure. It is seen as CW in the polar motion time series analysis. We get the fitting amplitude and frequency by cftool within the equation of 2.3.1. Within the fitting frequency, calculate the period of CW by 2. Then we get the fitting period result for 1.184613 [year] which is 432.621 days.

3. The sum of reconstructed mode 4 and mode 5 for y_p is shown in the fourth sub-figure. It is seen as the AW. Its fitting amplitude is around 0.822 [arcsec] and period calculated by the equation 2 is 0.99892 [year]. It is an annual oscillation.

4. Residual of y_p is shown in the last one of the 2.6. The amplitudes for reconstructed mode 6 until the last mode are small. So we sum all the left reconstructed modes without the first 5 modes as residual. It is not periodic time series or a trend.

5. As we explain in 1, the period of CW is about 435 days (Höpfner, 2003). The fitting result of CW which is reconstructed by SSA method is 432.621 days. It is almost the same as the period of CW. The period of AW is 1 [year] and the amplitude is 0.1 [arcsec] (Höpfner, 2003). The fitting result of AW which is reconstructed by SSA method is 0.99892 [year]. The periods of AW are almost same. As a result, it is reliable to separate the CW and AW from polar motion time series by SSA method.
Chapter 3

Multi-channel Singular Spectrum Analysis

A significant improvement on the application of SSA in 2 arises from its expansion to multiple dimensions, which is called Multi-channel Singular Spectrum Analysis (MSSA) (Oropeza and Sacchi, 2011a). This chapter gives the background with its history and application for MSSA (Section 3.1), the basic algorithms for MSSA with further details in mathematical equations on the four main steps (Section 3.2), as well as the emphasizing in its application for decomposing polar Motion time series that demonstrate its effectiveness in extracting main components (Section 3.3) and some discussions.

3.1 Background

Multi-channel, Multivariate SSA (or MSSA), is a time series analysis method (Read, 1993). It is also known as an Extended Empirical Orthogonal Functions (EEOF) analysis (von Storch and Zwiers, 2002), is a generalization of the SSA over the multidimensional time series (Zotov and Shum, 2010), where the size of different univariate series does not have to be the same. They are both the extensions of classical PCA which is actually a special case of the MSSA when no time lags are introduced (Chen et al., 2013). The trajectory matrix of multi-channel time series consists of stacked trajectory matrices of separate times series. The rest of the algorithm is the same as in the univariate case. System of series can be forecasted analogously to SSA recurrent and vector algorithms (Golyandina and Stepanov, 2005).

MSSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trend, oscillatory patterns and noises (Groth and Ghil, 2011).

It has been applied to intraseasonal variability of large-scale atmospheric fields for predicting climate records (Mo, 2001). Besides, it shows the advantage of reconstruction and denoising on geodetic data (Zotov and Shum, 2010, Oropeza and Sacchi, 2011b and
3.2 Methodology

Consider the multi-channel time series $Y = x_d(n) : d = 1, \ldots, D, n = 1, \ldots, N$ be a multivariate time series with D channels of length N. There are three steps. The first step is embedding original time series Y with lagged vector $X_d(i)$ into the trajectory matrix X. The second step is building covariance matrix to get eigenelements for principal components. The second step is reconstruction of the time series. Polar motion time series can be separated into the trend, Chandler wobble, annual wobble and residual by MSSA. Then it gives algorithm for MSSA.

3.2.1 Embedding

We map time series $Y = x_d(n) : d = 1, \ldots, D, n = 1, \ldots, N$ into the lagged vectors, $X_d(i) = (x_d(i), x_d(i + 1), x_d(i + 2), \ldots, x_d(i + L - 1))$. Then build trajectory matrix (Hankel matrix) which is DM columns of length $N - L + 1$ with equal values on anti-diagonals as following:

$$
X = \begin{pmatrix}
 x_1(1) & x_1(2) & \cdots & x_1(L) & x_D(1) & x_D(2) & \cdots & x_D(L) \\
 x_1(2) & x_1(3) & \cdots & x_1(L+1) & x_D(2) & x_D(3) & \cdots & x_D(L+1) \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_1(K) & x_1(K+1) & \cdots & x_1(N) & x_D(K) & x_D(K+1) & \cdots & x_D(N)
\end{pmatrix},
$$

(3.1)

Where L is lag window length which is the single parameter of the embedding, and $K = N - L + 1,$ with $L < (N + 1)/2$.

3.2.2 Covariance matrix

1. Calculate the grand covariance matrix C_X,

$$
C_X = \frac{1}{N} X^T X.
$$

(3.2)

2. Diagonalized covariance matrix C_X,

$$
\Lambda = Q^T C_X Q.
$$

(3.3)

A diagonal matrix Λ contains the real eigenvalues λ_k of C_X, and a matrix Q whose columns are the associated eigenvectors e_k.

Golyandina and Stepanov, 2005) and decomposing the dynamic time series (Groth and Ghil, 2011).
3. Principal components

Projecting the trajectory X onto the eigenvectors,

$$A = XE,$$ \hspace{1cm} (3.4)

the entries of the PC matrix A can be written in a_k,

$$a_k (n) = \sum_{d=1}^{D} \sum_{l=1}^{L} x_d (n + l - 1) e_{dk} (l),$$ \hspace{1cm} (3.5)

with $k = 1, \ldots, DL$, and $n = 1, \ldots, N - L + 1$.

3.2.3 Reconstruction

$$r_{dk} (n) = \frac{1}{M_n} \sum_{l=L_n}^{U_n} a_k (n - l + 1) e_{dk} (l),$$ \hspace{1cm} (3.6)

where e_{dk} associated eigenvectors at d channel. The r_{dk} are referred to as reconstructed components and represent that part of channel x_d that corresponds to the eigenelement pair (λ_k, e_k). The values of the normalization factor M_n and the summation bounds L_n and U_n for the central part of the time series.

3.3 MSSA of bivariate polar motion time series

MSSA method is often applied to multi-components seismic data denoising and the missing values reconstruction ([Oropeza and Sacchi, 2011b]), to study gravity field ([Zotov and Shum, 2010]) and to forecast in the econometric field ([Zhigljavskya et al., 2008]). However, our focus is analyzing polar motion time series analysis x_p in x direction and y_p in y direction at the same time in the time period spanning from 1960 to 2009 by MSSA and separating main components as trend, CW, AW and residual for x_p and y_p.

3.3.1 Separation of x_p time series

Decomposition of first 10 modes

Applying MSSA method on x_p time series and plot the result of the first 10 modes corresponding to the singular values as following:

![Decomposition on modes 1–10 in x direction](image)

Figure 3.1: Reconstructed modes 1–10 of x_p by MSSA
In order to separate the reconstructed modes into different components, plot x_p amplitude of main oscillatory components as following:

![Figure 3.2: x_p amplitudes on MSSA reconstructed modes](image)

In order to show the amplitude and frequency, we use the same curve fitting method applied in MSSA to show main oscillatory components. As a result, fitting parameters as following:

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode 2</td>
<td>0.07741</td>
<td>5.306</td>
<td>−43.67</td>
</tr>
<tr>
<td>mode 3</td>
<td>0.0751</td>
<td>5.304</td>
<td>−38.48</td>
</tr>
<tr>
<td>mode 4</td>
<td>0.04566</td>
<td>6.289</td>
<td>−1.451</td>
</tr>
<tr>
<td>mode 5</td>
<td>0.04506</td>
<td>6.29</td>
<td>−2.99</td>
</tr>
</tbody>
</table>
1. It is obvious that reconstructed both mode 1 and mode 8 for x_p in figure.3.1 is trend. They are quite different from rest of the first 10 modes which are oscillation. Meanwhile they are quite strong with continuous semi-linear feature, so they should be the same main component for x_p.

2. From figure.3.2, we can see that reconstructed mode 2, mode 3, mode 4 and mode 5 are the main oscillatory components of time series x_p with stronger amplitudes. So we fit the curve with ‘cftool’ in Matlab to get fitting parameters shown in table.3.1.

3. As shown in figure.3.2, amplitudes for reconstructed mode 2 and mode 3 for x_p by MSSA are almost the same. Fitting frequency for mode 2 is 5.306 [rad/year] and for mode 3 is 5.306 [rad/year]. As a result, the reconstructed mode 2 and 3 can be grouped in one component.

4. x_p reconstructed mode 4 and mode 5 are also oscillatory components with nearby amplitudes. Their amplitudes are between 0.04 [arcsec] and 0.06 [arcsec]. As a result, they are considered as the same reconstruction component. Compared with reconstructed mode 2 and mode 3, the fitting amplitude are smaller and frequencies are higher. So reconstructed component for mode 4 and mode 5 are seen as the other different oscillatory component from the mode 2 and mode 3.

5. Reconstructed mode 6, mode 7, mode 9 and mode 10 for x_p are not trend but oscillation. But the amplitudes are obviously smaller than 0.02 [arcsec] and the period is not recognizable. So it is neither periodic time series nor trend. It is not meaningful to study on these reconstructed components. So we just regard all the left part without mode 1, mode 2, mode 3, mode 4, mode 5 and mode 8 as residual.
Reconstruction main components of x_p by grouping

Group the MSSA reconstructed mode 2 and mode 3 for x_p as CW, mode 4 and mode 5 as AW, other modes as residual. Reconstructed mode 1 and mode 8 are seen as trend. The main components are shown as following:

![Decomposition on modes 1–10 in y direction](image)

Figure 3.3: Main reconstructed components for x_p by MSSA

CW and AW are reconstructed by grouping modes. In order to analyze them, we get the fitting parameters for MSSA reconstructed components by curve fitting method of equation 2.3.1.

Table 3.2: Reconstructed components' fitting parameters for x_p by MSSA

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.1524</td>
<td>5.305</td>
<td>−41.13</td>
</tr>
<tr>
<td>AW</td>
<td>0.09071</td>
<td>6.289</td>
<td>−2.207</td>
</tr>
</tbody>
</table>
1. The first sub-figure of figure 3.3 is the original time series x_p. The second one from is semi-linear and non-periodic. It is reconstructed by summing mode 1 and mode 8 and recognized as trend.

2. CW for x_p is reconstructed by summing mode 2 and mode 3. The grouping result is shown in the third sub-figure below. The fitting amplitude for reconstructed CW is 0.1524 [arcsec] and frequency is 5.305 [rad/year]. As we know frequency, the period for CW can be calculate by $T = \frac{2\pi}{f}$. So period of reconstructed CW is 432.5389 days. As explained polar motion time series in 1, the period of Chandler Wobble is about 435 days (Höpfner, 2003). It is almost the same as the period of CW, so it is a good idea to reconstruct CW for x_p by MSSA.

3. AW is grouped by the sum of x_p reconstructed mode 4 and mode 5 which is shown in the fourth sub-figure. Its fitting amplitude is 0.09071 [arcsec] and frequency is 6.289 [rad/year]. So the period for reconstructed AW calculated by equation 2 is 0.999 [year]. As we know, the period of AW is 1 [year] and the amplitude is 0.1 [arcsec] (Höpfner, 2003). So MSSA is also a good choice for separating the AW for x_p.

4. Residual of x_p is shown in the last one. It is the sum of the left reconstructed modes whose amplitude is small. They are not periodic time series or a trend. So we see them as residual.
3.3.2 Separation of y_p time series

Applying MSSA on y_p time series and show the result of the first 10 modes corresponding to the singular values. The plot is as following:

Decomposition of first 10 modes

Applying MSSA on y_p time series and show the result of the first 10 modes corresponding to the singular values. The plot is as following:

![Graph showing decomposed modes](image)

Figure 3.4: Reconstructed modes 1–10 of y_p by MSSA
Amplitude of oscillatory components for \(y_p \) shows as following:

![Figure 3.5: \(y_p \) amplitudes on MSSA reconstructed modes](image)

As shown in the figure 3.5, reconstructed mode 2, mode 3, mode 4 and mode 5 represent main oscillatory components. In order to get the amplitude and frequency for these oscillations, we use the same curve fitting method as chapter 2. The fitting parameters is as following:

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>(a_1) [arcsec]</th>
<th>(b_1) [rad/year]</th>
<th>(c_1) [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode 2</td>
<td>0.07652</td>
<td>5.306</td>
<td>-47.23</td>
</tr>
<tr>
<td>mode 3</td>
<td>0.07439</td>
<td>5.304</td>
<td>-43.09</td>
</tr>
<tr>
<td>mode 4</td>
<td>0.04191</td>
<td>6.293</td>
<td>-8.369</td>
</tr>
<tr>
<td>mode 5</td>
<td>0.04024</td>
<td>6.286</td>
<td>5.931</td>
</tr>
</tbody>
</table>

1. The first reconstructed mode according to the biggest singular value is semi-linear. It is easy to differ mode 1 from the other modes so it is seen as one main component for trend. Reconstructed mode 8 is also like a trend, but the amplitude is too small to take into account.

2. The following four reconstructed modes represent the main oscillatory components of \(y_p \) time series. The amplitude curve in figure 3.5 of reconstructed mode 2 and mode 3 for \(y_p \) looks quite similar. So as mode 4 and mode 5. Fitting amplitude for
mode 2 is 0.076 52 [arcsec] and the frequency is 5.306 [arcsec]. For mode 3 is 0.074 39 [arcsec] and 5.304 [rad/year]. For mode 4 is 0.0419 [arcsec] and 6.293 [arcsec] and is 0.040 24 [arcsec] and 6.286 [arcsec] for mode 5. Selecting the modes with similar amplitudes and frequencies, so we group reconstructed mode 2 with mode 3 into one component and mode 4 and mode 5 into another reconstruction component.

3. For y_p reconstructed mode 6, it is not trend but oscillation. The amplitude is obviously close to 0 and the period is not recognized. So it is neither periodic time series nor trend. As for the Polar motion time series analysis, it is not meaningful to study on these small amplitudes’ reconstructions. So as the left reconstructed modes. So we just regard all the other modes without mode 1 to mode 5 as residual.
Separation main components of y_p by grouping

With decomposition modes for y_p shown below, we reconstruct mode 2 and mode 3 as CW, mode 4 and mode 5 as AW, other modes as residual. Reconstructed mode 1 is seen as trend. The main components are shown as:

![Main reconstructed components for y_p by MSSA](image)

FIGURE 3.6: Main reconstructed components for y_p by MSSA

CW and AW are reconstructed by grouping modes together. Apply curve fitting method to get the fitting amplitude and frequency. Fitting parameters are shown as following:

1. Figure 15 shows the original Polar motion time series in the first sub-figure. Then it is trend of y_p, reconstructed mode 5 which is semi-linear and non-periodic.
3.3. MSSA of bivariate polar motion time series

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.1509</td>
<td>5.305</td>
<td>-45.21</td>
</tr>
<tr>
<td>AW</td>
<td>0.08202</td>
<td>6.29</td>
<td>-1.574</td>
</tr>
</tbody>
</table>

2. Grouping y_p reconstructed mode 2 and mode 3 as CW. It is shown in the third sub-figure below. Reconstructed CW was fitted by sine function with amplitude of 0.1509 [arcsec] and frequency of 5.305 [rad/year]. Then the period calculated by the frequency with the equation 2 is 432.5389. As explained in 1, the period of CW is about 435 days (Höpfner, 2003). Fitting period is almost the same as the research period of CW, so reconstruction of CW for y_p by MSSA is believable.

3. Besides, grouping y_p reconstructed mode 3 and mode 4 as AW. It is shown in the fourth sub-figure. Its amplitude is around 0.08202 [arcsec] and frequency is about 6.29 [rad/year]. So we get the approximate period of AW is 0.9989 [year]. With the pre-knowledge, the period of AW is 1 [year] and the amplitude is 0.1 [arcsec] (Höpfner, 2003). The reconstructed amplitude and period are close to the reality. so AW reconstruction for y_p by MSSA is in a good result.

4. Residual of y_p is shown at last. It is the sum of the other reconstructed modes without the first 5 mode. They are not periodic time series or a trend and their amplitude is smaller than 0.02 [arcsec]. So we see them as residual for y_p.
Chapter 4

Complex Singular Spectrum Analysis

Complex singular Spectrum Analysis (CSSA) is natural extension of SSA in chapter 2 arises from its expansion to two dimensions with complex value. This chapter gives background for CSSA (Section 4.1), the basic algorithms for CSSA (Section 4.2), as well as the analyzing bivariate time series by combinations $x_p + iy_p$ in Section 4.3 and $y_p + ix_p$ in Section 4.4. At last compare the results from these two kinds of combinations (Section 4.5).

4.1 Background

we can consider one dimensional complex-valued series and apply the complex version of SSA to this one-dimensional series. Complex Singular Spectrum Analysis (CSSA) is a significant improvement from its expansion to two dimensions of SSA with complex value. It combines bivariate time series together by complex value into one time series. The main algorithm is the same as SSA. CSSA technique expand the SSA technique to the bivariate domain by complex adding.

CSSA uses bivariate time domain data to extract information from short and noisy multivariate time series without prior knowledge of the dynamics affecting the time series. It combines bivariate dimensional data into one dimensional by complex value which is a really novel idea.

Complex values has been used in reconstruction of CW and AW by Fourier basis pursuit band pass filter with combination x_p and y_p (Wang et al., 2016). CSSA has been applied to large-scale atmospheric fields for forecasting (Mo, 2001). This thesis tries to use CSSA in geodetic time series analysis.
4.2 Methodology

CSSA is a method decomposing the original time series into a sum of independent and interpretable components such as a trend, periodic or quasi-periodic components and noise in two direction at the same time. A brief discussion on the methodology of the CSSA technique is shown as following:

4.2.1 Generation

\[Y^1 = (x_1^1, x_2^1, x_3^1, \cdots, x_N^1) \] and \[Y^2 = (x_1^2, x_2^2, x_3^2, \cdots, x_N^2) \] are real-valued time series with length of \(N \). Firstly generate the new time series as \(Y = Y^1 + iY^2 = (x_1, x_2, x_3, \cdots, x_N) \).

4.2.2 Decomposition

We decompose the time series within two steps. The first step is embedding time series \(Y \) with lagged vector \(X_i \) into the trajectory matrix \(X \). The second step singular value decomposition represents trajectory matrix \(X \) as a sum of bi-orthogonal elementary matrices \(X_i \).

4.2.3 Reconstruction

There are two separate steps: grouping and anti-diagonal averaging. We reconstruct the original time series by grouping to make subgroups of the decomposed trajectory matrix and anti-diagonal averaging to reconstruct the new time series from the subgroups. All the decomposition and reconstruction algorithms for CSSA are the same as SSA.

4.2.4 Separation

Fourthly, since the general algorithm is written down in real valued form, there is the difference in the form of the SVD performed in the complex-valued space, where the transposition should be Hermitian. The initial time series \(y^1 = (y_1^1, y_2^1, y_3^1, \cdots, y_N^1) \) and \(y^2 = (y_1^2, y_2^2, y_3^2, \cdots, y_N^2) \) can be reconstructed by

\[y_n^1 = \text{real}\left(\sum_{i=1}^{m} z_n^{(i)}(n = 1, 2, \cdots, N)\right), \]

and

\[y_n^2 = -\text{imag}\left(\sum_{i=1}^{m} z_n^{(i)}(n = 1, 2, \cdots, N)\right). \]
4.3 CSSA of time series $x_p + iy_p$

Organize the new time series generating polar motion time series x_p in the time period spanning from 1960 to 2009 for the real part and y_p for the imaginary part. Apply CSSA on the organized time series with the window length of $L = 240$. Then we get decomposition for x_p based on the real part and y_p in the imaginary part of separating main components as trend, Chandler wobble, annual wobble and residual.

4.3.1 Separation of real part x_p

Apply CSSA on the new organized complex time series and select the real part of decomposition as x_p time series. We analyze the first 10 modes for real part and separate main components for it. The plot for the mode 1 to mode 10 is as following:

![Figure 4.1: Reconstructed modes 1–10 of the time series real part by CSSA](image-url)
In order to separate modes into different components, we plot x_p amplitudes of oscillatory modes shows as following:

Figure 4.2: Real part amplitudes on CSSA reconstructed modes

1. It is obvious to see that real part for the first reconstructed mode represents trend. It is quite different from other modes which are oscillatory reconstructions of x_p time series.

2. The real part for second mode is oscillatory reconstruction. As shown in figure 4.2, the amplitude is the strongest near by 0.15 [arcsec]. So the real part for second reconstructed mode is seen as CW for x_p.

3. Real part reconstructed mode 3 is also oscillatory component but with smaller amplitude compared with mode 2. The amplitude is near by 0.1 [arcsec]. As a result, real part of reconstructed mode 3 is considered as AW for x_p.

4. Reconstructed mode 4 for real part is also oscillation. But the amplitude is obviously smaller than the mode 2 and mode 3 and the period is not easily recognized. So it is neither periodic time series nor trend. So as the other modes. The amplitude is smaller than 0.04 [arcsec], So we just regard all the left modes as residual for x_p.
4.3. CSSA of time series $x_p + i y_p$

Reconstructed mode 1 is seen as trend, mode 2 as CW, mode 3 as AW, other modes as residual. Main components are shown as:

Figure 4.3: Main components for x_p by CSSA in real part
In order to analyze CW and AW, we use the curve fitting method to get fitting amplitude and frequency.

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.1517</td>
<td>5.305</td>
<td>-40.88</td>
</tr>
<tr>
<td>AW</td>
<td>0.08638</td>
<td>6.289</td>
<td>-2.565</td>
</tr>
</tbody>
</table>

1. The first sub-figure of figure 4.3 shows the original polar motion time series in x direction x_p. The second one from reconstructed mode 1 of x_p is trend by CSSA.

2. Reconstructed mode 2 in the real part is seen as CW for x_p and it is shown in the third sub-figure below. The fitting frequency of reconstructed CW for x_p is 5.305 [rad/year]. Calculating by equation: $T = \frac{2\pi}{f}$, the period reconstructed CW is 432.5389 days. As explained polar motion time series in chapter 1, the period of CW is about 435 days (Höpfner, 2003). The result we get is similar to the period of CW, so the reconstruction of the CW for x_p by CSSA in the real part is credible.

3. Reconstructed mode 3 in the real part is shown in the fourth sub-figure. It is seen as the AW for x_p. Its amplitude by fitting is 0.08638 [arcsec] and period calculated by equation 2 is 0.999 [year]. As we know, the period of AW is 1 year and the amplitude is 0.1 [arcsec] (Höpfner, 2003). So CSSA is a good method for separating the AW from the real part from new reconstructed time series.

4. Residual of x_p is shown in the last one. It is the sum of the left reconstructed modes in the real part whose amplitude is smaller than 0.02 [arcsec].
4.3.2 Separation of imaginary part \(y_p \)

Apply CSSA on the new organized complex time series and select the imaginary part of decomposition as \(y_p \) time series. Then plot the first 10 modes and separate the main components for \(y_p \). The plot for the mode 1 to mode 10 is as following:

\[\text{Figure 4.4: Reconstructed modes 1–10 of the time series imaginary part by CSSA} \]
In order to separate the modes into different components by amplitude, \(y_p \) amplitudes of oscillatory modes shows as following:

1. As shown in figure 4.4, it is obvious to see that the first reconstructed mode for the imaginary part is trend which is quite different from other modes. Others are oscillatory reconstructions for the imaginary part of time series.

2. The second reconstructed mode for the imaginary part is an oscillation. As shown in 4.5, the amplitude for mode 2 is the strongest from 0.12 to 0.18 \([\text{arcsec}]\). So it is recognized as CW for \(y_p \).

3. Reconstructed mode 3 for \(y_p \) is also oscillatory component but with smaller amplitude compared with mode 2. The amplitude is close to 0.1 \([\text{arcsec}]\). So we consider reconstructed mode 3 in the imaginary part as AW for \(y_p \).

4. The left reconstructed modes for the imaginary part are also oscillations. But amplitudes of them is smaller than 0.04 \([\text{arcsec}]\) and the period is not easily recognized. So it is neither periodic time series nor trend. So we just regard all the left modes as residual for \(y_p \).
Reconstructed mode 1 in the imaginary part is seen as trend for \(y_p \), mode 2 as CW, mode 3 as AW, sum of other modes as residual. Main reconstructed components are shown as following:

Figure 4.6: Main components for \(y_p \) by CSSA in imaginary part
In order to analyze the new reconstructed components, we get fitting amplitude and frequency by `cftool` in Matlab. The fitting parameters is as following:

Table 4.2: Reconstructed components’ fitting parameters for y_p by CSSA

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.1515</td>
<td>5.305</td>
<td>−45.42</td>
</tr>
<tr>
<td>AW</td>
<td>0.08635</td>
<td>6.29</td>
<td>−1.281</td>
</tr>
</tbody>
</table>

1. Original polar motion time series in y direction y_p shows in the first sub-figure of figure 4.6. The second one is trend from reconstructed mode 1 in the imaginary part for y_p by CSSA.

2. Reconstructed mode 2 shown in the third sub-figure below is seen as CW for y_p. The fitting frequency of CW reconstructed by CSSA for y_p is 5.305 [rad/year]. With equation $T = \frac{2\pi}{f}$, we calculate the period of CW and get the result of 432.5389 days. The period of CW in polar motion time series explained in 1 is about 435 days (Höpfner, 2003). Fitting period of CW reconstructed by CSSA is almost the same to the period of CW, so CSSA is a good choice to reconstruct CW.

3. Reconstructed mode 3 in the imaginary part is shown in the fourth sub-figure. It is seen as the AW for y_p. Its fitting amplitude is 0.08635 [arcsec] and period calculated by equation 2 with fitting frequency of 6.29 [rad/year] is 0.9989 [year]. As we know, the period of AW is 1 year and the amplitude is 0.1 [arcsec] (Höpfner, 2003). So CSSA is also a method for separating the AW from imaginary part of the new reconstructed time series.

4. The last one is residual for y_p. It is the sum of the left reconstructed modes in the imaginary part whose amplitude is smaller than 0.04 [arcsec].
4.4 CSSA of time series \(y_p + ix_p \)

Organize a new Polar motion time series in \(y \) direction \(y_p \) for the real part and in \(x \) direction \(x_p \) for the imaginary part. Apply CSSA on the organized time series with the window length of \(L = 240 \). Then we get decomposition for \(y_p \) based on the real part and \(x_p \) in the imaginary part of the analysis result to separate main components of the new polar motion time series for trend, Chandler wobble, annual wobble and residual.

4.4.1 Separation of imaginary part \(x_p \)

Apply CSSA on the new organized complex time series and select imaginary part of decomposition as \(x_p \) time series. We select the first 10 modes to analyze and separate the main components for \(x_p \). The plot for the mode 1 to mode 10 is as following:

![CSSA for real part on modes 1–10](image)

FIGURE 4.7: Reconstructed modes 1–10 of imaginary part by CSSA
In order to separate the modes into different components, amplitudes of oscillatory modes of imaginary part for \(x_p \) shows as following:

![Oscillation amplitudes for imaginary part modes](image)

Figure 4.8: Imaginary part amplitudes on CSSA reconstructed modes

1. Imaginary part of decomposition result is \(x_p \). So we see that the first reconstructed mode represents trend for \(x_p \). It is quite different from other modes which are oscillatory reconstructions.

2. Reconstructed mode 2 for imaginary part is an oscillatory reconstruction. As shown in figure 4.8, the amplitude is the strongest which is near 0.1517 \([\text{arcsec}]\). So the second reconstructed mode is seen as one main component CW for \(x_p \).

3. Reconstructed mode 3 for imaginary part is also an oscillatory component but with smaller amplitude compared with mode 2. The amplitude is near 0.08638 \([\text{arcsec}]\). As a result, reconstructed mode 3 is considered as another main component for \(x_p \).

4. Reconstructed mode 4 is for imaginary part also an oscillation. But the amplitude is obviously smaller than the mode 2 and mode 3 and the period is not easily recognized. So it is neither periodic time series nor trend. The other modes also with amplitude which is smaller than 0.04 \([\text{arcsec}]\). So we just regard all the left modes as residual.
we generate main components for imaginary part x_p are shown as following:

Figure 4.9: Main components for x_p by CSSA in imaginary part
In order to analyze CW and AW, we use the curve fitting method to get fitting amplitude and frequency.

Table 4.3: Reconstructed components’ fitting parameters for x_p by CSSA

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>a_1 [arcsec]</th>
<th>b_1 [rad/year]</th>
<th>c_1 [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.1517</td>
<td>5.305</td>
<td>-40.88</td>
</tr>
<tr>
<td>AW</td>
<td>0.08638</td>
<td>6.289</td>
<td>-2.565</td>
</tr>
</tbody>
</table>

1. Original polar motion time series in x direction x_p shows in the first sub-figure of figure 4.9. The second one from reconstructed mode 1 according to the imaginary part of new reconstructed time series is trend by CSSA.

2. Reconstructed mode 2 in the imaginary part is seen as CW and it is shown in the third sub-figure below. The fitting frequency of CW for x_p is 5.305 [rad/year]. Use the equation $T = \frac{2\pi}{f}$ to calculate period of CW. So we get the period of CW for 432.5389 days. As explained in chapter 1, the period of CW is about 435 days (Höpfner, 2003). The period for reconstructed CW by CSSA is near to the real period. So CSSA is a method to separate CW from polar motion time series in the imaginary part.

3. Reconstructed mode 3 in the imaginary part is shown in the fourth sub-figure. It is seen as the AW for x_p. Its amplitude by fitting is 0.08638 [arcsec] and period calculated by equation 2 is 0.999 [year]. As the period of AW is 1 year and the amplitude is 0.1 [arcsec] (Höpfner, 2003). So CSSA is a choice for separating the AW from the complex polar motion time series.

4. Residual for x_p is shown in the last one. It is the sum of the left reconstructed modes in the imaginary part whose amplitude is smaller than 0.02 [arcsec].
4.4.2 Separation of real part \(y_p \)

Apply CSSA on the new organized complex time series and select the real part as decomposition for \(y_p \) time series. We analyze the first 10 modes in the real part and separate the main components for it. The plot for the mode 1 to mode 10 is as following:

FIGURE 4.10: Reconstructed modes 1–10 of real part by CSSA
In order to separate the modes into different components, amplitudes of oscillatory modes in real part shows as following:

Figure 4.11: Real part amplitudes on CSSA reconstructed modes

1. It is obvious to see that the first reconstructed mode in the real part represents trend for y_p. It is quite different from other modes which are oscillatory reconstructions in the real part.

2. The second reconstructed mode is an oscillatory reconstruction. As shown in figure 4.11, the amplitude is the strongest from 0.1 [arcsec] to 0.2 [arcsec]. So the second reconstructed mode is seen as CW for y_p.

3. Reconstructed mode 3 in the real part is also oscillatory component but with smaller amplitude compared with mode 2. The amplitude is from 0.07 [arcsec] to 0.12 [arcsec]. As a result, reconstructed mode 3 in the real part is considered as AW for y_p.

4. Reconstructed mode 4 for y_p is also oscillation. But the amplitude is obviously smaller than the mode 2 and mode 3 and the period is not recognizable. So it is neither periodic time series nor trend. So as the other modes with amplitudes smaller than 0.05 [arcsec]. So we just regard all the left modes in the real part as residual.
Reconstructed mode 1 in the real part for y_p is seen as trend, mode 2 as CW, mode 3 as AW, other modes as residual. Main components for y_p are shown as:

Figure 4.12: Main components for y_p by CSSA in real part
In order to analyze CW and AW, we use the curve fitting method to get fitting amplitude and frequency.

Table 4.4: Reconstructed components’ fitting parameters for \(y_p \) by CSSA

<table>
<thead>
<tr>
<th>fitting parameter</th>
<th>(a_1) [arcsec]</th>
<th>(b_1) [rad/year]</th>
<th>(c_1) [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>0.1525</td>
<td>5.305</td>
<td>-45.42</td>
</tr>
<tr>
<td>AW</td>
<td>0.08635</td>
<td>6.29</td>
<td>-1.281</td>
</tr>
</tbody>
</table>

1. The first sub-figure of figure 4.12 shows the original Polar motion time series in \(y \) direction \(y_p \). The second sub-figure reconstructed from mode 1 in the real part is trend for \(y_p \) by CSSA.

2. Reconstructed mode 2 is seen as CW for \(y_p \) and it is shown in the third sub-figure below. The fitting frequency of reconstructed CW for \(y_p \) is 5.305 [rad/year]. Calculate the period by the equation: \(T = \frac{2\pi}{f} \), we get period of CW is 432.5389 days. As explained in 1 for polar motion time series, the period of CW is about 435 days (Höpfner, 2003). It is similar to the period of CW, so the CW reconstruction by CSSA by separating real part is credible.

3. Reconstructed mode 3 in the real part is shown in the fourth sub-figure. It is seen as AW for \(y_p \). Its amplitude by fitting is 0.08635 [arcsec] and period calculated with fitting frequency is 0.9989 [year]. As we know, the period of AW is 1 year and the amplitude is 0.1 [arcsec] (Höpfner, 2003). So CSSA is a method for AW reconstruction from \(y_p \) in the real part.

4. Residual of \(y_p \) is shown in the last sub-figure. It is the sum of the left reconstructed modes whose amplitude is smaller than 0.05 [arcsec] in the real part.

4.5 Comparison CSSA on \(x_p + iy_p \) with \(y_p + ix_p \)

We combine polar motion time series \(x_p \) and \(y_p \) in two ways: \(x_p + iy_p \) in Section 4.3 and \(y_p + ix_p \) in Section 4.4. Then apply CSSA on new organized time series and separate main components from \(x_p \) and \(y_p \) as trend, CW, AW and residual. In this section, we will compare the results by these two kinds of combinations.
4.5.1 Comparison of x_p main components

Apply CSSA on the new organized complex time series in two forms on $x_p + iy_p$ and $y_p + ix_p$ and separate x_p into trend, CW and AW. The plot of the main components’ differences by the two forms for x_p are as following:

\[
\begin{align*}
\text{Chandler Wobble difference} \\
\text{Annual Wobble difference} \\
\text{Trend difference}
\end{align*}
\]

Figure 4.13: Differences of main components for x_p

Differences between x_p main components separated by CSSA on the two new reconstructed time series is quite small in the scale of 10^{-15} [arcsec]. So we can conclude that it doesn’t matter whether x_p in real part or in imaginary part for x_p decomposition.
4.5.2 Comparison of y_p main components

Apply CSSA on the new organized complex time series in two forms on $x_p + iy_p$ and $y_p + ix_p$ and separate trend, CW and AW for y_p. We compare the decomposition result for the three main components of $x_p + iy_p$ with $y_p + ix_p$. The differences show as following:

![Graphs showing differences between main components for y_p]

It is obvious that differences between main components for y_p separated by CSSA on the two new reconstructed time series is quite small. Differences for CW and trend are in the scale of 10^{-15} [arcsec] and 10^{-16} [arcsec] for AW. As a conclusion, it doesn’t matter whether y_p in real part or in imaginary part for y_p decomposition. CSSA In the next chapter, we just choose $x_p + iy_p$ as combination form.
Chapter 5

Summary and outlook

This chapter gives comparison MSSA and CSSA with SSA on decomposing polar motion time series (Section 5.1), conclusion (Section 5.2) as well as outlook (Section 5.3).

5.1 Comparison CSSA with SSA and MSSA

5.1.1 Reconstructed modes comparison

This thesis analyzes polar motion observations in the time period spanning from 1960 to 2009 both in x direction and y direction with three methods: SSA, MSSA and CSSA which are nonparametric spectral estimation methods in time series analysis. They are aids in the decomposition of polar motion time series into a sum of independent and interpretable components as trend, CW, AW and residual. These components are grouped by different modes according to different singular values. Modes in different methods show in the following:

<table>
<thead>
<tr>
<th>methods</th>
<th>SSA (for x_p)</th>
<th>SSA (for y_p)</th>
<th>MSSA (for x_p)</th>
<th>MSSA (for y_p)</th>
<th>CSSA (for x_p and y_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend</td>
<td>mode 5</td>
<td>mode 1</td>
<td>mode 1 and mode 8</td>
<td>mode 1</td>
<td>mode 1</td>
</tr>
<tr>
<td>Chandler Wobble</td>
<td>mode 1</td>
<td>mode 2</td>
<td>mode 2</td>
<td>mode 2</td>
<td>mode 2</td>
</tr>
<tr>
<td></td>
<td>and mode 2</td>
<td>and mode 3</td>
<td>and mode 3</td>
<td>and mode 3</td>
<td></td>
</tr>
<tr>
<td>Annual Wobble</td>
<td>mode 3</td>
<td>mode 4</td>
<td>mode 4</td>
<td>mode 4</td>
<td>mode 3</td>
</tr>
<tr>
<td></td>
<td>and mode 4</td>
<td>and mode 5</td>
<td>and mode 5</td>
<td>and mode 5</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>else</td>
<td>else</td>
<td>else</td>
<td>else</td>
<td>else</td>
</tr>
</tbody>
</table>

TABLE 5.1: Modes for decomposition main components by different methods
It is easily recognized that there is much difference between different methods for separating main components. For x_p trend reconstruction, there is no regular pattern. But for y_p, trend is reconstructed by mode 1 for all the three methods which means that trend for y_p is more obvious than for x_p.

For CW reconstruction, two modes are grouped in SSA and MSSA methods but just one single mode in CSSA. So as AW reconstruction. But the numbers of modes for AW are bigger than CW which means singular values in SVD for AW are smaller than CW.

For SSA on both x_p and y_p, we combine different modes to reconstruct CW and AW. But just use single mode for trend reconstruction.

For MSSA on both x_p and y_p, we combine mode 2 and mode 3 to reconstruct CW and mode 4 and mode 5 to AW. But different reconstructed modes for trend reconstruction.

For CSSA on both x_p and y_p, we just put single mode to reconstruct trend, CW or AW. And reconstructed mode for x_p and y_p are the same. With respect to SSA and MSSA methods, it shows advantage of CSSA that it can analyze bivariate time series at the same time with just single mode for reconstruction.

5.1.2 Main components comparison

SSA, MSSA and CSSA are methods on decomposition of x_p and y_p into a sum of trend, CW, AW and residual. But reconstructions are different by using different methods. Consider SSA method as a standard, calculate differences between MSSA and SSA as well as CSSA and SSA.
5.1. Comparison CSSA with SSA and MSSA

Comparison for x_p components

Decomposition of x_p are different by using different methods. Amplitude differences between CSSA and SSA and CSSA and MSSA are shown as following:

![Graphs showing Chandler Wobble, Annual Wobble, and Trend differences for x_p.]

Figure 5.1: Differences for x_p

In order to evaluate quality of the differences, we calculate the RMS. RMS for the x_p differences shows as following:

<table>
<thead>
<tr>
<th></th>
<th>CW</th>
<th>AW</th>
<th>trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSA-SSA</td>
<td>0.0015</td>
<td>0.0033</td>
<td>0.0024</td>
</tr>
<tr>
<td>CSSA-MSSA</td>
<td>8.0749e−04</td>
<td>0.0031</td>
<td>0.0040</td>
</tr>
</tbody>
</table>

Table 5.2: RMS for the methods differences for x_p

The difference between CSSA and SSA for x_p CW is in 0.0005 [arcsec] with RMS of 0.0015. In addition, difference between CSSA and MSSA for CW is in 0.0005 [arcsec] with the RMS of 8.0749e−04. With this values, we can conclude that CW reconstruction with CSSA method is in a high quality.

For x_p AW reconstruction, difference between CSSA and SSA is in 0.015 [arcsec] with the RMS of 0.0033. And 0.01 [arcsec] with the RMS of 0.0031 between CSSA and MSSA. Although AW reconstruction is not so good as CW reconstruction, CSSA is also a good choice.
For x_p trend, difference is in 0.015 [arcsec] with RMS of 0.0024 between CSSA and SSA. And 0.01 [arcsec] with RMS of 0.004 between CSSA and MSSA. So CSSA perform well in reconstruction CW, AW and trend for x_p.

Comparison for y_p components

Decomposition of y_p are different by using different methods. Amplitude differences are shown as following:

![Chandler Wobble difference for y](image1)

![Annual Wobble difference for y](image2)

![Trend difference for y](image3)

Figure 5.2: Differences for y_p

RMS for the methods differences for y_p shows as following:

<table>
<thead>
<tr>
<th></th>
<th>CW</th>
<th>AW</th>
<th>trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSA-SSA</td>
<td>0.0013</td>
<td>0.0032</td>
<td>2.1443e−04</td>
</tr>
<tr>
<td>CSSA-MSSA</td>
<td>7.1005e−04</td>
<td>0.0031</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

For y_p CW reconstruction, the difference between CSSA and SSA is in 0.0005 [arcsec] with RMS of 0.0013. Between CSSA and MSSA for CW is in 7.1005e−04 [arcsec] with RMS of 7.1005e−04. The quality for CW reconstruction is satisfied.
For y_p, AW reconstruction, difference between CSSA and SSA is in 0.01 [arcsec] with RMS of 0.0032. And 0.01 [arcsec] with RMS of 0.0031 between CSSA and MSSA.

For y_p trend reconstruction, difference is in 0.0005 [arcsec] with RMS of 2.1443e − 04 between CSSA and SSA. And 0.0005 [arcsec] with RMS of 0.0015 between CSSA and MSSA. It can conclude that CSSA perform well in decomposing CW, AW and trend from y_p.

5.2 Conclusion

In order to analyze polar motion observations in the time period spanning from 1960 to 2009 both in x direction and y direction, SSA and MSSA in this thesis is applied to extract CW, AW, trend from polar motion time series.

For new method CSSA, algorithms are straightforward extensions of SSA algorithms to the complex-valued case. With respect to SSA, CSSA can apply on bivariate time series analysis.

New time series $x_p + iy_p$ or $y_p + ix_p$ are combination of polar motion time series in x and y direction. It shows advantage in separating polar motion time series into a slowly varying trend, Chandler wobble, annual wobble and a structureless residual.

Generation of new time series is as $x_p + iy_p$ or $y_p + ix_p$. It doesn’t matter whether x_p in real part or in imaginary part for x_p decomposition. The same as y_p.

With respect to SSA and MSSA, the grouping modes are consistent and unique for components reconstruction.

5.3 Outlook

Lag window length is the single parameter of embedding to build trajectory matrix. So it is important to select an optimal window length for SSA, MSSA and CSSA. In the future, window length selection for CSSA is worth study.

A joint analysis CSSA is carried out between x and y direction. CSSA perform well in decomposition polar motion time series into CW, AW and trend. But as it is bi-variate time series in x and y direction, the next step of research is to find out the usefulness in multi-variate time series analysis.

Areas where SSA and MSSA can be applied are very broad: climatology, marine science, geophysics, engineering, image processing, medicine, econometrics (Golyandina et al.,
In the future, CSSA can be used in practical applications such as trend extraction, periodicity detection, seasonal adjustment, smoothing and noise reduction.
Bibliography

List of Figures

1.1 Polar motion from 1960 to 2009 in x and y direction ... 2
1.2 Polar motion decomposition in x direction. ... 3
1.3 Polar motion decomposition in y direction. ... 4

2.1 Reconstructed modes 1–10 of x_p by SSA ... 11
2.2 x_p amplitudes on SSA reconstructed modes ... 12
2.3 Main reconstructed components for x_p by SSA ... 14
2.4 Reconstructed modes 1–10 of y_p by SSA ... 16
2.5 y_p amplitudes on SSA reconstructed modes ... 17
2.6 Main reconstructed components for y_p by SSA ... 19

3.1 Reconstructed modes 1–10 of x_p by MSSA ... 24
3.2 x_p amplitudes on MSSA reconstructed modes .. 25
3.3 Main reconstructed components for x_p by MSSA .. 27
3.4 Reconstructed modes 1–10 of y_p by MSSA ... 29
3.5 y_p amplitudes on MSSA reconstructed modes .. 30
3.6 Main reconstructed components for y_p by MSSA .. 32

4.1 Reconstructed modes 1–10 of the time series real part by CSSA 37
4.2 Real part amplitudes on CSSA reconstructed modes .. 38
4.3 Main components for x_p by CSSA in real part .. 39
4.4 Reconstructed modes 1–10 of the time series imaginary part by CSSA 41
4.5 Imaginary part amplitudes on CSSA reconstructed modes 42
4.6 Main components for y_p by CSSA in imaginary part .. 43
4.7 Reconstructed modes 1–10 of imaginary part by CSSA 45
4.8 Imaginary part amplitudes on CSSA reconstructed modes 46
4.9 Main components for x_p by CSSA in imaginary part .. 47
4.10 Reconstructed modes 1–10 of real part by CSSA .. 49
4.11 Real part amplitudes on CSSA reconstructed modes .. 50
4.12 Main components for y_p by CSSA in real part .. 51
4.13 Differences of main components for x_p .. 53
4.14 Differences of main components for y_p .. 54

5.1 Differences for x_p ... 57
5.2 Differences for y_p ... 58
List of Tables

2.1 Oscillatory modes’ fitting parameters for x_p by SSA 12
2.2 Reconstructed components’ fitting parameters for x_p by SSA 15
2.3 Oscillatory modes’ fitting parameters for y_p by SSA 17
2.4 Main reconstructed components for y_p by SSA 20

3.1 Oscillatory modes’ fitting parameters for x_p by MSSA 25
3.2 Reconstructed components’ fitting parameters for x_p by MSSA 27
3.3 Oscillatory modes’ fitting parameters for y_p by MSSA 30
3.4 Reconstructed components’ fitting parameters for y_p by MSSA 33

4.1 Reconstructed components’ fitting parameters for x_p by CSSA 40
4.2 Reconstructed components’ fitting parameters for y_p by CSSA 44
4.3 Reconstructed components’ fitting parameters for x_p by CSSA 48
4.4 Reconstructed components’ fitting parameters for y_p by CSSA 52

5.1 Modes for decomposition main components by different methods 55
5.2 RMS for the methods differences for x_p . 57
5.3 RMS for the methods differences for y_p . 58