
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Interactive Ray Tracing of Solvent
Excluded Surfaces

Sebastian Zahn

Course of Study: Master of Science Informatik

Examiner: Prof. Dr. Thomas Ertl

Supervisor: Dr. Michael Krone,
Tobias Rau, M. Sc.

Commenced: November 15, 2017

Completed: May 15, 2018

Abstract

Domain experts in fields concerned with the behavior of molecules, for example biochemists,
employ simulations to study a molecule’s individual properties and mutual interactions
with other molecules. To obtain an intuitive spatial understanding of the returned data of
the simulations, various visualization techniques such as molecular surfaces can be applied
on the data. The solvent excluded surface depicts the boundary between the molecule’s and
a solvent’s occupied space and therefore the molecules accessibility for the solvent. Insight
about a molecule’s potential for interaction such as reactions can be gained by studying the
surface’s shape visually. Current implementations for the visualization of the surface usually
utilize GPU ray casting to achieve the performance required to allow interactivity such as
viewpoint changing. However, this makes implementation of physically motivated effects
like ambient occlusion or global illumination difficult. If compute resources do not contain
GPUs, which is often the case in compute clusters, expensive software rasterization has to be
employed instead. As CPUs offer less parallelism compared to GPUs, overhead introduced
by the overdraw of thousands of primitives should be avoided. To mitigate these issues,
CPU visualization approaches resurfaced again in recent times. In this work, the solvent
excluded surface is visualized interactively using the classic ray tracing approach within the
OSPRay CPU ray tracing framework. The described implementation is able to compute
and visualize the solvent excluded surface for datasets composed of millions of atoms.
Additionally, the surface supports transparency rendering, which allows implementation of
a cavity visualization method that uses ambient occlusion.

3

Kurzfassung

Experten auf Gebieten welche das Verhalten von Molekülen untersuchen, wie zum Beispiel
Biochemiker, verwenden Simulationen um die individualen Eigenschaften von Molekülen,
und gegenseite Interaktion zwischen diesen zu untersuchen. Um ein intuitives räumliches
Verständnis der Daten zu erhalten, werden verschiedene Visualisierungstechniken, wie
beispielsweise molekulare Oberflächen, verwendet. Die Solvent Excluded Surface beschreibt
die Grenze zwischen dem Raum welcher durch ein Molekül besetzt ist und dem Raum den
ein Lösungsmittel einnehmen kann, und stellt daher die Zugänglichkeit des Moleküls für das
Lösungsmittel dar. Durch visuelle Untersuchung dieser Oberfläche können Rückschlüsse
auf das mögliche Interaktionspotential, wie zum Beispiel Reaktionen, gezogen werden. In
heutigen Implementierungen für die Visualisierung dieser Oberfläche kommt üblicherweise
GPU Ray Casting zum Einsatz um die nötige Geschwindigkeit zu erreichen, die Interak-
tivität wie das Verändern der Kameraposition erlaubt. Solche Techniken erschweren die
Implementation von physikalisch motivierten Effekten wie Ambient Occlusion und globale
Beleuchtungseffekte. Falls verwendete Rechnerressourcen, etwa in einem Rechnerverbund,
über keine GPU verfügen, muss teure Software-Rasterisierung verwendet werden. Da CPUs
verglichen mit GPUs über weniger Parralellismus verfügen sollte der Aufwand, der durch
Overdraw von tausenden Primitiven entsteht, vermieden werden. Um dieses Problem zu
umgehen sind CPU-Visualisierungstechniken in letzer Zeit wieder vermehrt in den Blick-
punkt geraten. In dieser Arbeit wird die Solvent Excluded Surface interaktiv durch den
klassischen Ray-Tracing-Ansatz innerhalb des OSPRay CPU Ray-Tracing Framworks visu-
alisiert. Die Implementierung ist in der Lage, die Solvent Excluded Surface für Datensätze
zu berechnen und zu visualisieren, welche aus Millionen von Atomen bestehen. Zusätzlich
unterstützt die Oberfläche Transparenz, was die Implementierung eines Verfahrens erlaubt,
das Hohlräume durch das Ambient Occlusion Verfahren visuell darzustellt.

4

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Challenges . 16

2 Fundamentals 17
2.1 Implicit Surfaces . 17
2.2 Quartics . 22
2.3 Acceleration Structures . 31
2.4 Software . 32

3 Molecular Dynamics Visualization 37
3.1 Simulation of Molecules . 37
3.2 Visualization Techniques . 38
3.3 Solvent Excluded Surface . 42

4 Implementation 59
4.1 Contour Buildup . 59
4.2 Vectorized Contour Buildup . 64
4.3 Trilateration Approach . 66
4.4 Surface Rendering . 67
4.5 Cavity Visualization . 80
4.6 MegaMol Integration . 83

5 Results and Discussion 85
5.1 Contour Buildup . 85
5.2 Surface Rendering . 92

6 Conclusion and Future Work 101

Bibliography 103

5

List of Figures

2.1 Implicit Surface . 18
2.2 Torus . 19
2.3 Ray Tracing . 19
2.4 Ray-Sphere Intersection . 20
2.5 Ray-Torus Intersection . 21
2.6 Sphere Tracing . 22
2.7 Quartic Example . 23
2.8 Accelaration Structures . 33
2.9 MegaMol Graph Example . 36

3.1 Basic Molecular Visualizations . 39
3.2 Molecular Surfaces . 41
3.3 Cavity Visualization 1 . 42
3.4 Cavity Visualization 2 . 43
3.5 SES Primitives . 44
3.6 Contour Example 1 . 46
3.7 Contour Example 2 . 46
3.8 Contour Buildup Example . 47
3.9 Circle Example . 48
3.10 Circle Intersection Example . 49
3.11 Circle Covering Cases . 50
3.12 Sphere Cases . 52
3.13 Arc Case Example . 53
3.14 Contour Repair . 54

4.1 Grid Example . 60
4.2 Circle Intersection Skipping . 62
4.3 Pseudoangle Depiction . 63
4.4 Blocked Memory Example . 65
4.5 Spherical Triangle Cutting Planes . 68
4.6 Singularity Removal . 69
4.7 Visibility Sphere . 70
4.8 Toroidal Patch Cutting Planes . 71
4.9 Toroidal Patch Intersections . 71
4.10 Spherical Remains . 73
4.11 Ray-Triangle Based Clipping Example . 74
4.12 Circle Plane Based Clipping Example . 75
4.13 Color Interpolation . 76
4.14 Spherical Triangle Interpolation . 77

7

4.15 Toroidal Patch Color Interpolation Example 77
4.16 Toroidal Patch Color Interpolation Side View 78
4.17 Convex Spherical Patches Bounding Box Cutting 79
4.18 Spherical Triangle Bounding Box . 80
4.19 Toroidal Patch Bounding Box . 81
4.20 Cavity Visualization Transparency . 82
4.21 Cavity Visualization Blending . 83
4.22 Cavity Visualization Accumulation . 83
4.23 OSPRaySESRenderer . 84
4.24 OSPRaySESGeometry . 84

5.1 Single Precision Error . 86
5.2 SES Example . 86
5.3 Tororidal Patch Rendering Artifacts 1 . 93
5.4 Tororidal Patch Rendering Artifacts 2 . 94
5.5 SES Surface Renderings . 94
5.6 SES Surface Renderings with AO and Shadows 95
5.7 Cavity Visualization Noise . 96
5.8 Cavity Visualization Visibility Functions . 97
5.9 Transparency Surface Rendering and Cavity Visualization Performance . . 98
5.10 Path Tracing Renderings . 98
5.11 Instanced SES Rendering Performance . 99
5.12 Instanced SES Rendering . 100

8

List of Tables

3.1 Circle Cases . 50
3.2 Arc Modification . 53

4.1 Pseudoangle Correction . 64

5.1 Molecular Datasets . 85
5.2 Vectorized Circle Computation I . 87
5.3 Vectorized Circle Computation II . 87
5.4 Vectorized Arc Computation I . 87
5.5 Vectorized Arc Computation II . 88
5.6 Blocked Memory . 88
5.7 Contour Computation I . 89
5.8 Contour Computation II . 89
5.9 Contour Buildup Memory Usage . 90
5.10 Contour Buildup Memory Usage II . 90
5.11 Contour Buildup Memory Usage with Resizing 90
5.12 Comparison with CUDA implementation . 90
5.13 SES Primitives I . 91
5.14 SES Primitives II . 91
5.15 Render Data . 92
5.16 Surface Rendering Performance . 92
5.17 Surface Rendering Performance with AO and Shadows Performance 95
5.18 Transparency Surface Rendering and Cavity Visualization Performance . . 97

9

List of Listings

2.1 ISPC Example . 34
4.1 Sphere Struct . 59
4.2 Circle Struct . 61
4.3 Arc Struct . 62
4.4 ModifiedArc Struct . 62

11

List of Algorithms

3.1 Circle Computation . 51
3.2 Contour Computation . 55

13

1 Introduction

Molecular dynamic simulations range back up to 60 years, when the first simulations were
conducted [AM06]. Research fields that utilize these simulations include biochemistry and
biophysics, molecular biology and pharmaceutical areas. Simulation runs return datasets
that describe the spatial arrangement of atoms that form a molecule [KKL+15]. Each
atom’s positions is governed by attracting and repulsive forces depending on existing bonds
and atom positions. Researchers studying biomolecules such as proteins are especially
interested in the potential of interaction between different molecules. These interactions
happen especially in regions called binding sites [KKL+16], where molecules have certain
geometrical characteristics that allow the forming of bounds. Visualization of these datasets
is required to give domain experts the ability to explore the computed results and draw
conclusions about the behavior of molecules. Employed visualization techniques need to be
interactive to allow exploratory viewing of the data, such as view position changing and
zooming.

1.1 Motivation

The solvent excluded surface [Con83] is the most popular choice for visualization of the
accessibility of a studied molecule for another molecule, approximated as a sphere. This
spherical approximation is called probe. Intuitively, the surface describes the boundary
between the molecule and the space the probe may occupy. As the surface is composed
of connected implicit surface patches, ray casting and ray tracing are natural choices as
applied rendering techniques.

Recent implementations such as the ones presented by Krone et al. [KBE09] and Lindow
et al. [LBPH10] utilize GPU ray casting for rendering. These approaches require the
presence of GPUs, which is oftentimes not the case in high performance computing (HPC)
clusters. Software rasterization allows emulation of GPUs if required, however the overhead
introduced by overdraw of many primitives cannot be mitigated as easily on CPUs, as
they provide less parallelism. Therefore, a CPU based solution is required, if software
rasterization is to be avoided. The OSPRay framework [WJA+17] implements visualization
techniques based on CPU ray tracing. Efficient acceleration structures allow higher
performance than software rasterization. The ray tracing aspect simplifies implementation
of realistic illumination effects, while still offering interactive frame rates [WMG+07].
The ability to efficiently visualize the solvent excluded surface should be introduced into
OSPRay.

15

1 Introduction

1.2 Challenges

In absence of GPUs, the surface has to be computed on the CPU, which requires an
efficient parallelized implementation. This implementation should possibly be vectorized to
utilize CPU vector units that allow parallel computation of simple operations. The surface
computation algorithm should be fully integrated into the OSPRay framework, such that
users are able to use the surface in the same way as any other geometry offered by the
framework. Users are just required to specify the atom dataset with corresponding atom
radii to obtain the surface geometry. Along with the OSPRay integration, the surface
should also be made available in the MegaMol framework [GKM+15].

Additionally, the surface’s connected primitives should be rendered efficiently and in high
quality. This requires computation of tightly-fitting axis aligned bounding boxes and
efficient intersection routines. The surface consists in part of quartic surfaces. Intersection
of such a surface with a ray is numerically not stable, which may lead to visual artifacts.
As the geometry should be usable with any renderer offered by OSPRay, such as the path
tracer, the implementation must be general enough to allow callback based intersection
with rays. This means that given a ray and a primitive, the correct intersection is computed
without any other information, except the data associated with the primitive. Another
aspect is the support for transparent surface rendering, which allows users to inspect
internal structures of the molecule. Commonly, the surface is visualized opaquely, which
means that protruding, but hidden surface parts do not have to be removed, as they are
covered by the visible parts of the surface. To avoid visual artifacts, these have to be
removed, for example by cutting geometry. The callback based intersection computation
discourages a solution that requires global information such as the one proposed by Kauker
et al. [KKP+13]. Finally, the generated surface is to be utilized to implement an ambient
occlusion based cavity visualization technique. This becomes possible with support for
transparent rendering.

16

2 Fundamentals

This chapter discusses the mathematical fundamentals required for ray tracing the geometric
primitives the rendered surface is composed of. First, the concept of the implicit surface
is introduced. Next the general approach of finding the intersection between an implicit
surface and a ray is described. Further, a detailed derivation of the analytic solution
and some iterative approaches for solving general quartic equations are shown, which are
possible methods to use for solving certain intersection problems. Ray tracing benefits
from the usage of acceleration data structures, which are briefly described as well. The
last section discusses the software used in the implementation of the geometry.

2.1 Implicit Surfaces

The molecular surface consists of connected implicit surfaces. Such a surface is described
by a implicit function φ(®x) which separates the space Rn in subdomains, where Ω− ⊂ R3

can be called the inside portion and Ω+ ⊂ R3 the outside portion of the domain, assuming
there are only two subdomains [OF03]. Between each region lies the boundary ∂Ω that
separates the subdomains, which is also called interface. The boundary is located at all ®x
where φ(®x) vanishes i.e.

∂Ω = { ®x |φ(®x) = 0} (2.1)

and has dimensionality n − 1, referring to the number of variables required to specify every
boundary point.

Moving from a region where φ(®x) < 0 to φ(®x) > 0 (or vice versa) implies crossing of the
surface [OF03]. The normal vector ®n®x at ®x = (x, y, z)T with ®x ∈ ∂Ω is directly computed
from the gradient

∇φ(®x) =
©­­«
∂φ
∂x
∂φ
∂y
∂φ
∂z

ª®®¬ . (2.2)

The normal ®n®x at ®x is equivalent to the normalized gradient, i.e.

®n®x =
∇φ(®x)
‖∇φ(®x)‖

. (2.3)

Inside Ω−, the normal vector ®n®x will point towards Ω+ as it points into the direction of
steepest increase of φ(®x). See Figure 2.1 for a depiction.

Implicit surfaces defined by φ1, and φ2 can be combined to construct new surfaces. For
example

φ3(®x) = max(φ1(®x), φ2(®x)) (2.4)

17

2 Fundamentals

Figure 2.1: Example of an implict surface in R2. In gray: The Ω− subdomain where the
implicit function is negative. In white: The Ω+ subdomain where the implicit
function is positive.

describes the intersection of φ1, and φ2. This approach is called constructive solid geometry
(CSG) [OF03; SM09].

In the following 〈®a, ®b〉 notates the scalar product between ®a and ®b. Rendering of the
molecular surface used in this work requires three geometric primitives in R3:

1. A sphere [SM09] centered at ®c with radius R is described by

φ(®x) = 〈®x − ®c, ®x − ®c〉 − R2. (2.5)

2. The plane [SM09] defined by a normal ®n and some position vector ®p in the plane is
described by

φ(®x) = 〈 ®p − ®x, n〉 (2.6)

3. A torus [Har96; KBE09] with minor radius r and major radius R (Figure 2.2) is
described by

φ(®x) =
(
R −

√
x2 − y2

) 2
+ z2 − r2 (2.7)

2.1.1 Ray-Surface Intersection

One method of rendering images of implicit surface utilizes ray tracing [Gla89]. For every
image pixel, a ray is constructed that originates at the eye and passes through this pixel.
Each such viewing ray is intersected with the implicit surface. The intersection point of
closest distance along the ray is shaded according to the light sources in the scene to obtain
the corresponding pixel’s color. Figure 2.3 shows a simple example. This basic method can

18

2.1 Implicit Surfaces

Figure 2.2: Top down and side view depiction of a torus defined by minor radius r and
major radius R.

Figure 2.3: Ray tracing of the scene consisting of the blue sphere. The ray is generated for
the red pixel and intersected with the sphere to obtain the green intersection
point. This point is then shaded according to the light source (yellow) to
determine the pixel’s color.

19

2 Fundamentals

Figure 2.4: Intersection of a ray with a sphere located at ®c with radius R, which yields
the intersections at t1,2.

be extended to obtain physically realistic images by implementing path tracing [Kaj86],
where the amount of light arriving at surface points is computed by repeatedly following
random paths along rays through the scene. The core mechanism of ray tracing requires
the ability to intersect a primitive described by an implicit function with a viewing ray.
Let

®r(t) = ®o + t ®d (2.8)

be the ray originating at ®o oriented in direction ®d. In general, to find the intersection of
®r(t) with the implicit surface φ(®x), one has to solve the equation

φ(®r(t)) = 0 (2.9)

for t [SM09]. For example, to find the intersection between a sphere defined by Equation 2.5
and a ray ®r(t), the ray is inserted into φ(®x), yielding

0 = 〈®o + t ®d − ®c, ®o + t ®d − ®c〉 − R2 (2.10)

⇐⇒ 0 = 〈 ®d, ®d︸︷︷︸
α

〉t2 + 2〈 ®d, ®o − ®c〉︸ ︷︷ ︸
β

t + 〈®o − ®c, ®o − ®c〉 − R2︸ ︷︷ ︸
γ

. (2.11)

This is the quadratic equation αt2 + βt + γ = 0. Therefore, the intersections are at

t1,2 =
−β

2α
∓

√
β2 − 4αγ

2α
, (2.12)

where t1 describes the entry point and t2 the exit point. Only the real solution are of
relevance here, as complex ones indicate no intersection. If the ray’s direction is a unit
vector, t corresponds to the distance of intersection from the origin ®o. Figure 2.4 depicts
an example.

While the closed solution of the ray-sphere intersection problem is straightforward to
compute, in general this is not the case for arbitrary implicit surfaces. One such more
complex case is the torus, which appears as a primitive in the solvent excluded surface.

20

2.1 Implicit Surfaces

Figure 2.5: Example intersection of a ray with a torus yields the intersections t1, t2, t3
and t4.

The torus according to Equation 2.7 intersected with the ray ®r(t) yields the quar-
tic [TLP07]

t4 + αt3 + βt2 + γt + ρ = 0 (2.13)

where

α = 4〈®o, ®d〉,

β = 2(〈®o, ®o〉 − (R2 + r2) + 2(〈®o, ®d〉)2 + 2R2d2
z ,

γ = 4(〈®o, ®d〉(〈®o, ®o〉 − (R2 − r2)) + 2R2dzoz),

ρ = (〈®o, ®o〉 − (R2 + r2))2 − 4R2(r2 − o2z).

Similar to the ray-sphere intersection problem, finding the real roots of this equation yields
the distances along the ray where intersections occur. There are up to four intersections,
as shown in Figure 2.5. However, obtaining the solution is not as simple as the quadratic
case. Section 2.2 describes analytic and iterative methods to solve this problem.

2.1.2 Sphere Tracing

Some implicit functions φ(®x) describe the minimal squared distance of ®x to a geometric
surface, such as Equation 2.5 and Equation 2.7. Therefore the distance function a(®x) is
derived that describes the Euclidean distance to the surface [Har96] as

a(®x) = min
y∈∂Ω
‖ ®x − ®y‖. (2.14)

In such a case the sphere tracing method introduced by Hart [Har96] can be employed to
find ray-surface intersections. This method is iterative. Consider some position ®xt and let
a(®x) be a distance function that returns Euclidean distance to a surface located at φ(®x) = 0.
Then the implicit function evaluation a(®x) can be used to progressively step along a ray in

direction ®d towards the surface with

®xt+1 = ®xt + a(®x) ®d. (2.15)

Note that ®d must have unit length. No intersection will be missed as ®xt+1 will at most
reach exactly the closest surface point, therefore

a(®x∞) = 0. (2.16)

In practice the iteration can be stopped when the distance drops below a certain ε threshold.
See Figure 2.6 for an example.

21

2 Fundamentals

Figure 2.6: Example iteration of sphere tracing, originating at ®o in direction ®d. Depicted
in blue are the minimum distances returned by the distance function. The
green points correspond to the moved positions after each step.

2.2 Quartics

In order to solve the ray-torus intersection problem, the real roots of the quartic equation
of Equation 2.13 have to be found. Let

x4 + ax3 + bx2 + cx + d = 0 (2.17)

be a general quartic equation with real coefficients, i.e. a, b, c, d ∈ R. Note that any
polynomial with non neutral coefficient in front of the x4 term can be divided out to arrive
at this form. See Figure 2.7 for an example.

2.2.1 Analytical Solution

Quartics can still be solved analytically in closed form. Polynomials of higher degree do
not allow analytical solving [Fau96]. Different methods exist, however Herbison-Evans
found that the Ferrari approach is numerically most stable [Her95].

In the Ferrari approach, the main idea of finding the solutions of Equation 2.17 consists of
refactoring it into two quadratic equations. Solving both quadratic equations then yields all
four solutions. Arriving at the solution of Equation 2.17 involves constructing and solving
a cubic equation called cubic resolvent [Her95; Tur57], whose coefficient are computed from
the quartic equation’s coefficients.

Ferrari’s Approach for Quartic Equations

The following derivation generally follows the approach presented by Turnbull [Tur57] to
arrive at the equations presented by Herbison-Evans [Her95]. Weisstein [Wei18a] gives
another approach to derive a similar cubic resolvent, however their approach is based on
multiple subsequent substitutions, which is less elegant.

22

2.2 Quartics

-6 -4 -2 0 2
x

0

50

100

150

200

250

300

y

f(x)

Figure 2.7: The quartic equation f (x) = x4 + 5x3 − x2 − 20x + 1, with four real roots.

To factor the quartic in Equation 2.17, it must be transformed into the form

(P + Q)(P −Q) = P2 −Q2 !
= x4 + ax3 + bx2 + cx + d, (2.18)

where P ±Q are quadratic equations. In the first step, P and Q are chosen as

P = x2 +
a
2

x −
y

2
, (2.19)

Q = ex + f , (2.20)

where e, f and y are yet to be determined. From Equation 2.18 it must hold that(
x2 +

a
2

x −
y

2

) 2
− (ex + f)2 !

= x4 + ax3 + bx2 + cx + d. (2.21)

This is different to the factorization approach given by Turnbull [Tur57], however Equa-
tion 2.21 will lead to a simpler cubic resolvent. Expanding the left hand side, one arrives
at

x4 + ax3 +
(

a2

4
− y − e2

)
x2 +

(
−

ay
2
− 2e f

)
x +

(
− f 2 +

y2

4

)
. (2.22)

By comparing coefficients with the right hand side of Equation 2.21, one obtains the
equations

b =
a2

4
− y − e2, c = −

ay
2
− 2e f , d = − f 2 +

y2

4
. (2.23)

From these the unknowns e, f and e f are formulated:

e2 =
a2

4
− b − y, e f = −

ay
4
−

c
2
, f 2 =

y2

4
− d. (2.24)

23

2 Fundamentals

In order for (P + Q)(P −Q) to hold, y must be chosen. From e2, f 2, and e f an equation
for y is constructed as there are no mutual dependencies between the equations with

(e f)2 = e2 f 2 (2.25)

⇐⇒

(
−

ay
4
−

c
2

) 2
=

(
a2

4
− b − y

) (
y2

4
− d

)
(2.26)

⇐⇒
a2

4
y2 + acy + c2 =

a2

4
y2 − a2d − by2 + 4bd − y3 + 4dy. (2.27)

Rearranging everything to one side yields

y3 + by2 + (ac − 4d)y + (c2 + a2d − 4bd) = 0, (2.28)

which is the cubic resolvent. Solving for y yields up to three real roots. Only one of these
roots is required to construct the quadratic equations (P ±Q), whose solutions correspond
to the roots of the quartic.

The quadratic equations then read [Her95]

0 = x2 + Gx + H, (2.29)

0 = x2 + gx + h, (2.30)

with

G =
a
2
+ e, (2.31)

H = −
y1

2
+ f , (2.32)

g =
a
2
− e, (2.33)

h = −
y1

2
− f , (2.34)

which can be solved immediately.

Solving the Cubic Resolvent

The general solution of the cubic equation was derived by Tartaglia, however today it
is associated with Cardan [Tur57]. Again, the derivation below follows the approach
given by Turnbull [Tur57] which is slightly modified to obtain the equations given by
Herbison-Evans [Her95]. Consider the general cubic equation

x3 + px2 + qx + r = 0, (2.35)

which is transformed by the substitution x = y −
p
3 to

y3 +

(
q −

p2

3

)
︸ ︷︷ ︸

u

y +
2p3

27
−

pq
3

+ r︸ ︷︷ ︸
v

= 0. (2.36)

24

2.2 Quartics

Assuming y = z + n and inserting in Equation 2.36 yields

y3 = z3 + n3 + 3zny. (2.37)

Slight rearranging and coefficient comparison with Equation 2.36 yields

0 = y3 + (−3zn)︸ ︷︷ ︸
≡u

y + (−z3 − n3)︸ ︷︷ ︸
≡v

,

as this is again the transformed cubic. Therefore the equations

−u = 3zn, (2.38)

−v = z3 + n3 (2.39)

hold as well.

Next a quadratic equation whose two roots λ1,2 are exactly z3 and n3 such that Equation 2.39
and Equation 2.38 hold simultaneously is constructed. This requires the usage of Vieta’s
formulas [Wei18b], which state that for the general quadratic equation

x2 + ζ x + τ (2.40)

with roots x1,2 it holds that

− ζ = x1 + x2, τ = x1x2. (2.41)

Equation 2.39 gives the condition that the sum of the roots shall be −v. Similarly
Equation 2.38 requires that the product of the roots shall be −u

3

27 , yielding the quadratic

λ2 + vλ −
u3

27
= 0. (2.42)

Finally the solutions to

y = z + n =
3

√
−v

2
+

√
v2

4
+

u3

27
+

3

√
−v

2
−

√
v2

4
+

u3

27
(2.43)

contains all roots since

λ1 =
−v2

2
+

√
v2

4
+

u3

27
= z3, (2.44)

λ2 =
−v2

2
−

√
v2

4
+

u3

27
= n3 (2.45)

are the solutions to the quadratic equation. Note that in Equation 2.43 for each cubic
root three solutions can be obtained for z and n. Therefore there are 3 × 3 combinations
of solutions y = z + n. However, not all combination are valid. The combinations are

examined by defining ω = 1
2 + i

√
3
2 . Then ω3 = 1, ω6 = 1 and therefore

z3 = (1z)3 or (ωz)3 or (ω2z)3, (2.46)

n3 = (1n)3 or (ωn)3 or (ω2n)3 (2.47)

25

2 Fundamentals

hold as well. Equation 2.39 always holds for all combinations of z and n, which is not the
case for Equation 2.38. The three combinations

y1 = z + n, (2.48)

y2 = ωz + ω2n, (2.49)

y3 = ω
2z + ωn (2.50)

fulfill both equations, which therefore describe the three roots.

The discriminant of the cubic is

4 =
v2

4
+

u3

27
. (2.51)

This expression appears in the solution in Equation 2.43. If 4 > 0, then the terms
√
4 of

Equation 2.43 are real and taking the real cubic roots to obtain y1 = z + n gives one real
root. Since the Equations for y2 and y3 hold, both other roots are necessarily complex.

Equation 2.44 and Equation 2.45 are rearranged in the following way:

z3, n3 =
−v2

2
±

√
v2

4
+

u3

27

=
−v2

2
±
1

2

√
v2 + 4

u3

27︸ ︷︷ ︸
w

=
−v ± w

2
.

Equation 2.39 now yields

n ≡ −
u

3 3
√

w−v
2

= −
u
3

3

√
2

w − v
. (2.52)

Now with y1 = z + n it follows that

y1 =
3

√
w − v

2
−

u
3

3

√
2

w − v
, (2.53)

which is the solution for one real root given by Herbison-Evans [Her95]. Finally, to obtain
the actual root the substitution done in Equation 2.36 has to be reversed, i.e.

x1 = y1 −
p
3
. (2.54)

If 4 < 0 holds, then the solution of
√
4 will be purely complex. The solutions before taking

the cubic root are therefore
z3, n3 =

−v

2︸︷︷︸
α

±i
√
−4︸︷︷︸
β

. (2.55)

Written in polar form, this is equivalent to

z3, n3 = r cos θ︸ ︷︷ ︸
≡α

±i r sin θ︸︷︷︸
≡β

(2.56)

26

2.2 Quartics

where due to the nature of the polar form, in the complex plane the length r is

r =
√
α2 + β2

=

√
−u3

27
=

√
−

(u
3

) 3
,

and the angle θ is

cos θ = α
r
=
−v

2r
=⇒ θ = cos−1 −v

2r
.

Since y = z + n holds the roots are also describable as

y =
3
√

r cos θ + ri sin θ + 3
√

r cos θ − ri sin θ

= 3
√

r
(

3
√

cos θ + i sin θ + 3
√

cos θ − i sin θ
)

ym+1 =
3
√

r
(
cos θ + 2mπ

3
+ i sin θ + 2mπ

3
+ cos θ + 2mπ

3
− i sin θ + 2mπ

3

)
= 2 3
√

r cos θ + 2mπ
3

,

for m ∈ {0, 1, 2}. The switch to ym+1 is the result of taking the cubic root of a complex
number p = ρ(cos φ + i sin φ) in polar form [MS05] which yields three solutions p1, p2 and
p3 with

pm+1 = 3
√
ρ

(
cos φ+ 2πm

3
+ i sin φ+ 2πm

3

)
. (2.57)

Therefore all obtainable roots ym are real. The solutions given by Herbison-Evans are
obtained by

s = 3
√

r =

((
−

u
3

) 3) 1
6

=

√
−

u
3
,

k =
θ

3
=

cos−1 −v2r
3

=
cos−1 −v

2s3

3
.

Now s and k are used to describe the roots as

ym+1 = 2s cos
(
k +

2mπ
3

)
. (2.58)

The equality cos(γ + δ) = cos γ cos δ − sin γ sin δ is used on this equation’s cos term which
yields

cos
(
k +

2mπ
3

)
= cos k cos 2mπ

3
− sin k sin 2mπ

3
. (2.59)

Finally, the three roots are explicitly

y1 = 2s cos k, (2.60)

y2 = s(− cos k +
√
3 sin k), (2.61)

y3 = s(− cos k −
√
3 sin k). (2.62)

Again the substitution of Equation 2.36 is reversed, yielding

x1 = y1 −
p
3
, x2 = y2 −

p
3
, x3 = y3 −

p
3
. (2.63)

27

2 Fundamentals

Numerical Issues

Even though the Ferrari approach solves the quartic equation completely analytically,
floating point precision is still an issue to consider. Floating point operations may overflow
or introduce heavy roundoff errors [Her95]. In case of the ray-torus intersection, this will
lead to visual artifacts such as holes in the surface, if intersections are missed. Herbison-
Evans [Her95] numerically stabilized the Ferrari and the Cardan approach to reduce
numerical errors, which is described in the following.

When a particular quartic is examined, depending on its coefficient signs and the sign
of the cubic resolvent’s root, the coefficients of the factored quadratic equations may be
numerically stable or erroneous. This occurs due to the nature of the calculations that
have to be computed. Equation 2.24 requires that sums of terms have to be calculated.
For example, to compute e2, b and y have to be positive in order for the calculation to
be stable. Otherwise, they might cancel to a small value |e2 |. In the face of numerical
inaccuracy, the sign of e2 may then become negative. The same argument holds for the
computation of f 2 and e f . However, if at least two of the equations are stable and one of
them is e f , then the originally unstable value is obtainable by rearranging e f .

Equations 2.23 allows stabilization of g (used in Equation 2.30) by rearrangement as

b + y =
a2

4
− e2

⇐⇒ b + y =
(a
2
+ e

) (a
2
− e

)
⇐⇒

b + y
a
2 + e

=
a
2
− e

⇐⇒
b + y

G
= g,

which gives stable g in the face of sign(a) = sign(e) and sign(b) = sign(y). One may
rearrange this to

G =
b + y

g
(2.64)

to obtain stable G when sign(a) , sign(e). Similarly Equations 2.23 yield

H = d/h, h = d/H (2.65)

for stable H if sign(y) = sign(f), or stable h if sign(y) , sign(f). For the solution of
the cubic equation, Equation 2.53 can be stabilized as well. The term w−v

2 may become
negative due to numerical inaccuracy if v > 0. However the term may by expanded in the
nominator and denominator with w + v which yields the alternative formulation

y =
3

√
w + v

2
−

u
3

3

√
2

w + v
, (2.66)

which is then stable. Since x1 ≤ x2 ≤ x3, the third root or first root is most useful for
computation, as it can be used to keep values from becoming very big in terms of absolute
value or even overflowing.

28

2.2 Quartics

2.2.2 Iterative Solvers

Iterative solvers for the root finding problem are useful if exact roots are not required. In
the ray-torus intersection problem, if the error to the true roots is kept small enough, it
will not appear visible in computed images. A general approach that is also applicable to
arbitrary polynomials consists of computing the Eigenvalues of the companion matrix of a
quartic which is constructed as

A =

©­­­­«
−a0 −a1 −a2 −a3
1 0 0 0

0 1 0 0

0 0 1 0

ª®®®®¬
. (2.67)

The Eigenvalues are equivalent to the quartic’s roots, since A’s characteristic polynomial
is equivalent to the quartic [PTVF92]. However this requires the usage of expensive
Eigenvalue iteration algorithms.

Newton-Raphson Method

Another popular approach is based on the Taylor-Expansion of a generic continuous function
f (x) yielding

f (x + δ) ≈ f (x) + f ′(x)δ +
1

2
f ′′(x)δ2 + ..., (2.68)

which is called the Newton-Raphson method [PTVF92]. At the current position xt the step
length

δ = −
f (xt)
f ′(xt)

(2.69)

is evaluated and used to update the current xt with

xt+1 ← xt + δ (2.70)

until convergence to a root [PTVF92]. While this method converges quadratically with
each step when started close to a root, it may diverge if the initial x0 is chosen arbitrarily.
Another disadvantage is that convergence of the method only implies that a single root
was found. It is possible to deflate the polynomial with each found root, however this may
be numerically unstable.

Bairstow’s Method

Bairstows Method computes a factorization of an arbitrary polynomial f (x) of degree n of
one quadratic term and another polynomial q(x) of degree n − 2. The following derivation
follows Press et al. [PTVF92]. Let

x2 − 2αx +
(
α2 + β2

)
≡ x2 + Bx + C (2.71)

be the quadratic with solutions x1,2 = α ± iβ.

29

2 Fundamentals

Now this quadratic is used to represent f (x) as

f (x) = (x2 + Bx + C)q(x) + r(B,C)x + s(B,C) (2.72)

where q(x) is a quadratic and r(B,C)x + s(B,C) is the resulting rest term. Note the
rest term’s dependency on the coefficients B and C. The unknowns q(x), r(B,C) and
s(B,C) can be obtained by polynomial division. B and C divide f (x) without remainder
if r(B,C), s(B,C) = 0. The method now seeks to find coefficients B and C such that they
correspond to roots of r and s. In case of the quartic after B and C were determined,
immediately q(x) and (x2 + Bx + C) can be solved to obtain all roots.

Similar to the Newton-Raphson method the Taylor expansion can be used to obtain step
sizes δB and δC for both r and s simultaneously as

r(B + δB,C + δC) ≈ r(B,C) +
∂r
∂B
δB +

∂r
δC
δC, (2.73)

s(B + δB,C + δC) ≈ s(B,C) +
∂s
∂B
δB +

∂s
∂C
δC, (2.74)

which results in the linear system of equations

−r(B,C) =
∂r(B,C)

∂B
δB +

∂r(B,C)

δC
δC, (2.75)

−s(B,C) =
∂s(B,C)

∂B
δB +

∂s(B,C)

∂C
δC, (2.76)

by setting the left hand side of both equations to zero. The unknowns
∂r(B,C)

∂B ,
∂r(B,C)

δC ,
∂s(B,C)

∂B ,
∂s(B,C)

∂C as well as r(B,C) and s(B,C) are to be determined in each iteration step.
Note that here B,C are seen as fixed in the current iteration step to compute δB and δC.

Solving this linear system yields

δB =

∂s(B,C)
∂C r(B,C) −

∂r(B,C)
∂C s(B,C)

γ
(2.77)

δC =

∂r(B,C)
∂B s(B,C) −

∂s(B,C)
∂B r(B,C)

γ
(2.78)

where

γ =
∂r(B,C)

∂C
∂s(B,C)

∂B
−
∂s(B,C)

∂C
∂r(B,C)

∂B
. (2.79)

Since δB and δC are step sizes towards the roots of r and s, the iteration is applied as

Bt+1 = Bt + δB, Ct+1 = Ct + δC. (2.80)

The partial derivatives are obtained by computing the derivate of Equation 2.72 with
respect to C and separately for B on both sides, resulting in

∂ f (x)
∂B

=
∂
(
(x2 + Bx + C)q(x) + r(B,C)x + s(B,C)

)
∂B

(2.81)

⇐⇒ 0 = (x2 + Bx + C)
∂q(x)
∂B

+ q(x) +
∂r(B,C)

∂B
+
∂s(B,C)

∂B
, (2.82)

30

2.3 Acceleration Structures

and

∂ f (x)
∂B

=
∂
(
(x2 + Bx + C)q(x) + r(B,C)x + s(B,C)

)
∂B

(2.83)

⇐⇒ 0 = (x2 + Bx + C)
∂q(x)
∂C

+ q(x)x +
∂r(B,C)

∂C
+
∂s(B,C)

∂C
. (2.84)

Dividing q(x) in Equation 2.72 by x2 + Bx + C yields

q(x) = (x2 + Bx + C)g(x) + r̂(B,C)x + ŝ(B,C) (2.85)

where g(x) is now of degree n − 4. Again, g(x), r̂(B,C) and ŝ(B,C) can be obtained by
polynomial division. Rearranging Equation 2.82 by pulling q(x) on the other side and
comparing it with Equation 2.85 results in

∂r(B,C)

∂C
= −r̂(B,C),

∂s(B,C)

∂C
= −ŝ(B,C). (2.86)

When the roots x1,2 are put into Equation 2.85, it holds that

q(x1) = r̂(B,C)x1 + ŝ(B,C), (2.87)

q(x2) = r̂(B,C)x2 + ŝ(B,C), (2.88)

as the quadratic multiplied with g(x) will vanish. Putting roots x1,2 into Equation 2.82
and replacing q(x1) and q(x2) with Equation 2.87 and Equation 2.88 gives

∂r(B,C)

∂B
x1 +

∂s(B,C)

∂B
= −x1(r̂(B,C)x1 + ŝ(B,C)) (2.89)

∂r(B,C)

∂B
x2 +

∂s(B,C)

∂B
= −x2(r̂(B,C)x2 + ŝ(B,C)). (2.90)

Vieta’s formulas (see Equation 2.41) are now used on the roots of the quadratic to obtain

x1 + x2 = −B, x1x2 = C, (2.91)

which allow solving of Equation 2.89 and Equation 2.90 yielding

∂r(B,C)

∂B
= Br̂ − ŝ,

∂s(B,C)

∂B
= Cr̂(B,C). (2.92)

Now the iteration according to Equations 2.80 can be computed.

2.3 Acceleration Structures

Ray tracing performance greatly benefits from the usage of spatial data structures, which
allow sublinear intersection computation. All these data structures have in common that
they either divide the scene’s space or divide the scene objects which allows a query
ray to exclude most scene objects from intersection tests. The simplest structure is the
uniform spatial subdivison which just divides the space into a grid with uniform side lengths
per dimension [SM09]. Intersection requires the ray to check all the objects associated

31

2 Fundamentals

with every grid cell it passes through for intersection in an incremental fashion, until an
intersection is found. The advantage of this method is simple implementation and the
possibility of rapid construction of the grid which allows interactive ray tracing, as shown
by Wald et al. [WIK+06] and Gribble et al. [GIK+07]. Grids are also used to accelerate
neighborhood computation in molecular datasets for the same reasons [KBE09; LBPH10].

Bounding Volume Hierarchies (BVHs) [PH10] or hierarchical bounding boxes [SM09] are a
tree based approach that associates objects with tree leafs. In general, each object has a
bounding box. Each parent node now has the union of all child node bounding boxes as
its own bounding box, up until the root is reached, which has the bounding box of the
entire scene. Traversal begins at the root and recursively traverses the tree’s nodes. A
valid intersection requires that the node’s bounding box is intersected first, otherwise its
entire subtree can be skipped. In case of a bounding box intersection the node’s children
have to be recursively examined further. Since such a hierarchy does allow overlapping
bounding boxes of child nodes, all returned intersection have to be checked for the closest
intersection.

Binary Space Partitioning [SM09] trees (BSP trees) are a approach that combines space
division with a hierarchical structure. Tree nodes contain cutting planes that divide the
space in two halfspaces, e.g. the root plane splits the entire scene in half. Depending on
the ray origin and direction, halfspaces can be skipped entirely, e.g. if the ray is inside a
halfspace and points away from the plane, it will never intersect any object in the other
halfspace.

Naturally, the tree based approaches are more expensive to construct than grids, depending
on the used heuristics. Grids also have the disadvantage that the same object may be
tested more than once for intersection, if the object overlaps multiple cells at once [PH10].
With many scene objects ray tracing becomes more efficient than object order rendering
methods such as (software) rasterization [SM09; WJA+17], as occluded objects in dense
scenes are skipped, while rasterization based approaches will then produce overdraw. See
Figure 2.8 for examples of all three structures.

2.4 Software

This section contains an introduction to the software that was used to implement this
work. First, a vectorized C-variant is introduced that offers performance benefits for
parallelizeable problems computed on CPUs. Both the ray tracing acceleration library
Embree and OSPRay, which makes use of Embree are described briefly. The geometry
described in this work was implemented in OSPRay. Lastly, the MegaMol framework is
described which was used to integrate the implemented geometry.

2.4.1 ISPC

Modern CPUs have the ability to execute the same operation in a single step for multiple
data values in SIMD (single instruction, multiple data) vector units. This offers the
possibility for low level parallel code execution in addition to threaded execution over

32

2.4 Software

Figure 2.8: From left to right: Grid, bounding volume hierarchy and binary space parti-
tioning. The grid avoids intersection with the geometry on the right. However,
it can be seen that sometimes the same geometry is checked multiple times
for intersection. In the bounding volume hierarchy, all bounding boxes on the
same tree level are colored the same, similar to the planes in the binary space
partitioning example. The bounding volume hierarchy allows skipping of the
top-right subtree. Binary space partitioning is less effective in this example
as only the pink sphere in the top-left can be skipped after the intersection
with the blue rectangle was found.

multiple cores. While current compilers like gcc1 may support low level capabilities
for writing vectorized code, this remains a highly challenging task for programmers,
especially if portable code for complex algorithms is required. The Intel SPMD Program
Compiler2(ISPC) aims to solve this problem by offering a C-like language that compiles
to ordinary object files that can be linked together with C/C++ code, by compiling high
level code to SSE or AVX vector instructions [PM12]. SMPD stands for single-program,
multiple-data, which is the programming model used by ISPC. Functions written in ISPC
are exposed with the export keyword. On the C/C++ side, a specialized header file is
included that declares the function so it can be called from C/C++ code like any other
function. Function arguments such as pointers and references allow direct access to client
memory on the ISPC side without copying any data, in contrast to GPU programming
APIs. The authors report a speedup of roughly three to eight times depending on the
problem compared to scalar C code, when executed on a single core with vector width
eight.

Execution Model

Conceptually, upon function entry a gang of program instances is started, where the number
of gang members n is generally up to twice the SIMD vector width [PM12]. Execution
however differs from scalar code. Each program variable is defined as varying or uniform,

1https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
2https://ispc.github.io/index.html

33

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://ispc.github.io/index.html

2 Fundamentals

Listing 2.1 ISPC example code that computes a discretized representation of the function
z = sin x + sin y in the domain [0, π) × [0, π) ⊂ R2 vectorized over consecutive entries in of
the result array.

1 export void added_sines(uniform int numX, uniform int numY, uniform float *uniform result) {

2

3 for (uniform int y = 0; y < numY; y++) {

4 uniform const float yCoord = PI*((float)y)/numY;
5 foreach(x = 0 ... numX) {

6 varying const float xCoord = PI*((float)x)/numX;
7 varying int index = x + numX*y;
8 varying float z = sin(xCoord) + sin(yCoord);

9 result[index] = z;

10 }

11 }

12 }

where varying variables contain n values each, while uniform variables are invariant among
all program instances. Therefore computations that are intended to run in parallel should
use variables with the varying keyword. During the execution, if a operation (such as +) is
encountered that is written to a varying variable, the operation is executed in the CPU’s
SIMD unit. Control flow statements such as if involving varying variables may lead to
divergence of executing program instances. All instances always execute all encountered
program statements, however a execution mask determines the current active program
instances. If a conditional statement leads to diverging execution, the execution mask is
used such that only active program instance’s operations can have side effects. Computation
involving purely uniform variables can be compared to scalar execution. While a varying

variable can be written with a uniform variable, the other way around is explicitly forbidden
as it would be ambiguous.

Performance

Since conditional statements cannot be skipped if at least one program instances wants
to execute the inside body, all other program instance have to execute in parallel as well
(and compute garbage). In general due to execution path divergence branching implies a
performance penalty. Another issue is the memory layout of computation data. The often
used array of structs (AoS) layout can be disadvantageous, as load and store operations
access data sequentially. On the other hand, the struct of arrays (SoA) layout allows
vectorized loading of coherent data values, e.g. the x-variable of n position vectors can be
loaded in one step if they are located coherently in one array.

34

2.4 Software

2.4.2 Embree

The Embree3 framework is a lightweight CPU ray tracing library that offers efficient
implementation of bounding volume hierarchies that allow vectorized ray queries via its
API [WWB+14]. Since version 2.0, the ISPC language is used for the implementation of
ray tracing kernels and can be used for function calls to the API. The BVH relies on axis
aligned bounding boxes. Both single ray and ray packet traversal is supported. Depending
on the architecture, single ray traversal is either vectorized over the BVH nodes or the
components of the intersection variables (e.g. intersection point). This is well suited for
incoherent rays, such as the ray queries required for sampling a diffuse reflection. In
contrast, ray packet tracing intersects a set of coherent rays with a single BVH node in
each step. The OSPRay framework currently only uses this approach, even though Embree
is able to use both methods simultaneously on the same BVH. In addition to triangles,
users are able to implement custom geometries by implementing call back function called
on intersection tests and bounding box queries.

2.4.3 OSPRay

OSPRay4 [WJA+17] is a rendering framework that uses CPU ray tracing to aid implemen-
tation of scientific visualization methods. The framework is build on top of the Embree API
and uses ISPC for performance critical code such as intersection computations. Currently,
OSPRay abstracts away commonly used entities such as renderers, cameras, materials,
lights and geometries which are not provided by Embree’s API by default. Additionally,
support for distributed rendering is offered. These entities are offered through a string
based API, which allows users to write custom extension. In the high performance comput-
ing context (HPC), the usage of a CPU based rendering solutions is justified by the fact
that distributed compute nodes oftentimes do not contain a dedicated GPU, which forces
software rasterization implementations. Rasterization also complicates implementation of
advanced shading effects that are oftentimes beneficial for visualization purposes [GP06].
Another advantage of CPU ray tracing is the access to the entire available memory of
compute nodes, which oftentimes exceeds GPU memory, if available. However, full access
is required for techniques such as rendering of large volume datasets [WJA+17].

2.4.4 MegaMol

MegaMol5 [GKM+15] is a framework intended to simplify development of visualization
techniques for particle data sets, with a focus on GPU based implementations. Developers
are aided by commonly used functionality such as shader management and UI interaction,
the core of the framework. Plugins augment the core by implementing a collection of
modules which are abstract classes that each already offer some generic functionality.
Modules may communicate with other modules. For example, a rendering module may

3https://embree.github.io/
4https://www.ospray.org/
5https://megamol.org/

35

https://embree.github.io/
https://www.ospray.org/
https://megamol.org/

2 Fundamentals

Figure 2.9: Example of a typical MegaMol graph, created with MegaMol’s configurator
tool. Here the modules of the OSPRay integration are shown. The View3D
module controls general parameters such as camera position and orienta-
tion. The OSPRayRenderer module wraps an OSPRay renderer (‘‘scivis’’ or
‘‘pathtracer’’). Both OSPRayAmbientLight and OSPRayDistantLight control
scene illumination. The OSPRaySphereGeometry module wraps OSPRay’s
sphere geometry. MMPLDDataSource is used to load the data into the sphere
geometry. Finally, the OSPRayOBJMaterial module defines the geometry’s
material.

ask a data loading module for data, such as particle datasets. If such communication
is required, this is modeled as a call, which connects both modules. Calls are generic
and allow connection of modules with matching interfaces by offering callback functions.
For example commonly particle datasets consist of particles positions, colors and radii.
There may be different loaders for different files format, but they all allow connection with
the same call, abstracting away the specific implementation. This modular nature allows
reusage of modules together with newly developed ones. Modules and calls can be seen as
nodes and edges of a graph structure.

OSPRay is largely integrated in MegaMol as individual modules, such as the various
geometries and material types [RKRE17], allowing rendering of datasets with CPU ray
tracing in contrast to the GPU based approaches of the rest of the framework. Figure 2.9
shows a MegaMol module graph that uses the OSPRay integration.

36

3 Molecular Dynamics Visualization

The visualization subfield molecular dynamics visualization attempts to aid domain experts
in the understanding of structure, behavior and mutual interaction of molecules of various
kinds. A molecule consists of a number of atoms, which are held together by attracting
forces, for example produced by chemical bonds between the atoms. Molecules concerning
a living system are called biomolecules [KKL+15], for example proteins. Visualization
aims to couple the molecule’s shape with additional information such as electrical and
thermal data, or provide abstraction of the molecule’s properties by mapping secondary
structures to geometric primitives. Molecular surfaces serve as a means to convey the
accessibility, i.e. the potential for interaction between molecules and other, independent
entities. Surfaces allow detection and visualization of spatial characteristics such as cavities
(clefts, tunnels, pores and others) shaped by the atoms of a molecule [KKL+16]. Interesting
interactions between molecules oftentimes occurs in these positions. Relevant datasets are
either produced by simulations, or results of X-Ray crystallography [KKL+15].

3.1 Simulation of Molecules

Adcock and McCammon [AM06] gave an extensive overview over modern molecular simu-
lation techniques. One classic approach known as molecular dynamics (MD) simulation
models molecules as point masses connected by mechanical springs [AM06]. Hereby a
spring between atoms models bounding forces. For example, Hooke’s law is a potential
candidate to model attraction and repulsion between bonded atoms, while the Lennard-
Jones potential models interaction of non bounded atoms. For each state of the molecule, a
force field function describes its current potential energy, which consists of a sum of terms
parameterized by the molecule’s atom positions in space. The model’s parameterization is
obtained from experimentation or theoretical considerations of quantum mechanics. These
models disregard computation of quantum effects themselves, as these are currently unfea-
sible to simulate [AM06; KKL+15] in large systems for extended periods of time. Bonds
between atoms are predefined, which does not allow simulation of reactions at binding sites.
Combined quantum mechanical/molecular mechanical methods allow simulation of such
interactions, however the modeling of quantum mechanical effects increases computational
costs [ST09]. In the simulation, iteratively at each time step the applied force of each atom
position is computed from the current potential energy and applied to solve an equation of
motion numerically. The potential energy’s derivative with respect to the position gives
the required force vector [AM06; Jen06]. The molecule may be simulated in vacuum or
submerged in water. Such a solvent can be modeled explicitly or implicitly. An explicit
model is computationally more expensive as solvent molecules interact with the studied one.
Implicit models are more efficient to compute, but may lack the modeling of certain effects

37

3 Molecular Dynamics Visualization

and thus may be less accurate. The result of such simulations are trajectories of atom
centers [KKL+15], which allow domain experts to inspect interactions in high temporal
resolution for a short duration on nanosecond to microsecond scale. If computational
efficiency is of concern, the Metropolis monte carlo approach can be used [AM06]. This
method is more efficient as it avoids numerical integration to compute the atom positions
for each time step. In this method, the molecule’s current state is repeatedly perpetuated
randomly to obtain new states [AM06; FS01]. If this change results in lowered potential
energy of the entire system, it is accepted. Otherwise, the state is only taken with a certain
probability. In contrast to the classical approach, there is no relation to time.

3.2 Visualization Techniques

Molecular datasets can be visualized differently according to the information that is to be
conveyed. Kozlikova et al. [KKL+15] grouped visualization techniques into two categories:
Atomistic and abstract models. Atomistic models show the molecule’s atoms directly in
some form. The simplest visualization technique consists of rendering the atoms depicted as
spheres with the radius chosen as the van der Waals radius (see Section 3.2.1). Additionally,
this representation can be enhanced to show atomic bonds between atoms as well, known
as the ball-and-stick visualization [KKL+15]. Here, bonds between atoms are depicted by
primitives such as cylinder or lines. Molecular surface representations are another example
of atomistic models. In this case, a smooth surface is arranged around the molecule’s atoms
in such a way that it conveys accessibly of the molecule outer and inner shell for other
entities. Section 3.2.1 presents an in-depth description of these representations. Figure 3.1
shows example visualizations of a protein.

On the other hand, abstract models are less concerned with individual atoms. The simplest
kind of abstraction consists of reducing several neighboring atoms to one sphere [KKL+15;
LPSV14]. Another abstract model is the cartoon representation. This technique aims to
visualize secondary structures derived from the atom data, commonly amino acid chains
such as α-helices and β-sheets [KBE08]. Such chains of atoms are mapped to visual
representations like spiraling ribbons and curved cylinder tubes.

Oftentimes, GPU ray casting is used to renderer the atom spheres [Gum03; RE05]. While
triangulation of the spheres can be applied, it is not employed often as the number of
required triangles for good visual quality implies a severe performance loss. The ray casting
technique consists of rendering proxy geometry on the GPU and then applying ray casting
for each of its fragments in the fragment shader. For each fragment a ray is cast and
intersected with the sphere. If the sphere is hit, shading is applied. Otherwise, the fragment
is discarded. This technique can be applied to other, more complex kinds of primitives as
well, such as general quadratics [SWBG06], and allows rendering with interactive framerates.
Another advantage in contrast to triangularization is the high visual quality such surfaces
offer, independent of viewer distance to the primitive. Approximate global illumination
effects such as shadows [KRZ+17; SWBG06], ambient occlusion [GKSE12] and diffuse
indirect illumination [SVGR16] are supported while still allowing interactive rendering of up
to 106 particles. Such physically plausible effects can be used to improve the user’s spatial

38

3.2 Visualization Techniques

Figure 3.1: Four basic representations for the protein 1ogz. The van der Waals, ball-and-
stick and cartoon renderings were created with MegaMol [GKM+15], the
molecular surface was rendered by the implementation described in this work.

impression of the visualized data [GP06]. On the other hand, non realistic techniques can
be applied to enhance perception, such as toon shading and halos to highlight edges, or
depth cues such as z-value dependent darking [KKL+15; RE05].

3.2.1 Molecular Surfaces

Let S = {σ0, ..., σN−1} be the input dataset of spheres, which represent atoms of a molecule.
Each sphere σi has a corresponding position pi and radius Ri. The simplest representation
of a molecule is the van der Waals surface [KKL+15], which consists of spheres repre-
senting the atoms, where each sphere’s radius correspond to the van der Waals radius of
the corresponding atom. Another simple representation is the solvent accessible surface
(SAS) [KKL+15; Ric77]. A probe with radius Rprobe approximates the shape of a solvent
molecule by a sphere, e.g. H2O, which implies a probe radius of Rprobe = 1.4 Å [Ric77].
Intuitively, one can think of the probe as a solid sphere that is in contact with the van der
Waals surface and rolls along the atom spheres. The SAS then describes all possible center
point positions the probe is allowed to take while being in contact with the molecule. This
surface is obtained by simply extending all atom radii by the probe radius.

39

3 Molecular Dynamics Visualization

Solvent Excluded Surface

A more complex representation is the solvent excluded surface (SES) [Con83; KKL+15]
which was termed smooth molecular surface by Richards [Ric77]. Let N(σi) be the neighbors
of sphere σi [LBPH10], which are positioned close enough together to allow the probe to
be in contact with both σi and the neighbor, formally

N(σi) = {σj |i , j ∧ ‖pi − pj ‖ < Ri + Rj + 2Rprobe}. (3.1)

Similar to the SAS, a probe rolls over the van der Waals surface. However, not the center
point, but surface patches of the probe itself define the surface. The surface is classified
in two parts, the contact surface and the reentrant surface [Ric77]. The contact surface
consists of all atom surfaces that the probe can touch while rolling over the molecule, while
the reentrant surface consists of surface patches defined by the probe as it is in contact
with two or more atoms spheres. Finally, the union of both the contact and reentrant
surface gives the SES [Ric77]. Formally, the SES can be defined as the boundary surface of
the interior of the SES ISES[LBPH10], which is the set of all probe positions (even those
not in contact with any atom) that do not intersect any atoms, subtracted from R3, i.e.

ISES =

R3 \
⋃
p∈R3

σp |σp ∩ σi = ∅, ∀ i ∈ {0, ..., N − 1}
 . (3.2)

While the van der Waals surface and the SAS allow discontinuous jumps when spheres
are in contact, for the SES all connections between primitives are smooth, i.e. there
exists a tangent plane for each contact point [Con83], except at certain singular positions.
The relation between all three surface types is shown in Figure 3.2. Algorithms for the
computation of the SES are described in Section 3.3.

Ligand Excluded Surface and Molecular Skin Surface

While not of concern in this work, the ligand excluded surface [LBH14] and the molecular
skin surface [CLM08; LBPH10] should be mentioned here as well. The ligand excluded
surface does not approximate the solvent as a spherical probe, but considers a ligand
molecule’s entire shape in different rotation configurations and even deformations. However
in turn the corresponding surface can only be approximated with a grid based approach,
as there is no analytic solution to this problem yet. The molecular skin surface has the
advantage of being C1 smooth over the entire surface and only being compromised of
quadratic primitives, but lacks the physical meaning the SES and the ligand excluded
surface provide [KKL+15], as there is no such thing as a probe being in contact with the
surface, but a general smoothness parameter that adjusts the surface.

3.2.2 Cavity Visualization

Since molecule cavities are especially interesting due to their interaction potential, tech-
niques for the spatial visualization of molecule cavities were developed [KKL+16]. According
to the definitions by Krone et al., cavities hereby include closed off internal cavities, clefts

40

3.2 Visualization Techniques

Figure 3.2: Depiction of the most common molecular surfaces. The spheres directly define
the van der Waals surface, while the SAS is obtained by extending the spheres
by the probe radius, therefore depicting all possible center positions the probe
may take. Finally, the SES is defined by the probe positions and their contact
points with the spheres. The red sphere is entirely covered and does not
contribute to the SES.

accessible from the outside, as well as tunnels that may connect different sides of the
molecule. Krone et al. [KKL+16] gave an extensive overview over the many available
techniques for cavity extraction and visualization. Grid based techniques for finding cavity
compute quantities in a discrete grid and derive cavities from these values. Oftentimes a
volume rendering approach is then used to render such solutions to the problem. Spatial
subdivision based approaches compute Voronoi-Diagrams from atom positions, and extract
cavities from the edges of Voronoi cells. Molecular surfaces can be used to find cavities as
well. Jurcik et al. [JPSK16] detected internal cavities by finding isolated components of
the solvent excluded surface of molecules. This approach does not extract cavities on the
outside of the surface, were interesting binding sites are located. Parulek et al. [PTRV12]
used an implicit function f (®p) that models the molecular surface boundary. This function
fulfills that at all points on the molecular surface ®p it holds that

f (®p) = 0, (3.3)

while for all points ®p inside the space enclosed by the surface,

f (®p) < 0. (3.4)

41

3 Molecular Dynamics Visualization

Figure 3.3: Cavity visualizations obtained from the implicit representation of a molecular
surface. The image was taken from the paper of Parulek et al. [PTRV12].
Sphere geometry represents detected cavities. In the right image, a clipping
plane was additionally applied.

First, the molecule’s bounding box is uniformly sampled. Next, the points inside the surface
are filtered out by the implicit function. From the remaining points, rays are cast along
the gradient direction of f (®p). If the molecular surface is intersected, the points position
is adjusted. In the last step, all points that hit the surface closer than some threshold
distance are tested for mutual visibility and linked together to multiple graph components
representing the cavities, which can then be depicted by spheres and lines. The result
of the method is depicted in Figure 3.3. The ambient occlusion (AO) technique enables
extraction of cavities [Bor11; KRS+13]. Consider a surface point p with normal ®np, that is
illuminated by an environmental light source. Then the ambient occlusion term [Bor11]

Op =
1

π

∫
Ω

Vp(®ω)〈®np, ®ω〉d ®ω (3.5)

describes the amount of arriving light not occluded by surrounding geometry at that point,
by the visibility function Vp in all direction of the hemisphere. Naturally, Op will take a
low value inside cavities, as the surface occludes much of the light arriving from the outside.
Borland [Bor11] mapped Op to surface transparency such that cavities become opaque
and therefore easily visible. This approach is called ambient occlusion opacity mapping
(AOOM). A result of this technique is shown in Figure 3.4. Krone et al. [KRS+13] used
the AO measure to classify and extract cavity surface patches from triangulated molecular
surfaces.

3.3 Solvent Excluded Surface

Connolly [Con83] was the first to present analytical equations to compute the SES, as well
as the first algorithm to derive the surface from a dataset of atoms. Geometrically, the
surface consists of three basic primitives [Con83; KBE09; KKL+15]:

42

3.3 Solvent Excluded Surface

Figure 3.4: Cavity visualizations obtained from ambient occlusion weights. The image
was taken from the paper of Borland [Bor11]. Left: Transparency rendering
of a molecule. Right: Rendering with AOOM applied. The cavity (green)
becomes easily visible.

• Convex spherical patches: When the probe is in contact with only one sphere, it
traces out the surface of exactly that sphere, leading to a convex spherical patch.
The probe has two degrees of freedom in movement.

• Toroidal patches: The probe is simultaneously touching two probes, and rolls along
both of them. While rolling, the probe’s contact position traces a circle on each
sphere. The union of all probe position along both spheres forms a torus volume. The
toroidal patch is the part of the torus that is located between both contact circles.
Here the probe has one degree of freedom.

• Concave spherical patches or spherical triangles: If the probe is in contact with three
sphere at once, it has no degrees of freedom as it is locked in place. The surface is
bounded by arcs running between the contact positions.

Additionally, these patches are connected in a certain way: Spherical patches are always
connected to toroidal patches, since the probe can transition from rolling with two degrees
of freedom to being in contact with another nearby sphere, losing one degree of freedom
in return. At the connection of two neighboring toroidal patches, a spherical triangle is
located, resulting when the probe is locked in position by three spheres. Therefore, a
spherical triangle is always surrounded by three toroidal patches. Figure 3.5 shows an
example. Note that in rare cases, the probe can be in contact with more than three spheres
at once [Lin10]. These cases can be reduced to multiple spherical triangles with three
contacts each. Further, it is possible that an unbroken toroidal patch between σi and σj
exists. This occurs if the probe has no opportunity to come in contact with a third sphere
σk while rolling along σi and σj . Another special case are spindle tori [KBE09; Lin10;
TA96]. Those occur if the probe intersects the axis of rotation as it rolls around the two
connected spheres. In this case the major radius of the traced out torus volume is smaller
than the minor radius. Any connected spherical triangles will be singular, as they intersect
each other.

43

3 Molecular Dynamics Visualization

Figure 3.5: Close up view of the SES primitives. Convex spherical patches are white,
toroidal patches are purple, while spherical triangles are orange.

Two specific algorithms which compute the surface analytically [SOS96; TA96], as well as a
number of discrete approaches were used in recent applications to obtain the SES [CCW06;
HKG+17; KBE09; KGE11; LBPH10; Yu09]. These will be discussed in the following.

3.3.1 Reduced Surface Algorithm

The core aspect of the algorithm consists of computation of the reduced surface (RS) [SOS96]
of the molecule, which can be though of as a graph structure. Afterwards, the SES is
derived directly from the RS. Sphere centers serve as graph vertices, called RS-vertices. A
connection between two vertices is called a RS-edge. The circular connection of three edges
forms an RS-face. Geometrically, RS-edges between σi and σj indicate that the probe is
able to roll while being in contact with σi and σj , forming a toroidal patch. Therefore, an
RS-edge can only exist if σi and σj are neighbors. The reduced surface is constructed of
RS-faces. An RS-face indicates that the probe is in contact with three spheres at once,
generating a spherical triangle. The existence of an RS-vertex indicates a convex spherical
patch. To compute the reduce surface, first an initial RS-Face has to be found [SOS96].
When the molecule is viewed along some axis of the coordinate system, the leftmost surface
point of the SES must belong to a spherical patch, and therefore to a valid RS-Vertex.
Formally, this can be described as

σinitial = argmin
σi ∈S

(pi,d − Ri) (3.6)

44

3.3 Solvent Excluded Surface

where pi,d is the d-th component of pi. After σinitial has been found, the unbroken probe
path of all neighbors σn1 ∈ N(σinitial) is computed, and the sphere whose probe path
contains the leftmost point of all probe paths is selected as the second sphere. Now all
spheres that are neighbors of σinitial and σn1 are possible RS-faces. Since there are two
possible probe position for an RS-face, all those probe position are intersected with S to
find the initial RS-face. From this position, as the spherical patch is connected to three
toroidal patches, three RS-edges are possible. The probe can roll along each toroidal
patch (RS-edge), until the probe comes in contact with a third sphere σk . At this point,
another RS-face must exist. As it is generally possible that multiple valid third spheres
exist that lock the probe in place, the closest one has to be found. This can be achieved
by considering the circular path the probe center traces as it rolls to all possible third
spheres σk , and selecting the one with lowest arc angle, which then forms the next RS-face.
This procedure is repeated for each RS-edge that is encountered, until there are no more
unprocessed possible RS-edges left. Note that it is possible that the SES consists of multiple
unconnected entities, which occur if the probe is unable to transition to at least one other
atom sphere without completely losing contact with the all the sphere in S. In this case,
the algorithm has to be repeated for all such entities to obtain all RS-components [SOS96].
Additionally, the case of an uninterrupted toroidal patch will not generate any RS-face,
but a free RS-edge. Free RS-vertices are analogously generated for any sphere σi with
N(σi) = ∅.

3.3.2 Contour Buildup Algorithm

Some of the notation in the following is borrowed from Lindow [Lin10]. The contour
buildup algorithm as introduced by Totrov and Abagyan [TA96] is a per sphere approach
to compute the paths that the rolling probe can move along the surface with at most one
degree of freedom. Each arc of this representation, called contour, represents the path the
probe’s center point takes when it moves along two spheres σi and σj of the input dataset.
Whenever the probe encounters a third sphere σk while rolling along two other spheres σi
and σj , three paths will intersect at this point, as the probe can continue to roll along the
path produced by σi and σk as well as σi and σj .

By considering each contour of all spheres, the SES is obtained. Figure 3.6 and Figure 3.7
shows examples of the contour and generated surface.

Overview

One important aspect of the algorithm is that during all steps not the radius of σi is
considered, but its extended radius R′i which is computed from the probe radius as

R′i = Ri + Rprobe, (3.7)

which corresponds to the SAS. Consider two spheres σi and σj where σj is contained in
the neighborhood set N(σi). Both extended spheres can be intersected and will produce an
intersection circle cj . Since the outwards exposed surface of the SAS describes all possible
center positions of the probe, the intersection circle describes exactly the path the probe

45

3 Molecular Dynamics Visualization

Figure 3.6: Depicted is the contour and resulting surface for a small set of spheres. Convex
spherical patches are white, spherical triangles are orange and toroidal patches
are purple. Each arc describes the probe’s path while being in contact with
two spheres. The spherical triangles result from the points where three arcs
meet.

Figure 3.7: Depicted is the contour of the molecule 1rwe with probe radius 1.4 Å. Convex
spherical patches are white, spherical triangles are orange and toroidal patches
are purple.

46

3.3 Solvent Excluded Surface

Figure 3.8: From left to right: Neighboring spheres (purple) build the contour of the
center sphere (white). On this sphere, all area marked in orange is covered
by the neighboring spheres.

center will take when rolling while being in contact with both spheres. Now consider a
third sphere σk that is also contained in N(σi), and will produce the intersection circle ck
similarly as before. If cj and ck do not intersect, then the probe cannot switch from rolling
between σi and σj to rolling between σi and σk . However if they do intersect, then there
are up to two possible positions where the probe can switch from being in contact with σj
to σk , and vice versa. Intersecting a circle with another circle splits each one into two arcs.
One of these arcs of each circle is always discarded, as it lies within the extended sphere
that belongs to the intersecting circle. Repeatedly, the remaining neighboring spheres σl
are intersected to obtain their intersection circles cl. All current arcs can then be checked
for modification (shortening or splitting), which might break the contour open. In such a
case, the contour has to be repaired by considering where on cl old arcs end and begin, and
generating new arcs to close any holes. Note that the neighborhood set N(σi) still concerns
the unextended radii and is therefore unchanged. If σj ∈ N(σi) holds the extended spheres
intersect.

Computation of the contour with regard to the sphere σi involves two phases [KGE11;
Lin10]:

• Computation of all relevant intersection circles C of neighboring spheres σj ∈ N(σi)
with extended radii R′i and R′j .

• Computation of the arcs of the contour by considering each circle from C and
determining how it may change the current contour.

Note that it is not required to first compute all circles and then the arcs afterwards, each
circle can be processed and compared to the current arcs directly, as described by Totrov
and Abagyan [TA96]. However, certain circles (or even the entire sphere) are eliminated
after the first step, which is simplifying arc management in the second step. Figure 3.8
shows the stepwise buildup of the contour for a single sphere.

Circle Computation

The first phase of the algorithm computes all relevant intersection circles between σi and
all σj ∈ N(σi). Let Cn contain all current relevant circles of σi at the time of processing cj ,
where already n circles have been processed, and n ∈ {0, ..., |N(σi)| − 1}. Therefore C0 = ∅
denotes the first set of circles. Additionally, let Ĉn contain all those circles found to be

47

3 Molecular Dynamics Visualization

Figure 3.9: Example of two spheres σi and σj with extended radius (dotted spheres)
being intersected, which yields the blue circle defined by the circle center ®vj
relative to pi.

removed while processing cj in step n. Again consider two spheres σi and its neighbor σj ,
and their intersection circle cj . The circle’s center position vector is computed as [TA96]

®vj = ®vi, j
R2
i + 〈®vi, j, ®vi, j〉 − R2

j

2〈®vi, j, ®vi, j〉
. (3.8)

with ®vi, j = pj − pi, local to σi’s position pi. Additionally, the circle’s normal is defined as
®nj = −®vi, j [Lin10]. See Figure 3.9 for a depiction. The circles radius [Lin10] is then

r(cj) =
√

R′2i − 〈®vj, ®vj〉. (3.9)

Now cj is checked against all ck ∈ Cn for intersection. Let ®vk be the position vector of
the center of ck . If the circles cj and ck intersect, the planes containing them must also
intersect, and the corresponding intersection line must pass though both circles. This is
only the case if the line enters the extended sphere of σi at first circle intersection and leaves
at the second one. A third plane positioned at the origin, containing both ®vj and ®vk can be
constructed and intersected with the line, yielding the auxiliary position vector [TA96]

®h =
®vj(〈®vj, ®vj − ®vk〉 · 〈®vk, ®vk〉) + ®vk(〈®vk, ®vk − ®vj〉 · 〈®vj, ®vj〉)

〈®vj, ®vj〉 · 〈®vk, ®vk〉 − (〈®vj, ®vk〉)2
. (3.10)

This position always lies at equal distance to both intersection points if they exist, the
corresponding position vectors is computed as

®x1,2 = ®h ± ®a ·
R′2i − 〈®h, ®h〉
〈®a, ®a〉

, (3.11)

where ®a = ®vj × ®vk [TA96]. Figure 3.10 shows an example. The intersections are not required

here, but they become relevant in the second phase of the algorithm. The vector ®h is used
to determine if cj and ck are intersecting which is the case if ®h lies inside of the extended

sphere of σi, i.e. if 〈®h, ®h〉 ≤ R′2i holds. If there is an intersection, ck and cj are positioned
such that they may contribute with arcs to the contour.

48

3.3 Solvent Excluded Surface

Figure 3.10: Two circles that intersect produce the halfway vector ®h, which is located
between the intersections.

Otherwise, the four cases depicted in Figure 3.11 may occur:

1. Sphere σk and sphere σj do not cover cj and ck respectively: No interaction.

2. Sphere σk covers circle cj completely: cj is added to Ĉn+1. Processing for cj may
stop.

3. Sphere σj covers circle ck completely: ck will not contribute to the contour and can
be removed entirely, i.e. ck is added to Ĉn.

4. Sphere σj covers circle ck and sphere σk covers circle cj : Sphere σi is completely
covered by σj and σk , there is no contour for σi. Processing may be stopped for σi.

In this context, sphere σj covers circle ck if all points on the circle u ∈ ck are inside
the extended radius of σj . Lindow [Lin10] proposed to determine the case from three
quantities

g1 = 〈®nj, ®nk〉,

g2 = 〈 ®mj, ®mk〉,

g3 = 〈®nj, ®q〉,

where ®mi = ®vi − ®h and ®q = ®vk − ®vj .

If cj and all ck are either intersecting or not completely cut away, they appear in Cn+1,
i.e.

Cn+1 = (Cn ∪ {cj}) \ Ĉn. (3.12)

Finally after all cj have been processed, C |N(σi) | contains all relevant circles that may
contribute with arcs in the contour. Algorithm 3.1 gives an algorithmic description of the
circle computation.

49

3 Molecular Dynamics Visualization

Figure 3.11: Depiction of the four cases the circles cj and ck may be in if there is no
intersection between them. In the first case, the circles are not covered. The
second case occurs if cj is covered by the sphere of ck . Analogously, the
third case happens if ck is covered by cj . If both circles are simultaneously
covered, the entire sphere is covered.

Table 3.1: The quantities that describe the mutual configuration of two circles. T stands
for true, F for false.

g1 > 0 g2 > 0 g3 > 0 Case

T T T 2

T T F 3

T F T 1

T F F 4

F T T 1

F T F 4

F F T 2

F F F 3

Contour Computation

Let C = C |N(σi) | for readability. Similarly to the previous section, An is the arc set of
step n of the algorithm for sphere σi, and n ∈ {0, ..., |C | − 1}. Further, ak denotes some
arc constructed from circle ck . Note that there may be more than one ak for a circle ck .
Again, A0 = ∅ is the initial set of arcs. Additionally, ®s(ak) describes the position vector
pointing towards the start point of arc ak and ®e(ak) to its end point, relative to pi. In the

50

3.3 Solvent Excluded Surface

Algorithm 3.1 Circle computation for sphere σi

procedure ComputeCircles(σi, N(σi), Rprobe)
C0 ←∅

for n = 0, ..., |N(σi)| − 1 do
cj ←ComputeCircle(σi, σj , Rprobe)
for all ck ∈ Cn do

if cj and ck do not intersect then
Circlecase ←ComputeCircleCase(cj , ck)
if Circlecase = 1 then

Do nothing
else if Circlecase = 2 then

Ĉn ←Ĉn ∪ {cj} // cj is covered
Break

else if Circlecase = 3 then
Ĉn ←Ĉn ∪ {ck} // ck is covered

else // Circlecase = 4
return σi entirely covered

end if
end if

end for
Cn+1 ←(Cn ∪ {cj}) \ Ĉn

end for
return C |N(σi) |

end procedure

following, arcs are defined to run from ®s(ak) to ®e(ak) in clockwise direction observed from
σk . From C all arcs are computed by considering every circle cj ∈ C and intersecting it
against the current contour. In step n, the current circle cj is processed. Every currently
present arc ak ∈ An has to be compared with cj . The arc ak is part of the circle ck , which
was produced by intersection with sphere σk . First circle cj is intersected with circle ck to
find possible intersections by evaluating Equation 3.11 to obtain ®x1,2. Note that x1 and x2
have to be exchanged for each other, if 〈pj − pi, ®vj〉 < 0 [Lin10]. Depending on the positions
of ®s(ak), ®e(ak) and ®x1,2, the arc is

• Not modified, which happens when ak is outside of σj .

• Shortened, either at ®s(ak) or ®e(ak), if ak is partially engulfed by σj .

• Split, if ®s(ak) or ®e(ak) are outside of σj , but the arc’s bend is covered by σj .

• Eliminated, if all points of ak are covered by σj .

Let Ân contain all modified arcs of step n, and En the corresponding arc endpoints that
were changed. Additionally Ān denotes all unmodified arcs of step n, and Ãn all arcs that
are newly created. Two different types of intersection of σi with the sphere σj can occur:

• The touching case: σi and σj intersect in a small region, i.e. 〈®vj, ®nj〉 < 0

• The engulfing case: σj almost completely covers σi, i.e. 〈®vj, ®nj〉 > 0

51

3 Molecular Dynamics Visualization

Figure 3.12: The four possible situations that may occur around the sphere σi. Top-left:
Both spheres are touching σi. Top-right: σj is engulfing while σk is touching
σi. Lower-left: σj is touching while σk is engulfing σi. Lower-right: Both
spheres are engulfing σi. The blue and green arcs are the leftover parts of
the circles ck and cj . Note that the vector ®vj × ®vk points from ®h towards x1,2.

Three geometric quantities are required to determine how the arc ak is to be processed [Lin10;
TA96]:

d1 = 〈pj − pi, ®s(ak) − ®vj〉, (3.13)

d2 = 〈pj − pi, ®e(ak) − ®vj〉, (3.14)

d3 = 〈®vl, pk − pi〉 · 〈®s(ak) × ®x1, ®e(ak)〉, (3.15)

These quantities can be used to identify if and how ak is to be modified, depending on the
mutual configuration of involved spheres as seen in Figure 3.12.

The quantity d1 describes the position of ®s(ak) relative to the intersection circle cj . If
d1 < 0, then ®s(ak) is not cut away by σj , otherwise, this start point is engulfed. Similarly
d2 describes ®e(ak) situation. The first dot product of d3 produces a negative sign in the
engulfing case and a positive sign in the touching case. Figure 3.13 shows and example
were all used vectors are depicted. Further, the second dot product constructs a plane

52

3.3 Solvent Excluded Surface

Figure 3.13: Example depiction of arc modification of the arc ak (blue), corresponding
to its circle ck , which is intersected by circle cj (green). From left to right:
Vectors used in computation of d1, d2 and d3, respectively. Here d1 < 0,
d2 > 0 and d3 > 0. Therefore, the arc start remains the same, and the arc
end ®e(ak) is shortened to ®x2, as ®e(ak) is inside the extended sphere of σj .

Table 3.2: Arc modification based on the three quantities. T stands for true, F for false.

d1 > 0 d2 > 0 d3 > 0 Operation

T T T Arc removed

T T F Arc is shortened

T F T ®s(âk) = ®x2 and ®e(âk) = ®e(ak)
T F F ®s(âk) = ®x1 and ®e(âk) = ®e(ak)
F T T ®e(âk) = ®x2 and ®s(âk) = ®s(ak)
F T F ®e(âk) = ®x1 and ®s(âk) = ®s(ak)
F F T Arc unchanged

F F F Arc split in two.

containing ®s(ak), ®x1 and the origin, and produces a sign depending on the side ®e(ak) is
on. In some cases depending on the sign of d4 = 〈®nk < ®vk〉 arcs are modified differently.
Let âk be the modified arc. Arc shortening happens in the following way: If d4 < 0 then
®s(âk) = x1, ®e(âk) = x2. Otherwise ®s(âk) = x2, ®e(âk) = x1. If the arc is split in two, another
arc a′

k
is created. It is always the case that

®e(a′k) = ®e(ak),

®s(â′k) = ®s(ak)

since both start and end point of the arc are preserved. If d4 < 0 then

®e(âk) = ®x2,

®s(a′k) = ®x1.

53

3 Molecular Dynamics Visualization

Figure 3.14: Example of the contour repair procedure. First, the blue circle cj is inter-
sected with all arc circles (black dots) and classified: Green arcs are modified
and orange arcs are removed. The purple arc consists of a whole circle. Next,
the arcs are modified and the endpoints on the blue circle are saved. After
the points are sorted, one moves clockwise around the circle and connect
end to start points to obtain new arcs. Finally, the contour is repaired and
the next circle can be processed.

Otherwise the modification is done as

®e(âk) = ®x1,

®s(a′k) = ®x2.

If Ân , ∅, the contour has to be repaired. Modified arc endpoints En have to be connected
again, if σj broke the contour by consuming arcs partially (shortening, splitting) or
completely (removal). Since all modified endpoints in E are located on cj , corresponding
new arcs must be constructed from cj as well. Let there be M modified arc points
O = {α0, ..., αm, ..., αM−1}, ordered clockwise (seen from σj) according to their position on
cj , i.e. αm is ordered before αm+1, as αm is located in clockwise order before αm+1 on cj .
Note the cyclic nature, i.e. αM−1 is ordered before α0. Then a new arc from αm to αm+1

(in clockwise direction) must be created if αm is an endpoint and αm+1 is a start point, to
fill this broken part of the contour. Figure 3.14 depicts the repairing of the contour. If no
arcs were modified by cj , then cj can be added as a whole to the contour, but only if there
is not intersection of cj with any of the circles that were processed before cj . This means
the next arc set An+1 is computed as

An+1 = Ân ∪ Ān ∪ Ãn. (3.16)

Completing this procedure for all circles in C will result in the final contour of σi being
contained in A |C |. An algorithmic description can be found in Algorithm 3.2.

Remarks

For the implementation of the algorithm, it is important to flag spheres according to their
state, i.e. if they were completely covered in the first phase (also referred to as buried). An
empty circle set C does not indicate this as it is possible that a sphere has no neighbors.
Additionally, the arc set A |C | might be empty, which also indicates that σi is covered. If

54

3.3 Solvent Excluded Surface

Algorithm 3.2 Contour computation for sphere σi from circles C

procedure ComputeContour(σi, C, Rprobe)
A0 ←∅

for n = 0, ..., |C | − 1 do
Ân ←∅ // Modified arcs
En ←∅ // Modified arcs endpoints
Ān ←∅ // Unmodified arcs
Ãn ←∅ // New arcs
cj ←n-th circle of C
for all ak ∈ An do

ck ←Circle of arc ak
if cj and ck do not intersect then

Ān ←Ān ∪ ak
Continue with next arc ak

end if
®x1,2 ←ComputeIntersection(cj , ck)
Update Ân, En and Ãn as arcs are modified or created
O ←SortArcEndsClockwise(cj , En)
for all αm ∈ O do // Iterated in clockwise order

if αm is an arc end then
Create arc that connects αm with αm+1 and add to Ãn

end if
end for

end for
if There was no intersection of cj with any ak ∈ An then

if No previously processed c′j ∈ C intersects cj then
Ãn ←Ãn∪ ToArc(cj) // Add whole circle as arc

end if
end if
An+1 ←Ân ∪ Ān ∪ Ãn

end for
return A |C |

end procedure

the contours of all N spheres are computed, each arc will appear twice, as it is computed
for each sphere separately. This has to be considered when the SES is to be generated from
the contour. The neighbor set N(σi) can be efficiently computed by using a spatial data
structure, most commonly a grid [KBE09; LBPH10; Lin10] since it is fast to construct and
offers constant lookup time.

Numerical Issues

The computation of the measures d1, d2 and d3 involve dot products which can produce
values arbitrarily close to zero. In the face of numerical inaccuracy, if one of these measures
is very close to zero, no proper decision can be made how to modify an arc, which is called

55

3 Molecular Dynamics Visualization

a singularity [Lin10; TA96] (not to be confused with the singularities occurring between
spherical triangles). This occurs when more than three spheres are in contact with the
probe simultaneously. Totrov and Abagyan [TA96] suggest two possible approaches to deal
with such a case:

1. The complete contour is omitted for all spheres that are involved in the singularity.

2. Spheres involved in a singularity are moved slightly in random directions and after-
wards the contour is recomputed for all spheres that are either singular or neighbors
of a singular sphere (or now became a neighbor of a moved sphere).

The first approach will lead to holes in the contour, however it is computationally trivial
to achieve. If a closed surface is absolutely required, the second approach may has to be
repeated arbitrarily often, as new singularities can occur by moving the current singular
spheres, leading to high computational effort [Lin10].

Generating the Surface

Convex sphere primitives are generated if the corresponding sphere σi was found to not
being covered in the previous steps. Toroidal patches are generated from the arcs of the
contour. Recall that the computed arcs represent the paths the probe can take while rolling
with less than two degrees of freedom along the spheres. Let A be the set of arcs of σi’s
contour. Further, aj ∈ A denotes an arc of the contour, describing the probe’s path while
being in contact with σi and σj . An arc of the contour generates a toroidal patch with
major radius equal to the corresponding circle’s radius, minor radius Rprobe [Lin10; TA96]
and center point pi + ®vj . As mentioned before, if two spheres are neighbors, both their arc
sets will contain the same arc. Therefore aj should only produce a toroidal patch if i < j.
Spherical triangles are generated from the arc end points where at least three arcs meet,
with sphere radius Rprobe. Again let aj ∈ A be an arc of sphere σi and also let ak be the
successor arc of aj , i.e.

®e(aj) = ®s(ak), (3.17)

both corresponding to neighboring spheres σj and σk respectively. Then the spherical
triangle at pi + ®e(aj) should only be created if i < j and i < k (similar to Lindow’s
approach [Lin10]). If a spherical triangle is connected to a toroidal patch whose minor
radius is greater than the major radius, then it will protrude into the other connected
spherical triangle, producing a singularity (different to the contour singularities). It is
even possible that spherical triangles just being in the vicinity are close enough together
to produce such a singularity. Singularities can be cut away by intersecting the spherical
triangle with all probe spheres positioned around it that intersect the spherical triangles
probe sphere.

3.3.3 Discrete Algorithms

The solvent excluded surface can be computed not only analytically but also in discretized
space. Can et al. [CCW06] presented a two-phase algorithm to compute a discretized
representation of the SES. In the first phase, the SAS is computed by propagating a

56

3.3 Solvent Excluded Surface

outward front from every atom until its extended volume is covered spatially for each
atom. Then in a second step from the SAS an inward front covering the probe radius
is propagated. Wherever the second propagation front stops lies the SES. The authors
carefully ensured that grid cells are visited at most once per phase. A similar, but list
based method was proposed by Yu [Yu09]. Rendering of these representation is done with
volume rendering approaches. The approach by Hermosilla et al. [HKG+17] computes a
grid based distance field that contains approximate, local positive scalar values outside
the surface, and negative values inside the surface, allowing rendering similar to sphere
tracing [Har96]. Distances are only considered in a small area around the grid points. First
grid points are classified according to their position, i.e. completely outside of the SES,
inside the SES (grid point is inside of an atom) or on the boundary of the SES (grid point
is located between the SAS and van der Waals surface). In a second phase, all boundary
grid points are assigned accurate distance by inspection of its neighboring grid points for
inside grid points. An advantage of this method is the support for progressive refinement
and suitability for GPU implementation.

Such algorithms might be able to compute the SES faster than the classical analytical
approaches in certain situations, but suffer from high memory usage depending on the grid
size. The computed solutions will also never be as accurate as the ones obtained from
analytical methods. This becomes apparent since for example small cavities can be missed
entirely.

3.3.4 Rendering Transparency

Most current approaches [JPSK16; KBE09; KFR+11; KKP+13; LBPH10] to render the
SES use ray casting on GPUs to render the primitives. Since this is a object-order approach,
objects must be rendered in a sorted order, from front to back or back to front, to achieve
correct blending. Back to front compositing works by repeatedly blending fragments
starting at the most distant fragment with the blending equation [BM08]

Cdst ← AsrcCsrc + (1 − Asrc)Cdst, (3.18)

where Csrc and Asrc refer to the current fragments color and opacity (alpha) values, and
Cdst is the current computed color. Similarly the fragments can be blended in front to back
order by repeatedly applying the equations [BM08]

Cdst ← Adst(AsrcCsrc) + Cdst, (3.19)

Adst ← (1 − Asrc)Adst. (3.20)

Note that here Adst describes transparency, not opacity, and is initialized to Adst = 1. Back
to front compositing is sometimes referred to as OVER blending, while the front to back
approach is called UNDER blending [Dun14]. If ordering is to be avoided, approximate
schemes based on weighted sums as the one proposed by McGuire and Bavoil [MB13] can be
used. Such methods are less relevant for this work, as ray tracing implicitly gives the correct
order of intersections. This can be achieved by presorting all primitives and sending them in
this order to the graphics hardware. However, since this operation can be computationally
costly, another popular approach is depth peeling [BM08; EW01]. This algorithm renders

57

3 Molecular Dynamics Visualization

the scene layer by layer. During each step, the previously rendered surface is rejected based
on its depth values, such that the next closest surface can be rendered. The layers are then
blended together. The algorithms main disadvantage is the requirement for N rendering
passes, if the surface is N layers deep. However, rendering can be stopped after a fixed
number of steps since the more a surface is occluded by other surfaces, the less its impact
will be in the final image [EW01]. Ray tracing on the other hand simplifies ordering as
ray traversal implicitly gives the order by the intersections that are encountered along the
way. However, traversal of tree based spatial data structure like a BVHs does not always
return intersection in the correct order if tree nodes overlap. Amstutz et al. [AGGW15]
showed that it is possible to obtain the correct order of intersections by exploiting the
fact that intersections belonging in order are encountered closely together and require few
operations to obtain correctly sorted intersections. The authors proposed using insertion
sort whenever a new intersection is encountered, or selection sort as a post process on all
encountered intersections, and tested different data layouts for employed data structures
(AoS versus SoA, see Section 2.4.1). Their tests revealed that CPU ray traversal benefits
from using the AoS layout and post traversal selection sort, while the GPU implementation
achieved best performance using SoA layouts and the insertion sort technique.

Solvent excluded surfaces have been rendered before with transparent primitives [JPSK16;
KKP+13]. The main difficulty is culling of geometry that lies inside the surface, while the
exposed parts are left intact. While spherical triangles do not leave parts behind, toroidal
patches and convex spherical patches do. Inner toroidal patch can be cut by four cutting
planes, or by the visibility sphere and two planes. Details are given in Section 4.4.2. One
GPU-based approach was introduced by Kauker et al.[KKP+13], which uses per-pixel
arrays or per-pixel linked lists to render transparency, called the puxels algorithm. Per-pixel
arrays require two render passes to determine the number of items per pixel, and afterwards
the items themselves. First all fragments are collected in unordered per-pixel arrays by
rendering all primitives and saving for each fragment at least its depth value and color.
Now these lists are sorted according to their depth values to obtain ordered fragments per
pixel. Afterwards, a constructed solid geometry (CSG) [SM09] approach is used to cut away
the inner parts of the computed primitives. This is achieved by placing the RS as additional
geometry inside the SES, and rendering both objects with the CSG union operation.
Toroidal patches are rendered as closed objects. The union of all objects completely covers
the interior space of the SES. Further, the union operation is implemented by using a
counter that is incremented when front facing geometry is hit, and decremented for back
facing geometry. Only such surfaces are rendered that cause the counter to increase to one
while front facing geometry is encountered, or decrease the counter to zero while back facing
geometry is encountered. At last, the surviving fragments are blended in correct order
to obtain the final image. Jurcik et al. [JPSK16] proposed another GPU-based approach
that implements transparent SES. Similar to the approach by Kauker et al. [KKP+13],
the authors used pixel linked lists to render fragments which are subsequently sorted and
blended. However, they did not use the RS surface but used bounding geometry derived
from the connected toroidal patches, though they do not give further details.

58

4 Implementation

This chapter describes the contour buildup implementation and used optimizations. Addi-
tionally, a possible new approach for the computation of the SES is outlined. Further, the
implementation of the different surface primitives is described in detail. In the last section,
the computed surface is used to implement a real time variant of the AOOM method (see
Section 3.2). The contour buildup algorithm was chosen over the other methods as it is eas-
ily parallelizable over the input spheres, as there are no dependencies between spheres when
the contour is computed [KGE11; LBPH10]. In contrast, the RS-algorithm is sequential in
nature. Principally it would be possible to start the algorithm at multiple initial spheres,
however stopping the algorithm such that the entire reduced surface is computed without
leaving holes and ensuring that no or only a low number of surface elements are computed
multiple times would imply severe synchronization overhead. One possible drawback of
the contour buildup algorithm is the fact that every contour element is computed twice.
Despite this, Lindow et al. [LBPH10] showed that the Contour Buildup is comparable in
speed to the RS-algorithm, even in single core execution. While the OSPRay Framework
aims for classical ray tracing, a discretized approach like the one presented by Hermosilla
et al. could be implemented as well. However as mentioned before, such approaches suffer
from inaccuracies depending on the discretization level, while the analytical approaches
will inherently be correct in the sense that no surface features are missed. In addition, the
analytical approaches allow the generation of explicit primitives such that Embree’s highly
optimized bounding volume hierarchy can be used straightforwardly.

4.1 Contour Buildup

The CPU implementation was done according to Section 3.3.2 in C++. A number of
specific issues have to be considered. Input of the algorithm is given as the datatype shown
in Listing 4.1. The type vec3r refers to a vector of three real numbers (double or float).

During computation, it might happen that Equation 3.10 becomes singular if the denomi-
nator vanishes. In this case, the computation for the affected sphere is stopped.

Listing 4.1 The sphere struct used in the implementation.

1 struct Sphere {

2 vec3r p;

3 real R;

4 };

59

4 Implementation

Figure 4.1: Example grid for the probe (blue sphere) with radius Rprobe for neighborhood
computation with the approach described by Krone et al. [KBE09]. For the
blue grid cell, the spheres whose center is located in the gray cells (red) have
to be distance checked. All other spheres are guaranteed to be out of range.

4.1.1 Neighborhood Computation

In order to do the circle computation described in Section 3.3.2, the neighbor set of
the current sphere has to be determined. Grids have been employed for this task previ-
ously [KBE09; LBPH10; Lin10]. In general for each sphere σi its position pi locates the
sphere’s cell. A lookup into a cell returns all spheres whose position is inside the cell.
Lindow [Lin10] used a fine grid whose cell size is determined heuristically. This requires
iterating over all cells that may contain neighboring spheres, which will resemble a voxelized
sphere. The implementation of this work uses the same approach as Krone et al. [KBE09],
which consists of choosing the cell length such that all neighbors of a sphere are found by
examining the sphere’s own cell and all eight neighboring cells. The cell side lengths are
uniformly chosen as

2Rmax + 2Rprobe, (4.1)

where Rmax is the maximum sphere radius [KBE09]. This ensures that all possible neighbors
are located in a 3 × 3 sub grid. Figure 4.1 shows a depiction of such a grid. Note that
for each of the spheres in the sub grid another range check has to be done to obtain the
final neighbor set. Every cell contains the indices of the contained spheres in a std::vector.
std::vector is a C++ standard library container that allows constant access to elements
but may reallocate itself if its current memory is too small1. Note that with large grids
this is not optimal as then many std::vector instances are allocated, each with its own
management data generating memory overhead. However, this allows grid construction

1See the C++ standard, https://isocpp.org/.

60

https://isocpp.org/

4.1 Contour Buildup

Listing 4.2 The circle struct used in the implementation.

1 struct Circle {

2 vec3r v;

3 vec3r n;

4 real radius;

5 int sphereIdx;

6 bool buried;

7 };

in O(N), where N is the number of spheres. In principle it is possible to allocate a single
std::vector and write all indices in continuous memory as an indices list. Each cell would
need to track how many sphere it contains and manage an index into the indices list.
However, in this case the effort would be at least O(X × Y × Z), as then the grid cells in
each dimension X, Y and Z would have to be iterated. Additionally, it is not trivial to then
find all the spheres that are located in a specific grid cell, as this is the intend of the grid
in the first place.

4.1.2 Circle Computation

After the neighbors of a sphere σi are known, the circle computation can begin (Sec-
tion 3.3.2). Usually most computation effort is spend in this phase of the algorithm, as
shown in Section 5.1. Listing 4.2 shows the employed circle datatype. In the Circle struct,
sphereIdx refers to the sphere that created the circle. The buried flag indicates if a circle is
covered completely by another circle’s extended sphere. The resulting circle list is written
to a std::vector. Since it is possible that circles become buried and therefore no longer
relevant, they can be replaced by new circles. This is advantageous as this means that the
final circle list is shorter and also less prone to expensive reallocation if the std::vector

becomes too small. A similar approach was chosen by Lindow [Lin10]. During circle
computation, the circle with a neighboring sphere σj is computed and then checked against
all already present circles ck for intersection. While iterating the already present circles, if
a buried one is encountered, its index is then used to overwrite the corresponding buried
circle with the current one, if it itself is to become part of the list as it is not buried. Note
that it is possible that buried circles remain in the final circle list. The expensive circle
intersection computation between cj and ck can be entirely skipped if the condition

〈®vj, ®nj〉 < 0 ∧ 〈®vk, ®nk〉 < 0 ∧ 〈®vj, ®vk〉 < 0 (4.2)

holds. If this condition is fulfilled, it does not matter if there is an intersection between the
circles or not, cj and ck will never bury each other. An example can be found in Figure 4.2.

4.1.3 Contour Computation

While the second phase of the algorithm is more complex to implement, it requires less
computation time than the circle computation. The implementation follows the approach
described in Section 3.3.2. Again, arcs are written to memory managed by std::vector

61

4 Implementation

Figure 4.2: Example situation where the intersection computation between the blue and
green circle can be skipped since Equation 4.2 holds.

Listing 4.3 The arc struct used in the implementation.

1 struct Arc {

2 int circleIdx;

3 vec3r s, e;

4 int psi, tau;

5 bool removed;

6 };

instances. In the Arc struct in Listing 4.3, if psi and tau are not negative, they refer
to the previous and next arc. If both are negative, the arc consists of an entire closed
circle. The corresponding circle is given by circleIdx. The removed flag indicates whether
an arc is removed as it is covered completely. This part of the algorithm iterates over
the computed circles as described in Section 3.3.2, while buried circles are skipped. The
current circle is intersected with all circles that correspond to the current arcs. In case
of an intersection, the arc has to be tracked to repair the contour as it is broken by the
current circle. Listing 4.4 shows the ModifiedArc struct, containing this information, which
is tracked in another std::vector instance. ChangedArcVertex tracks which end(s) of the arc
were modified by intersection with the circle. This corresponds to the Ân and En sets in
Section 3.3.2. After all current arcs were processed, the modified arcs have to be repaired.
Recall that all modified arc endpoints lie on the currently processed circle. In order to
reconnect the contour to a closed cycle, the endpoints have to be sorted. The usage of
expensive trigonometric functions can be avoided by exploiting the arc endpoint positions

Listing 4.4 The modified arc struct used in the implementation.

1 struct ModifiedArc {

2 int index;

3 real pseudoAngle;

4 ChangedArcVertex changed;

5 };

62

4.1 Contour Buildup

Figure 4.3: Depiction of the vectors used in the pseudoangle computation. The red dotted
line depicts the plane defined by ®ρ0. Black points depict the points on the
circle. The blue dotted line shows the plane defined by ®ρ0 × ®n. Both planes
define four quadrants sorted in clockwise order viewed from above.

to compute a pseudoangle α. Note that no correct angle is required, i.e. to sort correctly,
the quantity used must ensure

α(x) < α(x ′), (4.3)

where x and x ′ are arc endpoints, when x sits on the circle before x ′. Such a pseudoangle
α of a position ®ρ relative to an initial position ®ρ0 is computed from

µ = 〈 ®ρ0, ®ρ〉, (4.4)

δ = 〈 ®ρ0 × ®n, ®ρ〉, (4.5)

λ =‖ ®ρ0 × ®ρ‖, (4.6)

where ®n is the current circle’s normal. Note that ®ρ and ®ρ0 are relative to the circle center.
Geometrically, µ and δ divide the circle in four quadrants by their signs. The vector ®ρ0
defines a plane normal. Figure 4.3 shows a depiction. Therefore µ’s sign decides which
side ®ρ is located on. Similarly, ®ρ0 × ®n defines a plane that contains ®ρ and is perpendicular
to the first plane. The quantity δ describes ®ρ side on the plane. The third quantity λ can
be rewritten to

λ = ‖ ®ρ0‖‖ ®ρ‖︸ ︷︷ ︸
κ

sin θ, (4.7)

where θ is the angle between ®ρ0 and ®ρ. Since ®ρ0 and ®ρ point to positions on a circle with
radius R they have the same length, and do not change for any ®ρ. Therefore κ can be seen
as constant and κ ≡ 〈 ®ρ0, ®ρ0〉 ≡ R2. Finally, it holds that λ ∈ [0, κ), and λ ∝ sin θ can now
be seen as a quadrant-local pseudoangle. To obtain a circle wide angle α, Table 4.1 is used
to correct λ. Now the angles describe a clockwise order when viewed against ®n. To obtain
clockwise order observed from the other side (i.e. viewed from the opposing sphere), all ®ρ
can be ordered by decreasing angle, with ®ρ0 implicitly being the first element. Due to low
number of such points to sort, simple selection sort is feasible to use.

63

4 Implementation

Table 4.1: Correction of λ to use to obtain pseudo angle α. The quadrants are ordered
clockwise.

µ > 0 δ > 0 Quadrant α =

T T 1st λ

T F 4th 4κ − λ

F T 2nd 2κ − λ

F F 3r 2κ + λ

4.1.4 Memory Usage and Parallelization

While the approach can be implemented efficiently with separate std::vector instances for
each sphere, this becomes problematic for large datasets, as for each sphere a std::vector has
to be constructed and destroyed after usage implying overhead since the operating system
has to be called for acquiring and releasing memory for every single sphere. Therefore
a fixed number of std::vector instances is created, and subsequent circle and contour
computations append to these vectors. In general, the sphere indices are divided into blocks.
Each block contains the data of N ′ spheres where N ′ is computed from the total number
of spheres N. The sphere with index i must finish appending items to its block before the
sphere with index i +1 is allowed to append data. Each sphere is associated with a number
of items, which is saved in a separate std::vector. For correct addressing, the index of the
first item of each sphere is saved as well. Therefore each block contains one data vector
and two data management vectors. The contour buildup algorithm is parallelized over
the individual blocks. Since the spheres are divided into blocks, each thread computes
the data of a block sequentially, which requires no explicit synchronization. This differs
slightly from the approaches of Lindow et al. [Lin10] and Krone et al. [KGE11], where
parallelization was applied over all spheres. Figure 4.4 shows a graphical representation of
the blocked memory.

4.2 Vectorized Contour Buildup

Since the ISPC language is designed to allow porting of scalar to vectorized code with relative
ease, the contour buildup implementation was directly ported as is. The parallelization was
again applied to the spheres of the dataset. As ISPC does not offers container structures
similar to std::vector, this functionality was implemented by arrays that are reallocated
if their size becomes too small. However, straightforward porting of the contour buildup
code is not as well behaved as expected, as can be seen in Section 5.1, which shows that
the vectorized implementation’s performance is worse than the scalar implementation.
Performance decrease can be explained by several reasons. Firstly, the code is highly
branching as different cases in the algorithm require completely different handling. This
implies diverging code paths which do not allow simultaneous processing. The execution
then becomes similar to execution of scalar code with added overhead by the vectorization.
Next, the workload over spheres is varying depending on their amount of neighbors and

64

4.2 Vectorized Contour Buildup

Figure 4.4: Depiction of the memory management approach used in the contour buildup
implementation. Each sphere’s data in the data array is indexed by the first
index array. The number of associated items corresponds to the subsequent
items that belong to the sphere. The dataset is divided in multiple blocks
(colored boxes) that correspond to spheres in the dataset. Spheres belong to
the block of the same color.

the computed contour. Consider the circle computation of a sphere with low number of
neighbors and another sphere with high number of neighbors. If both spheres are computed
simultaneously in a vectorized manner, the program instance handling the sphere with
low number of neighbors is finished earlier and therefore stalls until the other sphere is
processed. Finally, optimizations that allow skipping of expensive computations such as
Equation 4.2 are less effective at best and introduce additional overhead at worst. If just
a single program instance has to do the expensive computation, all other instances are
stalling until the computation is finished. In the scalar implementation, the expensive
computation is always skipped efficiently if possible. In general, differing for-loop lengths
impose overhead. In some cases, the branching can be reduced by lookup tables. For
example when arcs are modified, their endpoints are changed. Each case can be encoded as
a binary number which in turn can be used to index into lookup tables. A modified arc a′

either is assigned its old endpoint ®s(a), the intersection ®x1 or ®x2. This can be formulated
as

®s(a′)← s1®s(a) + s2 ®x1 + s3 ®x2 (4.8)

by choosing the factors s1, s2, s3 ∈ {0, 1} appropriately. The factors s1, s2, s3 are looked up
from lookup tables depending on the case’s binary number.

Partial vectorization of the algorithm was also tested. Specific parts of the algorithm
could be vectorized. At this positions, ISPC functions are called while the rest of the code
remains purely scalar. As there is no copying of data involved this could be beneficial
even if the majority of the code is scalar. In this case, parallelization occurs over internal
for-loops involved in the computation of the contour of a single sphere. Multiple places of

65

4 Implementation

the algorithm were vectorization may be beneficial were identified. In the case of the circle
computation two places were found: One possibility is vectorization of the computation
of the intersection circles between extended spheres. Another possibility is vectorization
over the computation of the intersection between all current circles and the current, fixed
circle. In the case of contour computation, the intersection computation of the current
circle with all arcs can be vectorized over said arcs. First all intersections between the
circle and arcs are computed vectorized and written to (dynamic) memory. Computed are
the intersection positions x1 and x2, as wells as the quantities describing the cases d1, d2
and d3. Afterwards this result is read again and arcs are modified accordingly. In the case
of the arc computation the detour over dynamic memory requires data to be stored and
read one additional time, while in the scalar case all data necessary for computation stays
on the stack and is never written somewhere else. All tested approaches proofed slower
than the scalar implementation. In all cases, partial vectorization suffers from the fact
that only a low number of items is processed in each loop (e.g. spheres have roughly 30
to 40 neighbors), this means that the overhead produced by vectorization may become
significant enough to mitigate any gains achieved from parallel execution.

4.3 Trilateration Approach

During development, another potential approach for the computation of the solvent excluded
surface was briefly examined. Recall that the contour of the extended spheres coincides
with the probe’s path as it rolls on the spheres, and that at each position where three
contour arcs meet the probe sits locked in place by three spheres. Therefore, each triple
crossing produced by the contour buildup algorithm is the intersection point of three
extended spheres. All these triple crossings can be found by intersecting all possible triplets
of spheres that are close enough together to produce up to two intersections per triplet.
Finding the intersections resembles the problem of determining an unknown position from
three known tracker locations and corresponding range estimates, which is known as
trilateration [Fan86]. After all triplets were processed, all intersection points that are inside
extended spheres are removed, as these are covered such that no probe can be located at
this point. From the remaining points, immediately the spherical triangles of the SES can
be derived. To avoid unnecessary intersection point computations, only triplets with sphere
indices i < j < k are examined, where i is the index of the first sphere, j is the index of the
second sphere, and k is the index of the third sphere. Further, to find the triplets a grid
similar to the one presented in Section 4.1.1 can be used for neighborhood computation.
Still, this is an inherently cubic approach. To cull the buried triplet intersection points,
again such a grid can be used to find possible spheres that contain the intersection point.
This can be further accelerated by constructing a fast reject grid. Consider a grid dividing
the space of the sphere dataset’s bounding box. Then a grid cell can be marked if it is
entirely contained in a extended sphere. After all spheres were processed, intersection
points can be rejected in O(1) if they fall in such a grid cell. However If their grid cell is
unmarked, the neighborhood around the point must be searched for burying spheres.

66

4.4 Surface Rendering

Despite all these optimizations, just finding the intersections was slower than the entire
contour buildup algorithm. Note that the toroidal patches are also yet to be determined,
which is not trivial. Due to these circumstances, the approach was dropped in favor of the
contour buildup algorithm. However, with further optimizations the approach might work
well in a massively parallel environment such as GPUs.

4.4 Surface Rendering

For the implementation of the surface rendering in the OSPRay Framework, the individual
surface elements, i.e. convex spherical patches, spherical triangles and toroidal patches
have to be generated from the contour arcs. OSPRay offers the possibility of defining
custom geometries that can be used such as any other geometry by the API [WJA+17].
Such custom entities must be part of a dynamic library that is loaded during runtime. The
centerpiece of custom geometries are the callbacks for intersection, shading and bounding
box computation. The entire surface is implemented in a single geometry, where each
primitive has its own global index independent of its type. Data required for rendering is
filled by the internal contour buildup algorithm or filled from external sources. In addition
to the input sphere’s radius and position, each sphere is additionally associated with an
index that assigns a specific color, which is then interpolated over the surface during
shading.

During rendering the primitives are read from individual arrays associated with each surface
type. To index into the arrays, the primitive’s global index is mapped to a local index
indicating the n-th primitive of a specific type. Any cutting planes used in the following
are of the form

P = (nx, ny, nz, d)ᵀ, (4.9)

where ®n = (nx, ny, nz)ᵀ is the planes normal, and d the signed minimum distance to the
origin. This corresponds to the Hesse-Normal form, however the signed d allows flipping
the normal towards the origin if required. A side test is then done by

w = 〈®n, ®x〉 − d > 0, (4.10)

which divides the sides into two half spaces. In the following, the side with w > 0 refers to
the positive halfspace and w < 0 refers to the negative halfspace. For example, if both the
normal ®n and d are negated, the plane’s normal points from the plane towards the origin.
All such cutting planes are written into a single array. Due to numerical errors, in the
implementation the side test is done with a small threshold ε as

〈®n, ®x〉 − d > ε, (4.11)

which allows neighboring surfaces to overlap slightly, reducing holes at patch boundaries.

67

4 Implementation

Figure 4.5: Depiction of the vectors used for computation of the cutting plane.

4.4.1 Spherical Triangles

Recall that spherical triangles appear when the probe is in contact with three spheres σi, σj
and σk at once. The spherical triangle is produced by cutting a sphere with radius Rprobe

with planes and potential intersecting other probes resulting from neighboring spherical
triangles. Each spherical triangle is associated with its probe position, three cutting plane
indices, a neighborhood count and beginning index as well as the three contact spheres.

Cutting Geometry

To find intersection, first the ray is intersected with the probe sphere and afterwards the
intersection point is potentially cut away by the three cutting planes. The probe’s contact
points lie on the ray between the probe center p and the corresponding sphere centers.
Therefore each plane’s normal can be computed by taking the normalized cross product
between all combination of

®ui = pi − p, ®u j = pj − p, ®uk = pk − p. (4.12)

See Figure 4.5 for a depiction. Let the remaining part of the probe sphere by defined by
the intersection of the positive halfspaces defined by all three planes. The sphere position
that is not used in computing the plane is used as a witness to flip the normal and d if
necessary, as this point must be located in the positive halfspace, e.g. if

〈®ui × ®u j, ®uk〉 − d < 0. (4.13)

The resulting cutting plane is local to the spherical triangle’s probe position. Additionally,
the singularities must be handled, i.e. intersecting spherical triangles must be mutually cut
away. This is achieved by finding all possible intersecting probe positions for each spherical
patch, and then using the probe spheres as cutting geometry. To dampen the quadratic
effort to find the intersecting probes, a grid similar to the neighborhood computation is

68

4.4 Surface Rendering

Figure 4.6: Singularity occurring between two spherical triangles (left), that is subse-
quently removed (right).

used with grid cell length max(1, 2Rprobe). The minimum grid cell length is bounded as
Rprobe can be chosen arbitrarily small. Figure 4.6 shows an example where a singularity
occurs and is removed.

4.4.2 Toroidal Patches

The toroidal patch is generated from an entire torus. Cutting geometry consisting of a
sphere and two planes is used to cut the torus. Additionally, numerical inaccuracies during
the intersection computation have to be considered.

Cutting Geometry

The visibility sphere [KBE09] is used for clipping a torus located at c between σi an σj .
Everything outside the sphere is clipped, leaving the toroidal patch behind. The visibility
sphere’s position pvs and radius Rvs is computed as

®x =
p − pi
‖p − pi ‖

Ri, (4.14)

®d =
‖p − pi ‖

‖p − pj ‖ + ‖p − pi ‖
(pj − pi) (4.15)

pvs = ®d + pi − p, (4.16)

Rvs = ‖ ®x − ®d‖. (4.17)

Here ®d is the position vector of the visibility sphere relative to pi. Figure 4.7 shows an
example. For opaque SES rendering cutting with the visibility sphere is all that is required
to obtain the toroidal patch. However, for transparent rendering the part of the torus
below the surface has to be cut additionally. Recall that a toroidal patch is generated from
an arc a that is local to σi. The arc endpoints ®s(a) and ®e(a) are used to compute the two

69

4 Implementation

Figure 4.7: Example visibility sphere (orange) for a toroidal patch (blue).

cutting planes, with the normal vectors pointing outwards (in other words, away from the
patch). The angle of the arc determines how the cutting planes are to be used. If the angle
is < π, a point is not cut away if it is located in the intersection of both negative halfspaces
defined by the planes. Otherwise the point is not cut away if it is located in the union of
negative halfspaces. Jurcik et al. compared this to AND and OR operations [JPSK16].
First every point is made local to the toroidal patch center c:

®oi = pi − c, (4.18)

®oj = pj − c, (4.19)

®qs = ®s(a) + pi − c, (4.20)

®qe = ®e(a) + pi − c, (4.21)

Then the normals are computed by taking the cross product of the sphere positions ®oi and
®oj both local to one of the arc endpoints, as

®n1 =
(®oi − ®qs) × (®oj − ®qs)
‖(®oi − ®qs) × (®oj − ®qs)‖

, (4.22)

®n2 =
(®oi − ®qe) × (®oj − ®qe)
‖(®oi − ®qe) × (®oj − ®qe)‖

, (4.23)

and then corrected by considering the other arc endpoint. The sign of the quantities

d1 = 〈®qe − ®qs, ®n1〉,

d2 = 〈®qs − ®qe, ®n2〉,

describe the side on which the other arc endpoint is located, relative to the normal. If the
arc angle is < π, the other arc endpoint must be on the negative side (side the normal
points away from) i.e. d1,2 < 0 , otherwise the normal must be negated. Similarly, if the
angle is > π, the other arc endpoint must dip below the plane and be on the positive side,
in order to allow cutting as described above. Figure 4.8 shows a depiction.

70

4.4 Surface Rendering

Figure 4.8: Depiction of the vectors used to compute the cutting planes of the toroidal
patches. The left side shows the case for angle < π, the right side shows the
case for angle > π.

Figure 4.9: Example situation where a ray intersects a toroidal patch (blue) in four
positions (red).

Intersection Computation

Three different intersection schemes were tried, the analytical solving of the ray-torus
quartic based on the stabilized Ferrari algorithm (Section 2.2.1), as well as two iterative
methods based on the Bairstow method (Section 2.2.2) and sphere tracing (Section 2.1.2).
The Ferrari algorithm was also used by Krone et al. [KBE09]. Sphere tracing was used by
Lindow et al. [LBPH10]. Note that all four intersections are required, in contrast to opaque
rendering, as shown in Figure 4.9. Krone et al. [KBE09] used only two intersections, as
this is sufficient if no transparency is rendered and the ray origin is located outside of the
molecule’s convex hull.

In the implementation of the analytic solution of the ray-torus intersection problem, the
Ferrari code provided by Herbison-Evans [Her95] was ported to ISPC code. First the ray is
transformed such that the torus is centered at the origin and parallel to the xy-plane. To
increase numerical precision, the viewing ray’s origin is translated close to the torus, by
using the distance function [Har96]

d(®x = (x, y, z)ᵀ) = ‖(‖(x, y)ᵀ‖) − R, z)ᵀ‖ − r (4.24)

71

4 Implementation

to translate the ray forward. Moving the ray closer to the torus was also proposed by
Krone et al. [KBE09]. However still in some rare cases the stabilized Ferrari algorithm will
fail and miss intersections as shown in Section 5.2. These numerical problems were also
reported by Jurcik et al. [JPSK16].

Therefore iterative schemes were tried in an attempt to reduce the artifacts. For torus
intersection, de Toledo et al. [TLP07] found the Newton-Raphson iteration to work best,
however only the first intersect was needed. The general ‘‘W’’-shape of the quartic allows
rapid and secure convergence if the starting t is chosen as being smaller than all possible
intersections t1, t2, t3, t4. Such a initial value is simple to obtain by first intersecting with
bounding geometry, e.g. a sphere. The same holds for the last intersection. However,
iterating the internal intersection points t2 and t3 becomes difficult as the inner intersections
t2 and t3 can be distributed arbitrarily. Any starting position chosen in (t1, t4) might lead
to Newton-Raphson iteration converging to t1 of t4 again. Therefore the Bairstow method
was tried. This approach seemed promising as applying Bairstow’s method to a quartic
immediately gives all four roots after the iteration converges. There is however the problem
of numerical instability introduced by polynomial deflation. Section 5.2 shows the artifacts
of this method.

The second iterative approach based on sphere tracing was implemented with the torus
distance function given in Equation 4.24. While the standard sphere tracing method works
reasonably well for finding the first intersection of whole tori [TLP07], and toroidal patches
of the SES [LBPH10], transparent rendering requires some extra measures. Recall that an
intersection is accepted if the distance to the surface drops below a threshold ε . Let the
ε-region be the region where an intersection is accepted. In principle it will be impossible
to escape this region as one converges towards the surface until it is infinitesimally close.
Doing a single constant step to escape the ε-region does not work in situation where the
ray is roughly parallel to the surface, as the ray will then possible stay in the ε-region.
Therefore, a two phase approach is chosen: First, sphere tracing is iterated until a ε-region
is encountered, where a intersection is registered. Afterwards, iteration continues along the
ray with constant step length until the region is left again. Then, standard sphere tracing
continues along the ray until the next intersection is encountered where this procedure
repeats. Since the visibility sphere encloses the toroidal patch, it is first intersected to
find a starting point for sphere tracing. As soon as the visibility sphere is left again, the
iteration is stopped, as no valid intersection can then be found anymore.

4.4.3 Convex Spherical Patches

If no transparency is required and the viewer stays outside the surface, all spheres of the
dataset can be rendered directly without any further computation of cutting geometry.
The part below the SES will never be visible and does not have to be clipped in this case,
making it the simplest primitive to render. However, transparency rendering requires
removal of buried spheres and cutting of internal parts. The approach shown by Kauker
et al. [KKP+13] is not well suited for an implementation in OSPRay. It would require
tracing the ray onwards through the entire scene after intersection to determine if the
current intersection point is to be removed. Implementation would be highly inefficient
for all rendering methods were the viewing ray does not pass through the surface in a

72

4.4 Surface Rendering

Figure 4.10: Example depiction where cutting with the visibility spheres of connected
toroidal patches does not entirely remove spherical remains. The cut away
surface is colored in green, while the remaining splinter is colored blue.

straight line, such as path tracing. Additionally a custom renderer would be required which
allows the CSG operation proposed by Kauker et al., making transparency rendering with
OSPRay’s standard renderers impossible. Therefore a localized clipping approach similar
to the one proposed by Jurcik et al. [JPSK16] is required. Two clipping approaches were
developed, which will be described in the following.

Ray-Triangle Based Cutting

Recall that a convex spherical patch is part of a sphere σi of the input dataset of spheres.
With reasonable probe radius and a realistic input dataset, most of the time the SES lets
only a small part of the original sphere exposed. However in general, the connected toroidal
patches may carve away almost arbitrary shapes on the sphere, such as a large sphere
surrounded by many small ones. While the visibility sphere bounds the toroidal patch, it
can also be used to cut away large parts of the spherical remains below the surface, as the
visibility sphere intersected with the sphere results in a intersection circle exactly where the
corresponding toroidal patch is connected. In many cases, cutting with the visibility sphere
is sufficient. However, sometimes spherical parts remain if the visibility sphere do not
cover the internal region completely, as seen in Figure 4.10. In this case additional clipping
geometry has to be generated. The proposed method is based on triangle intersection and
inside/outside testing. Consider an arc a and its arc endpoints ®s(a) and ®e(a). Then these
two points together with the sphere center c (locally the origin) can be used to generate
a triangle. As the contour is closed, generating all triangles of all arcs will result in a
structure that is closed towards the center of the sphere, as all triangles meet there, and no
holes are generated. Note however, that the generated structure’s top is still open. Each
triangle is constructed such that the normal vector points inwards. Intuitively, the triangles
build a ravine-like structure that encloses the spherical remains. Any ray that is cast from
a valid surface point will have its closest intersection, if any, with a triangle that is facing
away from the point. Additionally, any ray that is cast from spherical remains will have its
closest intersection with a triangle facing towards the point, as long as the ray does not

73

4 Implementation

Figure 4.11: Left: Frontal view of the triangles. The red point c is the center of the
sphere, where all triangles meet. Black points depict the arc ends projected
on the sphere. Triangles are generated by connecting c and an arc’s start
and end point. The center and right figure shows example rays cast from
surface points. The green point is not cut away, since the closest intersection
of all rays with a triangle hits on the outward facing side if any intersection
is possible. In contrast, the blue points are cut away since all rays with
roughly downward direction first intersect a triangle on the inward side.

leave through the opening on top. Therefore it is crucial to select a ray with reasonable
direction, i.e. roughly downwards towards the center c. To obtain such a direction, one
may select the barycenter of one of the triangles and aim the ray towards it. This will
guarantee at least one intersection. Figure 4.11 shows a depictions of the approach. To sum
up, if a surface points survives the cutting test with the visibility spheres it is additionally
tested for cutting with the approach described above.

Circle Plane Based Cutting

This approach is simpler than the one described in Section 4.4.3. Consider the intersection
circles computed in Section 3.3.2. The result of this computation is used to compute
cutting planes that remove all spherical parts below the surface. Consider the sphere σi
and its neighbor σj that produces a intersection circle c by their extended radii. In absence
of other spheres, the SES will be compromised of two convex spherical patches and one
toroidal patch. The contact boundaries where spherical patch and toroidal patch meet are
circles. From these directly the cutting plane is derived to remove the spherical remains
of σi (and vice versa for σj). All circles are used for computation of such cutting planes,
as adding more spheres in the vicinity of σi will never lead to its previously cut surface
becoming exposed again, as σi only ever loses possible contact area with the probe as more
spheres are added in its neighborhood. Only those circles that are not covered are required
for cutting, as the surface cut away by cutting planes computed from covered circles is
included by the planes computed from the circles covering them. Every uncovered circle
cj corresponding to σj is computed by projecting the tangent point where σi and probe

74

4.4 Surface Rendering

Figure 4.12: The vectors and measures used for generating a single cutting plane from a
circle cj , depicted in blue.

sphere meet onto the circle normal. The cutting plane normal ®n for sphere σi is just the
circle normal ®nj , while the distance d is computed as

®x = Ri
®p
‖ ®p‖

d = 〈nj, x〉

where ®p is a probe position vector on cj . ®p can be found by choosing a vector ®u perpendicular
to the circle normal nj and then computing

®p = ®vj + r(cj)
®n
‖®n‖

(4.25)

where ®vj is the circle’s center and r(cj) the circle radius. Figure 4.12 shows a depiction of
the used vectors.

In the final implementation, this approach was used in favor of the triangle based method
described in Section 4.4.3, as it suffers from numerical issues in the rare cases where
triangles become very small.

4.4.4 Color Interpolation

In the following sections the interpolation of color on the surface is described. The approach
is somewhat arbitrary, as there is no specific physical motivation behind it. Interpolated
color only conveys spatial closeness of the spheres to the surface. Note that the convex
spherical patches are rendered directly without interpolation by rendering the sphere’s
assigned color. Figure 4.13 shows an example of the surface color computed by the
interpolation.

75

4 Implementation

Figure 4.13: Color interpolation example. Left: The SES’s individual surface patches
are shown, where convex spherical patches are white, spherical triangles are
green and toroidal patches are red. Right: Color interpolation computed
from the colors of the convex spherical patches.

4.4.5 Spherical Triangles

The color interpolation is done by ray-triangle intersection similar to the implementation
by Krone et al. [GKM+15; KBE09] in MegaMol. Consider the three sphere positions pi, pj

and pk the spherical triangle’s probe is in contact with, which span a triangle. The ray

®r(t) = p + t
x − p
‖x − p‖

, (4.26)

where x is the current intersection point on the spherical triangle is intersected with the
spanned triangle, which yields three barycentric coordinates α, β, γ. These are directly
used to interpolate the spherical triangle’s color from the contact sphere’s colors, as the
barycentric coordinates directly correspond to the triangle’s corner points and therefore
the sphere positions. Figure 4.14 shows an example. As the triangle is embedded in the
cutting geometry, at the spherical triangle boundaries one of the coordinates will vanish
and interpolation will become linear between the two remaining spheres.

4.4.6 Toroidal Patches

Any color interpolation scheme for toroidal patches located between σi and σj must produce
the same weights at the border to neighboring spherical triangles as in Section 4.4.5, in
order to be at least C0 smooth. A geometric approach was chosen to achieve this. First
the probe position of the intersection is computed, i.e. the probe position that is located
in the plane spanned by the intersection position ®x, pi and pj which is the position where

the probe is in contact with ®x. First the auxiliary vectors ®f and ®d are computed as

®f = (pj − pi) × (x − pi), ®d =
f × (pj − pi)
‖ f × (pj − pi)‖

. (4.27)

Hereby ®d can be interpreted as the direction from the torus center c towards the probe
position p (local to pi), therefore

p = c + R ®d − pi (4.28)

76

4.4 Surface Rendering

Figure 4.14: Depictions of the triangle generated from the three involved sphere positions
pi, pj and pk of a spherical triangle. Left: The ray ®r(t) is send from the
probe center p towards the intersection point x, and intersected with the
triangle to obtain barycentric coordinates acting as color weights. Right:
Side view of the generated triangle.

Figure 4.15: Example depiction of color interpolation on the toroidal patch. From the
vector ®d the plane through the origin is constructed and intersected to obtain
®x ′, from which the interpolation weight is obtained.

where R is the torus major radius. Now a ray is cast from the probe position p towards the
plane located at the origin with normal ®d. This intersection ®x ′ will be located on pj − pi, as
all involved positions are in the same plane. The interpolation weight w is then computed
as

v = ‖pj − pi ‖, w =
〈®x ′, (pj − pi)/v〉

v
(4.29)

where w ∈ [0, 1). The weight w is the projection of ®x ′ onto normalized pj − pi, which is then
itself normalized afterwards. Figure 4.15 shows an example. Note that on the border to a
neighboring connected spherical triangle, p+ pi coincides with the spherical triangle’s probe

77

4 Implementation

Figure 4.16: Side view example of the color interpolation. A ray(red) is cast towards
the intersection with the toroidal patch (blue). The interpolation weight is
obtained from the ray intersection at ®x ′.

position. Therefore w corresponds to the barycentric coordinates, as pj − pi corresponds
to the triangle edge. Figure 4.16 shows a side view example. Compare with Figure 4.14
to observe that w is computed equivalently to the barycentric weight at the border of a
spherical triangle, leading to C0 smoothness.

4.4.7 Bounding Boxes

Embree’s bounding volume hierarchy requires tight fitting axis-aligned bounding boxes for
geometry. In the following sections the approaches taken to obtain bounding boxes for each
primitive type are described. The approaches compute a set of points that is constructed
in such a way that its convex hull contains the corresponding primitive. From these points
the axis-aligned bounding box which contains all those points is computed.

Convex Spherical Patches

As the convex spherical patch is part of an entire sphere σi of the dataset, a simple
bounding box can be obtained by fitting the sphere into a cuboid. However this bounding
box is wasteful if large parts of the sphere is below the SES. Since these planes obtained
in Section 4.4.3 cut away half spaces, they can be used to cut the simple bounding box.
The bounding box is divided into three pairs of opposing faces: Left-right, lower-upper
and back-front. Since all bounding boxes are axis aligned, in order for the cutting plane
to reduced the box side, the plane must be located between one of the pairs without
intersecting the faces. If this is the case, the new bounding box is found by casting rays
from the corner points a, b, c, d that are not cut away by the plane towards the opposing
face’s corner points and intersecting the ray with the cutting plane, which yields four new

78

4.4 Surface Rendering

Figure 4.17: Depiction of the cutting of the convex spherical patch’s bounding box. The
cutting plane cuts away the red points of the bounding box. By intersecting
the plane the blue points are found. From these a smaller bounding box is
found.

points a′, b′, c′, d ′ from the intersections. The new box is then constructed by creating an
axis aligned bounding box for a, b, c, d and a′, b′, c′, d ′. Figure 4.17 depicts the approach.

Spherical Triangles

The simplest kind of bounding box can be derived from the spherical triangle’s probe
sphere. However depending on the rotational configuration of the spherical triangle, at
least half of the bounding box is wasteful, as the spherical triangle at most covers the
hemisphere of a probe sphere. An oriented bounding box for the spherical triangle can
be computed as follows: First the plane defined by the three tangent points where the
probe touches the spheres is constructed. On this plane, four points are arranged in a
rectangular way around the intersection circle. These four points are translated by the
height of the spherical triangle, yielding another four points. The axis aligned bounding
box is constructed from these eight points. This approach is similar to the one presented
by Lindow [Lin10]. Figure 4.18 shows an example bounding box.

This approach may lead to bounding boxes that may be even larger than the simple
bounding box derived from the probe sphere. However both bounding boxes are valid in
the sense that they completely cover the geometry. Both bounding boxes are additionally
intersected to reduce the bounding box’s size which yields a valid, but smaller bounding
box.

Toroidal Patches

The visibility sphere can be used to obtain a reasonably good bounding box of the toroidal
patch. In this case the two cutting planes are not considered. The following approach
involves these. In case the arc a that corresponds to the toroidal patch’s angle is > π, the
bounding box is computed as follows: First the intersection circle between visibility sphere

79

4 Implementation

Figure 4.18: Depiction of the spherical triangles’ oriented bounding box. The circle results
from the intersection of the plane containing the corresponding sphere’s
tangent points with the probe sphere. The axis aligned bounding box is
obtained from the corner points.

and both connected spheres is computed. The circles each coincides with the connection of
toroidal patch and the connected spheres. Next the four points where the circle connects
with the neighboring spherical triangles are computed from the arcs ends ®s(a) and ®e(a),
called patch corners in the following. The halfway vectors between each of the point pairs
is computed. From these, a rectangle is traced out. These rectangles each contain the arc
that corresponds to the connection where toroidal patch and the corresponding sphere
meet. Now from all eight corner points the bounding box is derived. See Figure 4.19 for
a depiction. If the arc angle is < π, again two rectangles are traced out. However this is
not sufficient, as it is possible that the toroidal patch bends outside of bounding geometry
computed from these points. The probe position located at half the covered angle produces
the lowest point in the bend that is not covered yet. This position is obtained from the
arc ends ®s(a) and ®e(a) by computing their halfway vector and using it as a direction from
the torus center. Additionally it is possible that the boundaries to neighboring spherical
triangles contain the lowest point, which can be obtained by constructing vector from
the torus center towards ®s(a) and ®e(a). Then the plane containing the patch corners is
computed, and the distance of the plane to the lowest point is used to translate the patch
corners in direction of the bend, enclosing the toroidal patch. Figure 4.19 shows an example.
Again the simple bounding box is intersected with the complex one to possibly obtain a
potentially better final bounding box.

4.5 Cavity Visualization

The surface cannot only be rendered in the classical sense by using opaque or transparent
materials, but also be used to implement a real-time variant of AOOM. As described in
Section 3.2, AO weights are mapped to opacity weights, producing images where cavities
that appear shadowed according to the ambient occlusion weight are less transparent than
exposed areas on the surface. However, the approach by Borland [Bor11] uses precomputed
ambient occlusion values on a triangulated representation of the SES. By using real time

80

4.5 Cavity Visualization

Figure 4.19: Depiction of the points used to construct the toroidal patch’s bounding
box. The left figure shows the case for angle < π, the right and center
figures shows the case with angle > π. Circle centers are depicted in bright
blue. The red points depict the patch corners where toroidal patch, sphere
and neighboring spherical triangles meet. From these the blue points are
obtained, which are used to obtain a axis-aligned bounding box. The center
figure shows the plane constructed from the corner points (orange plane)
which is shifted to contain the the point of the probe that produces the
lowest point in the bend (purple).

ambient occlusion, the AO term is computed on the fly at each intersection and directly
mapped to opacity. Accumulation, i.e. averaging of samples at pixels should be used
to obtain a noiseless image after some time. At each intersection p, the AO term Op is
estimated by Monte Carlo sampling [PH10] the surrounding hemisphere. The used AO
visibility function is

Vp(®ω) = min (1,max (0, χ(®ω)ρ)) (4.30)

where

χ(®ω) =

(
1 −

Dp(®ω)
Dmax

)
τ

, (4.31)

which is inspired by the weighting scheme used by Borland [Bor11]. The AO sample’s
distance is denoted with Dp(®ω), while the maximum distance is denoted with Dmax.
Intuitively, χ(®ω) returns high values for close surfaces. This leads to small cavities always
being largely occluded, regardless of Dmax. If larger cavities are of interest, the function
can be chosen as

χ(®ω) =

(
Dp(®ω)
Dmax

)
τ

, (4.32)

which gives higher values for surfaces further away from p. Similar to the original AOOM
method, 0 < τ ≤ 1 allows faster saturation of the visibility function, while ρ allows nonlinear
shaping. The UNDER operator shown in Section 3.3.4 should be used to correctly blend
the colors at each intersection. Additionally, the AO term should be used for coloring, e.g.
the color is computed as

Csrc = βOpCblend + (1 − βOp)Csurface, (4.33)

where Cblend is the color indicating a cavity and β controls the influence of this color (which
are both fixed), and Csurface is the surface color produced by interpolation. Now when the
UNDER operator is used, the AO term will appear squared in the resulting equation as Asrc

81

4 Implementation

Figure 4.20: From left to right, top to bottom: The AOOM variant using Equation 4.31
with blending weight β = 1 for pure green and general surface opacity α = 1,
α = 0.5, α = 0.1 and α = 0. The visualized molecule is 1vis.

also depends on Op, which is a non linear operator that prohibits usage of accumulation by
averaging. Resulting images will otherwise be biased. Therefore the approach was modified
to obtain an unbiased result under accumulation. During rendering, at each intersection
blending is done twice by assuming that two infinitesimally close surfaces are intersected
by the viewing ray at the same point. The first surface is colored according to

Csrc = (1 − β)Csurface + βCblend, Asrc = Op (4.34)

where Cblend is computed from the cavity indicating color and β again controls the influence
of Cblend. The second surface is just colored according to the surface. Now the blending is
then done as

Cdst ← AsrcAdstCsrc + Cdst, (4.35)

Adst ← (1 − Asrc)Adst, (4.36)

Cdst ← αAdstCsurface + Cdst, (4.37)

Adst ← (1 − α)Adst, (4.38)

where α controls the general opacity of the surface. With α = 1 and β = 1, the approach
mimics ambient occlusion, where occluded areas are colored according to Cblend. Figure 4.20
and Figure 4.21 show the influence of changing these parameters. Unbiased accumulation
is shown in Figure 4.22. The method is unbiased, as accumulated renderings with different
numbers of AO samples per intersection still converge to the same image.

82

4.6 MegaMol Integration

Figure 4.21: From left to right: The AOOM variant using Equation 4.31 with opacity
α = 0.1 for pure green and blending weights β = 0, β = 0.5 and β = 1. The
visualized molecule is 1af6.

Figure 4.22: Accumulated renderings done with the AOOM variant implemented in this
work. The visualized molecule is 1ogz. From left to right: 1 AO sample
per intersection, 5 AO samples per intersection and 10 AO samples per
intersection. Convergence to the same result independent of sample count
shows that the method is unbiased.

4.6 MegaMol Integration

The implemented OSPRay Geometry was also made available for usage in MegaMol. Two
specific modules were developed for this: One is a renderer that allows switching between
transparency rendering and the ambient occlusion opacity mapping implementation, called
OSPRaySESRenderer. The other is a generic SES geometry that is used like the other
OSPRay geometries, called OSPRaySESGeometry. This allows usage of all renderers and
materials provided by OSPRay with the SES. See Figure 4.23 and Figure 4.24 for their
MegaMol graphs.

83

4 Implementation

Figure 4.23: MegaMol graph for the renderer OSPRaySESRenderer implementing trans-
parency and AOOM rendering. Image created with MegaMol’s configurator
tool.

Figure 4.24: MegaMol graph for the geometry OSPRaySESGeometry, which wraps the
OSPRay surface geometry implementation described in this work. Image
created with MegaMol’s configurator tool.

84

5 Results and Discussion

The following sections contain the results obtained from the implementation. Both the
implementations of the contour buildup and the surface rendering were tested. For the
contour buildup, the performance of the developed variants are discussed. The surface
rendering concerns both quality and performance. Table 5.1 shows the number of atoms of
each dataset. All tests use real world datasets from the RCSB protein databank1. The
molecules 1vis, 1aon and 3g71 were used for performance tests before [KGE11; LBPH10],
while the datasets 3iyj-poly, 3kz4-poly and 3iyn-poly are some of the largest ones available
today. Note that this work is the first to attempt computation and visualization of the SES
for molecules of such sizes. Performance tests were done on a single machine containing
a Intel i9-7900x CPU, a Nvidia Titan Xp GPU and 64 GB of main memory. All surface
rendering performance tests were conducted with the resolution 1920 × 1080. MegaMol
was used to load the datasets, setup the OSPRay geometry and render the obtained image
with OpenGL.

5.1 Contour Buildup

Section 3.3.2 and Section 4.1 describe the contour buildup algorithm and its implementation
details. Figure 5.2 shows the SES computed for the molecule 1ogz. As the algorithm
heavily relies on the usage of floating point numbers, the question for single or double
precision floats arises. While single precision floats are beneficial for performance, both
Lindow [Lin10] and Totrov and Abagyan [TA96] recommend the usage of double precision
floats for computation as it reduces the amount of singularities occurring. It was found that

Table 5.1: The molecular datasets used for the performance tests.

Dataset Description #Atoms

1vis Mevalonate kinase 2,482

1aon Asym. chaperonin complex 58,674

3g71 Bruceantin 90898

3iyj-poly Bovine papillomavirus capsid 1.35M

3kz4-poly Rotavirus capsid 3.24M

3iyn-poly Human Adenovirus capsid 5.97M

1https://www.rcsb.org/

85

https://www.rcsb.org/

5 Results and Discussion

Figure 5.1: SES of the molecule 1vis with probe radius Rprobe = 3.0 Å. Left: Surface
computed with single precision floats. Right: Surface computed with double
precision floats.

Figure 5.2: SES surface of the molecule 1rwe, with probe radii Rprobe = 0.25 Å, Rprobe =
1.0 Å and Rprobe = 2.0 Å, from left to right.

in some cases, single precision floats lead to errors in the surface as can be seen in Figure 5.1,
which do not occur with double precision floats. Therefore, the surface computation was
done with double precision floats. All contour buildup tests, if not otherwise stated, were
conducted with double precision floats.

5.1.1 Vectorized Contour Buildup

As described in Section 4.2, the basic contour buildup algorithm was vectorized. Un-
fortunately, the tried variants (full and partial vectorization) are slower than the scalar
contour buildup implementation. Tests that use vectorized code use a vector width of
four, which is most optimal for double precision computations2. The AVX2 instruction set
was used (ISPC compiler target option avx2-i64x4). Table 5.2 compares the scalar circle

2See ISPC documentation at https://ispc.github.io/ispc.html.

86

https://ispc.github.io/ispc.html

5.1 Contour Buildup

Table 5.2: Single thread performance of scalar versus partially vectorized, versus fully
vectorized circle computation in seconds. The probe radius was chosen as
Rprobe = 1.4 Å.

Dataset Scalar Part. Vec. Vectorized

1vis 0.0242 0.0288 0.0284

1aon 0.5456 0.6470 0.6442

3g71 0.9291 1.1180 1.1366

3iyj-poly 12.2856 14.4323 14.2864

Table 5.3: Single thread performance of scalar versus partially vectorized, versus fully
vectorized circle computation in seconds. The probe radius was chosen as
Rprobe = 3.0 Å.

Dataset Scalar Part. Vec. Vectorized

1vis 0.0919 0.1439 0.1379

1aon 2.0750 3.2855 3.1523

3g71 3.6921 6.1177 6.0568

3iyj-poly 53.5626 84.9795 85.4830

computation with the partially vectorized and the fully vectorized computation for probe
radius Rprobe = 1.4 Å. Since a larger probe implies more neighboring atoms, vectorization
overhead might be mitigated. However, Table 5.3 shows that a larger probe radius also
does not result in the vectorized implementation surpassing the scalar implementation.
In an alternative implementation the arc computation phase of the contour buildup

algorithm was partially vectorized. Again the scalar implementation is fastest, as can
be seen in Table 5.4 and Table 5.5. In all cases, the fully vectorized implementation
behaves similarly to the partial vectorized ones, despite allowing concurrent computation
of the contour of up to four spheres at once. This indicates that vectorization is not well
suited for complex algorithms such as the contour buildup due to diverging execution paths
and asymmetric work loads per program instance, which lead to stalling, as described in

Table 5.4: Single thread performance of scalar versus vectorized arc versus fully vectorized
computation, in seconds, for probe radius Rprobe = 1.4 Å.

Dataset Scalar Part. Vec. Vectorized

1vis 0.0156 0.0233 0.0212

1aon 0.3836 0.5515 0.4923

3g71 0.6185 0.5515 0.8108

3iyj-poly 8.7169 12.2376 12.0181

87

5 Results and Discussion

Table 5.5: Single thread performance of scalar versus vectorized arc computation, in
seconds, for probe radius Rprobe = 3.0 Å.

Dataset Scalar Part. Vec. Vectorized

1vis 0.0219 0.0317 0.0305

1aon 0.5146 0.7449 0.7381

3g71 0.8552 1.2143 1.2928

3iyj-poly 12.4902 18.2271 19.4183

Table 5.6: Performance comparison of contour computation where every atom’s data is
individually allocated versus the blocked memory implementation, in seconds.
The contour was computed with probe radius Rprobe = 1.4 Å.

Dataset Individual Blocked

3iyj-poly 9.92 5.10

3kz4-poly 36.07 11.98

3iyn-poly 107.04 21.93

Section 4.2. Comparing the results for probe radius Rprobe = 1.4 Å and Rprobe = 3.0 Å, the
computation effort for the arc computation phase only rises slightly, while the effort for the
circle computation phase increases significantly. The low level of parallelism of just four
program instances produces more overhead than performance gains, as opposed to highly
parallel environments such as GPUs where this becomes less of an issue. In general, most
effort is spend in the first phase for large probe radii. Therefore, further improvements for
the algorithm should focus on this phase in the future.

5.1.2 Scalar Contour Buildup

Due to the performance issues with the vectorized implementations, further development
was focused on the scalar implementation. For large datasets, memory management
becomes an issue. The optimization described in Section 4.1.4 leads to vastly improved
contour buildup execution times, as seen in Table 5.6. For the largest dataset 3iyn-poly,
computation time is roughly five times faster due to less individual memory allocations
and deallocations. The scalar implementation performance of the entire contour buildup,
parallelized over ten cores, and the subsequent generation of the SES’s render data is shown
in Table 5.7. Here, rough linear scaling with the number of spheres can be observed. This
is explained by the fact that the contour computation of a single sphere can be seen as
constant for a fixed probe radius, as atoms in molecular dataset have a bounded number
of neighbors [Lin10]. The same relation holds if the probe radius is increased, as seen
in Table 5.8. Linear scaling also occurs for the contour buildup algorithm’s memory
usage for both tested probe radii, as shown in Table 5.9 and Table 5.10. Naturally, larger
probe radius implies more memory usage, as each atom has more neighbors and therefore

88

5.1 Contour Buildup

Table 5.7: Performance in seconds of the different phases of the scalar contour buildup
(CB) implementation, parallelized over 10 cores using blocked memory. Render
Data refers to the creation of the SES from the contour. The contour was
computed with probe radius Rprobe = 1.4 Å.

Dataset Grid Circles Arcs CB Render Data Combined

1vis 0.0005 0.0037 0.0018 0.0060 0.0045 0.0117

1aon 0.0045 0.0485 0.0288 0.0819 0.1169 0.2135

3g71 0.0082 0.0843 0.0486 0.1410 0.1758 0.3403

3iyj-poly 0.1150 1.0235 0.6514 1.7900 2.8774 5.0812

3kz4-poly 0.2645 2.5669 1.5808 4.4122 6.5128 12.0472

3iyn-poly 0.5040 5.0644 3.0247 8.5931 11.4219 22.2525

Table 5.8: Performance in seconds of the different phases of the scalar contour buildup
(CB) implementation, parallelized over 10 cores using blocked memory. Render
Data refers to the creation of the SES from the contour. The contour was
computed with probe radius Rprobe = 3.0 Å.

Dataset Grid Circles Arcs CB Render Data Combined

1vis 0.0005 0.0120 0.0023 0.0148 0.0031 0.0203

1aon 0.0035 0.2145 0.0426 0.2606 0.0655 0.3484

3g71 0.0061 0.3694 0.0729 0.4484 0.0917 0.5748

3iyj-poly 0.0835 4.8740 1.0145 5.9721 1.0569 7.6435

3kz4-poly 0.1976 11.7264 2.4466 14.3705 2.4598 18.4427

3iyn-poly 0.3660 24.1389 4.6358 29.1408 3.9013 36.1181

more circles. One disadvantage of the blocked memory approach is observable in the arc
memory usage. The memory usage for the arcs does not change with increased probe radius,
indicating that the blocked memory approach allocates generous amounts of memory per
block. To mitigate this, each block’s memory may be reallocated to fit the required data
after all its spheres were processed. This yields lower overall memory usage at the cost
of performance, as seen in Table 5.11. The amount of observed memory consumption
justifies the usage of CPU based implementation for the contour buildup algorithm for
large datasets, as current of-the-shelf GPUs may not have enough memory available to
hold all computed data. However, for small datasets, the CUDA implementation of Krone
et al. [KGE11] is advantageous, as shown in Table 5.12. For the largest tested dataset 1aon,
performance is roughly ten times higher. Note that the CUDA implementation does not
allow transparent rendering as internal protruding geometry is not clipped. Additionally,
larger datasets such as 3g71 are not supported due to memory constraints.

89

5 Results and Discussion

Table 5.9: Memory usage of the contour buildup, in MB, for probe radius Rprobe = 1.4 Å.

Dataset Circles Arcs Combined

1vis 5.75 6.38 12.13

1aon 135.69 150.71 286.40

3g71 210.21 233.48 443.68

3iyj-poly 3,137.74 3,485.09 6,622.82

3kz4-poly 7,507.72 8,338.84 15,846.55

3iyn-poly 13,818.98 15,348.76 29,167.73

Table 5.10: Memory usage of the contour buildup, in MB, for probe radius Rprobe = 3.0 Å.

Dataset Circles Arcs Combined

1vis 8.63 6.38 15.00

1aon 195.768 150.71 346.48

3g71 312.51 233.48 545.98

3iyj-poly 4,527.14 3,485.09 8,012.22

3kz4-poly 10,846.00 8,338.84 19,184.83

3iyn-poly 23,420.21 15,348.76 38,768.96

Table 5.11: Memory Usage in MB with when memory blocks are reallocated after all
corresponding data was written, for probe radius Rprobe = 1.4 Å. Contour
buildup (CB) time is in seconds.

Dataset Circles Arcs Combined CB comp. time

3iyj-poly 1,840.72 1,100.40 2,941.12 2.08

3kz4-poly 4,575.62 2,609.97 7,185.58 5.14

3iyn-poly 8,750.42 4,739.77 13,490.19 10.10

Table 5.12: Comparison of parallelized SES computation versus the CUDA implementa-
tion of Krone et al. [KGE11]. Time is given in seconds.

Dataset CUDA CPU

1vis 0.0085 0.0117

1af6 0.0124 0.0415

1aon 0.0252 0.2135

90

5.1 Contour Buildup

Table 5.13: Number of convex spherical patches (CSP), spherical triangles (ST) and
toroidal patches (TP), their combined sum and cutting planes of the computed
SES with probe radius Rprobe = 1.4 Å.

Dataset #CSP #ST #TP Combined #Cutting Planes

1vis 1,483 3,232 4,849 9564 46,809

1aon 39,634 90,782 136,363 266,779 1,319,734

3g71 56,190 128,082 192,449 376,721 1,913,227

3iyj-poly 937,128 2,287,048 3,435,840 6,660,016 31,947,208

3kz4-poly 2,089,305 5,153,772 7,743,515 14,986,592 72,428,209

3iyn-poly 3,566,784 8,213,032 12,343,820 24,123,636 122,485,840

Table 5.14: Number of convex spherical patches (CSP), spherical triangles (ST) and
toroidal patches (TP), their combined sum and cutting planes of the computed
SES with probe radius Rprobe = 3.0 Å.

Dataset #CSP #ST #TP Combined #Cutting Planes

1vis 796 1,668 2,504 4,968 33,952

1aon 17,055 35,898 53,872 106,825 758,219

3g71 22,535 47,450 71,265 141,250 1,041,007

3iyj-poly 275,076 572,080 858,180 1,705,336 11,971,048

3kz4-poly 640,751 1,343,738 2,016,356 4,000,845 29,419,752

3iyn-poly 1,009,224 2,116,888 3,177,108 6,303,220 44,799,048

5.1.3 Render Data

The number of primitives the SES is composed of is shown in Table 5.13 for Rprobe = 1.4 Å
and Table 5.14 for Rprobe = 3.0 Å. For larger probe radii, less primitives are generated.
This is explained by the fact that more atoms are buried inside the surface in this case,
resulting in less, but larger primitives. For Rprobe = 1.4 Å roughly 34 cutting planes are
used for each convex spherical patch, while for Rprobe = 3.0 Å, the number is roughly
44. This corresponds to the average number of neighbors of each atom as the planes are
computed from the intersection circles computed by the contour buildup algorithm.

The time required for the generation of the render data is given in Table 5.7 and Table 5.8.
This operation is more expensive than the contour buildup, which results from the fact
that this computation is sequential except for the singularity computation of the spherical
triangles. Table 5.15 shows the memory consumption of all data generated from the
contour required for rendering. The required memory for all render data is lower than the
corresponding memory usage of the circles and arcs.

91

5 Results and Discussion

Table 5.15: Memory usage for render data for SES, in MB, for probe sizes Rprobe = 1.4 Å
and Rprobe = 3.0 Å.

Dataset Rprobe = 1.4 Å Rprobe = 3.0 Å
1vis 3.30 1.87

1aon 91.78 42.21

3g71 130.63 58.16

3iyj-poly 2312.83 691.37

3kz4-poly 5186.58 1669.62

3iyn-poly 3953.65 2549.50

Table 5.16: Rendering Performance in frames per seconds, for surfaces with Rprobe = 1.4 Å.
Sphere tracing used threshold ε = 0.0001. The corresponding renderings are
given in Figure 5.5.

Dataset #Primitives Ferrari Sphere Tracing

1vis 9,564 100.6 74.2

1aon 266,779 71.2 48.8

3g71 376,721 87.6 59.5

3iyj-poly 6,660,016 26.9 23.1

3kz4-poly 14,986,592 31.2 20.6

3iyn-poly 24,123,636 26.5 17.7

5.2 Surface Rendering

The intersection computation for convex spherical patches and spherical triangles is numer-
ically stable. This is not the case for the toroidal patches, which is a quadric surface. All
tested methods show visual artifacts in the form of missed intersections as seen in Figure 5.3.
These artifacts are especially visible if the surface is viewed from the inside of the SES
against a bright background. The severe artifacts of Bairstow’s method discourages its
usage. Ferrari’s approach and sphere tracing show occasional missed intersections. Sphere
tracing with even smaller ε removes most of these artifacts. The rendering performance
of Ferrari’s approach and sphere tracing is shown in Table 5.16. Figure 5.5 shows the
resulting renderings. If infrequent pixel artifacts are tolerated, the Ferrari approach shows
superior performance, otherwise, sphere tracing with small threshold ε is required. Ferrari’s
approach suffers from another kind of artifacts seen in Figure 5.4, which only appear if
viewers are very close to toroidal patches. Again the sphere tracing method is useful if
these artifacts are not acceptable. The advantage of spatial acceleration structures such as
Embree’s BVH result in a sublinear drop in performance for the largest datasets, as large
numbers of primitives are excluded from intersection computations as they are occluded by
geometry closer to the viewer. GPU based ray casting solutions do not have this property,
as all possible primitives are always drawn.

92

5.2 Surface Rendering

Figure 5.3: View located inside the surface of the molecule 1vis. From left to right, top to
bottom: Bairstow’s method, Ferrari’s approach, sphere tracing with ε = 0.001
and sphere tracing with ε = 0.0001. All marked positions show artifacts.
Bairstow’s method results in most artifacts. Ferrari’s approach and sphere
tracing with ε = 0.001 are acceptable if small pixel errors are negligible.
Sphere tracing with even smaller epsilon is able to remove all artifacts in this
view.

OSPRay offers the capability to render datasets with shadows and ambient occlusion to
improve the viewer’s spatial impression of the dataset. Table 5.17 shows performance
results if these techniques are applied. Figure 5.6 shows the resulting renderings. Compared
to simple local lighting shown in Figure 5.5, each molecule’s structure becomes easily
recognizable. As one additional ray is cast for each shadow and AO sample a performance
decrease by a factor of at least 2

3 is to be expected. Additionally, the diverging nature
of hemisphere sampling to compute the AO weight further reduces performance. Again,
larger datasets show the sublinear drop in performance resulting from the BVH.

Transparency rendering naturally reduces performance as rays cannot be terminated at the
first intersection they encounter. This reduces the benefit of Embree’s BVH. Additional
AO computations required in the AOOM technique result in further diminished speed,

93

5 Results and Discussion

Figure 5.4: If the viewer is very close to a toroidal patch, banded artifacts appear if
Ferrari’s approach is used (left). These artifacts do not appear with sphere
tracing (right).

Figure 5.5: Simple local lighting renderings corresponding to the results given in Table 5.16

94

5.2 Surface Rendering

Table 5.17: Rendering performance in frames per seconds, for surfaces with Rprobe = 1.4 Å.
OSPRay’s ‘‘scivis’’ renderer was used to compute AO and shadows, each with
one sample ray per intersection. The AO sample has unbounded distance.
Distant light and ambient light were used for illumination. The corresponding
renderings are given in Figure 5.6.

Dataset #Primitives Ferrari

1vis 9,564 25.3

1aon 266,779 13.1

3g71 376,721 16.9

3iyj-poly 6,660,016 6.1

3kz4-poly 14,986,592 5.4

3iyn-poly 24,123,636 4.7

Figure 5.6: Renderings with shadows and ambient occlusion corresponding to the results
given in Table 5.16. The molecule structure is easily visible to viewers.

95

5 Results and Discussion

Figure 5.7: For probe radius Rprobe = 1.4 Å, the SES of the molecule 1aon contains a
straight main tunnel through the center with several openings to the side.
Equation 4.32 and the AO hemisphere with radius 100 Å were chosen to
capture large cavities. To reduce noise introduced by close surface samples,
ρ = 8 and τ = 0.4. While the main tunnel is visible, its actual shape is
difficult to read.

as AO samples have to be computed at each encountered intersection. Table 5.18 shows
the performance for both methods. Figure 5.9 shows the renderings obtained from these
techniques. The results indicate that these visualization techniques work best for smaller
datasets, if interactivity is required. Compared to the original AOOM approach presented
by Borland [Bor11], the implemented technique requires no precomputation but does not
allow the usage of smoothed ambient occlusion weights. Further, the true analytic SES is
used instead of a triangulated representation. While it would be possible to map AO weights
from the surface to textures via parametric spherical and toroidal coordinates, distortions
introduced by the mappings might become an issue. If large numbers of primitives are
present, memory usage for such textures may become a concern as well. The effects
of the visibility functions given in Section 4.5 are shown in Figure 5.8. For molecules
with high numbers of cavities the visualization becomes cluttered due to many cavities
visually overlapping, which makes analysis of individual structures difficult. Additionally,
noise resulting from AO sampling further contributes to this issue, as seen in Figure 5.7.
Smoothing in surface space could reduce this, however this is difficult to implement in the
proposed technique, as it requires knowledge about neighboring surface points.

While OSPRay’s pathtracer does not allow rendering of the SES with interactive framerates,
publication-ready images can be computed. Figure 5.10 shows renderings computed with
path tracing for different materials.

96

5.2 Surface Rendering

Figure 5.8: For probe radius Rprobe = 1.4 Å, the SES of the molecule 4dfr contains a
tunnel and several small cavities on the inside and outside. Equation 4.31
(left) and Equation 4.32 (right) were used to visualize the cavities. Both
images use τ = 0.5. For the left image, the maximum AO sample distance
was chosen as 5 Å, while it was chosen as 15 Å in the right image. While
ρ = 1 gives linear scaling of the visibility in the left image, ρ = 4 reduces
influence of close AO samples in the right image.

Table 5.18: Rendering Performance in frames per seconds, for surfaces with Rprobe = 1.4 Å
while using transparency rendering and the AOOM technique. Performance
is given for the Ferrari algorithm. Transparency rendering uses opacity
α = 0.5. AOOM rendering uses opacity α = 0.1 and color blending weight
β = 0.75. Equation 4.31 was used in the visibility function. The blend color
Cblend was set to pure green. One AO sample was computed per frame, for a
maximum distance of 5 Å. Larger datasets do not give interactive performance.
Renderings are given in Figure 5.9.

Dataset #Primitives Transparency AOOM

1vis 9,564 23.4 9.1

1aon 266,779 8.8 2.7

3g71 376,721 10.0 2.7

OSPRay supports instancing of geometries. Complex collections of geometry can be
replicated millions of times without much memory overhead for the geometries itself, since
the actual geometry exists in memory only once. Figure 5.11 shows the result for a number
of tests were the number of instances was increased by an order of magnitude with each test.
The instances were positioned in a block with uniform side lengths as shown in Figure 5.12.
While there is a exponential drop in performance for the first 103 instances, performance
decrease starts to flatten out with more instances, which can again be attributed to
Embree’s BVH, which avoids many intersection computations due to occluded geometry.
Larger instance numbers were not possible due to the BVH memory requirements exceeding

97

5 Results and Discussion

Figure 5.9: Renderings corresponding to the results given in Table 5.18. The top row
shows transparency renderings with opacity value α = 0.5. Renderings
obtained with the AOOM variant are shown in the bottom row. Cavities
become easily visible. However, for larger datasets the visualization becomes
cluttered.

Figure 5.10: Renderings of the molecule 3g71 produced with OSPRay’s ‘‘pathtracer’’
renderer, with maximum path length ten. The molecule was illuminated by
an ambient light and a directional light source. The images were accumulated
for one minute. From left to right, top to bottom: scivis, metal paint, metal,
plastic, thin glass and velvet material. In all cases, framerates never rose
above 1 FPS.

98

5.2 Surface Rendering

100 101 102 103 104 105 106 107

instances

0

20

40

60

80
F

P
S

Instances rendering performance

Figure 5.11: Rendering Performance in frames per seconds, for instances of the molecule
1af6 for probe radius Rprobe = 1.4 Å (38955 SES primitives). Instance
numbers were increased roughly by an order of magnitude for each test.
Performance is given for the Ferrari algorithm.

available main memory. This suggest the usage of overhead-less acceleration structures
such as P-k-d trees [WKJ+15]. However, this would requires bounding SES primitives
with bounding spheres, as only particle data is supported.

99

5 Results and Discussion

Figure 5.12: The SES of molecule 1af6 instanced 10 × 10 × 10 times in a uniform block.

100

6 Conclusion and Future Work

The implementation and integration of the SES geometry in the OSPRay frame-
work [WJA+17] presented in this work allows high quality interactive rendering of the
surface with CPU ray tracing. Users are able to compute and render the surface such as any
other geometry offered by the framework. This makes the implemented geometry available
for interactive visualization in HPC clusters lacking GPU capabilities. The integration into
OSPRay allows efficient visualization of the surface with global illumination effects and
models such as ambient occlusion, shadows or path tracing due to the BVH implementation
provided by Embree. Global lighting effects enhance spatial perception of the visualized
data and are oftentimes more easily integrated in ray tracing frameworks then GPU based
solutions. To obtain the true analytic surface, the contour buildup algorithm was used
since it presents ample opportunities for parallelization. While the vectorization attempts
for the algorithm did not succeed, a efficient parallelized implementation of the algorithm
was achieved nonetheless. This allows the computation and visualization of the SES for
molecular dataset composed of millions of atoms, which has not been attempted before.
Conducted performance tests show that this requires the presence of large amounts of main
memory, currently missing on GPUs. Image quality was achieved by analytic intersection
routines for each of the SES’s primitive types, while additionally offering the sphere tracing
approach for intersection computation for toroidal patches. The usage of sphere tracing
is required if occasional pixel artifacts resulting from numerical inaccuracies in Ferrari’s
approach are not acceptable. Additionally, transparency rendering is supported by removal
of all internal protruding geometry. This feature was used to implement an AOOM [Bor11]
variant that directly uses the analytic surface without any precomputation to visualize
molecule cavities. Visual detection and inspection of such cavities allows domain experts to
study interactions between different molecules as these commonly occur in such positions.
While the technique works for small molecules with low numbers of cavities, renderings
become difficult to read when many cavities overlap.

The current implementation’s performance could be further improved by revisiting the
vectorization attempts. However, the results obtained in Section 5.1.1 suggest that future
work should focus on further restructuring the contour buildup algorithm to reduce branch-
ing, or finding another algorithm that is better suited for vectorization. The trilateration
approach sketched in Section 4.3 computes intersections of all triplets of neighboring
extended spheres from which spherical triangles can be derived directly. Computation of
the toroidal patches from this data remains to be solved. While this approach is cubic
in nature, careful optimization and implementation on highly parallel hardware such as
GPUs may result in faster SES computation than the contour buildup algorithm. The
performance results shown in Section 5.1 show that while interactive visualization of the
SES is possible for millions of atoms, computation of the surface itself requires multiple
seconds on state of the art hardware. Therefore, the contour buildup algorithm (or a

101

6 Conclusion and Future Work

similar algorithm) could be parallelized not only locally on one machine, but additionally
distributed over an entire cluster of compute nodes. Lastly, the implementation presented
in this work could be used to visualize datasets composed of millions of instanced molecules,
similar to the system presented by Le Muzic et al. [LPSV14] interactively by using CPU
ray tracing. The instancing test results found in Section 5.2 suggest that this could be
possible.

102

Bibliography

[AGGW15] J. Amstutz, C. Gribble, J. Günther, I. Wald. “An Evaluation of Multi-Hit Ray
Traversal in a BVH using Existing First-Hit/Any-Hit Kernels”. In: Journal
of Computer Graphics Techniques (JCGT) 4.4 (Dec. 2015), pp. 72–88. issn:
2331-7418. url: http://jcgt.org/published/0004/04/04/ (cit. on p. 58).

[AM06] S.A. Adcock, J.A. McCammon. “Molecular Dynamics: Survey of Methods
for Simulating the Activity of Proteins”. In: Chemical Reviews 106.5 (May
2006), pp. 1589–1615 (cit. on pp. 15, 37, 38).

[BM08] L. Bavoil, K. Myers. “Order Independent Transparency with Dual Depth
Peeling”. In: (Jan. 2008) (cit. on p. 57).

[Bor11] D. Borland. “Ambient occlusion opacity mapping for visualization of internal
molecular structure”. English (US). In: Journal of WSCG 19.1-3 (2011),
pp. 17–24. issn: 1213-6972 (cit. on pp. 42, 43, 80, 81, 96, 101).

[CCW06] T. Can, C.-I. Chen, Y.-F. Wang. “Efficient molecular surface generation using
level-set methods”. In: Journal of Molecular Graphics and Modelling 25.4
(Dec. 2006), pp. 442–454 (cit. on pp. 44, 56).

[CLM08] M. Chavent, B. Levy, B. Maigret. “MetaMol: High-quality visualization of
molecular skin surface”. In: Journal of Molecular Graphics and Modelling
27.2 (Sept. 2008), pp. 209–216 (cit. on p. 40).

[Con83] M.L. Connolly. “Analytical molecular surface calculation”. In: Journal of
Applied Crystallography 16.5 (Oct. 1983), pp. 548–558 (cit. on pp. 15, 40,
42).

[Dun14] A. Dunn. Transparency (or Translucency) Rendering. 2014. url: https:

//developer.nvidia.com/content/transparency-or-translucency-rendering

(cit. on p. 57).

[EW01] C.W. Everitt, L. Williams. “Interactive Order-Independent Transparency”.
In: 2001 (cit. on pp. 57, 58).

[Fan86] B.T. Fang. “Trilateration and extension to Global Positioning System navi-
gation”. In: Journal of Guidance, Control, and Dynamics 9.6 (Nov. 1986),
pp. 715–717 (cit. on p. 66).

[Fau96] W.M. Faucette. “A Geometric Interpretation of the Solution of the General
Quartic Polynomial”. In: The American Mathematical Monthly 103.1 (1996),
pp. 51–57. issn: 00029890, 19300972 (cit. on p. 22).

[FS01] D. Frenkel, B. Smit. Understanding Molecular Simulation. 2nd. Orlando, FL,
USA: Academic Press, Inc., 2001. isbn: 0122673514 (cit. on p. 38).

103

http://jcgt.org/published/0004/04/04/
https://developer.nvidia.com/content/transparency-or-translucency-rendering
https://developer.nvidia.com/content/transparency-or-translucency-rendering

Bibliography

[GIK+07] C.P. Gribble, T. Ize, A. Kensler, I. Wald, S.G. Parker. “A Coherent Grid
Traversal Approach to Visualizing Particle-Based Simulation Data”. In: IEEE
Transactions on Visualization and Computer Graphics 13.4 (July 2007),
pp. 758–768 (cit. on p. 32).

[GKM+15] S. Grottel, M. Krone, C. Müller, G. Reina, T. Ertl. “MegaMol A Prototyping
Framework for Particle-based Visualization”. In: IEEE Transactions on
Visualization and Computer Graphics 21.2 (2015) (cit. on pp. 16, 35, 39, 76).

[GKSE12] S. Grottel, M. Krone, K. Scharnowski, T. Ertl. “Object-Space Ambient Occlu-
sion for Molecular Dynamics”. In: Proceedings of IEEE Pacific Visualization
Symposium 2012. 2012 (cit. on p. 38).

[Gla89] A. S. Glassner. An Introduction to Ray Tracing. London, UK, UK: Academic
Press Ltd., 1989. isbn: 0-12-286160-4 (cit. on p. 18).

[GP06] C. P. Gribble, S.G. Parker. “Enhancing Interactive Particle Visualization with
Advanced Shading Models”. In: Proceedings of the 3rd Symposium on Applied
Perception in Graphics and Visualization. APGV ’06. Boston, Massachusetts,
USA: ACM, 2006, pp. 111–118. isbn: 1-59593-429-4 (cit. on pp. 35, 39).

[Gum03] S. Gumhold. Splatting Illuminated Ellipsoids with Depth Correction. Jan.
2003 (cit. on p. 38).

[Har96] J. C. Hart. “Sphere tracing: a geometric method for the antialiased ray tracing
of implicit surfaces”. In: The Visual Computer 12.10 (Dec. 1996), pp. 527–545
(cit. on pp. 18, 21, 57, 71).

[Her95] D. Herbison-Evans. “Solving Quartics and Cubics for Graphics”. In: Graphics
Gems V. Elsevier, 1995, pp. 3–15 (cit. on pp. 22, 24, 26–28, 71).

[HKG+17] P. Hermosilla, M. Krone, V. Guallar, P.-P. Vázquez, À. Vinacua, T. Ropinski.
“Interactive GPU-based generation of solvent-excluded surfaces”. In: The
Visual Computer 33.6 (June 2017), pp. 869–881. issn: 1432-2315 (cit. on
pp. 44, 57, 59).

[Jen06] F. Jensen. Introduction to Computational Chemistry. John Wiley & Sons,
2006. isbn: 0470011874 (cit. on p. 37).

[JPSK16] A. Jurcik, J. Parulek, J. Sochor, B. Kozlikova. “Accelerated visualization of
transparent molecular surfaces in molecular dynamics”. In: 2016 IEEE Pacific
Visualization Symposium (PacificVis). IEEE, Apr. 2016 (cit. on pp. 41, 57,
58, 70, 72, 73).

[Kaj86] J. T. Kajiya. “The Rendering Equation”. In: Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’86. New York, NY, USA: ACM, 1986, pp. 143–150. isbn: 0-89791-196-2
(cit. on p. 20).

[KBE08] M. Krone, K. Bidmon, T. Ertl. “GPU-based Visualisation of Protein Sec-
ondary Structure”. In: Proceedings of TP.CG’08. 2008 (cit. on p. 38).

[KBE09] M. Krone, K. Bidmon, T. Ertl. “Interactive Visualization of Molecular Surface
Dynamics”. In: IEEE Transactions on Visualization and Computer Graphics
15.6 (Nov. 2009), pp. 1391–1398 (cit. on pp. 15, 18, 32, 42–44, 55, 57, 60, 69,
71, 72, 76).

104

[KFR+11] M. Krone, M. Falk, S. Rehm, J. Pleiss, T. Ertl. “Interactive Exploration of
Protein Cavities”. In: Computer Graphics Forum 30.3 (June 2011), pp. 673–
682 (cit. on p. 57).

[KGE11] M. Krone, S. Grottel, T. Ertl. “Parallel Contour-Buildup algorithm for the
molecular surface”. In: 2011 IEEE Symposium on Biological Data Visual-
ization (BioVis). Oct. 2011, pp. 17–22 (cit. on pp. 44, 47, 59, 64, 85, 89,
90).

[KKL+15] B. Kozlikova, M. Krone, N. Lindow, M. Falk, M. Baaden, D. Baum, I. Viola,
J. Parulek, H.-C. Hege. “Visualization of Biomolecular Structures: State of
the Art”. In: Eurographics Conference on Visualization (EuroVis) - STARs.
Ed. by R. Borgo, F. Ganovelli, I. Viola. The Eurographics Association, 2015
(cit. on pp. 15, 37–40, 42).

[KKL+16] M. Krone, B. Kozlková, N. Lindow, M. Baaden, D. Baum, J. Parulek,
H.-C. Hege, I. Viola. “Visual Analysis of Biomolecular Cavities: State of the
Art”. In: Computer Graphics Forum 35.3 (June 2016), pp. 527–551 (cit. on
pp. 15, 37, 40, 41).

[KKP+13] D. Kauker, M. Krone, A. Panagiotidis, G. Reina, T. Ertl. Rendering Molecular
Surfaces using Order-Independent Transparency. 2013 (cit. on pp. 16, 57, 58,
72, 73).

[KRS+13] M. Krone, G. Reina, C. Schulz, T. Kulschewski, J. Pleiss, T. Ertl. “Interactive
Extraction and Tracking of Biomolecular Surfaces Features”. In: Computer
Graphics Forum 32.3 (2013) (cit. on p. 42).

[KRZ+17] M. Krone, G. Reina, S. Zahn, T. Tremel, C. Bahnmüller, T. Ertl. “Implicit
Sphere Shadow Maps”. In: IEEE PacificVis - Visualization Notes. Vol. 4.
2017 (cit. on p. 38).

[LBH14] N. Lindow, D. Baum, H.-C. Hege. “Ligand Excluded Surface: A New Type of
Molecular Surface”. In: IEEE Transactions on Visualization and Computer
Graphics 20.12 (Dec. 2014), pp. 2486–2495 (cit. on p. 40).

[LBPH10] N. Lindow, D. Baum, S. Prohaska, H.-C. Hege. “Accelerated Visualization
of Dynamic Molecular Surfaces”. In: Computer Graphics Forum 29.3 (Aug.
2010), pp. 943–952 (cit. on pp. 15, 32, 40, 44, 55, 57, 59, 60, 64, 71, 72, 85).

[Lin10] N. Lindow. “Dynamische Moleküloberflächen”. MA thesis. Technische Uni-
versität Berlin, 2010 (cit. on pp. 43, 45, 47–49, 51, 52, 55, 56, 60, 61, 64, 79,
85, 88).

[LPSV14] M. Le Muzic, J. Parulek, A. Stavrum, I. Viola. “Illustrative Visualization
of Molecular Reactions Using Omniscient Intelligence and Passive Agents”.
In: Comput. Graph. Forum 33.3 (June 2014), pp. 141–150. issn: 0167-7055
(cit. on pp. 38, 102).

[MB13] M. McGuire, L. Bavoil.“Weighted Blended Order-Independent Transparency”.
In: Journal of Computer Graphics Techniques (JCGT) 2.2 (Dec. 2013),
pp. 122–141. issn: 2331-7418. url: http://jcgt.org/published/0002/02/09/
(cit. on p. 57).

105

http://jcgt.org/published/0002/02/09/

Bibliography

[MS05] A. Markushevich, R. Silverman. Theory of Functions of a Complex Variable.
AMS Chelsea Publishing Series Teil 11. AMS Chelsea Pub., 2005. isbn:
9780821837801 (cit. on p. 27).

[OF03] S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer New York, 2003 (cit. on pp. 17, 18).

[PH10] M. Pharr, G. Humphreys. Physically Based Rendering, Second Edition: From
Theory To Implementation. 2nd. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010. isbn: 0123750792, 9780123750792 (cit. on pp. 32, 81).

[PM12] M. Pharr, W.R. Mark. “ispc: A SPMD compiler for high-performance CPU
programming”. In: 2012 Innovative Parallel Computing (InPar). IEEE, May
2012 (cit. on p. 33).

[PTRV12] J. Parulek, C. Turkay, N. Reuter, I. Viola. “Implicit surfaces for interactive
graph based cavity analysis of molecular simulations”. In: 2012 IEEE Sym-
posium on Biological Data Visualization (BioVis). Oct. 2012, pp. 115–122
(cit. on pp. 41, 42).

[PTVF92] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical
Recipes in C (2Nd Ed.): The Art of Scientific Computing. New York, NY,
USA: Cambridge University Press, 1992. isbn: 0-521-43108-5 (cit. on p. 29).

[RE05] G. Reina, T. Ertl. “Hardware-accelerated Glyphs for Mono- and Dipoles
in Molecular Dynamics Visualization”. In: Proceedings of the Seventh Joint
Eurographics / IEEE VGTC Conference on Visualization. EUROVIS’05.
Leeds, United Kingdom: Eurographics Association, 2005, pp. 177–182. isbn:
3-905673-19-3 (cit. on pp. 38, 39).

[Ric77] F.M. Richards. “Areas, Volumes, Packing, and Protein Structure”. In: Annual
Review of Biophysics and Bioengineering 6.1 (1977). PMID: 326146, pp. 151–
176 (cit. on pp. 39, 40).

[RKRE17] T. Rau, M. Krone, G. Reina, T. Ertl. “Challenges and Opportunities using
Software-defined Visualization in MegaMol”. In: 7th Workshop on Visual
Analytics, Information Visualization and Scientific Visualization. 2017 (cit.
on p. 36).

[SM09] P. Shirley, S. Marschner. Fundamentals of Computer Graphics. 3rd. Natick,
MA, USA: A. K. Peters, Ltd., 2009. isbn: 1568814690, 9781568814698 (cit. on
pp. 18, 20, 31, 32, 58).

[SOS96] M.F. Sanner, A. J. Olson, J.-C. Spehner. “Reduced surface: an efficient way
to compute molecular surfaces”. In: Biopolymers 38.3 (1996), pp. 305–320
(cit. on pp. 44, 45).

[ST09] H.M. Senn, W. Thiel. “QM/MM Methods for Biomolecular Systems”. In:
Angewandte Chemie International Edition 48.7 (Jan. 2009), pp. 1198–1229
(cit. on p. 37).

[SVGR16] R. Skanberg, P.-P. Vazquez, V. Guallar, T. Ropinski. “Real-Time Molecular
Visualization Supporting Diffuse Interreflections and Ambient Occlusion”.
In: IEEE Transactions on Visualization and Computer Graphics 22.1 (Jan.
2016), pp. 718–727 (cit. on p. 38).

106

[SWBG06] C. Sigg, T. Weyrich, M. Botsch, M. Gross. “GPU-based Ray-casting of
Quadratic Surfaces”. In: Proceedings of the 3rd Eurographics / IEEE VGTC
Conference on Point-Based Graphics. SPBG’06. Boston, Massachusetts: Eu-
rographics Association, 2006, pp. 59–65. isbn: 3-905673-32-0 (cit. on p. 38).

[TA96] M. Totrov, R. Abagyan. “The Contour-Buildup Algorithm to Calculate the
Analytical Molecular Surface”. In: Journal of Structural Biology 116.1 (Jan.
1996), pp. 138–143 (cit. on pp. 43–45, 47, 48, 52, 56, 85).

[TLP07] R. de Toledo, B. Levy, J.-C. Paul. “Iterative Methods for Visualization
of Implicit Surfaces On GPU”. In: Advances in Visual Computing. Ed. by
G. Bebis, R. Boyle, B. Parvin, D. Koracin, N. Paragios, S.-M. Tanveer,
T. Ju, Z. Liu, S. Coquillart, C. Cruz-Neira, T. Müller, T. Malzbender. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 598–609. isbn: 978-3-540-
76858-6 (cit. on pp. 21, 72).

[Tur57] H. Turnbull. Theory of Equations. University mathematical texts. Oliver and
Boyd, 1957 (cit. on pp. 22–24).

[Wei18a] E.W. Weisstein. Quartic Equation. 2018. url: http://mathworld.wolfram.
com/QuarticEquation.html (cit. on p. 22).

[Wei18b] E.W. Weisstein. Vieta’s Formulas. 2018. url: http://mathworld.wolfram.com/
VietasFormulas.html (cit. on p. 25).

[WIK+06] I. Wald, T. Ize, A. Kensler, A. Knoll, S.G. Parker. “Ray Tracing Animated
Scenes Using Coherent Grid Traversal”. In: ACM Trans. Graph. 25.3 (July
2006), pp. 485–493. issn: 0730-0301 (cit. on p. 32).

[WJA+17] I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther,
P. Navratil. “OSPRay - A CPU Ray Tracing Framework for Scientific Visu-
alization”. In: IEEE Transactions on Visualization and Computer Graphics
23.1 (Jan. 2017), pp. 931–940 (cit. on pp. 15, 32, 35, 67, 101).

[WKJ+15] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, M.E. Papka. “CPU
ray tracing large particle data with balanced P-k-d trees”. In: 2015 IEEE
Scientific Visualization Conference (SciVis). IEEE, Oct. 2015 (cit. on p. 99).

[WMG+07] I. Wald, W.R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S.G. Parker,
P. Shirley. State of the Art in Ray Tracing Animated Scenes. eng. 2007 (cit. on
p. 15).

[WWB+14] I. Wald, S. Woop, C. Benthin, G. S. Johnson, M. Ernst. “Embree”. In: ACM
Transactions on Graphics 33.4 (July 2014), pp. 1–8 (cit. on p. 35).

[Yu09] Z. Yu. “A list-based method for fast generation of molecular surfaces”. In:
2009 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE, Sept. 2009 (cit. on pp. 44, 57).

All links were last followed on May 10, 2018.

http://mathworld.wolfram.com/QuarticEquation.html
http://mathworld.wolfram.com/QuarticEquation.html
http://mathworld.wolfram.com/VietasFormulas.html
http://mathworld.wolfram.com/VietasFormulas.html

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Challenges

	2 Fundamentals
	2.1 Implicit Surfaces
	2.2 Quartics
	2.3 Acceleration Structures
	2.4 Software

	3 Molecular Dynamics Visualization
	3.1 Simulation of Molecules
	3.2 Visualization Techniques
	3.3 Solvent Excluded Surface

	4 Implementation
	4.1 Contour Buildup
	4.2 Vectorized Contour Buildup
	4.3 Trilateration Approach
	4.4 Surface Rendering
	4.5 Cavity Visualization
	4.6 MegaMol Integration

	5 Results and Discussion
	5.1 Contour Buildup
	5.2 Surface Rendering

	6 Conclusion and Future Work
	Bibliography

