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Abstract

Due to growing communication networks and the increasing size of social network datasets, the need
for graph processing systems has increased. Since most communication services such as Whatsapp,
Facebook or Reddit provide group functionalities, modeling such communication relationships as
hypergraphs is straightforward. To proccess big hypergraphs, they need to be spread accross multiple
machines, which makes partitioning the hypergraphs inevitable. Known hypergraph partitioning
systems either are fast and produce partitionings of bad quality or they provide partitionings of good
quality, but have a poor runtime. In this thesis, we present a hypergraph partitioning algorithm that
achieves both, fast partitioning with high locality. The idea is simple but effective: the algorithm
grows k disjoint subgraphs based on the neighbourhood relation and the degree distribution in the
hypergraph. We performed extensive experiments and showed that our algorithm leads to perfectly
balanced partitions with improved locality compared to state-of-the-art, while matching the fast
runtime of streaming hypergraph partitioners.

Kurzfassung

Aufgrund wachsender Kommunikationsnetzwerke und der immer größer werdenden Datenmengen
in sozialen Netzwerken hat sich die Nachfrage nach Graph-Verarbeitungs-Systemen deutlich
erhöht. Fast alle modernen Kommunikationsnetzwerke, wie z.B. Whatsapp, Facebook oder
Reddit bieten heutzutage Gruppenfunktionalitäten an, welche sich sehr einfach mit Hilfe von
Hypergraphen modellieren lassen. Um diese großen Hypergraphen verarbeiten zu können, müssen
diese durch Hypergraph-Partitionierung auf viele verschiedene Maschinen verteilt werden. Solche
Partitionierungs-Algorithmen existieren bereits, bieten jedoch entweder eine schnelle Laufzeit
und schlechte Ergebnisse oder gute Ergebnisse und eine schlechte Laufzeit. In dieser Arbeit
wird ein neuartiger Partitionierungs-Algorithmus vorgestellt, welcher beides bietet, eine schnelle
Laufzeit und gute Ergebnisse. Die dem Algorithmus zugrunde liegende Idee ist einfach aber
effektiv: der Algorithmus baut k disjunkte Subgraphen anhand der Nachbarschafts-Information der
einzelnen Knoten. Es wurden ausführliche Tests durchgeführt, die zeigen, dass die Ergebnisse dieses
Algorithmus eine deutlich verbesserte Lokalität aufweisen im Vergleich zu bereits existierenden
Algorithmen, wobei er dennoch eine bessere Laufzeit als diese aufweisen kann.
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1 Introduction

Today’s communication services such as Whatsapp, Telegram or Facebook provide group func-
tionalities with rather 1 − n than 1 − 1 communication patterns. Thus, increasingly data sets are
modeled as graphs and hypergraphs which need to be processed. Due to the increasing size of the
data sets and therefore also the hypergraphs, processing systems scale out processing by dividing the
hypergraph into equally sized partitions [MMG+18; MMTR16; MTLR16; MTMR18]. When such
partitions are made, the optimization goal is to minimize the numbers of hyperedges spreaded across
multiple partitions and consequently the amount of communication between different machines.

This balanced k-way partitioning problem is NP-hard for graphs as well as for hypergraphs, which
means calculating optimal solutions to this problem for this problem is not feasible for big graphs.
Existing partitioning solutions are either slow and provide good quality cuts, or are fast and generate
solutions of bad quality.

In this thesis, a new algorithm based on neighbourhood graph partitioning first proposed by Zhang
et al.[ZWL+17] will be introduced. The algorithm grows k distinct node partitions by exploring the
neighbourhood of the nodes already in the partition. This new algorithm will provide solutions to
hypergraph partitioning of good quality while being scalable for huge hypergraphs. Using a naive
neighbourhood graph partitioning algorithm as proposed by Zhang et al. does not scale well and the
naive algorithm does not even return for hypergraphs which have as little as ∼ 50, 000 nodes in
24 hours. For this reason in this thesis further optimizations will be introduced in this thesis to
make the algorithm viable for partitioning even huge graphs. This thesis will provide the following
contributions:

• A hypergraph node partitioning algorithm derived from the edge partitioning algorithm
proposed by Zhang et al. The new algorithm will grow k subgraphs based on the neighbourhood
relation between nodes.

• Optimizations of the provided algorithm to make it feasable for partitioning huge hypergraphs.

• Two new hypergraphs based on Reddit comments. One hypergraph using comments as nodes
and due to that having billion of nodes, one using subreddits as nodes and providing a usual
distribution for hypergraphs, but being big enough to make existing algorithms fail when
trying to process this graph.

• An evaluation of the new, optimized algorithm showing that it outperforms established
hypergraph partitioning algorithms regarding relevant performance metrics when partitioning
real world hypergraphs.

The rest of this thesis is organized as follows: Section 2 formally introduces hypergraphs, partitions
and the graph partitioning problem. Furthermore, it will introduce and discuss different metrics
to evaluate hypergraph partitionings. Section 3 introduces different datasets used to generate
hypergraphs. These hypergraphs are later used to benchmark different partitioning algorithms.
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1 Introduction

This section also gives an insight into how the Reddit dataset has been used to create two huge
hypergraphs. In Section 4 existing hypergraph partitioning algorithms are introduced and explained.
Section 5 first describes the neighbourhood edge partitioning algorithm for graphs introduced
by Zhang et al.[ZWL+17] and then introduces a hypergraph partitioning algorithm based on
that algorithm. Since this naive hypergraph partitioning algorithm does not scale well, further
optimizations for this algorithm are introduced in the section as well. This optimized new algorithm
will be evaluated and compared to hypergraph partition systems intorduced in Section 4. For this,
most of the hypergraphs introduced in Section 3 will be partitioned and the results evaluated in
Section 6. The last section, Section 7 summarizes this thesis and gives an insight into future work
related to the newly proposed algorithm.
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2 Problem Formulation

2.1 Hypergraphs

Hypergraphs are a generalization of graphs, where edges do not connect only two but an arbitrary
number of nodes. These edges are called hyperedges. Formally, a hypergraph H is a tuple
(V, E) where V is a set of nodes and E ⊆ P(V) \ ∅ which means, E is a set of non-empty node
sets and therefore a subset of the powerset of V without the empty set. Figure 2.1 shows a
visual representation of a hypergraph where V = {v1, v2, v3, v4, v5, v6}, E = {e1, e2, e3, e4} and
e1 = {v1, v2, v3}, e2 = {v1, v4}, e3 = {v3, v5, v6} and e4 = {v1, v5} Every graph can be represented
by a hypergraph by using only hyperedges with the size of two. Also, every bipartite graph given
as G = (A, B, E) where A and B are two disjoint node sets and E is an edge set where every edge
connects two nodes x ∈ A and y ∈ B can be repressented as a hypergraph. Such a graph can
be converted to a hypergraph by using set A as nodes and set B as hyperedges. For every edge
(x, y) ∈ E , the node x ∈ A is connected in the hypergraph with hyperedge y ∈ B. If we proceed this
way, no information about the origin bipartite graph is lost, which is why it also works the other
way around. Every hypergraph H = (V, X) can be transformed into bipartite graph G = (A, B, E)
when using the nodes x ∈ V as nodes A and the hyperedges y ∈ X as nodes B. Every node x ∈ A is
connected with another node y ∈ B exacly when x was in the hyperedge y in the hypergraph which
means (x, y) ∈ E ⇔ ∃y ∈ X : x ∈ y.

v1 v2 v3

v4 v5 v6

e1

e2

e3

e4

Figure 2.1: Hypergraph example

2.2 Graph Partitioning

When big graphs are processed, they need to be distributed accross several machines. Distributing
the graph randomly leads to a high degree of duplication of either nodes, edges or both. which -in
tern- necessitates high communication between the machines. Thus, algorithms for partitioning the
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2 Problem Formulation

graph into smaller subgraphs so that the communication between the machines is minimized and
the work is equaly distributed are needed. This problem is called the graph partitioning problem.
The graph partitioning deals with splitting a graph G = (V, E) into k subgraphs (P0, P1, . . . , Pk−1)

such that

G =
k−1⋃
i=0

Pi (2.1)

holds true, while globally minimizing some metrics. The graph partitioning problem is known
to be NP-Complete [PQD+15] and since every graph can be represented as a hypergraph where
hyperedges only hold two nodes, the hypergraph partitioning problem is also NP-Hard. Thus, finding
an optimal solution which minimizes the metrics presented in section 2.3 is not reasonably feasible
for big graphs, which is why existing solutions and our proposed algorithm are only able to find
local optimal solutions for graphs as well as for hypergraph partitioning [MML17; MMT+18].

2.3 Benchmark Metrics

In order to compare different hypergraph partitioning algorithms, we need to provide a common set
of benchmarks which evaluate the quality of a cut calculated by an algorithm for a given hypergraph
and a number of partitions. This set of benchmarks needs to provide information about the following
characteristics of a cut.

• Runtime: time the algorithm takes to calculate the cut.

• Balancing: balancing of the numbers of elements in the partitions

• Quality: communication later needed between machines because of commonly shared
elements

2.3.1 Runtime

We will use the runtime of the algorithm as a benchmark on how much time the algorithm needs to
calculate the cut for a given graph and a number of partitions. As some algorithms do calculations
while the parsing of the graph and others do not, we will add the runtime of the parsers to read the
given hypergraph into memory to the runtime needed to calculate the partitioning.

2.3.2 Balancing

Since we only compare algorithms which calculate edge partitionings on the given hypergraphs, we
will benchmark the balancing of the number of nodes in the partitions. Let Pmax be the partition
with the highest number of nodes, Pmin the one with the lowest and |Pi | the number of nodes in
partition Pi, then the quality B of the balancing is calculated as follows:

B =
|Pmax | − |Pmin |

|Pmax |
(2.2)

such that 0 ≤ B ≤ 1.
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2.3 Benchmark Metrics

A value of B near 1 means that there is a huge difference between the number of nodes of Pmax and
Pmin and the cut is highly imbalanced, a value near 0 means the opposite.

2.3.3 Edge-cut

To measure the quality of a cut, the most straightforward way is to count the hyperedges which are
spread on multiple partitions of the cut. This metric is called edge-cut metric and hMetis optimizes
its cuts per default for it. This metric indirectly estimates the communication needed between the
single partitions later. Since a single edge in a cut with k partitions can be spread across all those k
different partitions and still be counted the same way as an edge spread across only 2 partitions, the
edge-cut metric does neither directly nor reliably represent the amount of communication between
the k partitions later.

2.3.4 Sum of External Degrees

Another metric to estimate how much partitions need to communicate later is called Sum of External
Degrees. It estimates the communication by counting the hyperedges spread between different
partitions. The external degree Ed of a partition Pi is the number of hyperedges which belong to
partition Pi but the nodes of which are not all in partition Pi. With this definition of Ed(Pi), the
sum of external degrees SoED of a cut with k partitions is defined as:

SoED =
k∑
i=0

Ed(Pi) (2.3)

2.3.5 (k-1)-cut

Another metric to estimate the communication based on the number of hyperedges spread across
multiple partitions is the (k-1)-cut metric. Let H = (V, E) be a hypergraph with Edges E and
vertices V , (P0, . . . , Pk−1) a valid cut of H into k partitions and |Pi | the number of hyperedges
which are in partition Pi. Then the (k-1)-cut metric is defined as follows:

(k-1)-cut =

(
k∑
i=0
|Pi |

)
− |E | (2.4)

Since

1. the Sum of External Degrees metrics is easier to calculate with the used datastructures
and gives the same information as the (k-1)-cut metric about the communication between
partitions

2. hMetis only provides the sum of external degrees metric out of the box

we will use the Sum of External Degrees in this thesis.
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3 Datasets

In this chapter, different datasets will be introduced which are used to evaluate different partitioning
algorithms. Since every bipartite graph can easily be converted into a hypergraph, most introduced
datasets are bipartite graphs. The publicly available datasets are not big enough to provide a billion
scale hypergraph, that is why we have used a billion scale reddit dataset to build a hypergraph large
enough to evaluate if the proposed algorithms are able to do billion scale partitioning. Table 3.1
gives an overview of the generated hypergraph.

3.1 Bipartite Datasets

In this section, the various hypergraphs are presented which were built from online available
bipartite graph data sets.

3.1.1 Stack Overflow

This bipartite graph data set provides a graph where each node is either a user or a post posted
on Stack Overflow. Every user is connected with every post they have favorized. Thus, a user is
never connected with another user nor a posting with another posting. Using the user nodes as
nodes and posts as hyperedges, a hypergraph with 641.876 nodes and 545.196 hyperedges can be
built[17b]. The resulting hypergraph has 15, 772 components; this means it is not connected, which
is not suprising considering the fact that posts exist which are favorized by exactly one user who
has only one favorized post. This being said, the biggest component holds 96.2% of all nodes in
the graph, and thus, the graph is not trivial to partition. Figure 3.1 and figure 3.2 show that the
distributions of edges as well as nodes sizes in the built hypergraph follow the powerlaw.
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Figure 3.1: Stack Overflow edge distribution
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Figure 3.2: Stack Overflow node distribution
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3 Datasets

Dataset Vertices Hyperedges #Vertices #Hyperedges #Edges Source
Stack Overflow Users Posts 641,876 545,196 1,301,942 [17b]
MovieLens Users Movies 138,493 26,745 20,000,263 [Gro]
Github Users Projects 177,386 56,519 440,237 [17a]
Reddit Subreddits Authors 430,156 21,169,586 179,686,265 [Stu]

Table 3.1: A table showing the used hypergraphs and information about their vertices, hyperedges
and the number of edges in their corresponding bipartite graph

3.1.2 Github

This bipartite dataset provides a graph where each node is either a user or a project. A user has an
edge to a project if he is a member of the project. The dataset provides a graph with 177, 386 users
and 56, 519 projects [17a]. The hypergraph built from the bipartite graph will use the users as nodes
and the projects as hyperedges. When a user only is a member of a single project and this project
only has one member, this member and project are building a component not reachable from the
rest of the graph. Thus, it is not suprising that the resulting hypergraph has 15, 067 components
and is not connected. The biggest component holds about 82.6% of the nodes in the graph, which
means it is not trivial to perform a balanced node partitioning for the hypergraph. As Figure 3.3 and
Figure 3.4 show, node and edge distributions are following the powerlaw for the built hypergraph.
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Figure 3.3: Github edge distribution
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Figure 3.4: Github node distribution

3.1.3 MovieLens

The MovieLens dataset provides a bipartite graph with users and movies as nodes. Every user has
edges to all movies he has rated, this way a user is never connected with another user and an edge
is never connected with another edge, which makes the graph bipartite. The dataset has 138, 493
users who did 20, 000, 263 ratings for 26, 745 movies[Gro]. To concstruct a hypergraph from the
dataset the user nodes were used to represent nodes and the movie nodes were used to represent
hyperedges. Because of the high number of ratings made, the concstructed hypergraph is well
connected and only consists of one component. Figure 3.6 shows that ever node is at least member
of 20 hyperedges, which is also an indicator that the graph is highly connected. Aside from that, the
distribution follows the powerlaw as well as the edge distribution does as Figure 3.5 shows.
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3.2 Reddit Hypergraph
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Figure 3.5: MovieLens edge distribution
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Figure 3.6: MovieLens node distribution

3.2 Reddit Hypergraph

Since the newly proposed algorithm in this thesis should be able to partition billion scale graphs,
it is necessary to test on a much bigger hypergraph than the ones constructed from the bipartite
datasets. Because of this, two new hypergraphs are introduced in this section: one hypergraph
which will be used for comparing different algorithms and one with an unusual structure which
will be used as a proof of concept for billionscale hypergraph partitioning. Reddit had about ∼ 2.8
billion comments from 2005 to 2015 from 21, 169, 586 authors in 430, 156 subreddits. When we
use the authors and subreddits as nodes and connect every author with subreddits they commented
in, a bipartite graph can be created. From this bipartite graph it is trivial to construct a hypergraph.
In this case the subreddit nodes are used as nodes and the author nodes are used as hyperedges. This
hypergraph has the edge and node distributions shown in Figure 3.7 and 3.8. The edge distribution
follows the powerlaw, whereas nodes are not power-law distributed as the log-log curve does not
show a straight line. Since this hypergraph is not billion scale either, another hypergraph was
built from the dataset. When every comment is used as a node and every subreddit and author are
used as a hyperedge, a billionscale hypergraph can be built by connecting every comment with his
author and the subreddit it was posted in. The edge distribution of this new hypergraph follows the
powerlaw, but the node distribution does not, because every node is connected with exactly two
hyperedges. This graph has ∼ 2, 8 billion nodes and will be used later to prove that the proposed
algorithm is able to partition billion scale hypergraphs. Because the node distribution is unusual for
a hypergraph, it will not be used to compare different hypergraph partitioning algorithms.

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1  10  100  1000  10000  100000  1x106

Fr
e
q

u
e
n
cy

Degree

Figure 3.7: Reddit edge distribution
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Figure 3.8: Reddit node distribution
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4 Background

4.1 MinMax Streaming

Alistarh, Iglesias, and Vojnovic proposed different hypergraph streaming partitioning strategies in
[AIV15]. These MinMax Streaming strategies can operate on a hypergraph with an unknown size
or structure. The best strategy proposed in [AIV15] was the greedy strategy. The original greedy
streaming algorithm expects a number of partitions k, a balancing constraint c and a source to stream
the nodes of the hypergraph from. Algorithm 4.1 shows how greedy streaming works. First k empty
partitions are initialized. This happens in line 2. Then, while new nodes v, which are connected
with hyperedges R, are arriving, the newly arrived node is being added to the partition with which it
has the most hyperedges in common and which does not violate the balancing constraint.

Algorithm 4.1 Greedy MinMax Streaming algorithm described in [AIV15]
1: procedure greedyStreaming(k, c)
2: S0, S1, ...Sk−1 ← ∅

3: while vertices are arriving do
4: v ← newly streamed vertex
5: R← hyperedges v is connected with
6: I ←

{
i | ∀ j : |Pi | ≤

��Pj

�� + c
}

7: j ← arg min
i∈I

|Pi ∪ R|

8: Pj ← Pj ∪ R
9: end while

10: return S0, S1, ...Sk−1
11: end procedure

The original algorithm used a fixed size parameter c for the balancing. Since hypergraphs with
different sizes are partitioned in this thesis, the original MinMax streaming algorithm has been
rewritten to use a balancing constraint where the partitioning can only be imbalanced by 5% at
any time. This way the parameter c can be omitted and does not need to be specified for every
hypergraph.

Another problem the original proposed algorithm has is, that it uses edge balancing in its original
form. Since we use node balancing for our algorithm, we implemented node balancing for the
MinMax streaming as well. The resulting algorithm was almost always better than the one originaly
introduced by Alistarh, Iglesias, and Vojnovic.
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4 Background

4.2 Multilevel Partitioning

The multilevel partitioning approach is another hypergraph partitioning approach introduced by
Karypis and Kumar in [KK00]. For this algorithm it is crucial to have the whole hypergraph parsed
into memory. In contrast to MinMax streaming, multilevel k-way partitioning takes a lot more time
to process the hypergraph, but produces much better partitionings in regard to quality.

This approach processes the graph in three phases: the coarsening phase, the initial partitioning
phase and the uncoarsening phase.

Figure 4.1: Multilevel partitioning summary[KK00]

In the coarsening phase, the hypergraph is gradually reduced by merging nodes together. That
way hyperedges and the hypergraph itself are getting smaller and therefore it is much easier to
calculate a good partitioning. Once this is done, the original hypergraph is reconstructed step
by step from the smaller partitioned hypergraph. Figure 4.1 gives a rough idea of how the three
different phases work together. During the coarsening phase it is crucial to merge nodes in a way
that when partitioning the resulting smaller hypergraph, the partitioning is also valid and provides
a good quality for the original hypergraph. For the coarsening phase different heuristics where
propsed in literature to provide such a merging of nodes. For example edge-coarsening[KAKS99],
hyperedge-coarsening[KAKS99] or FirstChoice[KK00].

In the second phase, the small hypergraph generated in the coarsening phase needs to be partitioned
into k rough equaly sized partitions with good quality. In literature different approaches are proposed
such as doing the coarsening phase until only k nodes are left and use them as initial partitions
[KK00]. Other approach such as using different random partitionings of the small hypergraph and
compare them to each other or exploring the neighbourhood of random selected nodes and use those
neighbourhoods as partitionings as proposed in [KAKS99] are prefered and also used in hMetis.
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4.2 Multilevel Partitioning

In the last phase, the uncoarsening phase the partitioning of the smaller partitioned hypergraph is
consecutively into another one, by uncoarsening it and optimizing the results with a refinement
algorithm which optimizes the cut for a given metric such as the Edge-Cut or Sum of External
Degrees metric discussed in Section 2.3. Different refinement algorithms were proposed by literature
such as FM[KAKS99; KK00] or greedy refinement.

HMetis implements different multilevel partitioning systems with different algorithms used in the
different phases [KAKS99; KK00]. For the evaluation and comparisions against our newly proposed
algorithm we used the hMetis recusive bisecioning algorithm. We considered using the multilevel
k-way partitioning system, but we were not able to partition big hypergraphs in a appropriate time
to do so.
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5 Hypergraph Partitioning with Neighbourhood
Heuristic

Graph partitioning with neighbourhood heuristic was proposed by Zhang et al. for egde graph
partitioning. In this thesis we used the neighbourhood heuristic to provide an algorithm which
works as a scalabe node partitioning algorithm for hypergraphs with nodebalancing. In this chapter
the original algorithm will be explained, and then transformed in such a way that the result will be
a node partitioning algorithm for hypergraphs. Without further optimization this new algorithm
does not scale well. That is why it will be optimized not only to run in O(n) but also to be able to
partition billion scale hypergraphs which will, in most cases, definitely produces better results than
the existing solutions.

5.1 Original Neighbourhood Partitioning

In this section the original algorithm proposed by Zhang et al.[ZWL+17] will be explained. The
algorithm successively constructs edge sets Ei in k iterations from a given graph in a way that those
sets are a valid edge partitioning of the graph. When such a set Ei is constructed, two sets of nodes
S and C are administered by the algorithm. Set S, is a set of nodes, which are good candidates for
their edges being added to Ei and C, a set which contains the already worked off nodes. In every
step a node n ∈ S \ C is selected by the later described neighbourhood expansion. This node n is
then added to set C and all neighbours N(n) of node n are added to set S. All edges of this selected
node n are added to the edge partition Ei . To make sure an edge is not distributed on more than one
partition, each edge added to Ei will get deleted from the graph edge set E . If node n is not selected
from S, it will also be added to S. Because of this, set S is the set of nodes which are connected
with at least one edge in the current edge set Ei. Since a node gets never deleted from S or C and
all nodes in C are included in S or added to S respectivly, C ⊆ S is always true. In this thesis the
procedure of adding new nodes or edges to a partition is called alloc. An example of how this alloc
procedure can be implemented for the original neighbourhood partitioning algorithm can be seen in
algorithm 5.1.

The neighbourhood expansion selects the node n ∈ S \C in a way that the number of neighbours of
n which will be added to S is minimized, which means:

n = arg min
x ∈S\C

|N (v) \ S | (5.1)

Obviously, if S \ C = ∅, it is not possible to select such a node out of S \ C and in this case a
random node n < C is selected from the given graph G. This procedure is called neighbourhood
expansion or expansion respectivly. Algorithm 5.2 shows the expand procedure, which implements
the neighbourhood expansion and shows how node n is selected for the original edge partitioning
algorithm proposed by Zhang et al.
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5 Hypergraph Partitioning with Neighbourhood Heuristic

Algorithm 5.1 Alloc algorithm for the neighbourhood edge partitioning algorithm[ZWL+17]
1: procedure alloc(n, E, Ek,C, S, δ)
2: S ← S ∪ {n}
3: C ← C ∪ {n}
4: for all x ∈ N (n) \ S do
5: S ← S ∪ {x}
6: for all y ∈ N (x) ∩ S do
7: if |Ek | ≤ δ then
8: Ek = Ek ∪ {ex,y}
9: E ← E \ {ex,y}

10: end if
11: end for
12: end for
13: end procedure

Algorithm 5.2 Neighbourhood expansion for the neighbourhood edge partitioning algo-
rithm[ZWL+17]

1: procedure expand(S,C,G = (V, E))
2: if S \ C = ∅ then
3: return random node ∈ V \ S
4: else
5: return arg min

x ∈S\C

|N (v) \ S |

6: end if
7: end procedure

Since neighbourhood expansion tries to minimize the number of new nodes added to S, nodes which
are well connected with the current set S are prefered and the number of nodes n ∈ S with edges
to nodes x < S is directly minimized. This results in a minimization of identic nodes on multiple
partitions, which is exactly what is needed to provide a good edge partitioning. Later, when the
neighbourhood heuristic for node partitioning of hypergraphs is used, advantage of those properties
of nodes in set S and C will be taken. Algorithm 5.3 shows the whole edge partitioning algorithm
when the previously in algorithm 5.1 and in algorithm 5.2 introduced alloc and expand procedures
are used.

5.2 Primitive Hypergraph Node Partitioning with Neighbourhood
Heuristics

In this section we will change the original edge partitioning algorithm proposed by Zhang et al. and
described in section 5.1 in such a way that it will work on hypergraphs, the result being a node
partitioning instead of the original edge partitioning. Since the new algorithm should be a node
partitioning algorithm, saving the edges for the edge partition Ei in each iteration of the algorithm
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5.2 Primitive Hypergraph Node Partitioning with Neighbourhood Heuristics

Algorithm 5.3 Original neighbourhood edge partition algorithm for graphs[ZWL+17]
1: procedure partition(G = (V, E), p)
2: δ← |E |

p

3: for k ← [0 . . p − 1] do
4: S,C, Ek ← ∅

5: while |Ek | ≤ δ ∧ E , ∅ do
6: n← expand(S,C,G)
7: alloc(n, E, Ek,C, S, δ)
8: end while
9: end for

10: return
(
E1, . . . , Ep−1

)
11: end procedure

is no longer needed, which results in a new alloc procedure described in algorithm 5.4. This is the
result of deleting the edge allocation part of the original alloc procedure descriped in algorithm 5.1
in lines 6 to 11.

The algorithm needs to provide a node partition Vi in each round. The nodes in this partition should
preferably have few edges to nodes not in Vi and are not allowed to appear on any other node
partition Vj for j , i. The new algorithm will use the node set C for this. Since C is built from
nodes n ∈ S in such a way that during the neighbourhood expansion as few as possible new nodes
are added to S, C provides a set of nodes with few edges to nodes at least not in S. The algorithm
could provide a better partitioning, when changing the neighbourhood expansion in a way that
nodes with few neighbours not in C are prefered, but it will be changed anyway in a later section
5.3.1 due to the lacking performance of this form of neighbourhood expansion. For now we assume
that using C as node partition will provide a reasonable partitioning of the given graph.

Since the algorithm needs to make sure a node n ∈ Vi will never be assigned to any partition Vj for
j , i, n is deleted from the given graph which is done in line 7 in algorithm 5.4.

Algorithm 5.4 Alloc algorithm for the neighbourhood node partitioning algorithm
1: procedure alloc(n,C, S,G = (V, E))
2: S ← S ∪ {n}
3: C ← C ∪ {n}
4: for all x ∈ N (n) \ S do
5: S ← S ∪ {x}
6: end for
7: V ← V \ {n}
8: end procedure

The new algorithm does perform a node partitioning, which is why the calculation of δ needs to be
changed in order to dependend on the number of nodes in the given graph. Algorithm 5.5 does
exactly this in line 2 and is the result of all changes to algorithm 5.3 discussed in this section. Line
7 calls the previously discussed alloc procedure. Line 6 calls the expand procedure which has
been presented in section 5.1 and discussed in the current section. C0, . . . ,Cp−1 in line 10 has the
meaning of returning all sets C calculated in iteration 0 to p − 1
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5 Hypergraph Partitioning with Neighbourhood Heuristic

Algorithm 5.5 Neighbourhood node partitioning algorithm for graphs and hypergraphs
1: procedure partition(G = (V, E), p − 1)
2: δ← |V |

p

3: for k ← [0 . . p] do
4: S,C ← ∅
5: while |C | ≤ δ ∧ V , ∅ do
6: n← expand(S,C,G)
7: alloc(n,C, S)
8: end while
9: end for

10: return
(
C0, . . . ,Cp−1

)
11: end procedure

Figure 5.1 sketches the general framework for growing the core set of a single partition and how
nodes are moved between the different sets.

𝑉

𝑆 ⊆ 𝑉

𝐶 ⊆ 𝑆

Hypergraph
Candidate Set 

Core Set

Vertex

𝑉/𝑆
𝑆/𝐶

𝐶

Figure 5.1: Overview over the different sets managed while partitioning a hypergraph

This new algorithm provides a node partitioning of a given graph. Since we only use nodes and
neighbours of those nodes in the algorithm and since nodes as well as neighbours of a node are
well defined for hypergraphs, the new algorithm can be used to perform node partitioning for
hypergraphs.

There are several performance problems with this algorithm when hypergraphs are partitioned,
such as the following: since the edges in a hypergraph are sets of nodes, a node in a hypergraph has
usually more neighbours than in a normal graph. This is a problem because S grows in proportion
to average number of neighbours a node has. When there is an edge with ever node in it, S is always
the full graph. Because of this the results as well as the runtime of the algorithm are remarkably
bad. An implementation of the algorithm did not return within 24 hours on hypergraphs with only
∼ 50, 000 nodes and edges. In the following sections these problems will be adressed and solved to
make the current algorithm feasable for billion scale hypergraphs.
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5.3 Optimization

5.3 Optimization

In this section, optimization for the hypergraph node partitioning algorithm will be discussed. As
said before, the naive hypergraph node partitioning algorithm presented in Section 5.2 does not scale
very well. After the application of the optimizing factors discussed in this section, the algorithm
will be able so scale in O(n) and keep up with existing solutions.

5.3.1 Heuristic Optimization

Currently, during the neighbourhood expansion a node is ranked by the number of his neighbours
x < S. In order to calculate this number, first the set of neighbours needs to be computed and then
those neighbours are counted based on whether they are in S or not. This needs to be done for all
nodes in S, everytime the expand procedure is called.

When a node has a only a few neighbours it can only have few neighbours not in S. Therefore,
instead of comparing nodes based on the number of neigbours not in S, the absolute number of
neighbours of a node can be used to decide if a node is a good candidate to expand. This is much
easier to calculate because no set differences need to be calculated.

Everytime a new node is allocated to a partition, this node gets deleted from the graph. This means,
due to that event the number of neighbours of any node in the graph can possibily change. Thus,
caching the number of neighbours of each node gives other results than recalculating it everytime
needed. After running tests using the exact and the cached version of neighbours on different
graphs, it turns out that caching the number of neighbours does not affect the quality of the resulting
partitioning, but reduces runtime by ∼ 50%. Figure 5.2 shows that there is now difference of quality
between the cached and the exact number of neighbours, provided that the sum of external degrees
metric discussed in section 2.3.4 is applied, for the partitioning of the Stack Overflow hypergraph
discussed in section 3.1.1.
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Figure 5.3: Comparision of quality using the number of neighbours and accumulating the edgesizes
of a node
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Figure 5.4: Comparision of the runtime using the number of neighbours and accumulating the
edgesizes of a node

An even faster heuristic is to accumulate the sizes of edges a node is member of. This is not the
same as the excat number of neighbours because neighbours of a node n can be spread across
multiple edges shared with n. If one compares the two expation metrics on different graphs has
shown that accumulating the edge sizes results in at least as good partitioning results as if the
number of neighbours is used. Figure 5.3 shows that when the Github hypergraph introduced in
section 3.1.2 is partitioned the quality of the results is not affected if one either uses the cached
number of neighbours or the cached accumulated edgesizes. Moreover, figure 5.4 shows that using
the accumulated edgsize metric can save up to 450% runtime.
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5.3 Optimization

Because of these results, instead of using the number of neighbours not in S for the neighbourhood
expantion, the accumulated edgesizes calculated the first time when needed and then cached will be
used in the algorithm. Due to these results, the number of neighbours not in S for the neighbourhood
expasion will not be used. Instead, the accumulated edgesized calculated the first time needed and
then cached will be used in the algorithm.

5.3.2 Restricting the Number of Nodes in Set S \ C

A issue of the current algorithm is that S \ C can hold a lot of nodes, which is a problem because
from these nodes the one with the smallest value acording to the heuristic discused in section
5.3.1 needs to be found to be added to C. To reduce the search time for the best node during the
neighbourhood expantion |S \ C | is restricted to a constant size. This results in constant search
time for finding best node in S \C. To make sure a constant size S \C does not only hold the worst
possible candidates, a new node adding policy ensures only the best known candidates will be in
S \ C. The node adding policy works as described in algorithm 5.6. It first unites the existing set
S \ C with the candidate nodes to get a set of all nodes which are candidates for the new set S \ C.
It then sorts those nodes based on the heuristic introduced in 5.3.1 and then adds the best k nodes to
the set S \ C, where k is the constant number of nodes restricting S \ C.

Algorithm 5.6 Node adding policy to decide which nodes are allowed to be in constant size S \ C
1: procedure addNodesToS(S,C, addCandidates)
2: allNodes← S \ C ∪ addCandidates
3: sort allNodes based on the in section 5.3.1 introduced policy
4: S ← C ∪ first n nodes of allNodes
5: end procedure

This makes sure that only the best k expation candidates are in S \ C. But it adds extra complexity
and runtime when adding nodes to S, which will be solved in the next section. The question of
how to choose k has been solved by running the algorithm on different graphs with different sizes
of k. Figure 5.5 shows the quality mesured with the sum of external degrees metric discussed in
section 2.3.4 of the results for different sizes of k when partitioning the Stack Overflow hypergraph
introduced in section 3.1.1. The plot shows that S \ C does not need to be high and is chosen to be
10 in this thesis, because the smaller S \C is, the less runtime is needed when chosing the next node
during the expation. However, as the plot shows, choosing a bigger n does not affect the quality of
the partitioning much.

5.3.3 Reducing the Number of Candidates for S

To reduce the cost of inserting a node into set S with the procedure introduced in 5.3.2 the number
of nodes which will be added to S needs to be reduced. Since S only holds the best discovered
candidates, it is not too bad if bad candidates are sometimes added to S, as long as not only bad
candidates are added. Restricting the number of new nodes added to S to only two nodes, makes
sure that everytime a node from S is added to C, two new candidates are available to refill S \ C.
According to the node adding policy described in section 5.3.2 etter one of those two nodes will
be added, for sure and the other one will be added if any node in S \ C is worse. This makes sure
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Figure 5.5: Comparision of quality using different sizes of set S \ C

that the quality of candidates in S \ C increases during the execution of the algorithm. Since the
node adding policy described in section 5.3.2 makes sure S \ C only holds good candidates, the
algorithm can randomly choose the two nodes which will be added to S from the neighbours of the
node added to C. This new alloc procedure is also descriped in algorithm 5.7

Algorithm 5.7 Optimized alloc procedure adding only two nodes to S
1: procedure alloc(n,C, S,G = (V, E))
2: S ← S ∪ {n}
3: C ← C ∪ {n}
4: addCandidates← select 2 random nodes from N (n) \ S
5: addNodesToS(S,C, addCandidates)
6: V ← V \ {n}
7: end procedure

5.3.4 Ignoring Edges while Selecting Candidates for S

The current algorithm has a weak point. When the algorithm selects two random neighbours of a
node n as candidates to be added to S, those nodes can be connected with n through a big edge.
this edge is almost surely also on another partition than the one currently built. This is certain to
happen if the edge has more nodes than δ. This is why the algorithm should at least ignore edges
≥ δ during the random selection of two candidates to be added to S. Tests have shown that, based
on the graph, ignoring 5 − 50% of the biggest edges in the graph considerably improves the quality
of the partitioning. Figure 5.6 shows the differences in quality of partitionings of the hypergraph
generated for the bipartite Github graph[17a]. In the figure the algorithm ignores different sizes of
edges during neighbourhood expansion.
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Figure 5.6: Comparision of quality ignoring different sizes of edges during expand

On different graphs a different number of edges ignored produces the best result. How to find a
good value for this parameter is not covered by this thesis, but for the graphs introduced in section
3 the optimal parameters have been found and will be used in the following sections. With these
optimizations a new node from a given hypergraph can be added to a partition in O(1) and therefore
the algorithm can partition a given given hypergraph G = (V, E) in O (|V |).
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6 Evaluation

Based on the metrics introduced in Section 2.3, the newly proposed algorithm will be compared
to other hypergraph partitioning systems. The implementation of the algorithm uses hashsets
for all sets, and to avoid an O(n) complexity when selecting random nodes, the first available
node of those hashsets is chosen to make sure random node selection is possible in O(1). The
neighbourhood partitioning algorithm is compared with streaming algorithms presented in chapter
4 and hMetis. Since hMetis produces not strictly balanced cuts without further arguments, hMetis
was benchmarked with default arguments and with an argument to make hMetis produce better
balanced results. The algorithms are compared processing all hypergraphs presented in chapter 3
except hMetis, which did not return after 24 hours while trying to partition the reddit hypergraphs
introduced in section 3.2. Since the neighbourhood partitioning algorithm tends to be sensitive
to the percentage of the biggest edges ignored during the neighbourhood expansion, different
values are tested for each hypergraph and the best result is used for the comparison with the other
algorithms.

Experimental Setup All experiments have been performed on a shared memory machine with 4
x Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10GHz (4 x 16 cores) with 1 TB RAM.

6.1 Sum of External Degrees

In this section the different algorithms are compared based on how they perform in regard to the
Sum of External Degrees metric introduced in section 2.3.4. HMetis has the option to optimize
specifically for this metric, which was not possible for our hypergraphs, because hMetis did not
return after 24 hours when doing so. Due to that hMetis was only instructed to perform partitionings
optimized for the Edge-Cut metric introduced in Section 2.3.3.

Figures 6.1a - 6.1d show how the neighbourhood partitioning algorithm performs on the differnent
hypergraphs with different numbers of edges ignored as explained in section 5.3.4 in regard to the
Sum of External Degrees metric. As the figures show, on different graphs the algorithm needs to
ignore a different percentage of the biggest hyperedges during the neighbourhood expansion to
perform well. For all other comparisons between different partitioning algorithms, the number of
edges ignored will be the one performing best in regard to the Sum of of External Degrees metric.
Thus, when comparing different algorithms based on the Github or Stack Overflow hypergraphs,
the biggest 10% of the hyperedges will be ignored during the neighbourhood expansion, based on
the MovieLens hypergraph 50% and based on the Reddit hypergraph 25%. It is obvious that the
optimal number of ignored biggest hyperedges depends on the density and the distribution of edge
and node degrees of the hypergraph, but the calculation of the optimal percentage of the parameter
are not covered by this thesis.

37



6 Evaluation

 0

 50000

 100000

 150000

 200000

 250000

 300000

 2  4  8  16  32  64  128

su
m

 o
f 

e
x
te

rn
a
l 
d

e
g

re
e
s

number of partitions

NH ignore 5%
NH ignore 10%
NH ignore 25%
NH ignore 50%

(a) Github

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 2  4  8  16  32  64  128

su
m

 o
f 

e
x
te

rn
a
l 
d

e
g

re
e
s

number of partitions

NH ignore 5%
NH ignore 10%
NH ignore 25%
NH ignore 50%

(b) Stack Overflow

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 2  4  8  16  32  64  128

su
m

 o
f 

e
x
te

rn
a
l 
d

e
g

re
e
s

number of partitions

NH ignore 5%
NH ignore 10%
NH ignore 25%
NH ignore 50%

(c) MovieLens

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

 4.5x107

 2  4  8  16  32  64  128

su
m

 o
f 

e
x
te

rn
a
l 
d

e
g

re
e
s

number of partitions

NH ignore 5%
NH ignore 10%
NH ignore 25%
NH ignore 50%

(d) Reddit

Figure 6.1: Sum of external degrees compared for different edge sizes ignored when partitioning
the different hypergraphs

Figures 6.2a - 6.2d show the comparison of the neighbourhood partitioning algorithm with other
hypergraph partitioning methods in regard to the Sum of External Degree metric which mesures the
quality of the cut concerning the communication effort between machines later. It is remarkable
that the neighbourhood partitioning algorithm described in this thesis scales better than hMetis
regardless of whether hMetis produces balanced or unbalanced results. For few partitions, hMetis
produces better results when partitioning the Stack Overflow or the Github hypergraphs, but for
more than 8-16 partitions neighbourhood partitioning is the better choice. The new algorithm is
also better than the streaming algorithms except for very few cases. Remarkably better results are
being produced on the Reddit hypergraph when using the neighbourhood partitioning algorithm
instead of the streaming algorithms.

6.2 Edge Cut

In this section, the different algorithms are compared to each other based on how they perform in
regard to the Edge-Cut metric introduced in section 2.3.3. HMetis does in fact optimize results
specifically for the Edge-Cut metric. As discussed in section 2.3 the Edge-Cut metric does not
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Figure 6.2: Sum of External Degrees compared between different algorithms on different hyper-
graphs

directly model the communication between the machines later, which is why the Sum of External
Degrees metric is much more important to be evaluated when speaking about the quality of results
in terms of communication effort.

Figures 6.3a - 6.3d show how the different partitioning algorithms perform on different hypergraphs
in regard to the Edge-Cut metric introduced in section 2.3.3. On the Stack Overflow and Github
hypergraphs hMetis outperforms the other algorithms by magnitudes. When the MovieLens
hypergraphs gets partitioned, the neighbourhood partitioning algorithm can compete with hMetis
and sometimes even outperforms hMetis in regard to the edge cut metric. On all hypergraphs, the
neighbourhood partitioning algorithm is superior to both streaming algorithms. Especially when
the Reddit hypergraph is partitioned, the streaming algorithms are far worse than neighbourhood
partitioning. As said, before hMetis is not able to partition the Reddit hypergraph, which is why a
comparison between hMetis and the other algorithms is not possible for the Reddit hypergraph.

39



6 Evaluation

 5000

 10000

 15000

 20000

 25000

 30000

 2  4  8  16  32  64  128

h
y
p

e
re

d
g

e
 c

u
t

number of partitions

hMetsi
hMetis UB=1

MinMax node balanced
MinMax edge balanced

NH ignore 10%

(a) Github

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2  4  8  16  32  64  128

h
y
p

e
re

d
g

e
 c

u
t

number of partitions

hMetsi
hMetis UB=1

MinMax node balanced
MinMax edge balanced

NH ignore 10%

(b) Stack Overflow

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 2  4  8  16  32  64  128

h
y
p

e
re

d
g

e
 c

u
t

number of partitions

hMetsi
hMetis UB=1

MinMax node balanced
MinMax edge balanced

NH ignore 50%

(c) MovieLens

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 2  4  8  16  32  64  128

h
y
p

e
re

d
g

e
 c

u
t

number of partitions

MinMax node balanced
MinMax edge balanced

NH ignore 25%

(d) Reddit

Figure 6.3: Edge-Cut metric compared between different algorithms on different hypergraphs

6.3 Balancing

In this section the different hypergraph partitioning systems are compared in regard to the question
how well the resulting partitionings are node-balanced. Node-balancing is mesured by the metric
introduced in section 2.3.2. Since the original MinMax streaming algorithm introduced by Alistarh,
Iglesias, and Vojnovic uses hyperedge balancing[AIV15], this algorithm does not provide good
node balancing at all.

In Figures 6.4a - 6.4d the different balancing behaviours of the different algorithms are displayed.
As expected the MinMax streaming algorithm doing edge balancing, does not provide a good
node balanced cut at all. The MinMax streaming algorithm using node base balancing, does
provide partitionings which have 5% node inbalacing maximum. When hMetis is called with
stricter balancing parameters it does as well provide most partitionings with approximately 5%
imbalacing. If hMetis is not called with such a balancing parameter, however hMetis to does not
limit the balancing of its results. All of those algorithms would provide very bad partitioning
results, if imbalancing was restricted to 0%. In contrast to that, all partitionings calculated with
the neighbourhood partitioning algorithm are almost perfectly balanced. As Figure 6.4 shows,
the newly introduced algorithm is superior to all existing hypergraph partitioning algorithms, in
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6.4 Runtime
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Figure 6.4: Balancing compared between different algorithms on different hypergraphs

terms of node balancing. That said, there are also applications that may benefit from node and /
or hyperedge balancing [AIV15], which means depending on the application another hypergraph
partitioning systems could be superior to the neighbourhood partitioning algorithm.

6.4 Runtime

Runtime is crucial for almost every algorithm. If an algorithm produces perfect results, but has a
horrible runtime or does not scale, it is not useable for real world data. Since the balanced k-way
hypergraph partitioning problem is NP-Hard and computable, an algorithm exists which produces
perfect results in the regard to every metric described in section 2.3 except runtime. Briefly the
reason why such an algorithm cannot be used, is its disastrous runtime.

Figures 6.5a - 6.5d show how the different hypergraph partitioning algorithms compare to each
other regarding their runtime. Considering that the y-axes are logscale with base 10 we can see
that hMetis is not competitive compared to the other algorithms at all. For every hypergraph the
runtime of both hMetis variants is far worse than the ones of the streaming or neighbourhood
partitioning systems. It is remarkable that the figure shows that the neighbourhood partitioning
algorithms do scale well concerning the number of partitions calculated. In fact runtime, gets
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Figure 6.5: Runtime compared between different algorithms on different hypergraphs

better with a higher number of partitions calculated. The streaming algorithms do not have this
quality which is why the neighbourhood partitioning, even when having a worse runtime than
the streaming algorithms for small numbers of partitions, surpasses them for higher numbers of
partitions in terms of runtime. This quality makes the runtime of the neighbourhood partitioning
algorithm well predictable when a partitioning for the same hypergraph has been calculated before.
The billion scale hypergraph introduced in Section 3.2 build from Reddit comments was not used to
create plots like the other datasets, since the partitioning this hypergraph takes about 8 hours for
both the streaming systems and the neighbourhood partitioning algorithm. It is worth noting that
both, the streaming algorithms as well as the neighbourhood partitioning algorithms were able to
partition this billion scale hypergraph. Only few partitionings have been calculated for the billion
scale hypergraph, but concerning quality the ones calculated with the neighbourhood partitioning
algorithm have always been superior.
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7 Conclusion

In this thesis hypergraph partitioning with the help of neighbourhood heuristics has been examined.
The goal was to apply the idea of the graph edge partitioning algorithm proposed by Zhang
et al.[ZWL+17] to hypergraph partitioning to be able to process even billion scale hypergraphs.
Since the naive neighbourhood hypergraph partitioning algorithm was not able to scale, this thesis
also covered optimizations to make the naive algorithm scale up to even partition billion scale
hypergraphs.

As Section 6 shows, the newly proposed algorithm is superior to existing solutions in almost every
respect. HMetis may produce better results regarding the Edge-Cut metric descriped in 2.3.3,
but the new neighbourhood partition algorithm is almost alway better with regard to the Sum of
External Degrees metric descriped in Section 2.3.4. Even hMetis optimizes per default directly for
the Edge-Cut metric, tests on small graphs have shown, that when hMetis is called with parameters
to optimize partitioning directly concerning the Sum of External Degrees metric, it is not able to
produce better partitionings than the neighbourhood partitioning algorithm. Considering this our
proposed algorithm is able to partition hypergraphs with a better runtime, quality and balancing
than exisiting solutions. It is possible to partition huge hypergraphs, even those being billion scale.
As mentioned in Section 6, it is possible to process the 2.8 billion node Reddit comment hypergraph
descriped in Section 3.2 in less than 24h, producing however better results than the other algorithms,
which were able to process the hypergraph.

Future Work

As said in section 5.3.4, ignoring X% of the biggest hyperedges during the neighbhbourhood
expansion improves the quality of the resulting cuts. Finding the perfect number of ignored
hyperedges has not been dealt in this thesis. This problem needs to be addressed in future work.

In section 5.3.1 two different heuristics to rank nodes have been discussed, i.d. accumulated edge
sizes and number of neighbours. Other than that another heuristic has been discovered meanwhile.
The average hyperedge size of the hyperedges the node is connected to. This heuristic is very
promising with regard to both runtime and quality of the result. Due to time constraints this has not
been explored further.
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