Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Mattheis, Julian"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Mobility and homogeneity effects on the power conversion efficiency of solar cells
    (2008) Mattheis, Julian; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)
    The thesis on hand investigates the interplay between detailed radiation balances and charge carrier transport. The first part analyzes the role of limited carrier transport for the efficiency limits of $pn$-junction solar cells. The second part points out the influence of transport on the absorption and emission of light in inhomogeneous semiconductors. By incorporating an integral term that accounts for the repeated internal emission and reabsorption of photons (the so-called photon recycling) into the diffusion equation for the minority carriers, the first part of the thesis develops a self-consistent model that is capable of describing the power conversion efficiencies of existing devices as well as of devices in the radiative recombination limit. It is shown that the classical diode theory without the inclusion of photon recycling produces accurate results only if the minority carrier lifetime is at least ten times smaller than the radiative lifetime. The thesis shows that even in the radiative recombination limit, charge carrier transport is extremely important. The thesis thus presents a universal criterion that needs to be fulfilled by any photovoltaic material in order to obtain high power conversion efficiency. The numerical results are analyzed and compared to an analytical approximation. The thesis applies the developed model to solar cells made of crystalline silicon, amorphous silicon and Cu(In,Ga)Se$_2$ (CIGS). It shows that crystalline silicon solar cells neither have transport problems in the radiative recombination limit nor in existing devices. In Cu(In,Ga)Se$_2$ solar cells, mobilities are at most two orders of magnitude above the critical mobility and guarantee complete carrier collection only close to the radiative limit. The second part of the thesis investigates the role of carrier transport for the absorption and emission of light in semiconductors with band gap fluctuations. The chapter develops an analytical statistical model to describe the absorption and emission spectra of such inhomogeneous semiconductors. Particular emphasis is placed on the role of the length-scale of the band gap fluctuations. As it turns out, the crucial quantity with respect to the emission spectrum is the ratio of the charge carrier transport length and the length-scale of the band gap fluctuations. Both, absorption edge and emission peak are broadened by band gap fluctuations. Comparison with numerical simulations underlines the importance of the fluctuation length in relation to the diffusion length. The model is applied to experimental absorption and photoluminescence data of Cu(In,Ga)Se$_2$ thin films with varying gallium content. The ternary compounds CuInSe$_2$ and CuGaSe$_2$ exhibit the smallest magnitude of fluctuations with standard deviations in the range of $20-40 \meV$. The fact that the quaternary compounds show standard deviations of up to $65 \meV$ points to alloy disorder as one possible source of band gap fluctuations. All observed fluctuations occur on a very small length scale that is at least ten times smaller than the electron diffusion length of approximately $1 \mum$.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart