Browsing by Author "Min, Jinrong"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access H3K14ac is linked to methylation of H3K9 by the triple Tudor domain of SETDB1(2017) Jurkowska, Renata Z.; Qin, Su; Kungulovski, Goran; Tempel, Wolfgang; Liu, Yanli; Bashtrykov, Pavel; Stiefelmaier, Judith; Jurkowski, Tomasz P.; Kudithipudi, Srikanth; Weirich, Sara; Tamas, Raluca; Wu, Hong; Dombrovski, Ludmila; Loppnau, Peter; Reinhardt, Richard; Min, Jinrong; Jeltsch, AlbertSETDB1 is an essential H3K9 methyltransferase involved in silencing of retroviruses and gene regulation. We show here that its triple Tudor domain (3TD) specifically binds to doubly modified histone H3 containing K14 acetylation and K9 methylation. Crystal structures of 3TD in complex with H3K14ac/K9me peptides reveal that peptide binding and K14ac recognition occurs at the interface between Tudor domains (TD) TD2 and TD3. Structural and biochemical data demonstrate a pocket switch mechanism in histone code reading, because K9me1 or K9me2 is preferentially recognized by the aromatic cage of TD3, while K9me3 selectively binds to TD2. Mutations in the K14ac/K9me binding sites change the subnuclear localization of 3TD. ChIP-seq analyses show that SETDB1 is enriched at H3K9me3 regions and K9me3/K14ac is enriched at SETDB1 binding sites overlapping with LINE elements, suggesting that recruitment of the SETDB1 complex to K14ac/K9me regions has a role in silencing of active genomic regions.Item Open Access Sequence specificity analysis of the SETD2 protein lysine methyltransferase and discovery of a SETD2 super-substrate(2020) Schuhmacher, Maren Kirstin; Beldar, Serap; Khella, Mina S.; Bröhm, Alexander; Ludwig, Jan; Tempel, Wolfram; Weirich, Sara; Min, Jinrong; Jeltsch, AlbertSETD2 catalyzes methylation at lysine 36 of histone H3 and it has many disease connections. We investigated the substrate sequence specificity of SETD2 and identified nine additional peptide and one protein (FBN1) substrates. Our data showed that SETD2 strongly prefers amino acids different from those in the H3K36 sequence at several positions of its specificity profile. Based on this, we designed an optimized super-substrate containing four amino acid exchanges and show by quantitative methylation assays with SETD2 that the super-substrate peptide is methylated about 290-fold more efficiently than the H3K36 peptide. Protein methylation studies confirmed very strong SETD2 methylation of the super-substrate in vitro and in cells. We solved the structure of SETD2 with bound super-substrate peptide containing a target lysine to methionine mutation, which revealed better interactions involving three of the substituted residues. Our data illustrate that substrate sequence design can strongly increase the activity of protein lysine methyltransferases.