Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Tkachuk, Anton"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Reciprocal mass matrices and a feasible time step estimator for finite elements with Allman's rotations
    (2020) Tkachuk, Anton
    Finite elements with Allman's rotations provide good computational efficiency for explicit codes exhibiting less locking than linear elements and lower computational cost than quadratic finite elements. One way to further raise their efficiency is to increase the feasible time step or increase the accuracy of the lowest eigenfrequencies via reciprocal mass matrices. This article presents a formulation for variationally scaled reciprocal mass matrices and an efficient estimator for the feasible time step for finite elements with Allman's rotations. These developments take special care of two core features of such elements: existence of spurious zero‐energy rotation modes implying the incompleteness of the ansatz spaces, and the presence of mixed‐dimensional degrees of freedom. The former feature excludes construction of dual bases used in the standard variational derivation of reciprocal mass matrices. The latter feature destroys the efficiency of the existing nodal‐based time step estimators stemming from the Gershgorin's eigenvalue bound. Finally, the developments are tested for standard benchmarks and triangular, quadrilateral, and tetrahedral finite elements with Allman's rotations.
  • Thumbnail Image
    ItemOpen Access
    Variational methods for consistent singular and scaled mass matrices
    (2013) Tkachuk, Anton; Bischoff, Manfred (Prof. Dr.-Ing. habil.)
    Singular and selectively-scaledmass matrices are useful for finite element modeling of numerous problems of structural dynamics, for example for low velocity impact, deep drawing and drop test simulations. Singular mass matrices allow significant reduction of spurious temporal oscillations of contact pressure. The application of selective mass scaling in the context of explicit dynamics reduces the computational costs without substantial loss in accuracy. Known methods for singular and selectively-scaled mass matrices rely on special quadrature rules or algebraic manipulations applied on the standard mass matrices. This thesis is dedicated to variationally rigorous derivation and analysis of these alternative matrices. The theoretical basis of this thesis is a novel parametric HAMILTON’s principle with independent variables for displacement, velocity and momentum. The numerical basis is hybrid-mixed discretization of the novel mixed principle and skillful tuning of ansatz spaces and free parameters. The qualities of novel mass matrices are thoroughly analyzed by various tests and benchmarks.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart