Browsing by Author "Tomaschek, Jan"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Long-term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth : application of an energy system model for Gauteng province, South Africa(2013) Tomaschek, Jan; Voß, Alfred (Prof. Dr.-Ing.)The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. Especially in developing countries, significant growth in transport demand is expected. Gauteng province, as the economic centre of South Africa and transport hub for the whole of southern Africa, is one emerging urban region that faces rapid growth. However, the province is on its way to playing a leading role for supporting ways to adapt to climate change and mitigate GHG emissions. Conversely, there is a lack of scientific research on the promising measures for GHG mitigation in the transport sector. For the rapidly growing transport sector of the province in particular, research is focused primarily on extending and structuring the road infrastructure. Moreover, it is important that the transport sector is considered as part of the whole energy system, as significant contributions to GHG emissions and the associated costs arise from energy supply, provision and conversion. This research is the first application of an integrated energy system model (i.e. the TIMES-GEECO model) for the optimization of the transport sector of Gauteng. Optimizing energy system models allows finding least-cost measures for various scenarios, by considering dependencies and interlinkages in the energy system as well as environmental constraints. To do so, the transport sector and the energy supply sector had to be incorporated into the model application in terms of the characteristics of a developing urban region, which includes all relevant transport modes, vehicle technologies, fuel options, vehicle-to-grid energy storage, the consideration of road types as well as explicit expansions of the public transport system and income-dependent travel demand modelling. Additionally, GHG mitigation options outside the provincial boundaries were incorporated to allow for mitigation at least cost and to consider regional resource availability. Moreover, in TIMES-GEECO, the other demand sectors (such as residential or industry) are also represented. In this thesis, a comprehensive analysis was conducted of alternative fuels, vehicle technologies as well as transport infrastructure for the transport sector of Gauteng. As a result, there are many possibilities of reducing GHG emissions and/or of increasing energy efficiency in the transport sector by using alternative fuels or vehicle technologies. In scenario analysis, it was recognized that under current policies significant growth in both energy consumption and climate emissions can be expected in Gauteng. Marginal GHG abatement cost curves have been calculated, which permit the identification of least-cost mitigation measures for the transport sector under consideration of the whole energy system. It was shown that biofuels from waste cooking oil and cellulosic biomass as well as the substitution of fossil synthetic fuels with crude oil products could result in significant GHG emission reductions. Moreover, hybrid vehicles offer prospects for increasing energy efficiency and reducing GHG emissions at low marginal mitigation costs, where, it was identified that measures should first be applied for vehicles with high annual mileages such as buses, minibuses and heavy-duty vehicles (HDVs). However, the analysis also showed that the transport sector is not the first sector to address for GHG mitigation as significant mitigation potentials with low associated costs lie in the provision of electricity and in the supply of fuels.