Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Uusitalo, Ville"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Assessing land use efficiencies and land quality impacts of renewable transportation energy systems for passenger cars using the LANCA method
    (2022) Uusitalo, Ville; Horn, Rafael; Maier, Stephanie D.
    Targets to reduce global warming impacts of the transportation sector may lead to increased land use and negative land quality changes. The aim of this paper is to implement the Land Use Indicator Calculation in Life Cycle Assessment (LANCA®) model to assess land quality impacts and land use efficiencies (concerning occupation and transformation) of different example renewable transport energy systems for passenger cars. In addition, the land use impacts are normalized according to the Soil Quality Index building on LANCA® and included in the environmental footprint. The assessment is based on information from GaBi life cycle assessment software databases and on literature. Functional unit of the model is to provide annual drive of 18,600 km for a passenger car in the EU. The analysis includes examples of biomass, electricity, electricity to fuels and fossil-based energy systems. Our findings confirm previous research that biomass-based transport energy systems have risks to lead to significantly higher land occupation and transformation impacts than do fossil oil or electricity-based ones. According to the LANCA® model, methane from Finnish wood and German corn has the highest impacts on filtration and the physicochemical filtration reduction potential. Sugarcane ethanol and palm oil diesel systems, on the other hand, lead to the highest erosion potential. Electricity-based transportation energy systems appear to be superior to biomass-based ones from the perspectives of land occupation, land transformation, and soil quality impacts for the selected examples. Land quality impacts should be taken into account when developing and expanding renewable transportation energy systems. The paper shows that the LANCA® method is applicable for the assessment of transport systems in order to provide extended information on environmental sustainability, which should be included more often in future analysis. However, it can be challenging to interpret underlaying assumptions, especially when aggregated information is used from databases.
  • Thumbnail Image
    ItemOpen Access
    Soil organic carbon as an indicator of land use impacts in life cycle assessment
    (2024) De Laurentiis, Valeria; Maier, Stephanie; Horn, Rafael; Uusitalo, Ville; Hiederer, Roland; Chéron-Bessou, Cécile; Morais, Tiago; Grant, Tim; Milà i Canals, Llorenç; Sala, Serenella
    Purpose. Anthropogenic activities are a major driver of soil and land degradation. Due to the spatial heterogeneity of soil properties and the global nature of most value chains, the modelling of the impacts of land use on soil quality for application in life cycle assessment (LCA) requires a regionalised assessment with global coverage. This paper proposes an approach to quantify the impacts of land use on soil quality, using changes in soil organic carbon (SOC) stocks as a proxy, following the latest recommendation of the Life Cycle Initiative. Methods. An operational set of SOC-based characterisation factors for land occupation and land transformation were derived using spatial datasets (1 km resolution) and aggregated at the national and global levels. The developed characterisation factors were tested by means of a case study analysis, investigating the impact on soil quality caused by land use activities necessary to provide three alternative energy supply systems for passenger car transport (biomethane, ethanol, and solar electricity). Results obtained by applying characterisation factors at local, regional, and national levels were compared, to investigate the role of the level of regionalisation on the resulting impacts. Results and discussion. Global maps of characterisation factors are presented for the 56 land use types commonly used in LCA databases, together with national and global values. Urban and industrial land uses present the highest impacts on SOC stocks, followed by severely degraded pastures and intensively managed arable lands. Instead, values obtained for extensive pastures, flooded crops, and urban green areas often report an increase in SOC stocks. Results show that the ranking of impacts of the three energy systems considered in the case study analysis is not affected by the level of regionalisation of the analysis. In the case of biomethane energy supply, impacts assessed using national characterisation factors are more than double those obtained with local characterisation factors, with less significant differences in the other two cases. Conclusions. The integration of soil quality aspects in life cycle impact assessment methods is a crucial challenge due to the key role of soil conservation in ensuring food security and environmental protection. This approach allows the quantification of land use impacts on SOC stocks, taken as a proxy of soil quality. Further research needs to improve the assessment of land use impacts in LCA are identified, such as the ability to reflect the effects of agricultural and forestry management practices.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart