03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 10 of 23
  • Thumbnail Image
    ItemOpen Access
    High‐performance carbon fibers prepared by continuous stabilization and carbonization of electron beam‐irradiated textile grade polyacrylonitrile fibers
    (2021) König, Simon; Bauch, Volker; Herbert, Christian; Wego, Andreas; Steinmann, Mark; Frank, Erik; Buchmeiser, Michael R.
    The manufacturing of high‐performance carbon fibers (CFs) from low‐cost textile grade poly(acrylonitrile) (PAN) homo‐ and copolymers using continuous electron beam (EB) irradiation, stabilization, and carbonization on a kilogram scale is reported. The resulting CFs have tensile strengths of up to 3.1 ± 0.6 GPa and Young's moduli of up to 212 ± 9 GPa, exceeding standard grade CFs such as Toray T300. Additionally, the Weibull strength and modulus, the microstructure, and the morphology of these CFs are determined.
  • Thumbnail Image
    ItemOpen Access
    Macrocyclization of dienes under confinement with cationic tungsten imido/oxo alkylidene N‐heterocyclic carbene complexes
    (2023) Ziegler, Felix; Bruckner, Johanna R.; Nowakowski, Michal; Bauer, Matthias; Probst, Patrick; Atwi, Boshra; Buchmeiser, Michael R.
    Macrocyclization reactions are still challenging due to competing oligomerization, which requires the use of small substrate concentrations. Here, the cationic tungsten imido and tungsten oxo alkylidene N-heterocyclic carbene complexes [[W(N-2,6-Cl2-C6H3)(CHCMe2Ph(OC6F5)(pivalonitrile)(IMes)+ B(ArF)4-] (W1) and [W(O (CHCMe2Ph(OCMe(CF3)2)(IMes)(CH3CN)+ B(ArF)4-] (W2) (IMes=1,3-dimesitylimidazol-2-ylidene; B(ArF)4-=tetrakis(3,5-bis(trifluoromethyl)phenyl borate) have been immobilized inside the pores of ordered mesoporous silica (OMS) with pore diameters of 3.3 and 6.8 nm, respectively, using a pore-selective immobilization protocol. X-ray absorption spectroscopy of W1@OMS showed that even though the catalyst structure is contracted due to confinement by the mesopores, both the oxidation state and structure of the catalyst stayed intact upon immobilization. Catalytic testing with four differently sized α,ω-dienes revealed a dramatically increased macrocyclization (MC) and Z-selectivity of the supported catalysts compared to the homogenous progenitors, allowing high substrate concentrations of 25 mM. With the supported complexes, a maximum increase in MC-selectivity from 27 to 81 % and in Z-selectivity from 17 to 34 % was achieved. In general, smaller mesopores exhibited a stronger confinement effect. A comparison of the two supported tungsten-based catalysts showed that W1@OMS possesses a higher MC-selectivity, while W2@OMS exhibits a higher Z-selectivity which can be rationalized by the structures of the catalysts.
  • Thumbnail Image
    ItemOpen Access
    Sulfurized polypropylene as low‐cost cathode material for high‐capacity lithium‐sulfur batteries
    (2022) Du, Qian; Benedikter, Mathis; Küster, Kathrin; Acartürk, Tolga; Starke, Ulrich; Hoslauer, Jean‐Louis; Schleid, Thomas; Buchmeiser, Michael R.
    Among ‘beyond lithium ion’ energy storage, lithium sulfur (Li-S) batteries are one of the most promising technologies, as a result of the potential for high theoretical energy capacity at low cost. A key obstacle in exploiting the vast potential of Li-S batteries is the formation of soluble polysulfide species. Here, we report sulfurized polypropylene (S/PP‐500) synthesized in one‐step by reacting polypropylene (PP) with sulfur as a new polysulfide shuttle‐free cathode material for Li-S batteries. It exhibits a reversible capacity as high as 1000 mAh/gsulfur at 0.1 C and a sulfur loading of up to 68 wt%, which in turn allows for high sulfur loadings up to 47 % in the final cathode. The low‐cost starting materials together with the simple synthetic procedure and the good electrochemical performance in combination with a commercially available eslectrolyte make the S/PP‐500 a very promising cathode material for Li‐S batteries.
  • Thumbnail Image
    ItemOpen Access
    Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids
    (2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, Sabine
    Covalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.
  • Thumbnail Image
    ItemOpen Access
    Method of manufacturing structural, optically transparent glass fiber-reinforced polymers (tGFRP) using infusion techniques with epoxy resin systems and E-glass fabrics
    (2023) Heudorfer, Klaus; Bauer, Johannes; Caydamli, Yavuz; Gompf, Bruno; Take, Jens; Buchmeiser, Michael R.; Middendorf, Peter
    Recently, fiber-reinforced, epoxy-based, optically transparent composites were successfully produced using resin transfer molding (RTM) techniques. Generally, the production of structural, optically transparent composites is challenging since it requires the combination of a very smooth mold surface with a sufficient control of resin flow that leads to no visible voids. Furthermore, it requires a minimum deviation of the refractive indices (RIs) of the matrix polymer and the reinforcement fibers. Here, a new mold design is described and three plates of optically transparent glass fiber-reinforced polymers (tGFRP) with reproducible properties as well as high fiber volume fractions were produced using the RTM process and in situ polymerization of an epoxy resin system enclosing E-glass fiber textiles. Their mechanical (flexural), microstructural (fiber volume fraction, surface roughness, etc.), thermal (DSC, TGA, etc.), and optical (dispersion curves of glass fibers and polymer as well as transmission over visible spectra curves of the tGFRP at varying tempering states) properties were evaluated. The research showed improved surface quality and good transmission data for samples manufactured by a new Optical-RTM setup compared to a standard RTM mold. The maximum transmission was reported to be ≈74%. In addition, no detectable voids were found in these samples. Furthermore, a flexural modulus of 23.49 ± 0.64 GPa was achieved for the Optical-RTM samples having a fiber volume fraction of ≈42%.
  • Thumbnail Image
    ItemOpen Access
    Toward sustainable fiber‐reinforced polymer composites
    (2024) Elser, Iris; Buchmeiser, Michael R.
    Fiber‐reinforced polymer composites (FRPCs) are versatile materials with applications in diverse fields such as transportation, construction, and electronics. With the composites market expected to reach 15.5 Mt by 2026, increasing the sustainability of FRPCs is imperative. The main factors driving the sustainability of FRPCs, namely end‐of‐life management and recyclability, the use of natural, bio‐based, and sustainable materials, as well as biodegradability and product simplification are presented and discussed.
  • Thumbnail Image
    ItemOpen Access
    Sulfur‐composites derived from poly(acrylonitrile) and poly(vinylacetylene) : a comparative study on the role of pyridinic and thioamidic nitrogen
    (2023) Kappler, Julian; Klostermann, Sina V.; Lange, Pia L.; Dyballa, Michael; Veith, Lothar; Schleid, Thomas; Weil, Tanja; Kästner, Johannes; Buchmeiser, Michael R.
    Sulfurized poly(acrylonitrile) (SPAN) is a prominent example of a highly cycle stable and rate capable sulfur/polymer composite, which is solely based on covalently bound sulfur. However, so far no in‐depth study on the influence of nitrogen in the carbonaceous backbone, to which sulfur in the form of thioketones and poly(sulfides) is attached, exists. Herein, we investigated the role of nitrogen by comparing sulfur/polymer composites derived from nitrogen‐containing poly(acrylonitrile) (PAN) and nitrogen‐free poly(vinylacetylene) (PVac). Results strongly indicate the importance of a nitrogen‐rich, aromatic carbon backbone to ensure full addressability of the polymer‐bound sulfur and its reversible binding to the aromatic backbone, even at high current rates. This study also presents key structures, which are crucial for highly cycle and rate stable S‐composites.
  • Thumbnail Image
    ItemOpen Access
    Hydrosilylation of alkynes under continuous flow using polyurethane‐based monolithic supports with tailored mesoporosity
    (2022) Acikalin, Hande; Panyam, Pradeep K. R.; Shaikh, Abdul Wasif; Wang, Dongren; Kousik, Shravan R.; Atanasova, Petia; Buchmeiser, Michael R.
    Non‐porous polyurethane‐based monoliths are prepared under solvent‐induced phase separation conditions. They possess low specific surface areas of 0.15 m2 g-1, pore volumes of 1 µL g-1, and a non‐permanent, solvent‐induced microporosity with pore dimensions ≤1 nm. Mesoporosity can be introduced by varying the monomers and solvents. A tuning of the average solubility parameter of the solvent mixture by increasing the macroporogen content results in a decrease in the volume fraction of micropores from 70% to 40% and an increase in the volume fraction of pores in the range of 1.7-9.6 nm from 22% to 41% with only minor changes in the volume fraction of larger mesopores in the range of 9.6–50 nm. The polymeric monoliths are functionalized with quaternary ammonium groups, which allowed for the immobilization of an ionic liquid that contained the ionic Rh‐catalyst [1‐(pyrid‐2‐yl)‐3‐mesityl)‐imidazol‐2‐ylidene))(η4‐1,5‐cyclooctadiene)Rh(I) tetrafluoroborate]. The supported catalyst is used in the hydrosilylation of 1‐alkynes with dimethylphenylsilane under continuous flow using methyl‐tert‐butyl ether as second liquid transport phase. E/Z‐selectivity in hydrosilylation is compared to the one of the analogous biphasic reactions. The strong increase in Z‐selectivity is attributed to a confinement effect provided by the small mesopores.
  • Thumbnail Image
    ItemOpen Access
    Structure evolution in polyethylene‐derived carbon fiber using a combined electron beam‐stabilization‐sulphurization approach
    (2021) Frank, Erik; Muks, Erna; Ota, Antje; Herrmann, Thomas; Hunger, Michael; Buchmeiser, Michael R.
    A new approach is described for the production of poly(ethylene) (PE) derived carbon fibers (CFs) that entails the melt spinning of PE fibers from a suitable precursor, their cross-linking by electron beam (EB) treatment, and sulphurization with elemental sulphur (S8), followed by pyrolysis and carbonization. Instead of focusing on mechanical properties, analysis of CF structure formation during all process steps is carried out by different techniques comprising solid-state nuclear magnetic resonance spectroscopy, thermogravimetric analysis coupled to mass spectrometry/infrared spectroscopy, elemental analysis, energy dispersive X-ray scattering, scanning electron microscopy, Raman spectroscopy, and wide-angle X-ray diffraction. A key step in structure formation is the conversion of PE into poly(thienothiophene)s during sulphurization; these species are stabile under inert gas up to 700 °C as confirmed by Raman analysis. Above this temperature, they condense into poly(napthathienophene)s, which are then converted into graphite-type structures during pyrolysis.
  • Thumbnail Image
    ItemOpen Access
    Predicting catalytic activity from 13CCH alkylidene chemical shift in cationic tungsten oxo alkylidene N‐heterocyclic carbene complexes
    (2021) Musso, Janis V.; Schowner, Roman; Falivene, Laura; Frey, Wolfgang; Cavallo, Luigi; Buchmeiser, Michael R.
    A series of cationic tungsten oxo alkylidene N‐heterocyclic carbene (NHC) complexes was synthesized and structurally characterized by single crystal X‐ray diffraction. The 13C NMR chemical shifts of the alkylidene C atoms of these complexes were correlated with the diamagnetic, paramagnetic and spin‐orbit chemical shifts calculated by DFT. A good correlation (R2=0.90) between the DFT isotropic chemical shifts and the experimental chemical shift as well as a strong correlation between the DFT isotropic chemical shifts and the TOF1min for the RCM of 1,7‐octadiene was found. Further, a comparison of the catalyst geometries allowed for assigning tetracoordinate pseudotetrahedral catalysts to the most deshielded alkylidenes and to the highest TOF1min, pentacoordinate square‐planar catalysts to the intermediate deshielded alkylidenes and intermediate TOF1min, and hexacoordinate and octahedral catalyst to the most shielded alkylidene and lowest TOF1min. Analysis of the magnetic shielding tensors allowed for ascribing variations in the chemical shifts to electronic transitions between occupied molecular orbitals corresponding to the alkylidene‐C and alkylidene‐H σ‐bonds and the empty molecular orbital corresponding to the W‐alkylidene σ*‐bond.