03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
22 results
Search Results
Item Open Access New crystal structures of rare‐earth metal(III) oxotellurates(IV) RE2Te3O9: A1‐type (RE=La, Ce) and A2‐type (RE=Pr, Nd)(2021) Chou, Sheng‐Chun; Höss, Patrick; Russ, Philip L.; Strobel, Sabine; Schleid, ThomasThe new rare-earth metal(III) oxotellurates(IV) RE2Te3O9 (RE=La-Nd) of the so far unknown A-type structure can be obtained as needle-shaped single crystals through solid-state reactions of the corresponding binary oxides. Their crystal structures were determined as A1-type for RE=La and Ce or A2-type for RE=Pr and Nd by single-crystal X-ray diffraction. Both structure types crystallize in the monoclinic crystal system, but in two different non-centrosymmetric space groups: the A1-type with Z=8 in space group P21 (La2Te3O9: a=569.54(3), b=2230.12(13), c=1464.71(4) pm, β=101.205(3)°; Ce2Te3O9: a=567.02(3), b=2222.61(13), c=1457.13(9) pm, β=101.134(3)°) or the A2-type with Z=16 in space group Cc (Pr2Te3O9: a=2838.61(16), b=563.89(3), c=2522.08(15) pm, β=118.816(3)°; Nd2Te3O9: a=2826.38(16), b=561.47(3), c=2511.94(15) pm, β=118.841(3)°). In spite of the differences in the unit-cell parameters and the symmetry, both structures consist of quite similar fundamental building blocks (FBBs) consisting of eight crystallographically distinct rare-earth metal-oxygen polyhedra with C.N.(RE3+) from seven to nine and always twelve different ψ1-tetrahedral oxotellurate(IV) anions [TeO3]2-, which show a high number of secondary bonding interactions (SBIs) with each other in all four cases.Item Open Access On the thermal dimorphy of the strontium perrhenate Sr[ReO4]2(2024) Conrad, Maurice; Bette, Sebastian; Dinnebier, Robert E.; Schleid, ThomasHygroscopic single crystals of a new hexagonal high‐temperature modification of Sr[ReO4]2 were prepared from a melt of Sr[ReO4]2 ⋅ H2O and SrCl2 ⋅ 6 H2O. The structure analysis of the obtained crystals by X‐ray diffraction revealed that the title compound crystallizes in the ThCd[MoO4]3‐type structure with the hexagonal space group P63/m and the lattice parameters a=1023.81(7) pm and c=646.92(4) pm (c/a=0.632) for Z=2 in its quenchable high‐temperature form. Two crystallographically independent Sr2+ cations are coordinated by oxygen atoms forming either octahedra or tricapped trigonal prisms, whereas the Re7+ cations are found in the centers of discrete tetrahedral meta‐perrhenate units [ReO4]-. Temperature‐dependent in‐situ PXRD studies of dry powder samples of Sr[ReO4]2 exhibited its thermal dimorphy with a phase‐transition temperature at 500-550 °C from literature‐known m‐Sr[ReO4]2 into the newly discovered h‐Sr[ReO4]2 (hexagonal).Item Open Access Luminescence properties of Y3F[Si3O10]:Ln3+ (Ln = Eu, Tb, Er) with thalenite-type host lattice and crystal structure of Tm3F[Si3O10](2023) Schäfer, Marion C.; Petter, Michael; Hartenbach, Ingo; Locke, Ralf J. C.; Zhang, Shuang; Wickleder, Claudia; Schleid, ThomasWith Tm3F[Si3O10], a new representative of the Ln3F[Si3O10] series could be synthesized by the reaction of Tm2O3, TmF3 and SiO2 (molar ratio: 1:1:3), applying an excess of CsBr as a fluxing agent in gas-tightly sealed platinum crucibles for eight days at 750 °C, and designed to yield Tm3F3[Si3O9] or Cs2TmF[Si4O10]. Single crystals of Tm3F[Si3O10] (monoclinic, P21/n; a = 725.04(6), b = 1102.43(9), c = 1032.57(8) pm, β = 97.185(7)°; Z = 4) appear as pale celadon, transparent, air- and water-resistant rhombic plates. According to its thalenite-type structure, Tm3F[Si3O10] contains catena-trisilicate anions [Si3O10]8− and triangular [FTm3]8+ cations. The three crystallographically different Tm3+ cations are coordinated by seven plus one (Tm1) or only seven anions (Tm2 and Tm3) exhibiting a single F- anion for each polyhedron, additional to the majority of O2- anions. Furthermore, the luminescence properties of the isotypic colorless compound Y3F[Si3O10] doped with Eu3+ (red emission), Tb3+ (green emission) and Er3+ (yellow and infrared emission), respectively, are reported in presenting their different excitation and emission spectra.Item Open Access Sulfurized polypropylene as low‐cost cathode material for high‐capacity lithium‐sulfur batteries(2022) Du, Qian; Benedikter, Mathis; Küster, Kathrin; Acartürk, Tolga; Starke, Ulrich; Hoslauer, Jean‐Louis; Schleid, Thomas; Buchmeiser, Michael R.Among ‘beyond lithium ion’ energy storage, lithium sulfur (Li-S) batteries are one of the most promising technologies, as a result of the potential for high theoretical energy capacity at low cost. A key obstacle in exploiting the vast potential of Li-S batteries is the formation of soluble polysulfide species. Here, we report sulfurized polypropylene (S/PP‐500) synthesized in one‐step by reacting polypropylene (PP) with sulfur as a new polysulfide shuttle‐free cathode material for Li-S batteries. It exhibits a reversible capacity as high as 1000 mAh/gsulfur at 0.1 C and a sulfur loading of up to 68 wt%, which in turn allows for high sulfur loadings up to 47 % in the final cathode. The low‐cost starting materials together with the simple synthetic procedure and the good electrochemical performance in combination with a commercially available eslectrolyte make the S/PP‐500 a very promising cathode material for Li‐S batteries.Item Open Access The crystal structures of two hydro-closo-borates with divalent tin in comparison : Sn(H2O)3[B10H10] · 3 H2O and Sn(H2O)3[B12H12] · 4 H2O(2021) Kleeberg, Fabian M.; Zimmermann, Lucas W.; Schleid, ThomasSingle crystals of Sn(H2O)3[B10H10] · 3 H2O and Sn(H2O)3[B12H12] · 4 H2O are easily accessible by reactions of aqueous solutions of the acids (H3O)2[B10H10] and (H3O)2[B12H12] with an excess of tin metal powder after isothermal evaporation of the clear brines. Both compounds crystallize with similar structures in the triclinic system with space group P1¯ and Z = 2. The crystallographic main features are electroneutral 1∞{Sn(H2O)3/1[B10H10]3/3} and 1∞{ Sn(H2O)3/1[B12H12]3/3} double chains running along the a-axes. Each Sn2+ cation is coordinated by three water molecules of hydration (d(Sn-O) = 221-225 pm for the B10 and d(Sn-O) = 222-227 pm for the B12 compound) and additionally by hydridic hydrogen atoms of the three nearest boron clusters (d(Sn-H) = 281-322 pm for the B10 and d(Sn-H) = 278-291 pm for the B12 compound), which complete the coordination sphere. Between these tin(II)-bonded water and the three or four interstitial crystal water molecules, classical bridging hydrogen bonds are found, connecting the double chains to each other. Furthermore, there is also non-classical hydrogen bonding between the anionic [BnHn]2- (n = 10 and 12) clusters and the crystal water molecules pursuant to B-Hδ-⋯δ+H-O interactions often called dihydrogen bonds.Item Open Access Syntheses and patterns of changes in structural parameters of the new quaternary tellurides EuRECuTe3 (RE = Ho, Tm, and Sc) : experiment and theory(2024) Ruseikina, Anna V.; Grigoriev, Maxim V.; Locke, Ralf J. C.; Chernyshev, Vladimir A.; Schleid, ThomasThe layered orthorhombic quaternary tellurides EuRECuTe3 (RE = Ho, Tm, Sc) with Cmcm symmetry were first synthesized. Single crystals of the compounds up to 500 μm in size were obtained by the halide-flux method at 1120 K from elements taken in a ratio of Eu/RE/Cu/Te = 1:1:1:3. In the series of compounds, the changes in lattice parameters were in the ranges a = 4.3129(3)-4.2341(3) Å, b = 14.3150(9)-14.1562(9) Å, c = 11.2312(7)-10.8698(7) Å, V = 693.40(8)-651.52(7) Å3. In the structures, the cations Eu2+, RE3+ (RE = Ho, Tm, Sc), and Cu+ occupied independent crystallographic positions. The structures were built with distorted copper tetrahedra forming infinite chains [CuTe4]7− and octahedra [RETe6]9- forming two-dimensional layers along the a-axis. These coordination polyhedra formed parallel two-dimensional layers CuRETe32-∞2. Between the layers, along the a-axis, chains of europium trigonal prisms [EuTe6]10- were located. Regularities in the variation of structural parameters and the degree of distortion of coordination polyhedra depending on the ionic radius of the rare-earth metal in the compounds EuRECuCh3 (RE = Ho, Er, Tm, Lu, Sc; Ch = S, Se, Te) were established. It is shown that with a decrease in the ionic radius ri(RE3+) in the compounds EuRECuTe3, the unit-cell volume, bond length d(RE-Te), distortion degree [CuTe4]7-, and crystallographic compression of layers [RECuTe3]2- decreased. The distortion degree of tetrahedral polyhedra [CuCh4]7-, as well as the structural parameters in europium rare-earth copper tellurides EuRECuTe3, were higher than in isostructural quaternary chalcogenides. Ab initio calculations of the crystalline structure, phonon spectrum, and elastic properties of compounds EuRECuTe3 (RE = Ho, Tm, and Sc) ere conducted. The types and wave numbers of fundamental modes were determined, and the involvement of ions in IR and Raman modes was assessed. The calculated data of the crystal structure correlated well with the experimental results.Item Open Access Synthesis, crystal structure and properties of the new laminar quaternary tellurides SrLnCuTe3 (Ln = Sm, Gd-Tm and Lu)(2023) Ruseikina, Anna V.; Grigoriev, Maxim V.; Molokeev, Maxim S.; Garmonov, Alexander A.; Elyshev, Andrey V.; Locke, Ralf J. C.; Schleid, ThomasThis paper reports for the first time on the new laminar quaternary orthorhombic heterometallic quaternary tellurides SrLnCuTe3, the fabrication of which has been a challenge until this work. Data on the crystal structure of tellurides complete the series of quaternary strontium chalcogenides SrLnCuCh3 (Ch = S, Se, Te). Single crystals of the compounds were synthesized from the elements by the halogenide-flux method at 1070 K. The compounds are crystallizing in two space groups Pnma (Ln = Sm, Gd and Tb) and Cmcm (Ln = Dy-Tm and Lu). For SrSmCuTe3 (a = 11.4592(7), b = 4.3706(3), c = 14.4425(9) Å, space group: Pnma) with the largest lanthanoid cation, Sr2+ shows C.N. = 7, whereas Sm3+ reveals a diminished coordination number C.N. = 6. For SrLuCuTe3 (a = 4.3064(3), b = 14.3879(9), c = 11.1408(7) Å, space group: Cmcm) with the smallest lanthanoid cation, coordination numbers of six are realized for both high-charged cations (Sr2+ and Lu3+: C.N. = 6). The cations Sr2+, Ln3+, Cu+ each take independent positions. The structures are built by distorted [CuTe4]7- tetrahedra, forming the infinite chains {∞1[Cu(Te1)1/1t(Te2)1/1t(Te3)2/2e]5−} along [010] in SrLnCuTe3 (Ln = Sm, Gd and Tb) and [100] in SrLnCuTe3 (Ln = Dy-Tm and Lu). The distortion of the polyhedra [CuTe4]7- was compared for the whole series SrLnCuTe3 by means of τ4-descriptor for the four coordinating Te2- anions, which revealed a decrease in the degree of distortion with a decreasing radius at Ln3+. The distorted octahedra [LnTe6]9- form layers {∞2[Ln(Te1)2/2(Te2)2/2(Te3)2/2]3−}. The distorted octahedra and tetrahedra fuse to form parallel layers {∞2[CuLnTe3]2−} and between them, the Sr2+ cations providing three-dimensionality of the structure are located. In the SrLnCuTe3 (Ln = Sm, Gd and Tb) structures, the Sr2+ cations center capped the trigonal prisms [SrTe6+1]12−, united in infinite chains {∞1[Sr(Te1)2/2(Te2)3/3(Te3)2/2]4−} along the [100] direction. The domains of existence of the Ba2MnS3, BaLaCuS3, Eu2CuS3 and KZrCuS3 structure types are defined in the series of orthorhombic chalcogenides SrLnCuCh3 (Ch = S, Se and Te). The tellurides SrLnCuTe3 (Ln = Tb-Er) of both structure types in the temperature range from 2 up to 300 K are paramagnetic, without showing clear signs of a magnetic phase transition.Item Open Access Synthesis and crystal‐structure analysis of the K2NiF4‐type hydride oxides LiLnEuH2-xO2 (Ln=La, Ce, Pr, Nd, Sm) and LiEu2H3O by neutron and X‐ray diffraction(2022) Hoslauer, Jean‐Louis; Zapp, Nicolas; Fischer, Henry E.; Rudolph, Daniel; Kohlmann, Holger; Schleid, ThomasThe hydride oxides LiLnEuH2-xO2 (Ln=La, Ce, Pr, Nd and Sm) were synthesized by reaction of the lanthanide sesquioxides with europium monoxide, europium dihydride and lithium hydride under inert conditions at 750 °C as black powders. They crystallize in the tetragonal K2NiF4‐type structure (space group: I4/mmm) with a mixed Ln3+/Eu2+ occupation. The crystal structures of the europium representatives LiLaEuH2-xO2 and LiLaEuD2-xO2 were analyzed by powder neutron diffraction data at short wavelengths (λ=70 pm). Hydrogen (deuterium) and oxygen atoms occupy distinct crystallographic sites with considerable vacancy concentrations on the hydrogen positions (a=363.80(8) pm, c=1323.3(3) pm, c/a=3.637 for LiLaEuH1.26(4)O2 and a=363.43(5) pm, c=1321.6(2) pm, c/a=3.636 for LiLaEuD1.41(2)O2). Moving from the mixed Ln/Eu occupation in LiLnEuH2O2 to Ln=Eu2+, we obtained the mixed‐anionic phase LiEu2H3O, which crystallizes in the same structure type with a=370.04(2) pm, c=1317.32(8) pm and c/a=3.560.Item Open Access Sulfur‐composites derived from poly(acrylonitrile) and poly(vinylacetylene) : a comparative study on the role of pyridinic and thioamidic nitrogen(2023) Kappler, Julian; Klostermann, Sina V.; Lange, Pia L.; Dyballa, Michael; Veith, Lothar; Schleid, Thomas; Weil, Tanja; Kästner, Johannes; Buchmeiser, Michael R.Sulfurized poly(acrylonitrile) (SPAN) is a prominent example of a highly cycle stable and rate capable sulfur/polymer composite, which is solely based on covalently bound sulfur. However, so far no in‐depth study on the influence of nitrogen in the carbonaceous backbone, to which sulfur in the form of thioketones and poly(sulfides) is attached, exists. Herein, we investigated the role of nitrogen by comparing sulfur/polymer composites derived from nitrogen‐containing poly(acrylonitrile) (PAN) and nitrogen‐free poly(vinylacetylene) (PVac). Results strongly indicate the importance of a nitrogen‐rich, aromatic carbon backbone to ensure full addressability of the polymer‐bound sulfur and its reversible binding to the aromatic backbone, even at high current rates. This study also presents key structures, which are crucial for highly cycle and rate stable S‐composites.Item Open Access A challenge toward novel quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm) : unraveling synthetic pathways, structures and properties(2022) Ruseikina, Anna V.; Grigoriev, Maxim V.; Solovyov, Leonid A.; Chernyshev, Vladimir A.; Aleksandrovsky, Aleksandr S.; Krylov, Alexander S.; Krylova, Svetlana N.; Shestakov, Nikolai P.; Velikanov, Dmitriy A.; Garmonov, Alexander A.; Matigorov, Alexey V.; Eberle, Marcel A.; Schleid, Thomas; Safin, Damir A.We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic space group Pnma but are of different structural types, while both samples of SrTmCuS3 crystallize in the orthorhombic space group Cmcm with the structural type KZrCuS3. Three-dimensional crystal structures of SrLaCuS3 and SrNdCuS3 are formed from the (Sr/Ln)S7 capped trigonal prisms and CuS4 tetrahedra. In SrLaCuS3, alternating 2D layers are stacked, while the main backbone of the structure of SrNdCuS3 is a polymeric 3D framework [(Sr/Ln)S7]n, strengthened by 1D polymeric chains (CuS4)n with 1D channels, filled by the other Sr2+/Ln3+ cations, which, in turn, form 1D dimeric ribbons. A 3D crystal structure of SrTmCuS3 is constructed from the SrS6 trigonal prisms, TmS6 octahedra and CuS4 tetrahedra. The latter two polyhedra are packed together into 2D layers, which are separated by 1D chains (SrS6)n and 1D free channels. In both crystal structures of SrLaCuS3 obtained in this work, the crystallographic positions of strontium and lanthanum were partially mixed, while only in the structure of SrNdCuS3, solved from the powder X-ray diffraction data, were the crystallographic positions of strontium and neodymium partially mixed. Band gaps of SrLnCuS3 (Ln = La, Nd, Tm) were found to be 1.86, 1.94 and 2.57 eV, respectively. Both SrNdCuS3 and SrTmCuS3 were found to be paramagnetic at 20-300 K, with the experimental magnetic characteristics being in good agreement with the corresponding calculated parameters.
- «
- 1 (current)
- 2
- 3
- »