03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
25 results
Search Results
Item Open Access The Fermi energy as common parameter to describe charge compensation mechanisms : a path to Fermi level engineering of oxide electroceramics(2023) Klein, Andreas; Albe, Karsten; Bein, Nicole; Clemens, Oliver; Creutz, Kim Alexander; Erhart, Paul; Frericks, Markus; Ghorbani, Elaheh; Hofmann, Jan Philipp; Huang, Binxiang; Kaiser, Bernhard; Kolb, Ute; Koruza, Jurij; Kübel, Christian; Lohaus, Katharina N. S.; Rödel, Jürgen; Rohrer, Jochen; Rheinheimer, Wolfgang; De Souza, Roger A.; Streibel, Verena; Weidenkaff, Anke; Widenmeyer, Marc; Xu, Bai-Xiang; Zhang, HongbinChemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.Item Open Access Magnetic tilting in nematic liquid crystals driven by self‐assembly(2021) Hähsler, Martin; Nádasi, Hajnalka; Feneberg, Martin; Marino, Sebastian; Giesselmann, Frank; Behrens, Silke; Eremin, AlexeySelf‐assembly is one of the crucial mechanisms allowing the design multifunctional materials. Soft hybrid materials contain components of different natures and exhibit competitive interactions which drive self‐organization into structures of a particular function. Here a novel type of a magnetic hybrid material where the molecular tilt can be manipulated through a delicate balance between the topologically‐assisted colloidal self‐assembly of magnetic nanoparticles and the anisotropic molecular interactions in a liquid crystal matrix is demonstrated.Item Open Access Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids(2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, SabineCovalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.Item Open Access Distinct specificities of the HEMK2 protein methyltransferase in methylation of glutamine and lysine residues(2024) Weirich, Sara; Ulu, Gizem T.; Chandrasekaran, Thyagarajan T.; Kehl, Jana; Schmid, Jasmin; Dorscht, Franziska; Kublanovsky, Margarita; Levy, Dan; Jeltsch, AlbertThe HEMK2 protein methyltransferase has been described as glutamine methyltransferase catalyzing ERF1-Q185me1 and lysine methyltransferase catalyzing H4K12me1. Methylation of two distinct target residues is unique for this class of enzymes. To understand the specific catalytic adaptations of HEMK2 allowing it to master this chemically challenging task, we conducted a detailed investigation of the substrate sequence specificities of HEMK2 for Q- and K-methylation. Our data show that HEMK2 prefers methylation of Q over K at peptide and protein level. Moreover, the ERF1 sequence is strongly preferred as substrate over the H4K12 sequence. With peptide SPOT array methylation experiments, we show that Q-methylation preferentially occurs in a G-Q-X3-R context, while K-methylation prefers S/T at the first position of the motif. Based on this, we identified novel HEMK2 K-methylation peptide substrates with sequences taken from human proteins which are methylated with high activity. Since H4K12 methylation by HEMK2 was very low, other protein lysine methyltransferases were examined for their ability to methylate the H4K12 site. We show that SETD6 has a high H4K12me1 methylation activity (about 1000-times stronger than HEMK2) and this enzyme is mainly responsible for H4K12me1 in DU145 prostate cancer cells.Item Open Access Herstellung, Charakterisierung und Testung von Zeolithkatalysatoren für die Alkoholumsetzung(2024) Dittmann, Daniel; Dyballa, Michael (PD Dr.)Item Open Access Method of manufacturing structural, optically transparent glass fiber-reinforced polymers (tGFRP) using infusion techniques with epoxy resin systems and E-glass fabrics(2023) Heudorfer, Klaus; Bauer, Johannes; Caydamli, Yavuz; Gompf, Bruno; Take, Jens; Buchmeiser, Michael R.; Middendorf, PeterRecently, fiber-reinforced, epoxy-based, optically transparent composites were successfully produced using resin transfer molding (RTM) techniques. Generally, the production of structural, optically transparent composites is challenging since it requires the combination of a very smooth mold surface with a sufficient control of resin flow that leads to no visible voids. Furthermore, it requires a minimum deviation of the refractive indices (RIs) of the matrix polymer and the reinforcement fibers. Here, a new mold design is described and three plates of optically transparent glass fiber-reinforced polymers (tGFRP) with reproducible properties as well as high fiber volume fractions were produced using the RTM process and in situ polymerization of an epoxy resin system enclosing E-glass fiber textiles. Their mechanical (flexural), microstructural (fiber volume fraction, surface roughness, etc.), thermal (DSC, TGA, etc.), and optical (dispersion curves of glass fibers and polymer as well as transmission over visible spectra curves of the tGFRP at varying tempering states) properties were evaluated. The research showed improved surface quality and good transmission data for samples manufactured by a new Optical-RTM setup compared to a standard RTM mold. The maximum transmission was reported to be ≈74%. In addition, no detectable voids were found in these samples. Furthermore, a flexural modulus of 23.49 ± 0.64 GPa was achieved for the Optical-RTM samples having a fiber volume fraction of ≈42%.Item Open Access Fluent integration of laboratory data into biocatalytic process simulation using EnzymeML, DWSIM, and ontologies(2024) Behr, Alexander S.; Surkamp, Julia; Abbaspour, Elnaz; Häußler, Max; Lütz, Stephan; Pleiss, Jürgen; Kockmann, Norbert; Rosenthal, KatrinThe importance of biocatalysis for ecologically sustainable syntheses in the chemical industry and for applications in everyday life is increasing. To design efficient applications, it is important to know the related enzyme kinetics; however, the measurement is laborious and error-prone. Flow reactors are suitable for rapid reaction parameter screening; here, a novel workflow is proposed including digital image processing (DIP) for the quantification of product concentrations, and the use of structured data acquisition with EnzymeML spreadsheets combined with ontology-based semantic information, leading to rapid and smooth data integration into a simulation tool for kinetics evaluation. One of the major findings is that a flexibly adaptive ontology is essential for FAIR (findability, accessibility, interoperability, reusability) data handling. Further, Python interfaces enable consistent data transfer.Item Open Access Desilicated ZSM‐5 catalysts : properties and ethanol to aromatics (ETA) performance(2023) Dittmann, Daniel; Kaya, Elif; Dyballa, MichaelHerein, desilication in increasingly harsh conditions was used to introduce mesopores into two different industrial ZSM‐5 catalysts (Si/Al ratio 11 or 29). For desilicated samples, increasing BET surface areas, mesopore volumes, and Si(OH) densities were noted. Brønsted acid site (BAS) densities increased upon desilication, as formerly inaccessible BAS in blocked pores became available, while the strength of the BAS was maintained upon desilication. Using KOH instead of NaOH as desilication agent can increase the mesopore volume generated per mass loss. The correlations between desilication strength and properties were largely determined by the parent Si/Al ratio. In general the introduced mesopores increased lifetimes in the ETA conversion, while additional Si(OH) groups introduced by desilication reduce the lifetime again. The lifetime is thus determined by a complex interplay of BAS density, improved reactant transport by introduced mesopores and Si(OH) density. There were no additional aromatics formed in desilicated samples during the conversion of ethanol and the samples were, in terms of aromatic yield, outperformed by a microporous parent. However, as result of longer lifetimes less ethanol was lost due to coke formation. It is concluded that desilication should be combined with other post‐modifications to increase aromatic production and lifetime.Item Open Access CHEMampere : technologies for sustainable chemical production with renewable electricity and CO2, N2, O2, and H2O(2022) Klemm, Elias; Lobo, Carlos M. S.; Löwe, Armin; Schallhart, Verena; Renninger, Stephan; Waltersmann, Lara; Costa, Rémi; Schulz, Andreas; Dietrich, Ralph‐Uwe; Möltner, Lukas; Meynen, Vera; Sauer, Alexander; Friedrich, K. AndreasThe chemical industry must become carbon neutral by 2050, meaning that process‐, energy‐, and product‐related CO2 emissions from fossil sources are completely suppressed. This goal can only be reached by using renewable energy, secondary raw materials, or CO2 as a carbon source. The latter can be done indirectly through the bioeconomy or directly by utilizing CO2 from air or biogenic sources (integrated biorefinery). Until 2030, CO2 waste from fossil‐based processes can be utilized to curb fossil CO2 emissions and reach the turning point of global fossil CO2 emissions. A technology mix consisting of recycling technologies, white biotechnology, and carbon capture and utilization (CCU) technologies is needed to achieve the goal of carbon neutrality. In this context, CHEMampere contributes to the goal of carbon neutrality with electricity‐based CCU technologies producing green chemicals from CO2, N2, O2, and H2O in a decentralized manner. This is an alternative to the e‐Refinery concept, which needs huge capacities of water electrolysis for a centralized CO2 conversion with green hydrogen, whose demand is expected to rise dramatically due to the decarbonization of the energy sector, which would cause a conflict of use between chemistry and energy. Here, CHEMampere's core reactor technologies, that is, electrolyzers, plasma reactors, and ohmic resistance heating of catalysts, are described, and their technical maturity is evaluated for the CHEMampere platform chemicals NH3, NOx, O3, H2O2, H2, CO, and CxHyOz products such as formic acid or methanol. Downstream processing of these chemicals is also addressed by CHEMampere, but it is not discussed here.Item Open Access 3D sub-nanometer analysis of glucose in an aqueous solution by cryo-atom probe tomography(2021) Schwarz, T. M.; Dietrich, C. A.; Ott, J.; Weikum, E. M.; Lawitzki, R.; Solodenko, H.; Hadjixenophontos, E.; Gault, B.; Kästner, J.; Schmitz, G.; Stender, P.Atom Probe Tomography (APT) is currently a well-established technique to analyse the composition of solid materials including metals, semiconductors and ceramics with up to near-atomic resolution. Using an aqueous glucose solution, we now extended the technique to frozen solutions. While the mass signals of the common glucose fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved stoichiometrically correct values via signal deconvolution. Density functional theory (DFT) calculations were performed to investigate the stability of the detected pyranose fragments. This paper demonstrates APT’s capabilities to achieve sub-nanometre resolution in tracing whole glucose molecules in a frozen solution by using cryogenic workflows. We use a solution of defined concentration to investigate the chemical resolution capabilities as a step toward the measurement of biological molecules. Due to the evaporation of nearly intact glucose molecules, their position within the measured 3D volume of the solution can be determined with sub-nanometre resolution. Our analyses take analytical techniques to a new level, since chemical characterization methods for cryogenically-frozen solutions or biological materials are limited.
- «
- 1 (current)
- 2
- 3
- »