03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
9 results
Search Results
Item Open Access Designing covalent organic framework‐based light‐driven microswimmers toward therapeutic applications(2023) Sridhar, Varun; Yildiz, Erdost; Rodríguez‐Camargo, Andrés; Lyu, Xianglong; Yao, Liang; Wrede, Paul; Aghakhani, Amirreza; Akolpoglu, Birgul M.; Podjaski, Filip; Lotsch, Bettina V.; Sitti, MetinWhile micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light‐driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP‐PDA‐COF sub‐micrometer particles and texturally nanoporous, micrometer‐sized TpAzo‐COF particles are described and compared as light‐driven microrobots. They can be used as highly efficient visible‐light‐driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6 and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real‐time visualization of the drug‐loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.Item Open Access Confirmation of siderazot, Fe3N1.33, the only terrestrial nitride mineral(2021) Bette, Sebastian; Theye, Thomas; Bernhardt, Heinz-Jürgen; Clark, William P.; Niewa, RainerSiderazot, the only terrestrial nitride mineral, was reported only once in 1876 to occur as coating on volcanic rocks in a fumarolic environment from Mt. Etna and, to date, has been neither confirmed nor structurally characterized. We have studied the holotype sample from the Natural History Museum, London, UK, originally collected by O. Silvestri in 1874, and present siderazot with epsilon-Fe3N-type crystal structure and composition of Fe3N1.33(7) according to crystal structure Rietveld refinements, in good agreement with electron microprobe analyses. Crystal structure data, chemical composition, and Raman and reflectance measurements are reported. Possible formation conditions are derived from composition and phase stability data according to synthetic samples.Item Open Access Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids(2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, SabineCovalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.Item Open Access Towards recycling of LLZO solid electrolyte exemplarily performed on LFP/LLZO/LTO cells(2022) Ali Nowroozi, Mohammad; Iqbal Waidha, Aamir; Jacob, Martine; Aken, Peter A. van; Predel, Felicitas; Ensinger, Wolfgang; Clemens, OliverAll‐solid‐state lithium ion batteries (ASS‐LIBs) are promising due to their safety and higher energy density as compared to that of conventional LIBs. Over the next few decades, tremendous amounts of spent ASS‐LIBs will reach the end of their cycle life and would require recycling in order to address the waste management issue along with reduced exploitation of rare elements. So far, only very limited studies have been conducted on recycling of ASS‐LIBS. Herein, we investigate the recycling of the Li7La3Zr2O12 (LLZO) solid‐state electrolyte in a LiFePO4/LLZO/Li4Ti5O12 system using a hydrometallurgical approach. Our results show that different concentration of the leaching solutions can significantly influence the final product of the recycling process. However, it was possible to recover relatively pure La2O3 and ZrO2 to re‐synthesize the cubic LLZO phase, whose high purity was confirmed by XRD measurements.Item Open Access Insights into the first multi-transition-metal containing Ruddlesden-Popper-type cathode for all-solid-state fluoride ion batteries(2024) Vanita, Vanita; Waidha, Aamir Iqbal; Vasala, Sami; Puphal, Pascal; Schoch, Roland; Glatzel, Pieter; Bauer, Matthias; Clemens, OliverPromising cathode materials for fluoride-ion batteries (FIBs) are 3d transition metal containing oxides with Ruddlesden-Popper-type structure. So far, the multi-elemental compositions have not been investigated, but it could alternate the electrochemical performance similar to what has been found for cathode materials for lithium-ion batteries. In this study, we investigate RP type La2Ni0.75Co0.25O4.08 as an intercalation-based active cathode material for all-solid-state FIBs. We determine the structural changes of La2Ni0.75Co0.25O4.08 during fluoride intercalation/de-intercalation by ex situ X-ray diffraction, which showed that F- insertion leads to transformation of the parent phase to three different phases. Changes in the Ni and Co oxidation states and coordination environment were examined by X-ray absorption spectroscopy and magnetic measurements in order to understand the complex reaction behaviour of the phases in detail, showing that the two transition metals behave differently in the charging and discharging process. Under optimized operating conditions, a cycle life of 120 cycles at a critical cut-off capacity of 40 mA h g-1 against Pb/PbF2 was obtained, which is one of the highest observed for intercalation electrode materials in FIBs so far. The average coulombic efficiencies ranged from 85% to 90%. Thus, La2Ni0.75Co0.25O4.08 could be a promising candidate for cycling-stable high-energy cathode materials for all-solid-state FIBs.Item Open Access A critical outlook for the pursuit of lower contact resistance in organic transistors(2021) Borchert, James W.; Weitz, R. Thomas; Ludwigs, Sabine; Klauk, HagenTo take full advantage of recent and anticipated improvements in the performance of organic semiconductors employed in organic transistors, the high contact resistance arising at the interfaces between the organic semiconductor and the source and drain contacts must be reduced significantly. To date, only a small portion of the accumulated research on organic thin‐film transistors (TFTs) has reported channel‐width‐normalized contact resistances below 100 Ωcm, well above what is regularly demonstrated in transistors based on inorganic semiconductors. A closer look at these cases and the relevant literature strongly suggests that the most significant factor leading to the lowest contact resistances in organic TFTs so far has been the control of the thin‐film morphology of the organic semiconductor. By contrast, approaches aimed at increasing the charge‐carrier density and/or reducing the intrinsic Schottky barrier height have so far played a relatively minor role in achieving the lowest contact resistances. Herein, the possible explanations for these observations are explored, including the prevalence of Fermi‐level pinning and the difficulties in forming optimized interfaces with organic semiconductors. An overview of the research on these topics is provided, and potential device‐engineering solutions are discussed based on recent advancements in the theoretical and experimental work on both organic and inorganic semiconductors.Item Open Access Optimizing the plasma oxidation of aluminum gate electrodes for ultrathin gate oxides in organic transistors(2021) Geiger, Michael; Hagel, Marion; Reindl, Thomas; Weis, Jürgen; Weitz, R. Thomas; Solodenko, Helena; Schmitz, Guido; Zschieschang, Ute; Klauk, Hagen; Acharya, RachanaA critical requirement for the application of organic thin-film transistors (TFTs) in mobile or wearable applications is low-voltage operation, which can be achieved by employing ultrathin, high-capacitance gate dielectrics. One option is a hybrid dielectric composed of a thin film of aluminum oxide and a molecular self-assembled monolayer in which the aluminum oxide is formed by exposure of the surface of the aluminum gate electrode to a radio-frequency-generated oxygen plasma. This work investigates how the properties of such dielectrics are affected by the plasma power and the duration of the plasma exposure. For various combinations of plasma power and duration, the thickness and the capacitance of the dielectrics, the leakage-current density through the dielectrics, and the current–voltage characteristics of organic TFTs in which these dielectrics serve as the gate insulator have been evaluated. The influence of the plasma parameters on the surface properties of the dielectrics, the thin-film morphology of the vacuum-deposited organic-semiconductor films, and the resulting TFT characteristics has also been investigated.Item Open Access Celebrating ten years of covalent organic frameworks for solar energy conversion : past, present and future(2024) Rodríguez‐Camargo, Andrés; Endo, Kenichi; Lotsch, Bettina V.Accelerated anthropogenic emission of greenhouse gases due to increasing energy demands has created a negative impact on our planet. Therefore, the replacement of fossil by renewable energy resources has become of paramount interest, both societally and scientifically. It is within this setting that organic photocatalysts have emerged as a new generation of earth‐abundant catalysts for the conversion of solar radiation into chemical energy. In 2014, the first example of a covalent organic framework (COF) photocatalyst for the hydrogen evolution reaction was reported by our group, which has not only marked the beginning of COF photocatalysis for solar fuel production but also helped to accelerate research into “soft photocatalysis” based on porous polymers in general. In the last decade, significant progress has been made toward developing COFs as robust, molecularly precise platforms emulating artificial photosynthesis. This mini‐review commemorates the 10th anniversary of COF photocatalysis and gives a brief historical overview of the milestones in the field since its inception in 2014. We review milestones in the development of COFs for solar fuel production and related photocatalytic transformations, including hydrogen evolution, oxygen evolution, overall water splitting, CO2 reduction, N2 fixation, oxygen reduction, and alcohol oxidation. We discuss lessons learned for the design of structure‐property‐function relationships in COF photocatalysts, and future perspectives and challenges for the field of “soft photocatalysis” are given.Item Open Access Shedding light on the active species in a cobalt‐based covalent organic framework for the electrochemical oxygen evolution reaction(2024) Hosseini, Pouya; Rodríguez‐Camargo, Andrés; Jiang, Yiqun; Zhang, Siyuan; Scheu, Christina; Yao, Liang; Lotsch, Bettina V.; Tschulik, KristinaWhile considerable efforts have been devoted to developing functionalized covalent organic frameworks (COFs) as oxygen evolution electrocatalysts in recent years, studies related to the investigation of the true catalytically active species for the oxygen evolution reaction (OER) remain lacking in the field. In this work, the active species of a cobalt‐functionalized COF (TpBpy‐Co) is studied as electrochemical OER catalyst through a series of electrochemical measurements and post‐electrolysis characterizations. These results suggest that cobalt oxide‐based nanoparticles are formed in TpBpy‐Co from Co(II) ions coordinated to the COF backbone when exposing TpBpy‐Co to alkaline media, and these newly formed nanoparticles serve as the primary active species for oxygen evolution. The study thus emphasizes that caution is warranted when assessing the catalytic activity of COF electrocatalysts, as the pristine COF may act as the pre‐catalyst, with the active species forming only under catalyst operating conditions. Specifically, strong coordination between COFs and metal centers under electrochemical operation conditions is crucial to avoid unintended transformation of COF electrocatalysts. This work thus contributes to the rational development of earth‐abundant COF OER catalysts for the production of green hydrogen from renewable resources.