03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
4 results
Search Results
Item Open Access High‐performance magnesium‐sulfur batteries based on a sulfurated poly(acrylonitrile) cathode, a borohydride electrolyte, and a high‐surface area magnesium anode(2020) Wang, Peiwen; Trück, Janina; Niesen, Stefan; Kappler, Julian; Küster, Kathrin; Starke, Ulrich; Ziegler, Felix; Hintennach, Andreas; Buchmeiser, Michael R.Post‐lithium‐ion battery technology is considered a key element of future energy storage and management. Apart from high gravimetric and volumetric energy densities, economic, ecologic and safety issues become increasingly important. In that regards, both the anode and cathode materials must be easily available, recyclable, non‐toxic and safe, which renders magnesium‐sulfur (Mg-S) batteries a promising choice. Herein, we present Mg-S cells based on a sulfurated poly(acrylonitrile) composite cathode (SPAN), together with a halogen‐free electrolyte containing both Mg[BH4]2 and Li[BH4] in diglyme and a high‐specific surface area magnesium anode based on Rieke magnesium powder. These cells deliver discharge capacities of 1400 and 800 mAh/gsulfur with >99 % Coulombic efficiency at 0.1 C and 0.5 C, respectively, and are stable over at least 300 cycles. Energy densities are 470 and 400 Wh/kgsulfur at 0.1 C and 0.5 C, respectively. Rate tests carried out between 0.1 C and 2 C demonstrate good rate capability of the cells. Detailed mechanistic studies based on X‐ray photoelectron spectroscopy and electric impedance spectroscopy are presented.Item Open Access Towards recycling of LLZO solid electrolyte exemplarily performed on LFP/LLZO/LTO cells(2022) Ali Nowroozi, Mohammad; Iqbal Waidha, Aamir; Jacob, Martine; Aken, Peter A. van; Predel, Felicitas; Ensinger, Wolfgang; Clemens, OliverAll‐solid‐state lithium ion batteries (ASS‐LIBs) are promising due to their safety and higher energy density as compared to that of conventional LIBs. Over the next few decades, tremendous amounts of spent ASS‐LIBs will reach the end of their cycle life and would require recycling in order to address the waste management issue along with reduced exploitation of rare elements. So far, only very limited studies have been conducted on recycling of ASS‐LIBS. Herein, we investigate the recycling of the Li7La3Zr2O12 (LLZO) solid‐state electrolyte in a LiFePO4/LLZO/Li4Ti5O12 system using a hydrometallurgical approach. Our results show that different concentration of the leaching solutions can significantly influence the final product of the recycling process. However, it was possible to recover relatively pure La2O3 and ZrO2 to re‐synthesize the cubic LLZO phase, whose high purity was confirmed by XRD measurements.Item Open Access Insights into the first multi-transition-metal containing Ruddlesden-Popper-type cathode for all-solid-state fluoride ion batteries(2024) Vanita, Vanita; Waidha, Aamir Iqbal; Vasala, Sami; Puphal, Pascal; Schoch, Roland; Glatzel, Pieter; Bauer, Matthias; Clemens, OliverPromising cathode materials for fluoride-ion batteries (FIBs) are 3d transition metal containing oxides with Ruddlesden-Popper-type structure. So far, the multi-elemental compositions have not been investigated, but it could alternate the electrochemical performance similar to what has been found for cathode materials for lithium-ion batteries. In this study, we investigate RP type La2Ni0.75Co0.25O4.08 as an intercalation-based active cathode material for all-solid-state FIBs. We determine the structural changes of La2Ni0.75Co0.25O4.08 during fluoride intercalation/de-intercalation by ex situ X-ray diffraction, which showed that F- insertion leads to transformation of the parent phase to three different phases. Changes in the Ni and Co oxidation states and coordination environment were examined by X-ray absorption spectroscopy and magnetic measurements in order to understand the complex reaction behaviour of the phases in detail, showing that the two transition metals behave differently in the charging and discharging process. Under optimized operating conditions, a cycle life of 120 cycles at a critical cut-off capacity of 40 mA h g-1 against Pb/PbF2 was obtained, which is one of the highest observed for intercalation electrode materials in FIBs so far. The average coulombic efficiencies ranged from 85% to 90%. Thus, La2Ni0.75Co0.25O4.08 could be a promising candidate for cycling-stable high-energy cathode materials for all-solid-state FIBs.Item Open Access Differences in electrochemistry between fibrous SPAN and fibrous S/C cathodes relevant to cycle stability and capacity(2017) Warneke, Sven; Eusterholz, Michael; Zenn, Roland K.; Hintennach, Andreas; Dinnebier, Robert E.; Buchmeiser, Michael R.Two different Li/S cathodes are compared in terms of capacity (mA.h.gsulfur-1) and intermediates during discharge and charge. One cathode material is based on fibrous SPAN, a sulfur-containing material obtained via the thermal conversion of poly(acrylonitrile), PAN, in the presence of sulfur. In this material, sulfur is covalently bound to the polymeric backbone. The second cathode material is based on porous activated carbon fibers (ACFs) with elemental sulfur embedded inside the ACFs’ micropores. Cyclic voltammetry clearly indicates different discharge and charge chemistry of the two materials. While S-containing ACFs show the expected redox-chemistry of sulfur, SPAN does not form long-chain polysulfides during discharge; instead, sulfide is chopped off the polymer-bound sulfur chains to directly form Li2S. The high reversibility of this process accounts for both the high cycle stability and capacity of SPAN-based cathode materials.