05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 10 of 38
  • Thumbnail Image
    ItemOpen Access
    Modeling and experimental investigation of the interaction between pressure-dependent aging and pressure development due to the aging of lithium-ion cells
    (2023) Avdyli, Arber; Fill, Alexander; Birke, Kai Peter
    In order to meet the increasing demands of the battery in terms of range, safety and performance, it is necessary to ensure optimal operation conditions of a lithium-ion cell. In this thesis, the influence of mechanical boundary conditions on the cell is investigated theoretically and experimentally. First, fundamental equations are derived that lead to coupled models that can be parameterized based on specific cell measurements and predict the pressure evolution due to capacity aging and vice versa. The model is used to derive optimal operating points of the cell, which can be considered in the module design.
  • Thumbnail Image
    ItemOpen Access
    Top‐down approach to study chemical and electronic properties of perovskite solar cells : sputtered depth profiling versus tapered cross‐sectional photoelectron spectroscopies
    (2021) Das, Chittaranjan; Zia, Waqas; Mortan, Claudiu; Hussain, Navid; Saliba, Michael; Ingo Flege, Jan; Kot, Małgorzata
    A study of the chemical and electronic properties of various layers across perovskite solar cell (PSC) stacks is challenging. Depth‐profiling photoemission spectroscopy can be used to study the surface, interface, and bulk properties of different layers in PSCs, which influence the overall performance of these devices. Herein, sputter depth profiling (SDP) and tapered cross‐sectional (TCS) photoelectron spectroscopies (PESs) are used to study highly efficient mixed halide PSCs. It is found that the most used SDP‐PES technique degrades the organic and deforms the inorganic materials during sputtering of the PSCs while the TCS‐PES method is less destructive and can determine the chemical and electronic properties of all layers precisely. The SDP‐PES dissociates the chemical bonding in the spiro‐MeOTAD and perovskite layer and reduces the TiO2, which causes the chemical analysis to be unreliable. The TCS‐PES revealed a band bending only at the spiro‐MeOTAD/perovskite interface of about 0.7 eV. Both the TCS and SDP‐PES show that the perovskite layer is inhomogeneous and has a higher amount of bromine at the perovskite/TiO2 interface.
  • Thumbnail Image
    ItemOpen Access
    Surface charge density and induced currents by self-charging sliding drops
    (2024) Bista, Pravash; Ratschow, Aaron D.; Stetten, Amy Z.; Butt, Hans-Jürgen; Weber, Stefan A. L.
    Spontaneous charge separation in drops sliding over a hydrophobized insulator surface is a well-known phenomenon and lots of efforts have been made to utilize this effect for energy harvesting. For maximizing the efficiency of such devices, a comprehensive understanding of the dewetted surface charge would be required to quantitatively predict the electric current signals, in particular for drop sequences. Here, we use a method based on mirror charge detection to locally measure the surface charge density after drops move over a hydrophobic surface. For this purpose, we position a metal electrode beneath the hydrophobic substrate to measure the capacitive current induced by the moving drop. Furthermore, we investigate drop-induced charging on different dielectric surfaces together with the surface neutralization processes. The surface neutralizes over a characteristic time, which is influenced by the substrate and the surrounding environment. We present an analytical model that describes the slide electrification using measurable parameters such as the surface charge density and its neutralization time. Understanding the model parameters and refining them will enable a targeted optimization of the efficiency in solid–liquid charge separation.
  • Thumbnail Image
    ItemOpen Access
    Non-uniform circumferential expansion of cylindrical Li-ion cells - the potato effect
    (2021) Hemmerling, Jessica; Guhathakurta, Jajnabalkya; Dettinger, Falk; Fill, Alexander; Birke, Kai Peter
    This paper presents the non-uniform change in cell thickness of cylindrical Lithium (Li)-ion cells due to the change of State of Charge (SoC). Using optical measurement methods, with the aid of a laser light band micrometer, the expansion and contraction are determined over a complete charge and discharge cycle. The cell is rotated around its own axis by an angle of α=10° in each step, so that the different positions can be compared with each other over the circumference. The experimental data show that, contrary to the assumption based on the physical properties of electrode growth due to lithium intercalation in the graphite, the cell does not expand uniformly. Depending on the position and orientation of the cell coil, there are different zones of expansion and contraction. In order to confirm the non-uniform expansion around the circumference of the cell in 3D, X-ray computed tomography (CT) scans of the cells are performed at low and at high SoC. Comparison of the high resolution 3D reconstructed volumes clearly visualizes a sinusoidal pattern for non-uniform expansion. From the 3D volume, it can be confirmed that the thickness variation does not vary significantly over the height of the battery cell due to the observed mechanisms. However, a slight decrease in the volume change towards the poles of the battery cells due to the higher stiffness can be monitored.
  • Thumbnail Image
    ItemOpen Access
    Introducing a concept for designing an aqueous electrolyte with pH buffer properties for Zn-MnO2 batteries with Mn2+/MnO2 deposition/dissolution
    (2023) Fitz, Oliver; Wagner, Florian; Pross-Brakhage, Julia; Bauer, Manuel; Gentischer, Harald; Birke, Kai Peter; Biro, Daniel
    For large-scale energy-storage systems, the aqueous rechargeable zinc–manganese dioxide battery (ARZMB) attracts increasing attention due to its excellent advantages such as high energy density, high safety, low material cost, and environmental friendliness. Still, the reaction mechanism and its influence on the electrolyte's pH are under debate. Herein, a pH buffer concept for ARZMB electrolytes is introduced. Selection criteria for pH buffer substances are defined. Different buffered electrolytes based on a zinc salt (ZnSO4, Zn(CH3COO)2, Zn(CHOO)2), and pH buffer substances (acetic acid, propionic acid, formic acid, citric acid, 4-hydrobenzoic acid, potassium bisulfate, potassium dihydrogen citrate, and potassium hydrogen phthalate) are selected and compared to an unbuffered 2 m ZnSO4 reference electrolyte using titration, galvanostatic cycling with pH tracking, and cyclic voltammetry. By adding buffer substances, the pH changes can be reduced and controlled within the defined operating window, supporting the Mn2+/MnO2 deposition/dissolution mechanism. Furthermore, the potential plateau during discharge can be increased from ≈1.3 V (ZnSO4) to ≈1.7 V (ZnSO4 + AA) versus Zn/Zn2+ and the energy retention from ≈30% after 268 cycles (ZnSO4) to ≈86% after 494 cycles (ZnSO4 + AA). Herein, this work can serve as a basis for the targeted design of long-term stable ARZMB electrolytes.
  • Thumbnail Image
    ItemOpen Access
    Coordination chemistry as a universal strategy for a controlled perovskite crystallization
    (2023) Zuo, Weiwei; Byranvand, Mahdi Malekshahi; Kodalle, Tim; Zohdi, Mohammadreza; Lim, Jaekeun; Carlsen, Brian; Magorian Friedlmeier, Theresa; Kot, Małgorzata; Das, Chittaranjan; Flege, Jan Ingo; Zong, Wansheng; Abate, Antonio; Sutter‐Fella, Carolin M.; Li, Meng; Saliba, Michael
    The most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g., by vacuum, an airstream, or a so-called antisolvent. Unfortunately, most oversaturation triggers do not expel the lingering (and highly coordinating) dimethyl sulfoxide (DMSO), which is used as a precursor solvent, from the thin films; this detrimentally affects long-term stability. In this work, (the green) dimethyl sulfide (DMS) is introduced as a novel nucleation trigger for perovskite films combining, uniquely, high coordination and high vapor pressure. This gives DMS a universal scope: DMS replaces other solvents by coordinating more strongly and removes itself once the film formation is finished. To demonstrate this novel coordination chemistry approach, MAPbI3 PSCs are processed, typically dissolved in hard-to-remove (and green) DMSO achieving 21.6% efficiency, among the highest reported efficiencies for this system. To confirm the universality of the strategy, DMS is tested for FAPbI3 as another composition, which shows higher efficiency of 23.5% compared to 20.9% for a device fabricated with chlorobenzene. This work provides a universal strategy to control perovskite crystallization using coordination chemistry, heralding the revival of perovskite compositions with pure DMSO.
  • Thumbnail Image
    ItemOpen Access
    A high frequency alternating current heater using the advantages of a damped oscillation circuit for low voltage Li-ion batteries
    (2024) Oehl, Joachim; Gleiter, Andreas; Manka, Daniel; Fill, Alexander; Birke, Kai Peter
    In many cases, batteries used in light e-mobility vehicles such as e-bikes and e-scooters do not have an active thermal management system. This poses a challenge when these batteries are stored in sub-zero temperatures and need to be charged. In such cases, it becomes necessary to move the batteries to a warmer location and allow them to acclimatize before charging. However, this is not always feasible, especially for batteries installed permanently in vehicles. In this work, we present an internal high-frequency AC heater for a 48 V battery, which is used for light electric vehicles of EU vehicle classes L1e and L3e-A1 for a power supply of up to 11 kW. We have taken advantage of the features of a damped oscillating circuit to improve the performance of the heater. Additionally, only a small inductor was added to the main current path through a cable with three windings. Furthermore, as the power electronics of the heater is part of the battery main switch, fewer additional parts inside the battery are required and therefore a cost and space reduction compared to other heaters is possible. For the chosen setup we reached a heating rate of up to 2.13 K min -1 and it was possible to raise the battery temperature from -10 °C to 10 °C using only 3.1% of its own usable capacity.
  • Thumbnail Image
    ItemOpen Access
    Comparison of aqueous- and non-aqueous-based binder polymers and the mixing ratios for Zn//MnO2 batteries with mildly acidic aqueous electrolytes
    (2021) Fitz, Oliver; Ingenhoven, Stefan; Bischoff, Christian; Gentischer, Harald; Birke, Kai Peter; Saracsan, Dragos; Biro, Daniel
    Considering the literature for aqueous rechargeable Zn//MnO2 batteries with acidic electrolytes using the doctor blade coating of the active material (AM), carbon black (CB), and binder polymer (BP) for the positive electrode fabrication, different binder types with (non-)aqueous solvents were introduced so far. Furthermore, in most of the cases, relatively high passive material (CB+BP) shares ~30 wt% were applied. The first part of this work focuses on different selected BPs: polyacrylonitrile (PAN), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), cellulose acetate (CA), and nitrile butadiene rubber (NBR). They were used together with (non-)aqueous solvents: DI-water, methyl ethyl ketone (MEK), and dimethyl sulfoxide (DMSO). By performing mechanical, electrochemical and optical characterizations, a better overall performance of the BPs using aqueous solvents was found in aqueous 2 M ZnSO4 + 0.1 M MnSO4 electrolyte (i.e., BP LA133: 150 mAh·g-1 and 189 mWh·g-1 @ 160 mA·g-1). The second part focuses on the mixing ratio of the electrode components, aiming at the decrease of the commonly used passive material share of ~30 wt% for an industrial-oriented electrode fabrication, while still maintaining the electrochemical performance. Here, the absolute CB share and the CB/BP ratio are found to be important parameters for an application-oriented electrode fabrication (i.e., high energy/power applications).
  • Thumbnail Image
    ItemOpen Access
    Laser activation for highly boron-doped passivated contacts
    (2023) Sharbaf Kalaghichi, Saman; Hoß, Jan; Zapf-Gottwick, Renate; Werner, Jürgen H.
    Passivated, selective contacts in silicon solar cells consist of a double layer of highly doped polycrystalline silicon (poly Si) and thin interfacial silicon dioxide (SiO2). This design concept allows for the highest efficiencies. Here, we report on a selective laser activation process, resulting in highly doped p++-type poly Si on top of the SiO2. In this double-layer structure, the p++-poly Si layer serves as a layer for transporting the generated holes from the bulk to a metal contact and, therefore, needs to be highly conductive for holes. High boron-doping of the poly Si layers is one approach to establish the desired high conductivity. In a laser activation step, a laser pulse melts the poly Si layer, and subsequent rapid cooling of the Si melt enables electrically active boron concentrations exceeding the solid solubility limit. In addition to the high conductivity, the high active boron concentration in the poly Si layer allows maskless patterning of p++-poly Si/SiO2 layers by providing an etch stop layer in the Si etchant solution, which results in a locally structured p++-poly Si/SiO2 after the etching process. The challenge in the laser activation technique is not to destroy the thin SiO2, which necessitates fine tuning of the laser process. In order to find the optimal processing window, we test laser pulse energy densities (Hp) in a broad range of 0.7 J/cm2 ≤ Hp ≤ 5 J/cm2 on poly Si layers with two different thicknesses dpoly Si,1 = 155 nm and dpoly Si,2 = 264 nm. Finally, the processing window 2.8 J/cm2≤ Hp ≤ 4 J/cm2 leads to the highest sheet conductance (Gsh) without destroying the SiO2 for both poly Si layer thicknesses. For both tested poly Si layers, the majority of the symmetric lifetime samples processed using these Hp achieve a good passivation quality with a high implied open circuit voltage (iVOC) and a low saturation current density (J0). The best sample achieves iVOC = 722 mV and J0 = 6.7 fA/cm2 per side. This low surface recombination current density, together with the accompanying measurements of the doping profiles, suggests that the SiO2 is not damaged during the laser process. We also observe that the passivation quality is independent of the tested poly Si layer thicknesses. The findings of this study show that laser-activated p++-poly Si/SiO2 are not only suitable for integration into advanced passivated contact solar cells, but also offer the possibility of maskless patterning of these stacks, substantially simplifying such solar cell production.
  • Thumbnail Image
    ItemOpen Access
    Toward commercialization of stable devices : an overview on encapsulation of hybrid organic-inorganic perovskite solar cells
    (2021) Aranda, Clara A.; Caliò, Laura; Salado, Manuel
    Perovskite solar cells (PSCs) represent a promising technology for energy harvesting due to high power conversion efficiencies up to 26%, easy manufacturing, and convenient deposition techniques, leading to added advantages over other contemporary competitors. In order to promote this technology toward commercialization though, stability issues need to be addressed. Lately, many researchers have explored several techniques to improve the stability of the environmentally-sensitive perovskite solar devices. Challenges posed by environmental factors like moisture, oxygen, temperature, and UV-light exposure, could be overcome by device encapsulation. This review focuses the attention on the different materials, methods, and requirements for suitable encapsulated perovskite solar cells. A depth analysis on the current stability tests is also included, since accurate and reliable testing conditions are needed in order to reduce mismatching involved in reporting the efficiencies of PSC.