05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 10 of 13
  • Thumbnail Image
    ItemOpen Access
    Benchmarking the performance of portfolio optimization with QAOA
    (2022) Brandhofer, Sebastian; Braun, Daniel; Dehn, Vanessa; Hellstern, Gerhard; Hüls, Matthias; Ji, Yanjun; Polian, Ilia; Bhatia, Amandeep Singh; Wellens, Thomas
    We present a detailed study of portfolio optimization using different versions of the quantum approximate optimization algorithm (QAOA). For a given list of assets, the portfolio optimization problem is formulated as quadratic binary optimization constrained on the number of assets contained in the portfolio. QAOA has been suggested as a possible candidate for solving this problem (and similar combinatorial optimization problems) more efficiently than classical computers in the case of a sufficiently large number of assets. However, the practical implementation of this algorithm requires a careful consideration of several technical issues, not all of which are discussed in the present literature. The present article intends to fill this gap and thereby provides the reader with a useful guide for applying QAOA to the portfolio optimization problem (and similar problems). In particular, we will discuss several possible choices of the variational form and of different classical algorithms for finding the corresponding optimized parameters. Viewing at the application of QAOA on error-prone NISQ hardware, we also analyse the influence of statistical sampling errors (due to a finite number of shots) and gate and readout errors (due to imperfect quantum hardware). Finally, we define a criterion for distinguishing between ‘easy’ and ‘hard’ instances of the portfolio optimization problem.
  • Thumbnail Image
    ItemOpen Access
    Nontraditional design of dynamic logics using FDSOI for ultra-efficient computing
    (2023) Kumar, Shubham; Chatterjee, Swetaki; Dabhi, Chetan Kumar; Chauhan, Yogesh Singh; Amrouch, Hussam
  • Thumbnail Image
    ItemOpen Access
    Modeling and investigating total ionizing dose impact on FeFET
    (2023) Sayed, Munazza; Ni, Kai; Amrouch, Hussam
  • Thumbnail Image
    ItemOpen Access
    Stress-aware periodic test of interconnects
    (2022) Sadeghi-Kohan, Somayeh; Hellebrand, Sybille; Wunderlich, Hans-Joachim
    Safety-critical systems have to follow extremely high dependability requirements as specified in the standards for automotive, air, and space applications. The required high fault coverage at runtime is usually obtained by a combination of concurrent error detection or correction and periodic tests within rather short time intervals. The concurrent scheme ensures the integrity of computed results while the periodic test has to identify potential aging problems and to prevent any fault accumulation which may invalidate the concurrent error detection mechanism. Such periodic built-in self-test (BIST) schemes are already commercialized for memories and for random logic. The paper at hand extends this approach to interconnect structures. A BIST scheme is presented which targets interconnect defects before they will actually affect the system functionality at nominal speed. A BIST schedule is developed which significantly reduces aging caused by electromigration during the lifetime application of the periodic test.
  • Thumbnail Image
    ItemOpen Access
    Thermal effects on monolithic 3D ferroelectric transistors for deep neural networks performance
    (2024) Kumar, Shubham; Chauhan, Yogesh Singh; Amrouch, Hussam
    Monolithic three‐dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin‐film transistors (Fe‐TFTs) attract attention for neuromorphic computing and back‐end‐of‐the‐line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single‐gate (SG) Fe‐TFT reliability. SG Fe‐TFTs have limitations such as read‐disturbance and small memory windows, constraining their use. To mitigate these, dual‐gate (DG) Fe‐TFTs are modeled using technology computer‐aided design, comparing their performance. Compute‐in‐memory (CIM) architectures with SG and DG Fe‐TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe‐TFTs exhibit about 4.6x higher throughput than SG Fe‐TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe‐TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.
  • Thumbnail Image
    ItemOpen Access
    Review on resistive switching devices based on multiferroic BiFeO3
    (2023) Zhao, Xianyue; Menzel, Stephan; Polian, Ilia; Schmidt, Heidemarie; Du, Nan
    This review provides a comprehensive examination of the state-of-the-art research on resistive switching (RS) in BiFeO3 (BFO)-based memristive devices. By exploring possible fabrication techniques for preparing the functional BFO layers in memristive devices, the constructed lattice systems and corresponding crystal types responsible for RS behaviors in BFO-based memristive devices are analyzed. The physical mechanisms underlying RS in BFO-based memristive devices, i.e., ferroelectricity and valence change memory, are thoroughly reviewed, and the impact of various effects such as the doping effect, especially in the BFO layer, is evaluated. Finally, this review provides the applications of BFO devices and discusses the valid criteria for evaluating the energy consumption in RS and potential optimization techniques for memristive devices.
  • Thumbnail Image
    ItemOpen Access
    Memristive true random number generator for security applications
    (2024) Zhao, Xianyue; Chen, Li-Wei; Li, Kefeng; Schmidt, Heidemarie; Polian, Ilia; Du, Nan
    This study explores memristor-based true random number generators (TRNGs) through their evolution and optimization, stemming from the concept of memristors first introduced by Leon Chua in 1971 and realized in 2008. We will consider memristor TRNGs coming from various entropy sources for producing high-quality random numbers. However, we must take into account both their strengths and weaknesses. The comparison with CMOS-based TRNGs will serve as an illustration that memristor TRNGs stand out due to their simpler circuits and lower power consumption- thus leading us into a case study involving electroless YMnO3 (YMO) memristors as TRNG entropy sources that demonstrate good security properties by being able to produce unpredictable random numbers effectively. The end of our analysis sees us pinpointing challenges: post-processing algorithm optimization coupled with ensuring reliability over time for memristor-based TRNGs aimed at next-generation security applications.
  • Thumbnail Image
    ItemOpen Access
    Steered fiber orientation : correlating orientation and residual tensile strength parameters of SFRC
    (2022) Medeghini, Filippo; Guhathakurta, Jajnabalkya; Tiberti, Giuseppe; Simon, Sven; Plizzari, Giovanni A.; Mark, Peter
    Adding steel fibers to concrete improves the post-cracking tensile strength of the composite material due to fibers bridging the cracks. The residual performance of the material is influenced by fiber type, content and orientation with respect to the crack plane. The latter is a main issue in fiber-reinforced concrete elements, since it significantly influences the structural behavior. The aim of this research is to develop a tailor-made composite material and casting method to orient fibers in order to optimize the performance of the material for structural applications. To this aim, a mechanized concreting device that induces such preferred fiber orientation is designed and fabricated. It uses vibration and a series of narrow channels to guide and orient fibers. A composite with oriented fibers is produced using a hybrid system of macro and micro fibers and high-performance concrete. From the same concrete batch, specimens are cast both with and without the fiber orientation device, obtaining different levels of fiber orientation. Three-point bending tests are performed to measure and compare the residual tensile strength capacities with standard specimens cast according to EN 14651. Elements with favorable fiber orientation show a significant increase in residual tensile strength with respect to the standard beams. Finally, computed tomography and an electromagnetic induction method are employed to better assess the orientation and distribution of fibers in the beams. Their results are in good agreement and enable to link the residual tensile strength parameters with fiber orientation.
  • Thumbnail Image
    ItemOpen Access
    Cryogenic embedded system to support quantum computing : from 5-nm FinFET to full processor
    (2023) Genssler, Paul R.; Klemme, Florian; Parihar, Shivendra Singh; Brandhofer, Sebastian; Pahwa, Girish; Polian, Ilia; Chauhan, Yogesh Singh; Amrouch, Hussam
  • Thumbnail Image
    ItemOpen Access
    Cryogenic in-memory computing for quantum processors using commercial 5-nm FinFETs
    (2023) Parihar, Shivendra Singh; Thomann, Simon; Pahwa, Girish; Chauhan, Yogesh Singh; Amrouch, Hussam