05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Mitigating the amorphization of perovskite layers by using atomic layer deposition of alumina
    (2025) Kedia, Mayank; Das, Chittaranjan; Kot, Malgorzata; Yalcinkaya, Yenal; Zuo, Weiwei; Tabah Tanko, Kenedy; Matvija, Peter; Ezquer, Mikel; Cornago, Iñaki; Hempel, Wolfram; Kauffmann, Florian; Plate, Paul; Lira-Cantu, Monica; Weber, Stefan A. L.; Saliba, Michael
    Atomic layer deposition of aluminum oxide (ALD-Al2O3) layers has recently been studied for stabilizing perovskite solar cells (PSCs) against environmental stressors, such as humidity and oxygen. In addition, the ALD-Al2O3 layer acts as a protective barrier, mitigating pernicious halide ion migration from the perovskite towards the hole transport interface. However, its effectiveness in preventing the infiltration of ions and additives from the hole-transport layer into perovskites remains insufficiently understood. Herein, we demonstrate the deposition of a compact ultrathin (∼0.75 nm) ALD-Al2O3 layer that conformally coats the morphology of a triple-cation perovskite layer. This promotes an effective contact of the hole transporter layer on top of the perovskite, thereby improving the charge carrier collection between these two layers. Upon systematically investigating the layer-by-layer structure of the PSC, we discovered that ALD-Al2O3 also acts as a diffusion barrier for the degraded species from the adjacent transport layer into the perovskite. In addition to these protective considerations, ALD-Al2O3 impedes the transition of crystalline perovskites to an undesired amorphous phase. Consequently, the dual functionality (i.e., enhanced contact and diffusion barrier) of the ALD-Al2O3 protection enhanced the device performance from 19.1% to 20.5%, while retaining 98% of its initial performance compared to <10% for pristine devices after 1500 h of outdoor testing under ambient conditions. Finally, this study deepens our understanding of the mechanism of ALD-Al2O3 as a two-way diffusion barrier, highlighting the multifaceted role of buffer layers in interfacial engineering for the long-term stability of PSCs.
  • Thumbnail Image
    ItemOpen Access
    Solar cells with laser doped boron layers from atmospheric pressure chemical vapor deposition
    (2022) Zapf-Gottwick, Renate; Seren, Sven; Fernandez-Robledo, Susana; Wete, Evariste-Pasky; Schiliro, Matteo; Hassan, Mohamed; Mihailetchi, Valentin; Buck, Thomas; Kopecek, Radovan; Köhler, Jürgen; Werner, Jürgen H.
    We present laser-doped interdigitated back contact (IBC) solar cells with efficiencies of 23% on an area of 244 cm2 metallized by a screen-printed silver paste. Local laser doping is especially suited for processing IBC cells where a multitude of pn-junctions and base contacts lay side by side. The one-sided deposition of boron-doped precursor layers by atmospheric pressure chemical vapor deposition (APCVD) is a cost-effective method for the production of IBC cells without masking processes. The properties of the laser-doped silicon strongly depend on the precursor’s purity, thickness, and the total amount of boron dopants. Variations of the precursor in terms of thickness and boron content, and of the laser pulse energy density, can help to tailor the doping and sheet resistance. With saturation-current densities of 70 fA/cm2 at sheet resistances of 60 Ohm/sq, we reached maximum efficiencies of 23% with a relatively simple, industrial process for bifacial IBC-cells, with 70% bifaciality measured on the module level. The APCVD-layers were deposited with an inline lab-type system and a metal transport belt and, therefore, may have been slightly contaminated, limiting the efficiencies when compared to thermal-diffused boron doping. The use of an industrial APCVD system with a quartz glass transport system would achieve even higher efficiencies.