05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
27 results
Search Results
Item Open Access Ionenassistierte Deposition von Siliciumschichten(2001) Oberbeck, Lars; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Die vorliegende Arbeit untersucht die Wachstumsvorgänge sowie die strukturellen und elektrischen Eigenschaften von Si-Epitaxieschichten aus der ionenassistierten Deposition (IAD). Bei der IAD werden Si-Atome durch einen Elektronenstrahlverdampfer bereitgestellt und in der Gasphase durch Elektronenemission aus einem Glühdraht teilweise ionisiert; der Ionisationsgrad beträgt ca. 1 %. Eine angelegte Spannung beschleunigt diese Si+ Ionen zum Substrat hin. Die Ko-Evaporation von Bor bzw. Phosphor ermöglicht die in-situ Dotierung der Epitaxieschichten zur Herstellung von pn-Übergängen. Die epitaktische Abscheidung von Si mittels IAD ist auf beliebigen Substratorientierungen möglich. Die Defektdichte und die Minoritätsträgerdiffusionslänge hängen aber stark von der Substratorientierung und der Beschleunigungsspannung ab. Dieses Ergebnis ist auf Unterschiede in der Oberflächenrekonstruktion und in den Aktivierungsenergien für atomare Diffusionsprozesse zurückzuführen. Bei der Betrachtung der Wachstumsmechanismen bei der IAD müssen zwei Temperaturbereiche unterschieden werden: Im Temperaturbereich < 400 °C unterstützen interstitielle Atome das epitaktische Wachstum, bei höheren Temperaturen dominiert die direkte Erhöhung der Adatommobilität durch Ionenbeschuß der Wachstumsoberfläche. Die optimale Ionenenergie liegt im Bereich 8 ... 20 eV für (100)-orientierte Epitaxieschichten. Diese Arbeit vertieft wesentlich das Verständnis der Wachstumsvorgänge bei der ionenassistierten Deposition von Si-Epitaxieschichten bei Depositionstemperaturen unterhalb von 650 °C und bietet erstmals eine grundlegende Evaluierung des Potentials von Si-Niedertemperaturepitaxieschichten. Eine umfassende Untersuchung struktureller und elektrischer Eigenschaften der Epitaxieschichten hat zur Herstellung von Schichten mit sehr guten Majoritäts- und Minoritätsträgereigenschaften bei einer Rekord-Depositionsrate von 0,8 µm/min geführt.Item Open Access Pressure characteristics and chemical potentials of constrained LiFePO4/C6 cells(2018) Singer, Jan Patrick; Kropp, Timo; Kuehnemund, Martin; Birke, Kai PeterConstraining lithium-ion cells increases the cyclic lifetime. However, depending on an expected volume expansion during charge and discharge cycling, defining the optimal constraining pressure range is not straightforward. In this study, we investigate a lithium iron phosphate/graphite pouch cell at four initial constraining pressure levels. As a function of C-Rate, the thermodynamic principle of the non-monotonic pressure curve during full charge and discharge cycles is evaluated. Using the rubber balloon model to calculate the chemical potential of lithium iron phosphate and discussing the relationship between the chemical potential and pressure, we illustrate the pressure curve qualitatively. By applying differential pressure analysis, we evaluate the resulting pressure curves of a single graphite stage. Approaching a fundamental understanding of reduced cycling lifetime of full cells with unknown material composition, we allocate the stages and stage transitions of graphite as well as the phase transition of lithium iron phosphate. Local extreme values in the differential pressure analysis indicate phase and stage transitions. These values can identify critical operating conditions that should be considered for defining the optimum initial constraining pressure range.Item Open Access Quantifizierende Elektrolumineszenz für Silizium-Solarzellen und -module(2019) Kropp, Timo; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Diese Arbeit präsentiert zwei neue Messmethoden auf Basis der Elektrolumineszenz zur Charakterisierung von Solarzellen und -modulen. Beide Methoden nutzen die Strominjektion, um ein Lumineszenzbild zu quantifizieren. Der Unterschied zwischen den Methoden besteht in der zeitlichen Variation der Strominjektion bzw. Stromextraktion. Bei der gepulsten Strominjektion sowie -extraktion hängt der zeitliche Verlauf der resultierenden Elektrolumineszenz von der effektiven Ladungsträgerlebensdauer in der untersuchten Solarzelle ab. Die eingeführte analytische Beschreibung der normierten periodischen Intensitätsdifferenz zwischen zwei unterschiedlich strommodulierten Lumineszenzbildern ist unabhängig von der Belichtungszeit der Bildaufnahme. Bei der zeitlich konstanten Strominjektion ist die Amplitude der Lumineszenzintensität zusätzlich durch den lokalen Serienwiderstand bzw. Parallelwiderstand einer Solarzelle bestimmt. Die zweite entwickelte Methode dieser Arbeit ist in der Lage, Leistungsverluste von Photovoltaikmodulen durch mechanische Defekte sowie potentialinduzierte Degradation anhand eines einzelnen Lumineszenzbildes quantitativ zu bewerten. Der durch einen Defekt hervorgerufene Leistungsverlust gegenüber der ursprünglich nach dem Datenblatt verfügbaren Leistung wird präzise vorhergesagt.Item Open Access a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base(2010) Rostan, Philipp Johannes; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-μc-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 °C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency η = 21.0 % with an open circuit voltage Voc = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm². An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency η = 19.3 % with an open circuit voltage Voc = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm². Analysis of the internal quantum efficiency shows that both types of back contacts lead to effective diffusion lengths in excess of 600 μm. An extended fill factor analysis shows that fill factor limitations for the full-area a-Si:H/c-Si contacts result from non-ideal diode behavior, ascribed to the injection dependence of the heterojunction interface recombination velocity. Analysis of the external quantum efficiency under back side illumination with different bias light intensities delivers the effective surface recombination Seff(Φ) in dependance of the illumination intensity Φ. The front contact (emitter) uses a sequence of intrinsic and phosphorous doped amorphous silicon layers together with a ZnO:Al or a SnO2:In layer and an Al front contact grid. The emitter is prepared at a maximum temperature of 220 °C. Measurements of the minority carrier lifetime on symmetric i/n-a-Si:H coated wafers judge the emitter passivation quality. The best solar cells that use a thermal oxide back side passivation with Al-point contacts and flat a-Si:H emitters have open circuit voltages up to 683 mV and efficiencies up to 17.4 %. The efficiency of such devices is limited by a low short circuit current due to the flat front side. Using the same back contact structure with random pyramid textured wafer front sides and a-Si:H emitters yields open circuit voltages up to 660 mV and efficiencies up to 18.5 %, sofar limited by a relatively low fill factor FF ≤ 74.3 %. Analysis of the external quantum efficiency underlines the excellent surface passivation properties of the amorphous emitter. Combining both, amorphous front- and back contacts yields p-type heterojunction solar cells completely fabricated at temperatures below 220 °C. The best devices reach an open circuit voltage Voc = 678 mV and an efficiency η = 18.1 % with random textured wafers, limited by low fill factors FF ∼ 75 %. Besides the cell fabrication and characterization, this thesis reveals that the inherent a-Si:H/c-Si band offset distribution with a low conduction band offset and a large valence band offset is disadvantageous for p-c-Si heterojuntion solar cells if compared to their n-c-Si counterparts. A calculation of the saturation current densities of the cell's emitter, bulk and back contact demonstrates that the n-a-Si:H/p-c-Si emitter suffers from a low built-in potential. Modelling of the back contact based on the charge carrier transport equations shows that the insertion of an i-a-Si:H layer with a thickness d ≥ 3 nm (that is mandatory for a high surface passivation quality) leads to a series resistance that is critical for usage in a solar cell. The model mainly ascribes the high back contact resistance to the large valence band offset at the heterojunction.Item Open Access Mobility and homogeneity effects on the power conversion efficiency of solar cells(2008) Mattheis, Julian; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)The thesis on hand investigates the interplay between detailed radiation balances and charge carrier transport. The first part analyzes the role of limited carrier transport for the efficiency limits of $pn$-junction solar cells. The second part points out the influence of transport on the absorption and emission of light in inhomogeneous semiconductors. By incorporating an integral term that accounts for the repeated internal emission and reabsorption of photons (the so-called photon recycling) into the diffusion equation for the minority carriers, the first part of the thesis develops a self-consistent model that is capable of describing the power conversion efficiencies of existing devices as well as of devices in the radiative recombination limit. It is shown that the classical diode theory without the inclusion of photon recycling produces accurate results only if the minority carrier lifetime is at least ten times smaller than the radiative lifetime. The thesis shows that even in the radiative recombination limit, charge carrier transport is extremely important. The thesis thus presents a universal criterion that needs to be fulfilled by any photovoltaic material in order to obtain high power conversion efficiency. The numerical results are analyzed and compared to an analytical approximation. The thesis applies the developed model to solar cells made of crystalline silicon, amorphous silicon and Cu(In,Ga)Se$_2$ (CIGS). It shows that crystalline silicon solar cells neither have transport problems in the radiative recombination limit nor in existing devices. In Cu(In,Ga)Se$_2$ solar cells, mobilities are at most two orders of magnitude above the critical mobility and guarantee complete carrier collection only close to the radiative limit. The second part of the thesis investigates the role of carrier transport for the absorption and emission of light in semiconductors with band gap fluctuations. The chapter develops an analytical statistical model to describe the absorption and emission spectra of such inhomogeneous semiconductors. Particular emphasis is placed on the role of the length-scale of the band gap fluctuations. As it turns out, the crucial quantity with respect to the emission spectrum is the ratio of the charge carrier transport length and the length-scale of the band gap fluctuations. Both, absorption edge and emission peak are broadened by band gap fluctuations. Comparison with numerical simulations underlines the importance of the fluctuation length in relation to the diffusion length. The model is applied to experimental absorption and photoluminescence data of Cu(In,Ga)Se$_2$ thin films with varying gallium content. The ternary compounds CuInSe$_2$ and CuGaSe$_2$ exhibit the smallest magnitude of fluctuations with standard deviations in the range of $20-40 \meV$. The fact that the quaternary compounds show standard deviations of up to $65 \meV$ points to alloy disorder as one possible source of band gap fluctuations. All observed fluctuations occur on a very small length scale that is at least ten times smaller than the electron diffusion length of approximately $1 \mum$.Item Open Access Jahresenergieerträge unterschiedlicher Photovoltaik-Technologien bei verschiedenen klimatischen Bedingungen(2010) Zinßer, Bastian; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Es ist sowohl für Ingenieure als auch für Investoren sehr wichtig zu wissen, welche Energiemenge E [kWh] eine Photovoltaik(PV)-Anlage im realen Betrieb ins Stromnetz einspeist. Hintergrund ist meist die Frage nach den Kosten für den Solarstrom in €ct/kWh. Das Datenblatt gibt den Wirkungsgrad von PV-Modulen meist nur für Standardtestbedingungen im Labor an. In der Praxis verursachen erhöhte Modultemperaturen T, schwächere Einstrahlung G und ein anderes Spektrum des Lichts Abweichungen vom Wirkungsgrad unter Standardtestbedingungen; letztere kommen im realen Betrieb in Deutschland praktisch nie vor. In sonnigeren, südlichen Ländern variieren die Betriebsbedingungen noch stärker als in Deutschland, wodurch die Auswirkungen solcher Variationen auf den Jahresenergieertrag E_Jahr dort größer sind. Zur Klärung der Frage, welche PV-Technologie unter welchen klimatischen Bedingungen den höchsten Jahresenergieertrag E_Jahr erzeugt, wurden im Rahmen dieser Dissertation dreizehn verschiedene PV-Systeme unterschiedlicher Technologie in Stuttgart, Nikosia und Kairo aufgebaut und mit einer umfangreichen Messtechnik für Wetter- und Systemdaten ausgestattet. Dabei kommen sowohl mono- und multikristallines Silizium (Si) als auch verschiedene Dünnschicht-Technologien (amorphes-Si, Cu(InGa)Se2 (CIGS) und CdTe) zum Einsatz. Diese Arbeit untersucht mehrere Möglichkeiten, den Jahresenergieertrag einer PV-Anlage im Voraus zu bestimmen und vergleicht die modellierten Erträge mit den tatsächlich gemessenen. Die Felddatenauswertung bestätigt die in der Literatur oft genannten, besseren Temperaturkoeffizienten der Dünnschicht-Technologien. Die HIT-Technologie zeigt ein besseres Schwachlichtverhalten gegenüber den übrigen kristallinen Si-Technologien, die alle ein ähnliches Schwachlichtverhalten zeigen. Die CIGS-Technologie weist im Feld ein zum Labor entgegengesetztes Schwachlichtverhalten auf. Im Feld zeigen die amorphen Si- und CdTe-Technologien ein deutlich günstigeres Schwach-lichtverhalten als die kristallinen Si-Module. Den größten Einfluss auf die Bestimmung des Jahresenergieertrages E_Jahr hat, neben der örtlichen Einstrahlung G und Verschmutzung, die Toleranz der Nominalleistung P_STC der PV-Module. Nimmt man eine übliche Toleranz von ±2 bis 6% mit einem zusätzlichen Fehler von ±2% bei der Energiemessung an, so können sich zwei PV-Systeme um bis zu 8 bis 16% im Jahresenergieertrag E_Jahr unterscheiden, ohne dass dies auf die PV-Technologie zurückgeführt werden kann. Die PV-Anlagen erzeugen in Stuttgart im langjährigen Mittel einen Jahresenergieertrag E_Jahr von ca. 1000 kWh/kWp. In Nikosia ist der Ertrag mit ca. 1650 kWh/kWp um 65% größer. In Kairo beträgt der Jahresenergieertrag E_Jahr aufgrund starker Verschmutzung durch Sandstaub lediglich ca. 1300 kWh/kWp. Nach zwei Monaten vermindert der Staub die Leistung um 25%, so dass in Kairo eine regelmäßige Reinigung der Module unerlässlich ist. Als wesentliches Ergebnis dieser Arbeit lässt sich feststellen, dass die vom Hersteller angegebene Nominalleistung P_STC mit ihren Toleranzen, neben der Verschmutzung, den größten Einfluss auf den normierten Jahresenergieertrag E_Jahr einer Photovoltaikanlage hat. Die Effekte durch ein besseres Temperatur- und/oder besonders durch das Schwachlichtverhalten gehen bisher meist in den Toleranzen der Nominalleistung P_STC unter. Dennoch zeigt der Technologievergleich, dass die meisten Dünnschicht-Module und die HIT-Technologie ein besseres Temperatur- und Schwachlichtverhalten aufweisen und an wärmeren Standorten zu höheren Erträgen tendieren. Sobald exaktere Nominalleistungsbestimmungen möglich sind, werden die in dieser Arbeit entwickelten Methoden die Unterschiede im Temperatur- und Schwachlichtverhalten deutlich besser analysieren können.Item Open Access Models for transient simulations of decentral power generation : implementation and verification in PowerFactory(2005) Braun, MartinAs part of the Institut für Solare Energieversorgungstechnik (ISET) e.V. in Kassel, the Design Center for Modular Supply Technology (DeMoTec) has the facilities for testing a variety of low-voltage power grid configurations. These configurations consist of decentralized power generation components in the kilowatt range. Transient simulations of components and grid configurations with MATLAB/Simulink, ATP-EMTP and SIMPLORER support research activities in this field. The aim of this work is to add a fourth tool - PowerFactory - which offers additional features for this application. All four simulation tools have their own specific characteristics which make them most suitable for particular applications. This work investigates the features of PowerFactory developed by DIgSILENT. The investigation uses components for grid configurations which are available in DeMoTec in order to verify the results of the simulations by measurements. The island grids which are investigated comprise three components: a bi-directional battery inverter which is able to form a grid, an asynchronous generator which simulates the feed-in of wind power, and a load which represents consumers and their consumption behaviour. In order to allow these components to be used in PowerFactory, this work presents the following three parts for the implementation of the components' models: 1) PowerFactory does not comprise a generic model for a battery inverter. However, single phase models in MATLAB/Simulink and ATP-EMTP are available which deliver details for the development of a PowerFactory model. For the implementation, the available models are enhanced to a three phase model and adjusted to the simulation environment of PowerFactory. 2) PowerFactory comprises a model for asynchronous generators. This generic model is adjusted to the considered asynchronous generator in DeMoTec. The electrical parameters of the analysed asynchronous generator are measured for this adjustment process and an optimisation process is performed to determine best fitting parameters. 3) A generic model for loads is available in PowerFactory. It is adjusted to correspond to the loads used in DeMoTec. The models implemented in PowerFactory form different configurations of island grids. Within these island grids, PowerFactory simulates characteristic load changes. The selected components enable measurements of the same load changes in the same grid configurations in DeMoTec. A comparison of the measured and simulated data shows a good congruence with few deviations. This thesis uses the power system analysis tool PowerFactory from DIgSILENT for transient simulations of decentralised power generation components in low-voltage grids which operate with a variable frequency and a variable voltage. Moreover, this thesis verifies the simulation results and illustrates their quality by comparing measured data at DeMoTec with simulated data using PowerFactory. Finally, one of the advantages of this simulation tool is presented by simulating a large grid configuration which is not available in the limited laboratory environment of DeMoTec.Item Open Access Boron partitioning coefficient above unity in laser crystallized silicon(2017) Lill, Patrick C.; Dahlinger, Morris; Köhler, Jürgen R.Item Open Access Transfersolarzellen aus monokristallinem Dünnschichtsilicium(2004) Rinke, Titus J.; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Die vorliegende Arbeit untersucht die Technologie zum Transfer einkristalliner Si-Schichten für Bauelementanwendungen. Im Vordergrund steht dabei die Verwendung der transferierten Schichten als Absorber in monokristallinen Si-Dünnschichtsolarzellen auf Glas. Die im Rahmen dieser Arbeit entwickelte Technologie kombiniert die hohe Qualität von einkristallinem Silicium mit der Material sparenden Dünnschichttechnik, um hohe Konversionswirkungsgrade bei geringem Materialverbrauch zu ermöglichen. Der zugrunde liegende Kreisprozess stellt auf einem einkristallinen Si-Wafer einen epitaktischen, monokristallinen Si-Film her, der nach der Prozessierung der Bauelemente auf ein Fremdsubstrat übertragen wird, wodurch der Si-Wafer für weitere Prozesszyklen zur Verfügung steht. Elektrochemisch hergestelltes poröses Si bildet nach einer Kristallisation bei Temperaturen um T = 1000 °C einen Si-Film mit eingeschlossenen Hohlräumen. Wegen der Anwesenheit von Hohlräumen in dem ansonsten einkristallinen Material, ähnlich dem Aussehen eines Schweizer Käses, nennen wir dieses Material „quasi-monokristallines Silicium“, kurz QMS. Die Morphologie des QMS lässt sich durch die Herstellungsparameter in einem weiten Bereich einstellen. Eine Bor-Dotierung im Bereich NA = 10^17 cm-3 führt zu einer hohen Porosität und nach der Kristallisation zu schlauchförmigen Hohlräumen einer typischen Größe von d = 1 ... 2 µm. Bei einer Bor-Dotierung im Bereich NA = 10^19 cm-3 liegt die Porosität, bei einer Ätzstromdichte von Jätz = 12 mA cm-2, bei ca. P = 20% und bildet nach der Kristallisation Hohlräume mit einer Größe von d = 50 ... 100 nm. Stellt man sehr dünne (d < 1 µm), poröse Si-Filme her, so ist deren Struktur nach der Kristallisation durch Ausdiffusion von Hohlräumen weitgehend kompakt. Die Hohlräume in den QMS-Schichten sind in Abhängigkeit ihrer Größe facettiert. Die inneren Oberflächen von kleinen Hohlräumen bestehen aus (111)- und etwas verrundeten (100)-Facetten und bilden die Form eines Tetrakaidekahedrons, eines Körpers mit 14 Flächen. Bei größeren Hohlräumen findet man mit der Transmissionselektronenmikroskopie neben (111)- und (100)- Facetten zusätzlich höherindizierte Facetten. Die Porosität des porösen Siliciums lässt sich durch die Ätzstromdichte einstellen, wodurch die Herstellung einer porösen Doppelschicht mit einer oberflächennahen niederporösen und einer vergrabenen hochporösen Schicht möglich ist. Bei der Kristallisation bildet sich durch morphologische Umordnung aus dieser Doppelschicht ein QMS-Film auf einer - mechanisch schwachen - sogenannten Trennschicht. Chemische Gasphasenabscheidung (CVD) bei T = 1100 °C erzeugt unter optimierten Bedingungen auf dem QMS-Film eine Epitaxieschicht mit einer Defektdichte von weniger als nDef = 1000 cm-2. Die geringe Defektdichte in den Epitaxieschichten ermöglicht nach der Herstellung und dem Transfer von Solarzellen einen Konversionswirkungsgrad von bis zu eta = 15.3 %. Dieser Wirkungsgrad ist der weltweit höchste, der mit Solarzellen auf der Basis von kristallinem Dünnschichtsilicium auf Glas bisher erreicht wurde. Diese Solarzellen haben eine Gesamtdicke von d = 24.5 µm und sind in einer Superstrat-Konfiguration unter einem Glassubstrat angeordnet. Eine neuartige Modultechnologie ermöglicht eine einfache, integrierte Serienverschaltung durch selbstjustierende, schräggerichtete Deposition. Mit dieser Modultechnologie lassen sich Dünnschichtsilicium-Transfersolarzellen zu Solarmodulen verschalten. Die ersten nach dieser Methode hergestellten Zwei-Zellen-Mini-Module zeigen einen Füllfaktor von FF = 75.3% und eine Leerlaufspannung von V0C = 1169 mV. Diese Verschaltungstechnik ist nicht nur vielversprechend für transferierte Solarzellen, sondern eignet sich auch zur integrierten Serienverschaltung von Solarzellen auf der Basis von Cu(In,Ga)Se2. Diese Arbeit vertieft das Verständnis der Vorgänge bei der Kristallisation von porösem Silicium und bietet erstmals eine grundlegende Evaluierung des Potentials von transferierbaren, einkristallinen Silicium-Dünnfilmen. Eine umfassende Untersuchung der strukturellen und technologischen Möglichkeiten hat zur Herstellung von Dünnschichtsolarzellen geführt, deren Wirkungsgrad mit ca. 20 mal dickeren Solarzellen aus heutigen Produktionslinien vergleichbar ist.Item Open Access Measuring test bench with adjustable thermal connection of cells to their neighbors and a new model approach for parallel-connected cells(2019) Fill, Alexander; Mader, Tobias; Schmidt, Tobias; Llorente, Raphael; Birke, Kai PeterThis article presents a test bench with variable temperature control of the individual cells connected in parallel. This allows to reconstruct arising temperature gradients in a battery module and to investigate their effects on the current distribution. The influence of additional contact resistances induced by the test bench is determined and minimized. The contact resistances are reduced from 𝑅Tab+=81.18 μΩ to 𝑅Tab+=55.15 μΩ at the positive respectively from 𝑅Tab-=35.59 μΩ to 𝑅Tab-=28.2 μΩ at the negative tab by mechanical and chemical treating. An increase of the contact resistance at the positive tab is prevented by air seal of the contact. The resistance of the load cable must not be arbitrarily small, as the cable is used as a shunt for current measurement. In order to investigate their impacts, measurements with two parallel-connected cells and different load cables with a resistance of 𝑅Cab+=0.3 mΩ, 𝑅Cab+=1.6 mΩ and 𝑅Cab+=4.35 mΩ are conducted. A shift to lower current differences with decreasing cable resistance but qualitatively the same dynamic of the current distribution is found. An extended dual polarization model is introduced, considering the current distribution within the cells as well as the additional resistances induced by the test bench. The model shows a high correspondence to measurements with two parallel-connected cells, with a Root Mean Square Deviation (RMSD) of 𝜉RMSD=0.083 A.
- «
- 1 (current)
- 2
- 3
- »