05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
2 results
Search Results
Item Open Access Multi-material blind beam hardening correction in near real-time based on non-linearity adjustment of projections(2023) Alsaffar, Ammar; Sun, Kaicong; Simon, SvenBeam hardening (BH) is one of the major artifacts that severely reduces the quality of computed tomography (CT) imaging. This BH artifact arises due to the polychromatic nature of the X-ray source and causes cupping and streak artifacts. This work aims to propose a fast and accurate BH correction method that requires no prior knowledge of the materials and corrects first and higher-order BH artifacts. This is achieved by performing a wide sweep of the material based on an experimentally measured look-up table to obtain the closest estimate of the material. Then, the non-linearity effect of the BH is corrected by adding the difference between the estimated monochromatic and the polychromatic simulated projections of the segmented image. The estimated polychromatic projection is accurately derived using the least square estimation (LSE) method by minimizing the difference between the experimental projection and the linear combination of simulated polychromatic projections. As a result, an accurate non-linearity correction term is derived that leads to an accurate BH correction result. The simulated projections in this work are performed using a multi-GPU-accelerated forward projection model which ensures a fast BH correction in near real-time. To evaluate the proposed BH correction method, we have conducted extensive experiments on real-world CT data. It is shown that the proposed method results in images with improved contrast-to-noise ratio (CNR) in comparison to the images corrected from only the scatter artifacts and the BH-corrected images using the state-of-the-art empirical BH correction method.Item Open Access Hardware-efficient preparation of architecture-specific graph states on near-term quantum computers(2025) Brandhofer, Sebastian; Polian, Ilia; Barz, Stefanie; Bhatti, DanielHighly entangled quantum states are an ingredient in numerous applications in quantum computing. However, preparing these highly entangled quantum states on currently available quantum computers at high fidelity is limited by ubiquitous errors. Besides improving the underlying technology of a quantum computer, the scale and fidelity of these entangled states in near-term quantum computers can be improved by specialized compilation methods. In this work, the compilation of quantum circuits for the preparation of highly entangled architecture-specific graph states is addressed by defining and solving a formal model, i.e., a form of discrete constraint optimization. Our model incorporates information about gate cancellations, gate commutations, and accurate gate timing to determine an optimized graph state preparation circuit. Up to now, these aspects have only been considered independently of each other, typically applied to arbitrary quantum circuits. We quantify the quality of a generated state by performing stabilizer measurements and determining its fidelity. We show that our new method reduces the error when preparing a seven-qubit graph state by 3.5x on average compared to the state-of-the-art Qiskit solution. For a linear eight-qubit graph state, the error is reduced by 6.4x on average. The presented results highlight the ability of our approach to prepare higher fidelity or larger-scale graph states on gate-based quantum computing hardware.