05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Stress-aware periodic test of interconnects
    (2022) Sadeghi-Kohan, Somayeh; Hellebrand, Sybille; Wunderlich, Hans-Joachim
    Safety-critical systems have to follow extremely high dependability requirements as specified in the standards for automotive, air, and space applications. The required high fault coverage at runtime is usually obtained by a combination of concurrent error detection or correction and periodic tests within rather short time intervals. The concurrent scheme ensures the integrity of computed results while the periodic test has to identify potential aging problems and to prevent any fault accumulation which may invalidate the concurrent error detection mechanism. Such periodic built-in self-test (BIST) schemes are already commercialized for memories and for random logic. The paper at hand extends this approach to interconnect structures. A BIST scheme is presented which targets interconnect defects before they will actually affect the system functionality at nominal speed. A BIST schedule is developed which significantly reduces aging caused by electromigration during the lifetime application of the periodic test.
  • Thumbnail Image
    ItemOpen Access
    Printed temperature sensor array for high-resolution thermal mapping
    (2022) Bücher, Tim; Huber, Robert; Eschenbaum, Carsten; Mertens, Adrian; Lemmer, Uli; Amrouch, Hussam
    Fully-printed temperature sensor arrays - based on a flexible substrate and featuring a high spatial-temperature resolution - are immensely advantageous across a host of disciplines. These range from healthcare, quality and environmental monitoring to emerging technologies, such as artificial skins in soft robotics. Other noteworthy applications extend to the fields of power electronics and microelectronics, particularly thermal management for multi-core processor chips. However, the scope of temperature sensors is currently hindered by costly and complex manufacturing processes. Meanwhile, printed versions are rife with challenges pertaining to array size and sensor density. In this paper, we present a passive matrix sensor design consisting of two separate silver electrodes that sandwich one layer of sensing material, composed of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). This results in appreciably high sensor densities of 100 sensor pixels per cm 2for spatial-temperature readings, while a small array size is maintained. Thus, a major impediment to the expansive application of these sensors is efficiently resolved. To realize fast and accurate interpretation of the sensor data, a neural network (NN) is trained and employed for temperature predictions. This successfully accounts for potential crosstalk between adjacent sensors. The spatial-temperature resolution is investigated with a specially-printed silver micro-heater structure. Ultimately, a fairly high spatial temperature prediction accuracy of 1.22  °C is attained.