05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    ItemOpen Access
    Quantitative analysis of the sensitivity of UHF sensor positions on a 420 kV power transformer based on electromagnetic simulation
    (2019) Beura, Chandra Prakash; Beltle, Michael; Tenbohlen, Stefan; Siegel, Martin
    With an increasing interest in ultra-high frequency (UHF) partial discharge (PD) measurements for the continuous monitoring of power transformers, it is necessary to know where to place the UHF sensors on the tank wall. Placing a sensor in an area with many obstructions may lead to a decrease in sensitivity to the UHF signals. In this contribution, a previously validated simulation model of a three-phase 300 MVA, 420 kV power transformer is used to perform a sensitivity analysis to determine the most sensitive sensor positions on the tank wall when PD activity occurs inside the windings. A matrix of UHF sensors located on the transformer tank is used to perform the sensitivity analysis. Some of the windings are designed as layer windings, thus preventing the UHF signals from traveling through them and creating a realistic situation with very indirect propagation from source to sensor. Based on these findings, sensor configurations optimized for UHF signal sensitivity, which is also required for PD source localization, are recommended for localization purposes. Additionally, the propagation and attenuation of the UHF signals inside the windings and the tank are discussed in both oil and air.
  • Thumbnail Image
    ItemOpen Access
    Classification of superimposed partial discharge patterns
    (2021) Adam, Benjamin; Tenbohlen, Stefan
    Phase resolved partial discharge patterns (PRPD) are routinely used to assess the condition of power transformers. In the past, classification systems have been developed in order to automate the fault identification task. Most of those systems work with the assumption that only one source is active. In reality, however, multiple PD sources can be active at the same time. Hence, PRPD patterns can overlap and cannot be separated easily, e.g., by visual inspection. Multiple PD sources in a single PRPD represent a multi-label classification problem. We present a system based on long short-term memory (LSTM) neural networks to resolve this task. The system is generally able to classify multiple overlapping PRPD by while only being trained by single class PD sources. The system achieves a single class accuracy of 99% and a mean multi-label accuracy of 43% for an imbalanced dataset. This method can be used with overlapping PRPD patterns to identify the main PD source and, depending on the data, also classify the second source. The method works with conventional electrical measuring devices. Within a detailed discussion of the presented approach, both its benefits but also its problems regarding different repetition rates of different PD sources are being evaluated.
  • Thumbnail Image
    ItemOpen Access
    Compatibility study of silicone rubber and mineral oil
    (2021) Karambar, Smitha; Tenbohlen, Stefan
    In this study, three types of silicone rubbers, namely, insulative silicone rubber, conductive silicone rubber and silicone rubber with conductive as well as insulative layers are investigated for their compatibility with mineral oil. Mineral oil with different silicone rubber samples is thermally aged at 130 °C for 360 h, 720 h and 1080 h and at 23 °C, 98 °C and 130 °C for 360 h. At the end of each ageing interval, mineral oil and oil-impregnated silicone rubbers are investigated for their dielectric properties. Aged mineral oil samples are investigated for their moisture content, breakdown voltage, colour number, dissolved gases and total acid number, whereas solid insulation samples are investigated for their moisture content. Additionally, pressboard samples in mineral oil and mineral oil without any solid insulation materials are also aged under the same conditions and are investigated for their dielectric properties. From the obtained results, it can be assessed that the presence of carbon particles in conductive silicone rubber negatively impacts the dielectric properties of mineral oil. Among the investigated silicone rubbers, the insulative silicone rubber exhibits good compatibility with mineral oil and a strong potential for being used in mineral oil.
  • Thumbnail Image
    ItemOpen Access
    Frequency range of UHF PD measurements in power transformers
    (2023) Tenbohlen, Stefan; Beura, Chandra Prakash; Sikorski, Wojciech; Albarracín Sánchez, Ricardo; Albuquerque de Castro, Bruno; Beltle, Michael; Fehlmann, Pascal; Judd, Martin; Werner, Falk; Siegel, Martin
    Although partial discharge (PD) measurement is a well-accepted technology to assess the quality of the insulation system of power transformers, there are still uncertainties about which frequency range PDs radiate and which frequency range should be evaluated in a measurement. This paper discusses both a UHF PD frequency range obtained from studies investigating laboratory experiments and a frequency range from numerous practical use cases with online and on-site measurements. The literature review reveals a frequency spectrum of ultrahigh-frequency (UHF) PD measurements in the range of 200 MHz to 1 GHz for most publications. Newer publications extend this range from 3 to 6 GHz. The use cases present UHF PD measurements at transformers with power ratings up to 1000 MVA to determine frequency ranges which are considered effective for practical applications. The “common” frequency range, where measurements from all use cases provide signal power, is from approximately 400 MHz to 900 MHz, but it is noted that the individual frequency range, as well as the peak UHF signal power, strongly varies from case to case. We conclude from the discussed laboratory experiments and practical observations that UHF PD measurements in power transformers using either valve or window antennas, according to Cigré, are feasible methods to detect PD.
  • Thumbnail Image
    ItemOpen Access
    Transformer winding condition assessment using feedforward artificial neural network and frequency response measurements
    (2021) Tahir, Mehran; Tenbohlen, Stefan
    Frequency response analysis (FRA) is a well-known method to assess the mechanical integrity of the active parts of the power transformer. The measurement procedures of FRA are standardized as described in the IEEE and IEC standards. However, the interpretation of FRA results is far from reaching an accepted and definitive methodology as there is no reliable code available in the standard. As a contribution to this necessity, this paper presents an intelligent fault detection and classification algorithm using FRA results. The algorithm is based on a multilayer, feedforward, backpropagation artificial neural network (ANN). First, the adaptive frequency division algorithm is developed and various numerical indicators are used to quantify the differences between FRA traces and obtain feature sets for ANN. Finally, the classification model of ANN is developed to detect and classify different transformer conditions, i.e., healthy windings, healthy windings with saturated core, mechanical deformations, electrical faults, and reproducibility issues due to different test conditions. The database used in this study consists of FRA measurements from 80 power transformers of different designs, ratings, and different manufacturers. The results obtained give evidence of the effectiveness of the proposed classification model for power transformer fault diagnosis using FRA.
  • Thumbnail Image
    ItemOpen Access
    Measurement of transient overvoltages by capacitive electric field sensors
    (2024) Probst, Felipe L.; Beltle, Michael; Tenbohlen, Stefan
    The accurate measurement and the investigation of electromagnetic transients are becoming more important, especially with the increasing integration of renewable energy sources into the power grid. These sources introduce new transient phenomena due to the extensive use of power electronics. To achieve this, the measurement devices must have a broadband response capable of measuring fast transients. This paper presents a capacitive electric field sensor-based measurement system to measure transient overvoltages in high-voltage substations. The concept and design of the measurement system are first presented. Then, the design and concept are validated using tests performed in a high-voltage laboratory. Afterwards, two different calibration techniques are discussed: the simplified method (SM) and the coupling capacitance compensation (CCC) method. Finally, three recorded transients are evaluated using the calibration methods. The investigation revealed that the SM tends to overestimate the maximum overvoltage, highlighting the CCC method as a more suitable approach for calibrating transient overvoltage measurements. This measurement system has been validated using various measurements and can be an efficient and flexible solution for the long-term monitoring of transient overvoltages in high-voltage substations.
  • Thumbnail Image
    ItemOpen Access
    A comprehensive analysis of windings electrical and mechanical faults using a high-frequency model
    (2019) Tahir, Mehran; Tenbohlen, Stefan
    The measurement procedures for frequency response analysis (FRA) of power transformers are well documented in IEC and IEEE standards. However, the interpretation of FRA results is still far from reaching an accepted methodology and is limited to the analysis of the experts. The dilemma is that there are limited case studies available to understand the effect of different faults. Additionally, due to the destructive nature, it is not possible to apply the real mechanical deformations in the transformer windings to obtain the data. To solve these issues, in this contribution, the physical geometry of a three-phase transformer is simulated using 3D finite integration analysis to emulate the real transformer operation. The novelty of this model is that FRA traces are directly obtained from the 3D model of windings without estimating and solving lumped parameter circuit models. At first, the method is validated with a simple experimental setup. Afterwards, different mechanical and electrical faults are simulated, and their effects on FRA are discussed objectively. A key contribution of this paper is the winding assessment factor it introduces based on the standard deviation of difference (SDD) to detect and classify different electrical and mechanical faults. The results reveal that the proposed model provides the ability of precise and accurate fault simulation. By using SDD, different deviation patterns can be characterized for different faults, which makes fault classification possible. Thus, it provides a way forward towards the establishment of the standard algorithm for a reliable and automatic assessment of transformer FRA results.
  • Thumbnail Image
    ItemOpen Access
    Application of pathfinding algorithms in partial discharge localization in power transformers
    (2024) Beura, Chandra Prakash; Wolters, Jorim; Tenbohlen, Stefan
    The introduction of artificial intelligence (AI) to ultra-high-frequency (UHF) partial discharge (PD) monitoring systems in power transformers for the localization of PD sources can help create a robust and reliable system with high usability and precision. However, training the AI with experimental data or data from electromagnetic simulation is costly and time-consuming. Furthermore, electromagnetic simulations often calculate more data than needed, whereas, for localization, the signal time-of-flight information is the most important. A tailored pathfinding algorithm can bypass the time-consuming and computationally expensive process of simulating or collecting data from experiments and be used to create the necessary training data for an AI-based monitoring system of partial discharges in power transformers. In this contribution, Dijkstra’s algorithm is used with additional line-of-sight propagation algorithms to determine the paths of the electromagnetic waves generated by PD sources in a three-dimensional (3D) computer-aided design (CAD) model of a 300 MVA power transformer. The time-of-flight information is compared with results from experiments and electromagnetic simulations, and it is found that the algorithm maintains accuracy similar to that of the electromagnetic simulation software, with some under/overestimations in specific scenarios, while being much faster at calculations.
  • Thumbnail Image
    ItemOpen Access
    Transformer winding fault classification and condition assessment based on random forest using FRA
    (2023) Tahir, Mehran; Tenbohlen, Stefan
    At present, the condition assessment of transformer winding based on frequency response analysis (FRA) measurements demands skilled personnel. Despite many research efforts in the last decade, there is still no definitive methodology for the interpretation and condition assessment of transformer winding based on FRA results, and this is a major challenge for the industrial application of the FRA method. To overcome this challenge, this paper proposes a transformer condition assessment (TCA) algorithm, which is based on numerical indices, and a supervised machine learning technique to develop a method for the automatic interpretation of FRA results. For this purpose, random forest (RF) classifiers were developed for the first time to identify the condition of transformer winding and classify different faults in the transformer windings. Mainly, six common states of the transformer were classified in this research, i.e., healthy transformer, healthy transformer with saturated core, mechanically damaged winding, short-circuited winding, open-circuited winding, and repeatability issues. In this research, the data from 139 FRA measurements performed in more than 80 power transformers were used. The database belongs to the transformers having different ratings, sizes, designs, and manufacturers. The results reveal that the proposed TCA algorithm can effectively assess the transformer winding condition with up to 93% accuracy without much human intervention.
  • Thumbnail Image
    ItemOpen Access
    Untersuchung der thermischen Überlastbarkeit von Leistungstransformatoren
    (2022) Khandan, Saeed; Gerber, Malte; Tenbohlen, Stefan
    Durch die voranschreitende Energiewende und den stetig steigenden Ausbau der Erneuerbaren Energien besteht vermehrt die Notwendigkeit des Ausbaus von Umspannwerken mit neuen Transformatoren. Dieser Ausbau erfolgt meist auf Basis der maximalen Einspeisung im Jahr. Um hierbei dem Netzbetreiber einen besseren Überblick in Bezug auf die Überlastbarkeit des Transformators zu geben, wird im Rahmen eines Projektes die thermische Überlastbarkeit von Transformatoren untersucht. Für eine genauere Betrachtung des thermischen Verhaltens von Leistungstransformatoren wird eine numerische Berechnung mittels computergestützter Strömungsmechanik (CFD) verwendet. Diese erfolgt anhand im Labor gemessener Messdaten an einem Wicklungsmodell. Dieses numerische 3D-Modell ermöglicht es, die Heißpunkttemperatur eines natürlich ON-gekühlten Transformators zu bestimmen und die Veränderung des Heißpunktfaktors in Abhängigkeit von unterschiedlichen Anfangstemperaturen im Labor zu berechnen. Durch die Berechnung des Heißpunktfaktors kann das transiente thermische Verhalten untersucht und im zeitlichen Verlauf verglichen werden. Des Weiteren werden im Rahmen des beschriebenen Projektes über den Zeitraum von einem Jahr Temperatur‑, Leistungs- und Umgebungsmessdaten eines Windparktransformators gezeigt, anhand derer das thermische Verhalten des Transformators untersucht wird. Mit einem Trainingssatz der Messdaten werden unterschiedliche thermische Modelle zur Berechnung der oberen Öltemperatur in Abhängigkeit der Auslastung und der Umgebungstemperatur erstellt und zur Validierung mit einem weiteren Datensatz verglichen. Mithilfe des Heißpunktfaktors aus dem numerischen 3D-Modell kann die Heißpunkttemperatur des natürlich gekühlten Transformators abgeschätzt und mit den Temperaturen aus der Simulation verglichen werden. Basierend auf der nach DIN IEC 60076‑7 empfohlenen maximalen Heißpunkttemperatur und dem erstellten thermischen Modell wird eine Überlastungskurve in Abhängigkeit der Außentemperatur erzeugt. Mit dieser kann die Überlastbarkeit des Leistungstransformators bei unterschiedlichen Umgebungstemperaturen errechnet und somit der Transformator ohne erhöhtes Risiko nach Bedarf mit höherer Last entsprechend der Überlastungskurve betrieben werden.