06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
5 results
Search Results
Item Open Access Icy ocean worlds - astrobiology research in Germany(2024) Klenner, Fabian; Baqué, Mickael; Beblo-Vranesevic, Kristina; Bönigk, Janine; Boxberg, Marc S.; Dachwald, Bernd; Digel, Ilya; Elsaesser, Andreas; Espe, Clemens; Funke, Oliver; Hauber, Ernst; Heinen, Dirk; Hofmann, Florence; Hortal Sánchez, Lucía; Khawaja, Nozair; Napoleoni, Maryse; Plesa, Ana-Catalina; Postberg, Frank; Purser, Autun; Rückriemen-Bez, Tina; Schröder, Susanne; Schulze-Makuch, Dirk; Ulamec, Stephan; de Vera, Jean-Pierre PaulIcy bodies with subsurface oceans are a prime target for astrobiology investigations, with an increasing number of scientists participating in the planning, development, and realization of space missions to these worlds. Within Germany, the Ocean Worlds and Icy Moons working group of the German Astrobiology Society provides an invaluable platform for scientists and engineers from universities and other organizations with a passion for icy ocean worlds to share knowledge and start collaborations. We here present an overview about astrobiology research activities related to icy ocean worlds conducted either in Germany or in strong collaboration with scientists in Germany. With recent developments, Germany offers itself as a partner to contribute to icy ocean world missions.Item Open Access Dynamic-stall measurements using time-resolved pressure-sensitive paint on double-swept rotor blades(2021) Weiss, Armin; Geisler, Reinhard; Müller, Martin M.; Klein, Christian; Henne, Ulrich; Braukmann, Johannes N.; Letzgus, JohannesThe study presents an optimized pressure-sensitive paint (PSP) measurement system that was applied to investigate unsteady surface pressures on recently developed double-swept rotor blades in the rotor test facility at the German Aerospace Center (DLR) in Göttingen. The measurement system featured an improved version of a double-shutter camera that was designed to reduce image blur in PSP measurements on fast rotating blades. It also comprised DLR’s PSP sensor, developed to capture transient flow phenomena (iPSP). Unsteady surface pressures were acquired across the outer 65% of the rotor blade with iPSP and at several radial blade sections by fast-response pressure transducers at blade-tip Mach and Reynolds numbers of Mtip=0.282-0.285 and Retip=5.84-5.95×105. The unique experimental setup allowed for scanning surface pressures across the entire pitch cycle at a phase resolution of 0.225deg azimuth for different collective and cyclic-pitch settings. Experimental results of both investigated cyclic-pitch settings are compared in detail to a delayed detached eddy simulation using the flow solver FLOWer and to flow visualizations from unsteady Reynolds-averaged Navier–Stokes (URANS) computations with DLR’s TAU code. The findings reveal a detailed and yet unseen insight into the pressure footprint of double-swept rotor blades undergoing dynamic stall and allow for deducing “stall maps”, where confined areas of stalled flow on the blade are identifiable as a function of the pitch phase.Item Open Access Hydroxyl-conductive 2D hexagonal boron nitrides for anion exchange membrane water electrolysis and sustainable hydrogen production(2025) Kaur, Jasneet; Schweinbenz, Matthew; Ho, Kane; Malekkhouyan, Adel; Ghotia, Kamal; Egert, Franz; Razmjooei, Fatemeh; Ansar, Syed Asif; Zarrin, HadisIn response to the urgent global call to transition from polluting fossil fuels to sustainable energy alternatives, hydrogen emerges as a promising and widely accessible energy source if it can be efficiently produced through water splitting and electrolysis. Anion exchange membrane (AEM) water electrolyzers (AEMWEs) have potential for large scale H2 production at a low cost. However, the development of alkaline membranes with high hydroxide conductivity, improved stability and better performance is a significant challenge for the commercial application of advanced AEMWEs. In this work, a novel structure for hydroxide-ion conductive membranes based on surface-engineered two-dimensional (2D) hexagonal boron nitrides (h-BN) is designed and validated in a highly active and durable AEMWE cell with non-precious metal Ni-based electrodes. Among two samples, the high-loaded 2D hBN nanocomposite membrane (M2) showed significantly high hydroxide-ion conductivity (190 mS cm-1) with improved electrochemical and mechanical stability. The AEMWE cell assembled with the M2 membrane exhibited superior cell performance, achieving 1.78 V at 0.5 A cm-2 compared to the cell utilizing the lower loading hBN nanocomposite membrane (M1). Additionally, its performance closely approached that of the cell employing a commercial membrane. During a long-term stability test conducted at a constant load of 0.5 A cm-2 for 250 hours, the M2 membrane maintained satisfactory electrolysis voltage without any notable failure. These findings demonstrate that 2D hBN nanocomposite membranes hold great promise for use in advanced AEMWEs.Item Open Access Development of an uncertainty quantification predictive chemical reaction model for syngas combustion(2017) Slavinskaya, Nadezda; Abbasi, Mehdi; Starcke, Jan Hendrik; Whitside, Ryan; Mirzayeva, Aziza; Riedel, Uwe; Li, Wenyu; Oreluk, Jim; Hegde, Arun; Packard, Andrew; Frenklach, Michael; Gerasimov, G. Ya.; Shatalov, OlegAn automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model−data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. The initial H2/CO reaction model, assembled from 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.Item Open Access Proton exchange membrane-like alkaline water electrolysis using flow-engineered three-dimensional electrodes(2024) Rocha, Fernando; Georgiadis, Christos; Van Droogenbroek, Kevin; Delmelle, Renaud; Pinon, Xavier; Pyka, Grzegorz; Kerckhofs, Greet; Egert, Franz; Razmjooei, Fatemeh; Ansar, Syed-Asif; Mitsushima, Shigenori; Proost, JorisFor high rate water electrolysers, minimising Ohmic losses through efficient gas bubble evacuation away from the active electrode is as important as minimising activation losses by improving the electrode’s electrocatalytic properties. In this work, by a combined experimental and computational fluid dynamics (CFD) approach, we identify the topological parameters of flow-engineered 3-D electrodes that direct their performance towards enhanced bubble evacuation. In particular, we show that integrating Ni-based foam electrodes into a laterally-graded bi-layer zero-gap cell configuration allows for alkaline water electrolysis to become Proton Exchange Membrane (PEM)-like, even when keeping a state-of-the-art Zirfon diaphragm. Detailed CFD simulations, explicitly taking into account the entire 3-D electrode and cell topology, show that under a forced uniform upstream electrolyte flow, such a graded structure induces a high lateral velocity component in the direction normal to and away from the diaphragm. This work is therefore an invitation to start considering PEM-like cell designs for alkaline water electrolysis as well, in particular the use of square or rectangular electrodes in flow-through type electrochemical cells.