06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
10 results
Search Results
Item Open Access Using GRACE data to study the impact of snow and rainfall on terrestrial water storage in Northeast China(2020) Qian, An; Yi, Shuang; Chang, Le; Sun, Guangtong; Liu, XiaoyangWater resources are important for agricultural, industrial, and urban development. In this paper, we analyzed the influence of rainfall and snowfall on variations in terrestrial water storage (TWS) in Northeast China from Gravity Recovery and Climate Experiment (GRACE) gravity satellite data, GlobSnow snow water equivalent product, and ERA5-land monthly total precipitation, snowfall, and snow depth data. This study revealed the main composition and variation characteristics of TWS in Northeast China. We found that GRACE provided an effective method for monitoring large areas of stable seasonal snow cover and variations in TWS in Northeast China at both seasonal and interannual scales. On the seasonal scale, although summer rainfall was 10 times greater than winter snowfall, the terrestrial water storage in Northeast China peaked in winter, and summer rainfall brought about only a sub-peak, 1 month later than the maximum rainfall. On the interannual scale, TWS in Northeast China was controlled by rainfall. The correlation analysis results revealed that the annual fluctuations of TWS and rainfall in Northeast China appear to be influenced by ENSO (EI Niño-Southern Oscillation) events with a lag of 2-3 years. In addition, this study proposed a reconstruction model for the interannual variation in TWS in Northeast China from 2003 to 2016 on the basis of the contemporary terrestrial water storage and rainfall data.Item Open Access Spatio-temporal evaluation of GPM-IMERGV6.0 final run precipitation product in capturing extreme precipitation events across Iran(2022) Bakhtar, Aydin; Rahmati, Akbar; Shayeghi, Afshin; Teymoori, Javad; Ghajarnia, Navid; Saemian, PeymanExtreme precipitation events such as floods and droughts have occurred with higher frequency over the recent decades as a result of the climate change and anthropogenic activities. To understand and mitigate such events, it is crucial to investigate their spatio-temporal variations globally or regionally. Global precipitation products provide an alternative way to the in situ observations over such a region. In this study, we have evaluated the performance of the latest version of the Global Precipitation Measurement-Integrated Multi-satellitE Retrievals (GPM-IMERGV6.0 Final Run (GPM-IMERGF)). To this end, we have employed ten most common extreme precipitation indices, including maximum indices (Rx1day, Rx5day, CDD, and CWD), percentile indices (R95pTOT and R99pTOT), and absolute threshold indices (R10mm, R20mm, SDII, and PRCPTOT). Overall, the spatial distribution results for error metrics showed that the highest and lowest accuracy for GPM-IMERGF were reported for the absolute threshold indices and percentile indices, respectively. Considering the spatial distribution of the results, the highest accuracy of GPM-IMERGF in capturing extreme precipitations was observed over the western highlands, while the worst results were obtained along the Caspian Sea regions. Our analysis can significantly contribute to various hydro-metrological applications for the study region, including identifying drought and flood-prone areas and water resources planning.Item Open Access S wave velocity structure of the crust and upper mantle beneath Shanxi rift, central North China Craton and its tectonic implications(2021) Cai, Yan; Wu, Jianping; Rietbrock, Andreas; Wang, Weilai; Fang, Lihua; Yi, Shuang; Liu, JingThe Shanxi rift is located in the central part of the North China Craton (NCC). With strong tectonic deformation and intense seismic activity, its crust‐mantle deformation and deep structure have always attracted wide attention. Using teleseismic events observed in a dense network of 610 temporary and 127 permanent stations in the central NCC, we obtained the crust‐mantle S wave velocity structures by the joint inversion method of receiver functions and surface wave dispersion data. Our results show that the crust thickens in the northern part of the Shanxi rift (41 km) and thins in the southern part (35 km). The Taiyuan and Linfen basins, located in the central part, have high‐velocity zones in the lower crust and upper mantle; beneath the Yuncheng basin in the south, there are low‐velocity zones in the lower crust and uppermost mantle (30-80 km); the Datong basin, located in the northern part of the rift, exhibits a wide range of low‐velocity anomalies in the middle to lower crust and upper mantle. We speculate that the destruction of the NCC and associated lithospheric thinning had a significant impact on the southern part of the rift, but is still in its early stage in the central part, which retains most of the craton features. An upwelling of the asthenospheric magma occurred beneath the western part of the Datong basin. The horizontal deflection of the asthenospheric flow causes low‐velocity anomalies in its surrounding area, which is consistent with LAB topography.Item Open Access Detection, analysis, and removal of glitches from InSight's seismic data from Mars(2020) Scholz, John‐Robert; Widmer‐Schnidrig, Rudolf; Davis, Paul; Lognonné, Philippe; Pinot, Baptiste; Garcia, Raphaël F.; Hurst, Kenneth; Pou, Laurent; Nimmo, Francis; Barkaoui, Salma; de Raucourt, Sébastien; Knapmeyer‐Endrun, Brigitte; Knapmeyer, Martin; Orhand‐Mainsant, Guénolé; Compaire, Nicolas; Cuvier, Arthur; Beucler, Éric; Bonnin, Mickaël; Joshi, Rakshit; Sainton, Grégory; Stutzmann, Eléonore; Schimmel, Martin; Horleston, Anna; Böse, Maren; Ceylan, Savas; Clinton, John; Driel, Martin van; Kawamura, Taichi; Khan, Amir; Stähler, Simon C.; Giardini, Domenico; Charalambous, Constantinos; Stott, Alexander E.; Pike, William T.; Christensen, Ulrich R.; Banerdt, W. BruceThe instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short‐period seismic sensors is installed on the surface on Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one‐sided pulses often accompanied by high‐frequency spikes. These pulses, which we term “glitches”, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS‐internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS's raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars' internal structure should benefit from deglitched seismic data.Item Open Access Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series(2022) Behling, Robert; Roessner, Sigrid; Foerster, Saskia; Saemian, Peyman; Tourian, Mohammad J.; Portele, Tanja C.; Lorenz, ChristofIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km 2) and a significant cultivation intensification (48,000 km 2). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km 2), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km 2, mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.Item Open Access A method for evaluating population and infrastructure exposed to natural hazards : tests and results for two recent Tonga tsunamis(2023) Thomas, Bruce Enki Oscar; Roger, Jean; Gunnell, Yanni; Ashraf, SalmanBackground: Coastal communities are highly exposed to ocean- and -related hazards but often lack an accurate population and infrastructure database. On January 15, 2022 and for many days thereafter, the Kingdom of Tonga was cut off from the rest of the world by a destructive tsunami associated with the Hunga Tonga Hunga Ha’apai volcanic eruption. This situation was made worse by COVID-19-related lockdowns and no precise idea of the magnitude and pattern of destruction incurred, confirming Tonga’s position as second out of 172 countries ranked by the World Risk Index 2018. The occurrence of such events in remote island communities highlights the need for (1) precisely knowing the distribution of buildings, and (2) evaluating what proportion of those would be vulnerable to a tsunami.
Methods and Results: A GIS-based dasymetric mapping method, previously tested in New Caledonia for assessing and calibrating population distribution at high resolution, is improved and implemented in less than a day to jointly map population clusters and critical elevation contours based on runup scenarios, and is tested against destruction patterns independently recorded in Tonga after the two recent tsunamis of 2009 and 2022. Results show that ~ 62% of the population of Tonga lives in well-defined clusters between sea level and the 15 m elevation contour. The patterns of vulnerability thus obtained for each island of the archipelago allow exposure and potential for cumulative damage to be ranked as a function of tsunami magnitude and source area.
Conclusions: By relying on low-cost tools and incomplete datasets for rapid implementation in the context of natural disasters, this approach works for all types of natural hazards, is easily transferable to other insular settings, can assist in guiding emergency rescue targets, and can help to elaborate future land-use planning priorities for disaster risk reduction purposes.Item Open Access Accurate computation of gravitational curvature of a tesseroid(2025) Deng, Xiao-LeIn recent years, the fundamental quantity of the gravitational field has been extended from gravitational potential, gravitational vector, and gravitational gradient tensor to gravitational curvature with its first measurement along the vertical direction in laboratory conditions. Previous studies numerically identified the near-zone and polar-region problems for gravitational curvature of a tesseroid, but these issues remain unresolved. In this contribution, we derive the new third-order central and single-sided difference formulas with one, two, and three arguments using the finite difference method. To solve these near-zone and polar-region problems, we apply a numerical approach combining the conditional split, finite difference, and double exponential rule based on these newly derived third-order difference formulas when the computation point is located below, inside, and outside the tesseroid. Numerical experiments with a spherical shell discretized into tesseroids reveal that the accuracy of gravitational curvature is about 4-8 digits in double precision. Numerical results confirm that when the computation point moves to the surface of the tesseroid, the relative and absolute errors of gravitational curvature do not change much, i.e., the near-zone problem can be adequately solved using the numerical approach in this study. When the latitude of the computation point increases, the relative and absolute errors of gravitational curvature do not increase, which solves the polar-region problem with this stable numerical approach. The provided Fortran codes at https://github.com/xiaoledeng/xtessgc-xqtessgc will help with potential applications for the gravitational field of different celestial bodies in geodesy, geophysics, and planetary sciences.Item Open Access High-dimensional experiments for the downward continuation using the LRFMP algorithm(2024) Schneider, Naomi; Michel, Volker; Sneeuw, NicoTime-dependent gravity data from satellite missions like GRACE-FO reveal mass redistribution in the system Earth at various time scales: long-term climate change signals, inter-annual phenomena like El Niño, seasonal mass transports and transients, e. g. due to earthquakes. For this contemporary issue, a classical inverse problem has to be considered: the gravitational potential has to be modelled on the Earth’s surface from measurements in space. This is also known as the downward continuation problem. Thus, it is important to further develop current mathematical methods for such inverse problems. For this, the (Learning) Inverse Problem Matching Pursuits ((L)IPMPs) have been developed within the last decade. Their unique feature is the combination of local as well as global trial functions in the approximative solution of an inverse problem such as the downward continuation of the gravitational potential. In this way, they harmonize the ideas of a traditional spherical harmonic ansatz and the radial basis function approach. Previous publications on these methods showed proofs of concept. In this paper, we report on the progress of our developments towards more realistic scenarios. In particular, we consider the methods for high-dimensional experiment settings with more than 500 000 grid points which yields a resolution of 20 km at best on a realistic satellite geometry. We also explain the changes in the methods that had to be done to work with such a large amount of data.Item Open Access Remote sensing-based extension of GRDC discharge time series : a monthly product with uncertainty estimates(2024) Elmi, Omid; Tourian, Mohammad J.; Saemian, Peyman; Sneeuw, NicoThe Global Runoff Data Center (GRDC) data set has faced a decline in the number of active gauges since the 1980s, leaving only 14% of gauges active as of 2020. We develop the Remote Sensing-based Extension for the GRDC (RSEG) data set that can ingest legacy gauge discharge and remote sensing observations. We employ a stochastic nonparametric mapping algorithm to extend the monthly discharge time series for inactive GRDC stations, benefiting from satellite imagery- and altimetry-derived river width and water height observations. After a rigorous quality assessment of our estimated discharge, involving statistical validation, tests and visual inspection, results in the extension of discharge records for 3377 out of 6015 GRDC stations. The quality of discharge estimates for the rivers with a large or medium mean discharge is quite satisfactory (average KGE value > 0.5) however for river reaches with a low mean discharge the average KGE value drops to 0.33.The RSEG data set regains monitoring capability for 83% of total river discharge measured by GRDC stations, equivalent to 7895 km 3 /month.Item Open Access Satellite Altimetry-based Extension of global-scale in situ river discharge Measurements (SAEM)(2025) Saemian, Peyman; Elmi, Omid; Stroud, Molly; Riggs, Ryan; Kitambo, Benjamin M.; Papa, Fabrice; Allen, George H.; Tourian, Mohammad J.River discharge is a crucial measurement, indicating the volume of water flowing through a river cross-section at any given time. However, the existing network of river discharge gauges faces significant issues, largely due to the declining number of active gauges and temporal gaps. Remote sensing, especially radar-based techniques, offers an effective means to this issue. This study introduces the Satellite Altimetry-based Extension of the global-scale in situ river discharge Measurements (SAEM) data set, which utilizes multiple satellite altimetry missions and estimates discharge using the existing worldwide networks of national and international gauges. In SAEM, we have explored 47 000 gauges and estimated height-based discharge for 8730 of them, which is approximately 3 times the number of gauges of the largest existing remote-sensing-based data set. These gauges cover approximately 88 % of the total gauged discharge volume. The height-based discharge estimates in SAEM demonstrate a median Kling–Gupta efficiency (KGE) of 0.48, outperforming current global data sets. In addition to the river discharge time series, the SAEM data set comprises three more products, each contributing a unique facet to better usage of our data. (1) A catalog of virtual stations (VSs) is defined by certain predefined criteria. In addition to each station's coordinates, this catalog provides information on satellite altimetry missions, distance to the discharge gauge, and relevant quality flags. (2) The altimetric water level time series of those VSs are included, for which we ultimately obtained good-quality discharge data. These water level time series are sourced from both existing Level-3 water level time series and newly generated ones within this study. The Level-3 data are gathered from pre-existing data sets, including Hydroweb.Next (formerly Hydroweb), the Database of Hydrological Time Series of Inland Waters (DAHITI), the Global River Radar Altimetry Time Series (GRRATS), and HydroSat. (3) SAEM's third product is rating curves for the defined VSs, which map water level values into discharge values, derived using a nonparametric stochastic quantile mapping function approach. The SAEM data set can be used to improve hydrological models, inform water resource management, and address nonlinear water-related challenges under climate change. The SAEM data set is available from https://doi.org/10.18419/darus-4475 .