06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
Search Results
Item Open Access Radargrammetric DSM generation by semi-global matching and evaluation of penalty functions(2022) Wang, Jinghui; Gong, Ke; Balz, Timo; Haala, Norbert; Sörgel, Uwe; Zhang, Lu; Liao, MingshengRadargrammetry is a useful approach to generate Digital Surface Models (DSMs) and an alternative to InSAR techniques that are subject to temporal or atmospheric decorrelation. Stereo image matching in radargrammetry refers to the process of determining homologous points in two images. The performance of image matching influences the final quality of DSM used for spatial-temporal analysis of landscapes and terrain. In SAR image matching, local matching methods are commonly used but usually produce sparse and inaccurate homologous points adding ambiguity to final products; global or semi-global matching methods are seldom applied even though more accurate and dense homologous points can be yielded. To fill this gap, we propose a hierarchical semi-global matching (SGM) pipeline to reconstruct DSMs in forested and mountainous regions using stereo TerraSAR-X images. In addition, three penalty functions were implemented in the pipeline and evaluated for effectiveness. To make accuracy and efficiency comparisons between our SGM dense matching method and the local matching method, the normalized cross-correlation (NCC) local matching method was also applied to generate DSMs using the same test data. The accuracy of radargrammetric DSMs was validated against an airborne photogrammetric reference DSM and compared with the accuracy of NASA’s 30 m SRTM DEM. The results show the SGM pipeline produces DSMs with height accuracy and computing efficiency that exceeds the SRTM DEM and NCC-derived DSMs. The penalty function adopting the Canny edge detector yields a higher vertical precision than the other two evaluated penalty functions. SGM is a powerful and efficient tool to produce high-quality DSMs using stereo Spaceborne SAR images.Item Open Access Individual tree detection in urban ALS point clouds with 3D convolutional networks(2022) Schmohl, Stefan; Narváez Vallejo, Alejandra; Sörgel, UweSince trees are a vital part of urban green infrastructure, automatic mapping of individual urban trees is becoming increasingly important for city management and planning. Although deep-learning-based object detection networks are the state-of-the-art in computer vision, their adaptation to individual tree detection in urban areas has scarcely been studied. Some existing works have employed 2D object detection networks for this purpose. However, these have used three-dimensional information only in the form of projected feature maps. In contrast, we exploited the full 3D potential of airborne laser scanning (ALS) point clouds by using a 3D neural network for individual tree detection. Specifically, a sparse convolutional network was used for 3D feature extraction, feeding both semantic segmentation and circular object detection outputs, which were combined for further increased accuracy. We demonstrate the capability of our approach on an urban topographic ALS point cloud with 10,864 hand-labeled ground truth trees. Our method achieved an average precision of 83% regarding the common 0.5 intersection over union criterion. 85% percent of the stems were found correctly with a precision of 88%, while tree area was covered by the individual tree detections with an F1 accuracy of 92%. Thereby, we outperformed traditional delineation baselines and recent detection networks.