06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    ItemOpen Access
    Modeling freezing and BioGeoChemical processes in Antarctic sea ice
    (2024) Pathak, Raghav; Seyedpour, Seyed Morteza; Kutschan, Bernd; Thom, Andrea; Thoms, Silke; Ricken, Tim
    The Antarctic sea ice, which undergoes annual freezing and melting, plays a significant role in the global climate cycle. Since satellite observations in the Antarctic region began, 2023 saw a historically unprecedented decrease in the extent of sea ice. Further ocean warming and future environmental conditions in the Southern Ocean will influence the extent and amount of ice in the Marginal Ice Zones (MIZ), the BioGeoChemical (BGC) cycles, and their interconnected relationships. The so‐called pancake floes are a composition of a porous sea ice matrix with interstitial brine, nutrients, and biological communities inside the pores. The ice formation and salinity are both dependent on the ambient temperature. To realistically model these multiphasic and multicomponent coupled processes, the extended Theory of Porous Media (eTPM) is used to develop Partial Differential Equations (PDEs) based high‐fidelity models capable of simulating the different seasonal variations in the region. All critical variables like salinity, ice volume fraction, and temperature, among others, are considered and have their equations of state. The phase transition phenomenon is approached through a micro‐macro linking scheme. In this paper, a phase‐field solidification model [4] coupled with salinity is used to model the microscale freezing processes and up‐scaled to the macroscale eTPM model. The evolution equations for the phase field model are derived following Landau‐Ginzburg order parameter gradient dynamics and mass conservation of salt allowing to model the salt trapped inside the pores. A BGC flux model for sea ice is set up to simulate the algal species present in the sea ice matrix. Ordinary differential equations (ODE) are employed to represent the diverse environmental factors involved in the growth and loss of distinct BGC components. Processes like photosynthesis are dependent on temperature and salinity, which are derived through an ODE‐PDE coupling with the eTPM model. Academic simulations and results are presented as validation for the mathematical model. These high‐fidelity models eventually lead to their incorporation into large‐scale global climate models.
  • Thumbnail Image
    ItemOpen Access
    Application of magnetic resonance imaging in liver biomechanics : a systematic review
    (2021) Seyedpour, Seyed M.; Nabati, Mehdi; Lambers, Lena; Nafisi, Sara; Tautenhahn, Hans-Michael; Sack, Ingolf; Reichenbach, Jürgen R.; Ricken, Tim
    MRI-based biomechanical studies can provide a deep understanding of the mechanisms governing liver function, its mechanical performance but also liver diseases. In addition, comprehensive modeling of the liver can help improve liver disease treatment. Furthermore, such studies demonstrate the beginning of an engineering-level approach to how the liver disease affects material properties and liver function. Aimed at researchers in the field of MRI-based liver simulation, research articles pertinent to MRI-based liver modeling were identified, reviewed, and summarized systematically. Various MRI applications for liver biomechanics are highlighted, and the limitations of different viscoelastic models used in magnetic resonance elastography are addressed. The clinical application of the simulations and the diseases studied are also discussed. Based on the developed questionnaire, the papers' quality was assessed, and of the 46 reviewed papers, 32 papers were determined to be of high-quality. Due to the lack of the suitable material models for different liver diseases studied by magnetic resonance elastography, researchers may consider the effect of liver diseases on constitutive models. In the future, research groups may incorporate various aspects of machine learning (ML) into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification.
  • Thumbnail Image
    ItemOpen Access
    Optimization of the groundwater remediation process using a coupled genetic algorithm-finite difference method
    (2021) Seyedpour, Seyed Morteza; Valizadeh, Iman; Kirmizakis, Panagiotis; Doherty, Rory; Ricken, Tim
    In situ chemical oxidation using permanganate as an oxidant is a remediation technique often used to treat contaminated groundwater. In this paper, groundwater flow with a full hydraulic conductivity tensor and remediation process through in situ chemical oxidation are simulated. The numerical approach was verified with a physical sandbox experiment and analytical solution for 2D advection-diffusion with a first-order decay rate constant. The numerical results were in good agreement with the results of physical sandbox model and the analytical solution. The developed model was applied to two different studies, using multi-objective genetic algorithm to optimise remediation design. In order to reach the optimised design, three objectives considering three constraints were defined. The time to reach the desired concentration and remediation cost regarding the number of required oxidant sources in the optimised design was less than any arbitrary design.
  • Thumbnail Image
    ItemOpen Access
    Characterization of muscle weakness due to myasthenia gravis using shear wave elastography
    (2023) Zimmer, Manuela; Kleiser, Benedict; Marquetand, Justus; Ates, Filiz
    Myasthenia gravis (MG) is often accompanied with muscle weakness; however, little is known about mechanical adaptions of the affected muscles. As the latter can be assessed using ultrasound shear wave elastography (SWE), this study characterizes the biceps brachii muscle of 11 patients with MG and compares them with that of 14 healthy volunteers. Simultaneous SWE, elbow torque and surface electromyography measurements were performed during rest, maximal voluntary contraction (MVC) and submaximal isometric contractions (up to 25%, 50% and 75% MVC) at different elbow angles from flexion to extension. We found that, with increasing elbow angle, maximum elbow torque decreased (p < 0.001), whereas muscle stiffness increased during rest (p = 0.001), MVC (p = 0.004) and submaximal contractions (p < 0.001). Muscle stiffness increased with increasing contraction intensities during submaximal contractions (p < 0.001). In comparison to the healthy cohort, muscle stiffness of MG patients was 2.1 times higher at rest (p < 0.001) but 8.93% lower in active state (75% MVC, p = 0.044). We conclude that (i) increased muscle stiffness shown by SWE during rest might be an indicator of MG, (ii) SWE reflects muscle weakness and (iii) SWE can be used to characterize MG muscle.
  • Thumbnail Image
    ItemOpen Access
    Transient high-frequency spherical wave propagation in porous medium using fractional calculus technique
    (2023) Soltani, Kamran; Seyedpour, Seyed Morteza; Ricken, Tim; Rezazadeh, Ghader
    Transient high-frequency spherical wave propagation in the porous medium is studied using the Biot-JKD theory. The porous media is considered to be a composed of deformable solid skeleton and viscous incompressible fluid inside the pores. In order to treat the fractional proportionality of the dynamic tortuosity to the frequency (or equivalently, to time) due to the viscous interaction between solid and fluid phases, the fractional calculus theory along with the Laplace and Fourier transforms are used to solve the coupled governing partial differential equations of the scaler and vector potential functions obtained from the Helmholtz’s decomposition in the Laplace domain. Both the longitudinal and transverse waves, additionally the reflection and transmission kernels are determined in detail at the Laplace domain. For the Laplace-to-time inversion transform, Durbin’s numerical formula is used and the independence of the results from the involved tuning and accuracy parameters is checked. The effects of the porosity, dynamic tortuosity, characteristics length, etc. on the reflected pressure and stress are investigated. The general pattern of the results is similar to our previous knowledge of wave propagation. Further works and experiments may be conducted in future works for various applications.
  • Thumbnail Image
    ItemOpen Access
    Quantifying the effects of achilles tendon lengthening surgery : an intraoperative approach
    (2023) Brendecke, Elena; Tsitlakidis, Stefanos; Götze, Marco; Hagmann, Sébastien; Ates, Filiz
    Achilles tendon lengthening (ATL) is frequently used in the treatment of foot deformities. However, there is currently no objective method to determine the optimal muscle length during surgery. We developed an intraoperative approach to evaluate the passive and active forces of the triceps surae muscle group before and after ATL and aimed to test the following hypotheses: 1) the ankle passive range of motion (ROM) increases, 2) passive muscle forces decrease post-ATL, and 3) forces measured from patients with non-neurological and neurological conditions demonstrate different characteristics. Passive forces at various ankle joint positions were measured in ten patients (11.3 ± 3.0 years old) pre- and post-ATL using a force transducer attached to the Achilles tendon. In six patients, active isometric forces were measured by stimulating the triceps surae supramaximally. Passive forces decreased by 94.3% (p < 0.0001), and ROM increased by 89.4% (p < 0.0001) post-ATL. The pre-ATL passive forces were 70.8% ± 15.1% lower in patients with idiopathic foot deformities than in patients with neurological conditions (p < 0.001). The peak active force of 209.8 ± 114.3 N was achieved at an ankle angle of 38.3° ± 16.0°, where the passive force was 6.3 ± 6.7 N. The inter-individual variability was substantial in both groups. In conclusion, the hypotheses posed were supported. The present findings suggest that muscle passive and active force production as well as the inter-individual variability should be considered when planning further treatment.
  • Thumbnail Image
    ItemOpen Access
    Quantifying fat zonation in liver lobules : an integrated multiscale in silico model combining disturbed microperfusion and fat metabolism via a continuum biomechanical bi-scale, tri-phasic approach
    (2024) Lambers, Lena; Waschinsky, Navina; Schleicher, Jana; König, Matthias; Tautenhahn, Hans-Michael; Albadry, Mohamed; Dahmen, Uta; Ricken, Tim
    Metabolic zonation refers to the spatial separation of metabolic functions along the sinusoidal axes of the liver. This phenomenon forms the foundation for adjusting hepatic metabolism to physiological requirements in health and disease (e.g., metabolic dysfunction-associated steatotic liver disease/MASLD). Zonated metabolic functions are influenced by zonal morphological abnormalities in the liver, such as periportal fibrosis and pericentral steatosis. We aim to analyze the interplay between microperfusion, oxygen gradient, fat metabolism and resulting zonated fat accumulation in a liver lobule. Therefore we developed a continuum biomechanical, tri-phasic, bi-scale, and multicomponent in silico model, which allows to numerically simulate coupled perfusion-function-growth interactions two-dimensionally in liver lobules. The developed homogenized model has the following specifications: (i) thermodynamically consistent, (ii) tri-phase model (tissue, fat, blood), (iii) penta-substances (glycogen, glucose, lactate, FFA, and oxygen), and (iv) bi-scale approach (lobule, cell). Our presented in silico model accounts for the mutual coupling between spatial and time-dependent liver perfusion, metabolic pathways and fat accumulation. The model thus allows the prediction of fat development in the liver lobule, depending on perfusion, oxygen and plasma concentration of free fatty acids (FFA), oxidative processes, the synthesis and the secretion of triglycerides (TGs). The use of a bi-scale approach allows in addition to focus on scale bridging processes. Thus, we will investigate how changes at the cellular scale affect perfusion at the lobular scale and vice versa. This allows to predict the zonation of fat distribution (periportal or pericentral) depending on initial conditions, as well as external and internal boundary value conditions.
  • Thumbnail Image
    ItemOpen Access
    Detecting age-related changes in skeletal muscle mechanics using ultrasound shear wave elastography
    (2023) Ateş, Filiz; Marquetand, Justus; Zimmer, Manuela
    Aging leads to a decline in muscle mass and force-generating capacity. Ultrasound shear wave elastography (SWE) is a non-invasive method to capture age-related muscular adaptation. This study assessed biceps brachii muscle (BB) mechanics, hypothesizing that shear elastic modulus reflects (i) passive muscle force increase imposed by length change, (ii) activation-dependent mechanical changes, and (iii) differences between older and younger individuals. Fourteen healthy volunteers aged 60-80 participated. Shear elastic modulus, surface electromyography, and elbow torque were measured at five elbow positions in passive and active states. Data collected from young adults aged 20-40 were compared. The BB passive shear elastic modulus increased from flexion to extension, with the older group exhibiting up to 52.58% higher values. Maximum elbow flexion torque decreased in extended positions, with the older group 23.67% weaker. Significant effects of elbow angle, activity level, and age on total and active shear elastic modulus were found during submaximal contractions. The older group had 20.25% lower active shear elastic modulus at 25% maximum voluntary contraction. SWE effectively quantified passive and activation-dependent BB mechanics, detecting age-related alterations at rest and during low-level activities. These findings suggest shear elastic modulus as a promising biomarker for identifying altered muscle mechanics in aging.
  • Thumbnail Image
    ItemOpen Access
    Uncertainty with varying subsurface permeabilities reduced using coupled Random Field and extended Theory of Porous Media contaminant transport models
    (2022) Seyedpour, Seyed Morteza; Henning, Carla; Kirmizakis, Panagiotis; Herbrandt, Swetlana; Ickstadt, Katja; Doherty, Rory; Ricken, Tim
    To maximize the usefulness of groundwater flow models for the protection of aquifers and abstraction wells, it is necessary to identify and decrease the uncertainty associated with the major parameters such as permeability. To do this, there is a need to develop set of estimates representing subsurface heterogeneity or representative soil permeability estimates. Here, we use a coupled Random Field and extended Theory of Porous Media (eTPM) simulation to develop a robust model with a good predictive ability that reduces uncertainty. The coupled model is then validated with a physical sandbox experiment. Uncertainty is reduced by using 500 realisations of the permeability parameter using the eTPM approach. A multi-layer contaminant transport scenario with varying permeabilities, similar to what could be expected with shallow alluvial sediments, is simulated. The results show that the contaminant arrival time could be strongly affected by random field realizations of permeability compared with a modelled homogenous permeability parameter. The breakthrough time for heterogeneous permeabilities is shorter than the homogeneous condition. Using the 75% confidence interval (CI), the average contaminant concentration shows 4.4% variation from the average values of the considered area and 8.9% variation in the case of a 95% confidence interval.
  • Thumbnail Image
    ItemOpen Access
    On effects of freezing and thawing cycles of concrete containing nano-SiO2 : experimental study of material properties and crack simulation
    (2023) Arasteh-Khoshbin, Omolbanin; Seyedpour, Seyed Morteza; Brodbeck, Maximilian; Lambers, Lena; Ricken, Tim
    Construction during cold weather can lead to freezing accidents in concrete, causing significant hidden threats to the project’s performance and safety by affecting the mechanical properties and durability reduction. This study aims to deduce the compressive strength and durability of the concrete containing nano- SiO2under freezing-thawing cycles with the Caspian seawater curing condition. The specimens were subjected to freezing-thawing cycles according to ASTM C666. Furthermore, crack propagation in the concrete after freezing-thawing cycles is simulated. The results reveal that adding until nano- SiO2until 6% improved compressive strength before and after freezing-thaw cycles. The water permeability experiences a substantial reduction as the amount of nano- SiO2increases. Furthermore, the water permeability exhibits a positive correlation with the number of cycles, resulting in significantly higher values after 150 cycles compared to the initial sample. Moreover, adding 8% nano- SiO2reduced the depth of water permeability and chloride ion penetration after 150 cycles by 57% and 86%, respectively. The crack simulation results indicate that concrete containing 6% nano- SiO2shows an optimal resistance against crack formation. Concrete with 6% nano- SiO2requires 13.88% less force for crack initialization after 150 freezing and thawing cycles. Among different nano- SiO2percentages, 6% shows the best crack resistance and 8% the minimum water permeability and chloride ion penetration.