06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Reducing the uncertainty of lidar measurements in complex terrain using a linear model approach
    (2018) Hofsäß, Martin; Clifton, Andrew; Cheng, Po Wen
    In complex terrain, ground-based lidar wind speed measurements sometimes show noticeable differences compared to measurements made with in-situ sensors mounted on meteorological masts. These differences are mostly caused by the inhomogeneities of the flow field and the applied reconstruction methods. This study investigates three different methods to optimize the reconstruction algorithm in order to improve the agreement between lidar measurements and data from sensors on meteorological masts. The methods include a typical velocity azimuth display (VAD) method, a leave-one-out cross-validation method, and a linear model which takes into account the gradients of the wind velocity components. In addition, further aspects such as the influence of the half opening angle of the scanning cone and the scan duration are considered. The measurements were carried out with two different lidar systems, that measured simultaneously. The reference was a 100 m high meteorological mast. The measurements took place in complex terrain characterized by a 150 m high escarpment. The results from the individual methods are quantitatively compared with the measurements of the cup anemometer mounted on the meteorological mast by means of the three parameters of a linear regression (slope, offset, R2) and the width of the 5th–95th quantile. The results show that expanding the half angle of the scanning cone from 20◦ to 55◦ reduces the offset by a factor of 14.9, but reducing the scan duration does not have an observable benefit. The linear method has the lowest uncertainty and the best agreement with the reference data (i.e., lowest offset and scatter) of all of the methods that were investigated.
  • Thumbnail Image
    ItemOpen Access
    Application of a Monte Carlo procedure for probabilistic fatigue design of floating offshore wind turbines
    (2018) Müller, Kolja; Cheng, Po Wen
    Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo-based sampling procedures provide a more realistic approach to deal with the large variation in the environmental conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number of required simulations. In this study, a quasi-random sampling approach based on Sobol sequences is applied to select representative events for the determination of the lifetime damage. This is calculated applying Monte Carlo integration, using subsets of a resulting total of 16 200 coupled time-domain simulations performed with the simulation code FAST. The considered system is the Danmarks Tekniske Universitet (DTU) 10 MW reference turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties of the considered environmental parameters (i.e., wind speed, wave height and wave period) are determined based on the measurement data from the Gulf of Maine, USA. Convergence analyses show that it is sufficient to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage-equivalent loading. Complementary in-depth investigation is performed, focusing on the load sensitivity and the impact of outliers (i.e., values far away from the mean). Recommendations for the implementation of the proposed methodology in the design process are also provided.
  • Thumbnail Image
    ItemOpen Access
    Comparison of measured and simulated structural loads of an offshore wind turbine at Alpha Ventus
    (2016) Müller, Kolja; Reiber, Mario; Cheng, Po Wen
    A comparison of fatigue and extreme loads from simulations with full-scale measurements collected over a period of ten months in the offshore test field, Alpha Ventus, is presented in this paper. There are two goals of this study: (1) to check if the measured range of fatigue and extreme loads can be captured correctly by simulations when the variations of relevant environmental parameters are taken into account; and (2) to investigate if measured extreme loads can be reproduced by simulations when ten-minute averages of the environmental parameters are used. The results show a good overall match of loads when the variation of environmental parameters is considered but an insufficient match when the events of maximum load occurrence are compared.
  • Thumbnail Image
    ItemOpen Access
    Lidar-based wake tracking for closed-loop wind farm control
    (2017) Raach, Steffen; Schlipf, David; Cheng, Po Wen
    This work presents two advancements towards closed-loop wake redirection of a wind turbine. First, a model-based wake-tracking approach is presented, which uses a nacelle-based lidar system facing downwind to obtain information about the wake. The method uses a reduced-order wake model to track the wake. The wake tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a simulation with the Simulator fOr Wind Farm Applications (SOWFA). Second, a controller for closed-loop wake steering is presented. It uses the wake-tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, the two approaches enable a closed-loop wake redirection.
  • Thumbnail Image
    ItemOpen Access
    Adaptive Vorsteuerung für Windenergieanlagen
    (2013) Schlipf, David; Cheng, Po Wen
    Der Beitrag beschreibt, wie Windmessungen mit LIDAR in einer Vorsteuerung verwendet werden können, um die Drehzahlschwankungen und damit die Belastungen von Windenergieanlagen zu reduzieren. Kernstück dieser Vorsteuerung ist ein Filter, der adaptiv auf die aktuellen Messungen eingestellt werden muss, da sich die Prädiktionszeit und die Korrelation zwischen Vorhersage und Anlagenverhalten kontinuierlich ändern. Die Ergebnisse werden mit Messdaten einer 5MW Anlage validiert.
  • Thumbnail Image
    ItemOpen Access
    Control design methods for floating wind turbines for optimal disturbance rejection
    (2016) Lemmer, Frank; Schlipf, David; Cheng, Po Wen
    An analysis of the floating wind turbine as a multi-input-multi-output system investigating the effect of the control inputs on the system outputs is shown. These effects are compared to the ones of the disturbances from wind and waves in order to give insights for the selection of the control layout. The frequencies with the largest impact on the outputs due to the limited effect of the controlled variables are identified. Finally, an optimal controller is designed as a benchmark and compared to a conventional~PI-controller using only the rotor speed as input. Here, the previously found system properties, especially the difficulties to damp responses to wave excitation, are confirmed and verified through a spectral analysis with realistic environmental conditions. This comparison also assesses the quality of the employed simplified linear simulation model compared to the nonlinear model and shows that such an efficient frequency-domain evaluation for control design is feasible.