01 Fakultät Architektur und Stadtplanung

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Structural optimization through biomimetic-inspired material-specific application of plant-based natural fiber-reinforced polymer composites (NFRP) for future sustainable lightweight architecture
    (2020) Sippach, Timo; Dahy, Hanaa; Uhlig, Kai; Grisin, Benjamin; Carosella, Stefan; Middendorf, Peter
    Under normal conditions, the cross-sections of reinforced concrete in classic skeleton construction systems are often only partially loaded. This contributes to non-sustainable construction solutions due to an excess of material use. Novel cross-disciplinary workflows linking architects, engineers, material scientists and manufacturers could offer alternative means for more sustainable architectural applications with extra lightweight solutions. Through material-specific use of plant-based Natural Fiber-Reinforced Polymer Composites (NFRP), also named Biocomposites, a high-performance lightweight structure with topology optimized cross-sections has been here developed. The closed life cycle of NFRPs promotes sustainability in construction through energy recovery of the quickly generative biomass-based materials. The cooperative design resulted in a development that were verified through a 1:10 demonstrator, whose fibrous morphology was defined by biomimetically-inspired orthotropic tectonics, generated with by the fiber path optimization software tools, namely EdoStructure and EdoPath in combination with the appliance of the digital additive manufacturing technique: Tailored Fiber Placement (TFP).
  • Thumbnail Image
    ItemOpen Access
    Extension of computational co-design methods for modular, prefabricated composite building components using bio-based material systems
    (2023) Zechmeister, Christoph; Gil Pérez, Marta; Dambrosio, Niccolo; Knippers, Jan; Menges, Achim
    Robotic coreless filament winding using alternative material systems based on natural fibers and bio-based resin systems offers possible solutions to the productivity and sustainability challenges of the building and construction sector. Their application in modular, prefabricated structures allows for material-efficient and fast production under tightly controlled conditions leading to high-quality building parts with minimal production waste. Plant fibers made of flax or hemp have high stiffness and strength values and their production consumes less non-renewable energy than glass or carbon fibers. However, the introduction of natural material systems increases uncertainties in structural performance and fabrication parameters. The development process of coreless wound composite parts must thus be approached from the bottom up, treating the material system as an integral part of design and evaluation. Existing design and fabrication methods, as well as equipment, are adjusted to emphasize material aspects throughout the development, increasing the importance of material characterization and scalability evaluation. The reciprocity of material characterization and the fabrication process is highlighted and contributes to a non-linear, cyclical workflow. The implementation of extensions and adaptations are showcased in the development of the livMatS pavilion, a first attempt at coreless filament winding using natural material systems in architecture.
  • Thumbnail Image
    ItemOpen Access
    Toward reciprocal feedback between computational design, engineering, and fabrication to co-design coreless filament-wound structures
    (2024) Kannenberg, Fabian; Zechmeister, Christoph; Gil Pérez, Marta; Guo, Yanan; Yang, Xiliu; Forster, David; Hügle, Sebastian; Mindermann, Pascal; Abdelaal, Moataz; Balangé, Laura; Schwieger, Volker; Weiskopf, Daniel; Gresser, Götz T.; Middendorf, Peter; Bischoff, Manfred; Knippers, Jan; Menges, Achim