Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    ItemOpen Access
    Dimerization and oligomerization of DNA-assembled building blocks for controlled multi-motion in high-order architectures
    (2021) Xin, Ling; Duan, Xiaoyang; Liu, Na
    In living organisms, proteins are organized prevalently through a self-association mechanism to form dimers and oligomers, which often confer new functions at the intermolecular interfaces. Despite the progress on DNA-assembled artificial systems, endeavors have been largely paid to achieve monomeric nanostructures that mimic motor proteins for a single type of motion. Here, we demonstrate a DNA-assembled building block with rotary and walking modules, which can introduce new motion through dimerization and oligomerization. The building block is a chiral system, comprising two interacting gold nanorods to perform rotation and walking, respectively. Through dimerization, two building blocks can form a dimer to yield coordinated sliding. Further oligomerization leads to higher-order structures, containing alternating rotation and sliding dimer interfaces to impose structural twisting. Our hierarchical assembly scheme offers a design blueprint to construct DNA-assembled advanced architectures with high degrees of freedom to tailor the optical responses and regulate multi-motion on the nanoscale.
  • Thumbnail Image
    ItemOpen Access
    Transformable plasmonic helix with swinging gold nanoparticles
    (2022) Peil, Andreas; Zhan, Pengfei; Duan, Xiaoyang; Krahne, Roman; Garoli, Denis; M. Liz‐Marzán, Luis; Liu, Na
    Control over multiple optical elements that can be dynamically rearranged to yield substantial three‐dimensional structural transformations is of great importance to realize reconfigurable plasmonic nanoarchitectures with sensitive and distinct optical feedback. In this work, we demonstrate a transformable plasmonic helix system, in which multiple gold nanoparticles (AuNPs) can be directly transported by DNA swingarms to target positions without undergoing consecutive stepwise movements. The swingarms allow for programmable AuNP translocations in large leaps within plasmonic nanoarchitectures, giving rise to tailored circular dichroism spectra. Our work provides an instructive bottom‐up solution to building complex dynamic plasmonic systems, which can exhibit prominent optical responses through cooperative rearrangements of the constituent optical elements with high fidelity and programmability.
  • Thumbnail Image
    ItemOpen Access
    Gold nanoparticle-mediated DNA origami nanoarchitectures
    (2024) Peil, Andreas; Na Liu, Laura (Prof. Dr.)
    Since its origin in the 1980s, DNA (deoxyribonucleic acid) nanotechnology has established itself as a captivating nanofabrication technique with ever increasing impact that combines aspects from physics, chemistry, and biology to construct artificial nanosystems by means of molecular self assembly. Within the field of DNA nanotechnology, the DNA origami technique represents one of the most versatile fabrication tools to craft functional two-dimensional (2D) and three-dimensional (3D) nanostructures from the bottom up. These structures offer precisely tailored geometries along with programmable functions, featuring positional addressability with sub-5 nm resolution and exceptional spatiotemporal accuracy. This thesis discusses strategies to employ the DNA origami technique to assemble intricate hybrid nanosystems with synergistically integrated gold nanoparticles (AuNPs). The AuNPs take over different roles; they grant (i) structural and (ii) functional features and enable the (iii) optical monitoring of the systems. This approach allows the fabrication of nanostructures piece by piece to explore their structural and functional properties at the nanoscale in detail. The first publication covers different strategies for the hierarchical assembly of topological DNA origami structures using a AuNP-templated self-assembly approach. The assembly of [2], [3], and [4]catenanes with interconnecting AuNPs is elucidated. The AuNPs can be controllably released to disconnect the individual rings, leaving only the mechanical bond of the catenane chain. In the second publication, a dynamic AuNP-DNA origami gear system is presented that is designed to emulate a planetary gearset with precise spatiotemporal control over its rotation dynamics. The AuNPs serve three crucial tasks. They (i) structurally link the origami ring modules, (ii) mediate the rotation and (iii) enable the real time optical tracking of the rotation via fluorescence spectroscopy. The system enables tightly orchestrated and programmable bidirectional rotations. In the third publication, reconfigurable chiral metastructures comprising multiple plasmonic particles that are accurately positioned in a helical manner around a DNA origami template are discussed. The implementation of a DNA ‘swingarm strategy’ enables the simultaneous and efficient relocation of multiple closely spaced AuNPs over large distances to precisely tune the chiroptical response of the system. The presented publications illustrate the beneficial synergies between DNA origami systems and rationally integrated AuNPs with the aim to advance and expand the application spectrum of these hybrid nanosystems within their scientific disciplines.
  • Thumbnail Image
    ItemOpen Access
    Stabilizing γ‐MgH2 at nanotwins in mechanically constrained nanoparticles
    (2021) Kammerer, Jochen A.; Duan, Xiaoyang; Neubrech, Frank; Schröder, Rasmus R.; Liu, Na; Pfannmöller, Martin
    Reversible hydrogen uptake and the metal/dielectric transition make the Mg/MgH2 system a prime candidate for solid‐state hydrogen storage and dynamic plasmonics. However, high dehydrogenation temperatures and slow dehydrogenation hamper broad applicability. One promising strategy to improve dehydrogenation is the formation of metastable γ‐MgH2. A nanoparticle (NP) design, where γ‐MgH2 forms intrinsically during hydrogenation is presented and a formation mechanism based on transmission electron microscopy results is proposed. Volume expansion during hydrogenation causes compressive stress within the confined, anisotropic NPs, leading to plastic deformation of β‐MgH2 via (301)β twinning. It is proposed that these twins nucleate γ‐MgH2 nanolamellas, which are stabilized by residual compressive stress. Understanding this mechanism is a crucial step toward cycle‐stable, Mg‐based dynamic plasmonic and hydrogen‐storage materials with improved dehydrogenation. It is envisioned that a more general design of confined NPs utilizes the inherent volume expansion to reform γ‐MgH2 during each rehydrogenation.
  • Thumbnail Image
    ItemOpen Access
    Real-time tracking of coherent oscillations of electrons in a nanodevice by photo-assisted tunnelling
    (2024) Luo, Yang; Neubrech, Frank; Martin-Jimenez, Alberto; Liu, Na; Kern, Klaus; Garg, Manish
    Coherent collective oscillations of electrons excited in metallic nanostructures (localized surface plasmons) can confine incident light to atomic scales and enable strong light-matter interactions, which depend nonlinearly on the local field. Direct sampling of such collective electron oscillations in real-time is crucial to performing petahertz scale optical modulation, control, and readout in a quantum nanodevice. Here, we demonstrate real-time tracking of collective electron oscillations in an Au bowtie nanoantenna, by recording photo-assisted tunnelling currents generated by such oscillations in this quantum nanodevice. The collective electron oscillations show a noninstantaneous response to the driving laser fields with a T2 decay time of nearly 8 femtoseconds. The contributions of linear and nonlinear electron oscillations in the generated tunnelling currents were precisely determined. A phase control of electron oscillations in the nanodevice is illustrated. Functioning in ambient conditions, the excitation, phase control, and read-out of coherent electron oscillations pave the way toward on-chip light-wave electronics in quantum nanodevices.
  • Thumbnail Image
    ItemOpen Access
    High space‐bandwidth‐product (SBP) hologram carriers toward photorealistic 3D holography
    (2024) Li, Jin; Li, Xiaoxun; Huang, Xiangyu; Kaißner, Robin; Neubrech, Frank; Sun, Shuo; Liu, Na
    3D holography capable of reproducing all necessary visual cues is considered the most promising route to present photorealistic 3D images. Three elements involving computer‐generated hologram (CGH) algorithms, hologram carriers, and optical systems are prerequisites to create high‐quality holographic displays for photorealistic 3D holography. Especially, the hologram carrier directly determines the holographic display capability and the design of high space‐bandwidth‐product (SBP) optical systems. Currently, two categories of hologram carriers, i.e., spatial light modulators (SLM) and metasurfaces, are regarded as promising candidates for photorealistic 3D holography. However, most of their SBP capability still cannot match the amount of information generated by the CGH. To address this issue, tremendous efforts are made to improve the capability of hologram carriers. Here, the main hologram carriers (from SLM to metasurfaces) that are widely utilized in holography systems to achieve high SBP capability (high resolution, wide viewing angles, and large sizes) are reviewed. The purpose of this review is to identify the key challenges and future directions of SLM‐based and metasurface‐based holography for photorealistic 3D holographic images.