Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
2 results
Search Results
Item Open Access High‐performance magnesium‐sulfur batteries based on a sulfurated poly(acrylonitrile) cathode, a borohydride electrolyte, and a high‐surface area magnesium anode(2020) Wang, Peiwen; Trück, Janina; Niesen, Stefan; Kappler, Julian; Küster, Kathrin; Starke, Ulrich; Ziegler, Felix; Hintennach, Andreas; Buchmeiser, Michael R.Post‐lithium‐ion battery technology is considered a key element of future energy storage and management. Apart from high gravimetric and volumetric energy densities, economic, ecologic and safety issues become increasingly important. In that regards, both the anode and cathode materials must be easily available, recyclable, non‐toxic and safe, which renders magnesium‐sulfur (Mg-S) batteries a promising choice. Herein, we present Mg-S cells based on a sulfurated poly(acrylonitrile) composite cathode (SPAN), together with a halogen‐free electrolyte containing both Mg[BH4]2 and Li[BH4] in diglyme and a high‐specific surface area magnesium anode based on Rieke magnesium powder. These cells deliver discharge capacities of 1400 and 800 mAh/gsulfur with >99 % Coulombic efficiency at 0.1 C and 0.5 C, respectively, and are stable over at least 300 cycles. Energy densities are 470 and 400 Wh/kgsulfur at 0.1 C and 0.5 C, respectively. Rate tests carried out between 0.1 C and 2 C demonstrate good rate capability of the cells. Detailed mechanistic studies based on X‐ray photoelectron spectroscopy and electric impedance spectroscopy are presented.Item Open Access Synthetic and structural peculiarities of neutral and cationic molybdenum imido and tungsten oxo alkylidene complexes bearing weakly coordinating N‐heterocyclic carbenes(2024) Buchmeiser, Michael R.; Wang, Dongren; Schowner, Roman; Stöhr, Laura; Ziegler, Felix; Sen, Suman; Frey, WolfgangThe syntheses of the neutral molybdenum imido alkylidene N-heterocyclic carbene (NHC) complexes of the general formula [Mo(NAr)(CHCMe2Ph)(NHC)XY] (Ar=2-tBu-C6H4, 2-CF3-C6H4, 2,6-Me2-C6H3, 2,6-Cl2-C6H3, adamantyl; X, Y=OTf, OC(CF3)3, OCH(CF3)2, OC6F5, SC6F5, 2,5-bis(pentafluorophenyl)phen-1-yl) bearing electron-withdrawing NHCs (1,3-dimethyl-4,5-dichloroimidazol-2-ylidene (IMeCl2), 1,3,4-triphenyl-1,2,4-triazol-5-ylidene (TPT)) are reported. Complementary, the corresponding cationic molybdenum imido alkylidene NHC complexes of the general formula [Mo(NAr)(CHCMe2R)(NHC)X+][B(ArF)4−/Al(OC(CF3)3)4−] (R=Me, Ph; B(ArF)4-=tetrakis (3,5-bis(trifluoromethyl)phenyl)borate) have been prepared. Aiming at tungsten oxo complexes, reaction of [W(O)Cl2(CHCMe2Ph)(PMe2Ph)2] with [1,3-dimethyl-4,5-dichloroimidazol-2-ylidene⋅AgI] (IMeCl2⋅AgI) followed by the addition of lithium terphenoxide yields [W(O)(CHCMe2Ph)(IMeCl2)(DPPO)2]. For comparison, [W(O)Cl(CHCMe2Ph)(IMes)(OSi(OtBu)3)] was prepared via reaction of [W(O)Cl2(CHCMe2Ph)(PMe2Ph)(IMes)] with KOSi(OtBu)3. [W(O)(CHCMe2Ph)(IMeCl2)(DPPO)(Et2O)+][B(ArF)4−] (DPPO=2,6-diphenylphenoxide) became accessible via reaction of [W(O)(DPPO)2(CHCMe2Ph)(IMeCl2)] with anilinium B(ArF)4-. The structural peculiarities of selected complexes are reported. Benchmark ring-closing metathesis and homometathesis reactions revealed that the neutral complexes bearing weakly coordinating NHCs such as IMeCl2 and TPT possessed only moderate activity, which could, however, be improved by preparing the corresponding cationic metal alkylidene complexes.