Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
82 results
Search Results
Item Open Access Microscopic calculation of line tensions(2008) Merath, Rolf-Jürgen Christian; Dietrich, Siegfried (Prof. Dr.)In this work the line tension has been determinded with molecular resolution, which in this context marks the forefront of research. A semi-microscopic line tension theory based on the sharp-kink approximation has been further developed. The sharp-kink results concerning wetting and line tension behavior deviate considerably from the fully microscopic results. A hybrid line tension theory has been introduced, which employs an improved effective interface potential for the SK line tension calculation. For most of the studied cases the results from this hybrid method describe the fully microscopic line tension values semi-quantitatively. However, for a tailored system with relatively strong spatial variations of the substrate potential and of the solid-liquid interfacial density the hybrid method fails and does not predict the correct order of magnitude of the line tension values. Hence in general the fully microscopic approach is required, if one is interested in quantitatively reliable line tension values or/and if the validity of the hybrid method for the considered system has not been checked. The calculation of the line tension of a liquid wedge is an important contribution for understanding the shape of very small droplets (below the micrometer range). Furthermore a proposal is given, how axisymmetric sessile droplets can be addressed efficiently within DFT.Item Open Access Ambient pressure oxidation of Ag(111) surfaces : an in-situ X-ray study(2008) Reicho, Alexander; Dosch, Helmut (Prof. Dr.)The oxidation of metals plays an outstanding role in everyday life. Typical phenomena are the formation of rust on steel or oxide scales on copper, showing up as a green patina. The formation of metal oxides is not always an unwanted process. The functionality of many materials is directly related to their controlled oxidation. The most prominent examples are passivating oxide layers on stainless steel. Relevant for this thesis are industrially applied heterogeneous catalytic reactions for the synthesis of many chemical products, where gaseous reactants are in contact with the solid surface of the catalyst. Oxidation reactions are very important in this context, leading to a big need of understanding of these processes in research and development. Thereby, the active oxygen species on the surface and selectivity and poisoning of the catalyst have to be studied on an atomic scale. The high temperature and high pressure oxidation of the 4d transition metals Ru, Rh, Pd and Ag is a matter of particular interest, because these metals are widely used as oxidation catalysts. On Ruthenium one observes the formation of RuO2(110) bulk oxide islands at elevated temperatures and oxygen pressure. In the case of the Pd(100) and Rh(111) surface oxidation can lead to the formation of so-called surface oxides. These oxides are structurally related to the bulk oxide of the respective element. Furthermore, surface oxides are ultra thin oxides containing one metallic layer surrounded by two oxygen layers, giving rise to an oxygen-metal-oxygen sequence perpendicular to the surface plane. A future vision is to get a direct microscopic control of the emerging surface structures and ultimately of the real-time oxidation/reduction dynamics allowing one to tailor such catalytic reactions to better performance. A necessary prerequisite to the microscopic control is the full atomistic understanding of the surface structures which form at high temperature and at high oxygen pressures. Silver plays a unique role in heterogeneous catalysis. Supported Ag catalysts are used for the selective oxidation ('epoxidation') of ethylene and for the partial oxidation of methanol to formaldehyde. Ethylene oxide and its derivates are basic chemicals for industry, used in a many technologies with a world-wide production of more than 10 million tons as in medicine for disinfection, sterilization, or fumigation, or in transport and energy technologies for engine antifreeze and heat transfer. Because of its ability to kill most bacteria, formaldehyde is extensively used as disinfectant and as preservative in vaccinations. Therefore, the optimisation of these two Ag-supported catalytic reactions is of paramount importance. Current strategies employed in the industrial process to enhance selectivity include the empirical use of inhibitors (Cl) and promoters (Cs), however, on the way to a knowledge-based control of these reactions one has first to understand the surface structure of oxidized silver under relevant conditions in full detail. The formation of extended Ag(111) facets is observed on polycrystalline silver during the above industrial catalytic oxidation reactions, in turn fundamental research (experiment and theory) has been devoted to the detailed understanding of oxidation of this surface. The formation of an oxygen induced p(4x4) reconstruction on the Ag(111) surface is known since the early 70s. A surface oxide trilayer model, based on a three-layer slab of Ag2O(111), was proposed. Accordingly, the Ag(111) surface seemed to show a similar behaviour like Pd and Rh, being neighbours in the periodic table. Further theoretical calculations predicted the stability of this reconstruction under industrially relevant conditions. Nevertheless, several questions remained unsolved: the stability of the p(4x4) reconstruction under industrially relevant conditions was not checked experimentally, the structural model of the p(4x4) structure was not proven by a crystallographic method and previously unknown structures might play an important role for the catalytic activity of Ag(111) facets. Our experimental approach is based on the nowadays routinely available highly brilliant x-ray radiation produced by third generation synchrotron light sources. This radiation is used by us in three surface sensitive x-ray techniques. In-situ surface x-ray diffraction (SXRD) allows the identification and determination of structural models of surface reconstructions under industrially relevant conditions. This technique is combined with high resolution core level spectroscopy (HRCLS) and normal incidence x-ray standing wave absorption (NIXSW), giving insight into the local binding geometry of the oxygen and silver atoms.Item Open Access Towards spin injection into silicon(2007) Dash, Saroj Prasad; Carstanjen, Heinz Dieter (Prof. Dr.)The efficient spin injection into semiconductors could pave the way to a new generation of electronics devices such as spin memories, spin transistors, and spin quantum computers. The most important semiconductor for industrial application, Si has been studied for the purpose of spin injection extensively in this thesis. Three different concepts for spin injection into Si have been addressed: (1) spin injection through a ferromagnet-Si Schottky contact, (2) spin injection using MgO tunnel barriers in between the ferromagnet and Si, and (3) spin injection from Mn-doped Si (DMS) as spin aligner. (1) FM-Si Schottky contact for spin injection: In a heterostructure of a ferromagnetic thin film on a Si substrate, any structural disorder at the interface would drastically reduce the spin polarization at the interface and, hence, the spin injection efficiency. To be able to improve the interface qualities one needs to understand the atomic processes involved in the formation of such silicide phases. In order to obtain more detailed insight into the formation of such silicide phases the initial stages of growth of Co and Fe were studied in situ by HRBS with monolayer depth resolution. As understood, it was important to prohibit the in-diffusion of Co into interstitial sites at the initial stages of growth and the out-diffusion of Si atoms in the latter stages. So in order to control and improve the interface, equilibrium growth conditions were followed (i) by lowering the growth temperature and (ii) by surfactant-mediated growth. Low temperature growth of Co on Si (100): Already at very low coverage Co diffusion into the bulk Si has been observed. The amount of in-diffused Co is, however, less than at room temperature. In contradiction to room temperature growth, Co atoms form layers of pure Co on top of the Si surface already at very low coverage. Every second Si layer, starting with the first Si layer, is Co depleted. This leads to an oscillatory Co distribution in the Si lattice which is preserved up to higher coverages (1.3 ML). Surfactant-mediated growth of Co on Si (100) : The lower surface free energy of Sb in comparison to Co and Si, makes it a potential candidate for surfactant mediated growth. By the use of one monolayer of Sb adsorbed on a Si (100) surface, Co-Si intermixing at the interface is strongly reduced in comparison to the interface without Sb as surfactant. The improved interface quality with Sb-mediated growth is also reflected in magnetic measurements. Co with Sb-mediated growth shows a higher magnetic moment. It was shown that simple solutions can reduce the FM-Si inter diffusion at the interface and improve the interface quality. However these non-equilibrium growth conditions could not stop the silicide formation completely. (2) MgO tunnel barrier for spin injection into Si: On the other hand, using an ultra-thin tunnel barrier between FM and Si will have three advantages: (i) form a chemical barrier between the FM and Si, (ii) circumvent the conductivity mismatch problem, and (iii) in addition act as a spin filter. The fabrication and characterization of ultra-thin crystalline MgO tunnel barriers on Si (100) was presented. Some of the important properties required for tunnel barriers on Si have been addressed. Ultra-thin stoichiometric MgO tunnel barriers with sharp interface with Si (100), very homogeneous, without pin-holes, and crystalline in structure could be fabricated by reactive molecular beam epitaxy. Co and Fe on an ultra thin MgO tunnel barrier were found to have island-like growth with a rough surface. Ultra-thin Co and Fe films are found to be thermally quite stable up to 450 °C. (3) Mn doped Si for spin injection: For spin injection purpose, instead of contacting the Si with a ferromagnetic metal, the contact could be made with another semiconductor, one with ferromagnetic properties. This solves the conductivity mismatch problem by ensuring that the resistivities of the materials on both side of the interface are comparable in magnitude. Si-based diluted magnetic semiconductor samples were prepared by doping Si with Mn by two different methods i) by Mn ion implantation and ii) by in-diffusion of Mn atoms (solid state growth). In the case of implanted samples, Mn atoms do not substitute Si sites. The implanted samples show room temperature ferromagnetism as measured by a SQUID magnetometer. The magnetic moment per Mn atom is found to decrease with increasing implantation dose. It has been observed that the implanted samples show carrier mediated ferromagnetism and, more importantly, mediated by both holes and electrons in contrast to statements in the literature. Solid state growth of Mn doped Si : For evaporation of Mn on Si (100), Mn atoms diffuse deep into the Si bulk already at room temperature, even for very low coverage (0.25 ML) with an oscillatory concentration depth profile as observed by HRBS with monolayer depth resolution. This results in natural MnxSi1-x/Si digital layers on the surface. Surprisingly, the samples prepared by this solid state diffusion process show room-temperature ferromagnetism having a magnetic moment of 1.8 µB per Mn atom, which is much higher than that of the ion-implanted samples. In contrast to ion-implanted samples the ferromagnetism in these samples does not show any carrier mediation.Item Open Access Resonante magnetische Röntgenuntersuchungen an einem Co/Cu/Co-Schichtsystem und an Platinlegierungen(2006) Grüner, Uwe; Schütz, Gisela (Prof. Dr.)Im Rahmen dieser Arbeit wurde das magnetische Tiefenprofil eines Co/Cu/Co-Schichtsystem mit Hilfe der resonanten magnetischen Röntgenreflektometrie (XRMR) untersucht. Dazu wurde als Funktion des Einfallswinkels das Asymmetrieverhältnis an der CoL3- und an der CuL3-Kante gemessen. Die zugehörigen resonanten optischen Konstanten wurden über ein gesondertes XMCD-Experiment ermittelt. Mit Hilfe eines neu entwickelten Programm auf der Basis des Parratt-Formalismus konnten die gemessenen Asymmetrien simuliert und quantitative Änderungen an den Grenzflächen der Kobaltschichten sowie induzierte magnetische Effekte im Kupfer ermittelt werden. Weiterhin wurden XMCD-Messungen an der PtL3-Kante durchgeführt. Mit Hilfe einer weiterentwickelten, auf digitaler Lock-In-Technik basierenden Methode mit einem Phasenschieber wurden drei verschiedene Platinlegierungen untersucht und der induzierte Magnetismus im Platin quantitativ bestimmt.Item Open Access Kritische Phänomene auf chemisch strukturierten Substraten(2006) Sprenger, Monika; Dietrich, Siegfried (Prof. Dr.)Chemisch strukturierte Substrate haben zunehmend an Bedeutung gewonnen seit es möglich ist, Oberflächen im Bereich von Mikrometern und darunter zu strukturieren. Auf diesen kleinen Skalen wird die Wechselwirkung der Flüssigkeiten mit dem Substrat wichtig und eine chemische Strukturierung der Substrate verursacht eine reiche Grenzflächenstruktur, die von den molekularen Details des lokalen Kraftfeldes anhängt. Konzentriert man sich jedoch auf das Gebiet um den kritischen Punkt eines Phasenübergangs zweiter Ordnung, werden die molekularen Details unbedeutend und das System zeigt ein universelles Verhalten, das durch kritische Exponenten, nicht-universelle Amplituden und universelle Skalenfunktionen beschrieben wird. Systeme mit kritischen Punkten werden bezüglich ihres Bulk-Verhaltens klassifiziert und Universalitätsklassen zugeordnet. Bei Systemen, die durch ein Substrat oder eine freie Oberfläche begrenzt werden, spalten die Universalitätsklassen in Oberflächen-Universalitätsklassen bezüglich des kritischen Verhaltens an der Oberfläche auf. Physikalisch unterschiedliche Systeme können zur selben Universalitätsklasse gehören: einkomponentige Flüssigkeiten in der Nähe ihres kritischen Punktes zwischen Flüssigkeit und Gas gehören ebenso wie binäre Flüssigkeitsmischungen nahe ihres kritischen Punktes der Entmischung - die in dieser Arbeit betrachtet werden - und uniaxiale Ferromagnete nahe der Curie-Temperatur zur Ising-Universalitätsklasse. Die Universalitätsklassen werden durch die Reichweite der Wechselwirkung, die räumliche Dimension des Systems und die Dimension des Ordnungsparameters bestimmt. Für eine binäre Flüssigkeitsmischung lässt sich der Ordnungsparameter, der den Grad der Ordnung im System beschreibt, entweder als Differenz der Konzentrationen der beiden Flüssigkeiten oder als Konzentration einer der Flüssigkeiten minus ihrer Konzentration am kritischen Entmischungspunkt definieren. Das Thema dieser Arbeit sind die kritischen Phänomene, die auftreten, wenn eine binäre Flüssigkeitsmischung, die sich in der Umgebung ihres kritischen Entmischungspunktes befindet, mit einem topologisch flachen, chemisch strukturierten Substrat in Kontakt gebracht wird. Dabei verursacht der chemische Kontrast unterschiedliche lokale Präferenzen für die beiden Spezies der binären Flüssigkeitsmischung. In der vorliegenden Arbeit werden drei verschiedene Typen von chemisch strukturierten Substraten betrachtet: eine chemische Stufe (wichtig für das Verständnis von lokalen Eigenschaften einer Flüssigkeit an der Grenze von chemischen Streifen), ein einzelner chemischer Streifen (das einfachste chemische Muster auf einer Oberfläche) und ein periodisches Streifenmuster (als Beispiel für die Adsorption an heterogenen Oberflächen). Die Ordnungsparameterprofile und ihre Temperaturabhängigkeit sind durch universelle Skalenfunktionen gegeben, die im Rahmen der Mean-Field-Theorie berechnet werden. Die Skalenfunktionen und der Einfluss der chemischen Streifen werden in der Arbeit eingehend untersucht. Wird eine Flüssigkeit, die von zwei Substraten eingeschlossen wird, in die Nähe ihres kritischen Punkts gebracht, entsteht aufgrund der Randbedingungen, die das Spektrum der kritischen Fluktuationen des Ordnungsparameters einschränken, eine auf die Substrate wirkende effektive Kraft ("kritische Casimir-Kraft"). In dieser Arbeit werden die singulären Beiträge der effektiven Kraft untersucht, die auf chemisch inhomogene Substrate wirken, welche binäre Flüssigkeitsmischungen begrenzen. Es werden vier grundlegende Konfigurationen zweier geometrisch flachen, parallelen Substrate mit periodischen chemischen Mustern aus Streifen mit positiven und Streifen mit negativen Oberflächenfeldern betrachtet: zwei Substrate mit den gleichen Streifenmustern (d.h. ein positiver Streifen liegt gegenüber einem positiven Streifen), zwei Substrate mit entgegengesetzten Streifenmustern (d.h. ein positiver Streifen liegt gegenüber einem negativen Streifen), ein strukturiertes und ein homogenes Substrat und abschließend zwei Substrate mit den gleichen Streifenmustern, die aber gegeneinander verschoben sind (d.h. ein positiver Streifen liegt teilweise einem positiven und teilweise einem negativen Streifen gegenüber). Das universelle Verhalten der Ordnungsparameterprofile und der effektiven Kräfte, die auf die Substrate wirken, wird durch universelle Skalenfunktionen beschrieben. Die Skalenfunktionen der Ordnungsparameterprofile werden im Rahmen der Mean-Field-Theorie numerisch berechnet und daraus mittels des Stress-Tensors die Kräfte zwischen den Substraten abgeleitet. Die Abhängigkeit der Skalenfunktionen der Kräfte von der Distanz zwischen den Substraten, von den Streifenbreiten und - im Fall des verschobenen Streifenmusters - von der relativen Verschiebung wird untersucht. Es werden verallgemeinerte Casimir-Amplituden definiert und ihre Abhängigkeit von der chemischen Strukturierung der Substrate betrachtet.Item Open Access Ab-initio modeling of ultrafast demagnetization after laser irradiation in nickel, iron and cobalt(2013) Illg, Christian Michael; Fähnle, Manfred (Prof. Dr.)This work deals with ultrafast demagnetization within few hundred femtoseconds after laser pulse irradiation in nickel, iron and face-centered cubic (fcc) cobalt. It is examined with ab-initio density-functional theory and physical modeling whether the electron-phonon spin-flip scattering can be considered as underlying mechanism for ultrafast demagnetization.Item Open Access Spin-echo resolved neutron scattering from self-organised polymer interfaces(2010) Nülle, Max; Dosch, Helmut (Prof. Dr.)This thesis focused on two main objectives: First, the clarification of the prospects of the spin-echo resolved grazing incidence neutron scattering method (SERGIS) for the investigation of buried interfaces. And second, the investigation of the self-organisation (i.e. microphase separation and dewetting) of ultrathin poly(styrene-block-isoprene) diblock copolymer films on silicon substrates by means of SERGIS and complementary techniques. SERGIS is a novel neutron scattering technique which was implemented and further developed at the new neutron / x-ray reflectometer N-REX+ at the FRM II (Garching, Germany). In contrast to conventional small-angle scattering methods, SERGIS characterises the lateral structure and morphology of interfaces and thin-film systems in real space. The technique uses a polarised primary beam, and the measured quantity is the integral polarisation of the scattered beam. By decoupling the measurement resolution and the beam divergence (in a first approximation), SERGIS aims at a good resolution and a good measurement statistics simultaneously. As a first systematic application of SERGIS to a real physical problem, the dewetting and internal structure of ultrathin poly(styrene-block-isoprene) diblock copolymer films were studied by means of SERGIS and complementary surface sensitive techniques, namely neutron and x ray reflectivity and atomic force microscopy (AFM).Item Open Access In-situ-Röntgenbeugungsuntersuchungen zur Stabilität zweidimensionaler Legierungsfilme(2009) Becker, Moritz; Dosch, Helmut (Prof. Dr.)Diese Arbeit untersucht das Phasenverhalten ultradünner, im Volumen nicht mischbarer Fe-Ag Legierungsfilme auf Ru(0001)- und Ir(111)-Substraten mit oberflächensensitiver Röntgenbeugung (SXRD). Die Experimente wurden an den Synchrotronstrahlungsquellen Ångstrømquelle Karlsruhe (ANKA) und Swiss Light Source (SLS) mit einer im Rahmen dieser Arbeit entworfenen, transportablen UHV-Kammer durchgeführt, die in-situ Probenpräparation und zeitaufgelöste oberflächensensitive Röntgenbeugungsexperimente ermöglicht. Ein grundlegendes Verständnis von Legierungen ist ohne die detaillierte Kenntnis der atomaren Wechselwirkungspotentiale nicht möglich. Wäre diese Kenntnis erlangt, würde sich die Möglichkeit eröffnen, eine gewünschte Legierung am Rechner zu entwickeln, das heißt die benötigte Materialzusammensetzung a-priori aus den gewünschten Legierungseigenschaften zu ermitteln. Die atomaren Wechselwirkungen - üblicherweise unterteilt in chemische und spannungsinduzierte Wechselwirkungen - bestimmen, im Wettstreit mit der Entropie, die atomare Konfiguration der Legierung. Eisen und Silber dienen als Modellsystem einer im Volumen phasenseparierenden Legierung. Die stark ausgeprägte Entmischung reicht bei allen Mischungsverhältnissen bis in die flüssige Phase und deutet damit darauf, dass nicht nur die spannungsinduzierten sondern auch die chemischen Wechselwirkungen die Phasentrennung begünstigen. Die Beschränkung einer solchen binären Mischung auf einen ultradünnen Film auf einem Substrat wird die Energie der Verspannungen im Film verändern und zusätzliche chemische Wechselwirkungen zwischen Filmmaterialien und Substrat einbringen. In einem einfachen Modell wird die Spannungsenergie im Film minimiert, wenn die Gitterkonstante des Substrats zwischen denen der reinen Filmmaterialien liegt, wie bei Fe-Ag auf Ru(0001) und Ir(111). Das heißt, während Spannungen im Volumen stets entmischend wirken, können sie im Film die Legierungsbildung begünstigen, wobei sogenannte spannungsstabilisierte Oberflächenlegierungen entstehen. Im Rahmen dieser Arbeit wurde das Phasenverhalten von Submonolagen-Filmen aus Eisen und Silber auf Ru(0001)- und Ir(111)-Substraten mit zunehmender Temperatur und Zeit für drei Mischungsverhältnisse (eisenreich, ausgeglichen und silberreich) untersucht. Die abgeschiedenen reinen Eisen- und Silberphasen lassen sich dabei in einem SXRD-Experiment deutlich von möglichen Legierungsphasen, über die, den verschiedenen atomaren Konfigurationen zuzuordnenden Streubilder, unterscheiden. Der Anteil der Phasenabscheidung in die reinen Eisen- und Silberphasen lässt sich über die integrierte Intensität der Reflexe der reinen Silberphase bestimmen. Auf der Ru(0001)-Oberfläche konnte bereits bei Raumtemperatur eine Entmischung der ultradünnen Fe-Ag Filme beobachtet werden, wobei die Phasentrennung im Zeitrahmen der Experimente noch nicht vollständig abgelaufen ist. Nach dem Anlassen der Proben bis 670 K, das heißt bis knapp unter der Desorptionstemperatur von Silber, zeigen die Filme eine vollständige Phasenseparation. Auf der Ir(111)-Oberfläche konnte bei Raumtemperatur bei keinem Mischungsverhältnis eine Phasentrennung im Zeitrahmen der Experimente beobachtet werden. Der Prozess der Phasenseparation in den Fe-Ag Filmen läuft damit auf der Ir(111)-Oberfläche deutlich langsamer als auf der Ru(0001)-Oberfläche ab. Anlassen der Filme mit eisenreichem und ausgeglichenem Mischungsverhältnis auf 670 K führt erneut zu vollständiger Entmischung. Die silberreiche Mischung zeigt dagegen eine unvollständige Phasenseparation. Zusätzlich sind diffuse Streusignale um die Crystal Truncation Rods des Ir(111)-Substrats zu beobachten, die schwache, aber langreichweitige 2 dimensionale Korrelationen im Film aufzeigen. Eine wahrscheinliche Interpretation ist eine Tröpfchenphase mit Eisenclustern in einer Silbermatrix. Diese Beobachtung zeigt, dass die diffuse Röntgenstreuung sich ausgezeichnet eignet, Korrelationen in binären 2 dimensionalen Mischungen zu untersuchen und dabei wertvolle Beiträge zur Bestimmung atomarer Wechselwirkungspotentiale zu geben.Item Open Access In-situ X-ray studies of model electrode surfaces for solid oxide fuel cells(2010) Khorshidi, Navid; Dosch, Helmut (Prof. Dr.)Fuel cells are considered as a promising way to produce clean energy. These cells convert the chemical energy created by the reaction of hydrogen and oxygen to water into electric energy. Regarding the difficulties connected with the production and more importantly storage of hydrogen, solid oxide fuel cells (SOFCs) play an outstanding role among the diverse fuel cell types. SOFCs are able to use not only pure hydrogen as a fuel, but also hydrocarbons. This ability leads to impressive efficiencies and allows to integrate SOFCs into existing structures. SOFCs are usually operated at temperatures above 800°C which leads to extreme conditions for the used materials and limits the lifetime of the cells. One of the major goals in the future is thus to develop low temperature SOFCs. In order to achieve such a goal, an atomic understanding of the chemicals reactions on the electrodes is essential. A typical SOFC is made of a cathode consisting of lanthanum strontium manganate (LSM) and yttria-stabilized zirconia (YSZ). Due to its electronic and thermal isolation and the conduction of oxygen ions, YSZ also serves as an electrolyte and at the same time as a part of the anode, which in addition is covered with nickel particles. An atomic understanding of the respective chemical reactions thus requires to have atomic models of the YSZ surface being present at the cathode and the anode surface. Another fundamental component to know are the nickel particles covering the anode. The superb importance of the anode or fuel cathode is to be found by the diverse fuels to be processed here. The aim of this work is to experimentally determine the atomic surface structure of the two important orientations (111) and (100) of YSZ under relevant conditions. Additionally the growth and shape of Ni nano particles grown on these surfaces as well as their shape changes under related conditions are studied. The gathered knowledge can be assembled to a model anode and a part of a model cathode. The found results are also of importance for the growth of thin films, where YSZ is a frequent substrate. The main experimental tool is surface X-ray diffraction (SXRD), which allows to derive atomic structures of surfaces regardless of their conductivity properties. The experiments were carried out in a mobile ultra-high vacuum chamber using synchrotron radiation.Item Open Access Directed self assembly of organic semiconductors in different dimensionalities(2009) Krauss, Tobias Niko; Dosch, Helmut (Prof. Dr.)Organic semiconductors have been studied since the late 1940s but the starting point of organic electronics can be set at the mid 1980s where organic materials were for the first time implemented into organic photovoltaic cells (OPVs), organic light emitting diodes (OLEDs) and organic field effect transistors (OFETs). The most appealing advantages, when compared to their inorganic counterparts, are that organic materials offer an inherent compatibility with plastic substrates, flexibility since the bonding between adjacent atoms in organic molecules is governed by van-der Waals forces, and amenability to low-cost and low-temperature processing methods such as melt processing, printing, and solution deposition. The high demand for lightweight and inexpensive electronic components has therefore triggered an extensive research activity in the field of organic semiconductors. In this experimental work, the growth of organic semiconductors by sublimation in ultra high vacuum was studied. The aim was to characterize structural properties and optimize growth conditions in order to attain highly ordered architectures in three, two and one dimension for an improved and suitable implementation into devices. The molecules studied in this thesis exhibit pi-pi interactions which are a driving force for the self-assembly in crystalline structures. This ability was exploited together with the control of kinetic parameters and the templating role of substrates. Precise information of the structural properties for each system has been achieved by the combination of various complementary techniques including x-ray reflectivity, grazing incidence x-ray diffraction, atomic force and scanning tunneling microscopy and scanning and transmission electron microscopy.