Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
1 results
Search Results
Item Open Access Modellierung, Simulation und experimentelle Untersuchung miniaturisierter Schaltventile mit Stoßantrieb(2015) Fischer, Christian; Eberhard, Peter (Prof. Dr.-Ing.)In dieser Arbeit wird eine systematische Methodik zur grundlegenden Untersuchung von Stößen mit und ohne Fluid und zur Simulation stoßbetriebener Schaltventile vorgestellt. Der Kerngedanke eines stoßbetriebenen Schaltventils besteht darin, mit einem Aktor eine hohe Kraft in kurzer Zeit zu erzeugen, die eine dünne Gehäusewand bzw. eine fest eingespannte Platte verformt und eine Kugel im Ventil bzw. auf der anderen Plattenseite durch einen Stoß beschleunigt. Diese Kugel wechselt dann im Ventil ihre Position. Dabei ist der Wirkungsgrad der Energieübertragung, welcher die kinetische Energie der inneren Kugel nach dem Stoß bestimmt, besonders wichtig, um robustes Umschalten zu ermöglichen. Es wird in einem mehrstufigen Prozess die Simulation des Stoßvorgangs ermöglicht. Zunächst wird anhand eines vereinfachten, vergrößerten Modells durch Experimente der Wirkungsgrad der Stoßübertragung unterschiedlicher Materialkombinationen und Geometrien bestimmt. Mit diesen Ergebnissen werden nichtlineare Finite-Elemente-Modelle desselben Modells unter Verwendung nichtlinearer Materialmodelle verglichen und validiert. In einem dritten Schritt wird ein elastisches Mehrkörpermodell erstellt und mit Hilfe der Simulationsergebnisse der Finite-Elemente-Simulation validiert. Dieses Modell dient dann der Simulation der Stoßvorgänge und auf Grund der extrem geringen Rechenzeiten der Durchführung von Parameterstudien und der Optimierung des Wirkungsgrades. Dadurch können viele Erkenntnisse gewonnen werden, die der Entwicklung neuer Ventilvarianten dienen. Beispielsweise wird sich herausstellen, dass die Periodendauer der ersten Eigenfrequenz der Platte mindestens halb so groß wie die Stoßdauer sein sollte, dass die Elastizitätsmodule der Kugeln möglichst hoch sein sollten und der E-Modul der Platte möglichst gering. Außerdem sollte die Platte möglichst dünn und die Oberfläche der Stoßkörper möglichst wenig gekrümmt sein. Für die Untersuchung des Fluideinflusses auf den Stoß wurde das Finite-Elemente-Modell der Platte im elastischen Mehrkörpermodell durch ein Modell ersetzt, welches die Wechselwirkung der Platte mit einem umgebenden Fluid beschreibt. Damit können dann die Experimente, die mit Fluid durchgeführt wurden, verglichen werden. Dabei ist die Auswertung der Ergebnisse mit Fluid nicht direkt möglich, denn es müssen einige Effekte kompensiert werden, die der Brechungsindex des Fluids direkt auf die Messung hat. Es zeigt sich dann aber, dass die Ergebnisse gut überein stimmen. Des Weiteren zeigt sich, dass der Stoß nicht von der Viskosität des Fluids, sondern lediglich von dessen Dichte abhängt. Der Einfluss der Viskosität spielt jedoch eine Rolle, wenn zu Beginn des Stoßes ein kleiner Spalt zwischen der Platte und der Kugel ist und unmittelbar nach dem Stoß, wenn sich die Kugel von der Platte entfernt und Fluid nachströmen muss. Dazu wurde ein Simulationsmodell zur Berechnung des Squeeze-Film-Effekts entwickelt und in das elastische Mehrkörpermodell integriert. Für die Bewegung der Kugel während des Umschaltvorgangs im Ventil wurden CFD-Simulationen mit der ALE-Erweiterung zur Beschreibung der Netzverformungen unter mehreren Methoden als beste befunden und verwendet. Damit stellt man fest, dass der Einfluss von Wasser auf die Kugelbewegung recht gering ist und das Umschalten kaum behindert. Öl hingegen bremst die Kugel stark ab, so dass robustes Umschalten nicht mehr sichergestellt werden kann. Durch Messungen mit einer Hochgeschwindigkeitskamera kann außerdem das Verhalten eines Prototypen beobachtet und es können Vermutungen aus der Simulation bestätigt werden. Darauf aufbauend wurde ein verbessertes Konzept dieses Prototyps vorgeschlagen.