Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 33
  • Thumbnail Image
    ItemOpen Access
    Entwicklung laserspektroskopischer Methoden zur Analyse der Verdunstungseigenschaften von Brennstofftropfen
    (Stuttgart : Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, 2021) Werner, Stefanie; Riedel, Uwe (Prof. Dr. rer. nat.)
    Die steigenden Emissionen des klimaschädlichen Treibhausgases CO2 durch die Verbrennung von fossilen, endlichen Energieträgern müssen möglichst schnell und nachhaltig reduziert werden. Ein vielversprechender Lösungsansatz zur Reduzierung der Schadstoffemissionen bei der Verbrennung liegt in dem Einsatz von alternativen und erneuerbaren Brennstoffen. Als Energieträger bieten sich auf Grund ihrer hohen Energiedichte vor allem flüssige Brennstoffe an. Diese werden typischerweise durch Druckzerstäubung in die Brennkammer eingebracht, verdunstet und dann mit dem Oxidationsmittel vermischt und verbrannt. Die Verdunstung der kleinen Brennstofftropfen des sogenannten Sprays ist von entscheidender Bedeutung für den Gesamtverbrennungsprozess in Verbrennungsmotoren und Gasturbinen. Im Allgemeinen bestimmt die Verdunstungsrate die Verbrennungsrate. Daher sind Modelle notwendig, die eine genaue Vorhersage der Brennstoffverdunstung ermöglichen. Zur Validierung dieser Modelle werden quantitative Messungen unter genau definierten Randbedingungen benötigt. Da die Prozesse in technischen Brennkammern sehr komplex sind, werden Experimente zur Tropfenverdunstung häufig mit linearen, monodispersen Tropfenketten durchgeführt, um die Kopplung zwischen den verschiedenen Effekten zu minimieren. Durch die geringe Größe der Tropfen (typischerweise wenige hundert Mikrometer oder weniger), erfordert die experimentelle Untersuchung eine hohe räumliche Auflösung. In dieser Arbeit wurden quantitative, laseroptische Messtechniken mit hoher räumlicher Auflösung zur experimentellen Untersuchung der Tropfenverdunstung an monodispersen Tropfenketten entwickelt. Mit den Messtechniken wurden Validierungsdaten für die Verdunstungseigenschaften von verschiedenen Brennstoffen bestimmt. Konzentrationsmessungen von verdunsteten Kohlenwasserstoffen wurden unter Verwendung von Infrarot-Laserabsorptionsspektroskopie und laserinduzierter Fluoreszenzspektroskopie (LIF) durchgeführt. Tropfenketten wurden mit einem Tropfenkettengenerator erzeugt, welcher vertikal in einem Strömungskanal installiert wurde. Die untersuchten Brennstoffe waren Cyclohexan, iso-Octan, n-Heptan, n-Pentan, 1-Butanol und Anisol. Der Strömungskanal wurde mit einer laminaren Luftströmung bei verschiedenen Temperaturen (313 K - 430 K) durchströmt. Da die untersuchten Tropfen einen Durchmesser in der Größenordnung von 120 bis 160 µm hatten und die Konzentrationsgradienten nahe der Tropfenoberfläche groß waren, war eine hohe räumliche Auflösung der Messtechniken erforderlich. Die Absorptionsmessungen wurden mit der Infrarotstrahlung eines HeNe-Lasers bei λ = 3,39 µm durchgeführt, um die CH-Streckschwingung der Kohlenwasserstoffe anzuregen. Die für die Quantifizierung der Brennstoffkonzentrationen benötigten Absorptionsquerschnitte wurden in einer beheizten Gaszelle für Temperaturen von 300 K - 773 K bestimmt. Die räumliche Auflösung im Strömungskanal betrug < 50 µm über eine Länge von 2 mm (Halbwertsbreite). Durch die Zylindersymmetrie und gute Stabilität der Tropfenketten konnten zeitliche Mittelungs- und Tomografieverfahren angewandt werden. Hierdurch konnten radiale Konzentrationsprofile an mehreren Positionen im Strömungskanal erhalten werden. Aus dem Anstieg der Dampfkonzentration an verschiedenen Messpositionen konnte die Verdunstungsrate bestimmt werden. Die Verdunstungsraten wurden in Abhängigkeit von der Mantelstromtemperatur (313 K - 430 K), der Tropfengeschwindigkeit (8 m/s - 23 m/s), der Tropfenerzeugungsfrequenz (12 kHz - 75 kHz) und dem Tropfenabstand (300 µm - 685 µm) gemessen. Im untersuchten Temperaturbereich steigt die Verdunstungsrate des Brennstoffs linear mit der Temperatur an. Die Reihenfolge der Brennstoffe in Bezug auf die Verdunstungsrate entspricht den Siedepunkten der einzelnen Brennstoffe. Da technische Brennstoffe häufig eine Mischung mehrerer Komponenten sind, ist die Untersuchung von Brennstoffgemischen von großem Interesse. Daher wurde ein Messverfahren entwickelt, um binäre Gemische zu untersuchen. Das Verfahren wurde verwendet, um eine Mischung aus Cyclohexan und Anisol zu untersuchen. Zwei Messtechniken - laserinduzierte Fluoreszenz (LIF) und Infrarot Absorptionsspektroskopie - wurden verwendet, um beide Spezies zu messen. Um λ = 3,39 µm ist der Absorptionsquerschnitt von Cyclohexan um etwa den Faktor 8 größer als von Anisol. Im untersuchten Fall war die Konzentration aufgrund des höheren Dampfdrucks ebenfalls deutlich größer. Daher konnte das Infrarot-Absorptionssignal praktisch ausschließlich Cyclohexan zugeordnet werden. Anisol hat bei Anregung bei λ = 266 nm eine sehr gute Fluoreszenzquantenausbeute, während Cyclohexan keine Fluoreszenz zeigt. LIF ermöglicht daher die Quantifizierung von Anisol (oder anderen Aromaten) ohne Interferenz durch Kohlenwasserstoffe. Es wurde ein Messverfahren entwickelt, welches Halationseffekte vermeidet, die typischerweise in planaren LIF-Experimenten an Tropfenketten auftreten. Kalibrationsmessungen, die im gleichen Strömungskanal durchgeführt wurden, ermöglichten die Quantifizierung der verdunsteten Anisolkonzentrationen. Die räumliche Auflösung betrug 80 µm. Ähnlich wie bei den Einzelkomponentenmessungen wurden Verdunstungsraten bestimmt. Wie aufgrund des niedrigeren Dampfdrucks zu erwarten, ist die Verdunstungsrate von Anisol niedriger als die von Cyclohexan. Die Verdunstungsrate von Cyclohexan in der binären Mischung stimmt gut mit den Einzelkomponentenmessungen überein. Das entwickelte Messverfahren ist sehr vielversprechend für weitere Untersuchungen an Mehrkomponentenmischungen. In dieser Arbeit konnte damit erstmals mit hoher räumlicher Auflösung die Verdunstung von Brennstoffkomponenten mittels Absorptionsspektroskopie in der Nähe von Brennstofftropfen untersucht werden. Zusätzlich wurden in Kombination mit laserinduzierter Fluoreszenzspektroskopie Messungen an binären Mischungen durchgeführt. Damit steht ein wertvoller Datensatz zur Validierung von numerischen Simulationen zur Verfügung.
  • Thumbnail Image
    ItemOpen Access
    Spectroscopic investigations of the magnetic anisotropy of lanthanide- and cobalt-based molecular nanomagnets
    (2016) Rechkemmer, Yvonne; Slageren, Joris van (Prof. Dr.)
    Single-molecule magnets are metal complexes exhibiting an energy barrier for spin reversal, leading to magnetic bistability and slow relaxation of the magnetization. Their potential for practical applications such as high-density magnetic data storage was recognized early on and with the goal of achieving high energy barriers, different kinds of single-molecule magnets have been synthesized. The quadratic dependence of the barrier height on the spin motivated chemists to synthesize metal complexes with very high total spins; however, with limited success. It was shown that high spins come along with low anisotropies and increased interest thus focused on the synthesis and investigation of (mononuclear) complexes of highly anisotropic metal centers, e.g. lanthanide or cobalt complexes. Although rather high energy barriers can be achieved in such systems, practical application remains problematic and has not been realized yet. Reasons are for example the lack of rational design criteria and the complex interplay of different magnetic relaxation pathways. The aim of this work was therefore the comprehensive magnetic and spectroscopic investigation of selected molecular lanthanide and cobalt compounds in order to obtain a deeper insight into the correlation of molecular and electronic structures as well as the corresponding magnetic properties. The applied spectroscopic methods included electron paramagnetic resonance spectroscopy, far-infrared spectroscopy and optical methods. Special emphasis was placed on magnetic circular dichroism (MCD) spectroscopy, which served as a main tool for electronic structure determination. However, since the MCD-spectrometer was not part of the available experimental equipment at the University of Stuttgart, its design, setup and characterization were the first part of this work. In the further course of this work MCD-spectroscopy was employed for the electronic structure determination of selected lanthanide and cobalt compounds. The studied lanthanide compounds were literature-known molecular tetra-carbonates of erbium (1-Er) and dysprosium (1-Dy). Detailed magnetometric studies showed that both 1-Er and 1-Dy are field-induced single-molecule magnets; however, 1-Er and 1-Dy show significant differences in their magnetic relaxation behavior. The magnetic studies were complemented by detailed spectroscopic investigations.The combination of far-infrared-, luminescence- and MCD-spectroscopy allowed for the experimental determination of 48 energy levels for 1-Er and 55 levels for 1-Dy, which built the foundation for the subsequent crystal field analysis and electronic structure determination. In addition, the results of EPR-spectroscopic studies were used for fine-tuning and verifying the respectively determined crystal field parameters. Calculating the magnetic dipole strengths for transitions between the relevant states led to a quantitative understanding of the magnetic relaxation pathways. Besides the investigation of lanthanide compounds, this thesis deals with two classes of cobalt complexes. The first class comprises mononuclear complexes in which one Co(II) ion is ligated by the nitrogen donors of two doubly deprotonated 1,2-bis(methanesulfonamido)-benzene-ligands. Rather acute N-Co-N bite angles indicate strong deviations from ideal tetrahedral symmetry. The static magnetic properties hint at very high energy barriers for spin reversal and with the help of far-infrared spectroscopy, largely negative axial zero-field splitting parameters were determined. The corresponding energy barriers belong to the highest ever reported for 3d-transition metal complexes and investigating the dynamic magnetic properties confirmed single-molecule magnet behavior. The unique magnetic properties were fully explained by analyzing spectroscopic results. The MCD-spectra showed intense signals that were assigned to spin-allowed d-d-transitions. Subsequent crystal field analysis revealed that the strong axial crystal field generated by the ligands leads to a large splitting of the electronic terms and thus in turn to a relatively small energy gap between the electronic ground state and the first excited state. The resulting increase in second-order spin-orbit coupling explains the high energy barriers observed in the studied complexes. The second class of cobalt compounds studied in this work included dimers of distorted octahedrally coordinated Co(II) ions bridged by symmetrical or asymmetrical quinone based bridging ligands. The main focus of investigation lay on the impact of the bridging ligand on the magnetic coupling between the cobalt centers. Thus, the magnetic properties of the complexes were studied with the help of static susceptibility and magnetization measurements and analyzed by means of different models. Depending on the bridging ligand, different signs for the exchange coupling constants were found. The varying signs can be explained by different relative contributions of possible exchange paths, influenced by the different substituents at the bridging ligands or slight geometry differences. The observations indicate that electron withdrawing substituents favor ferromagnetic couplings, which are preferred in the context of molecular magnetism. All in all, it can be concluded that this work provides a contribution to the deeper understanding of the features relevant for single-molecule magnets. The electronic structure determination for selected lanthanide and cobalt complexes applying advanced magnetometric and spectroscopic techniques not only led to an understanding of the static and dynamic magnetic properties but also allowed for the development of design criteria and new approaches for improved single-molecule magnets in the future.
  • Thumbnail Image
    ItemOpen Access
    Modeling and simulation of closed low-pressure adsorbers for thermal energy storage
    (2019) Schäfer, Micha; Thess, André (Prof. Dr. rer. nat.)
    Closed low-pressure adsorption systems can be applied for thermal energy storage. Their performance is determined by the mass and heat transport processes in the adsorber. Therefore, thorough knowledge of these transport processes is required for further storage development. The present thesis contributes to this by providing detailed models of closed low-pressure adsorbers and by conducting simulations over a broad range of parameters and configurations. The focus is on adsorbers of larger scale (length L = 0.1 . . . 1 m) and on the discharging process. As the adsorption pair, binderless zeolite 13X with water is examined. The models are developed in a stepwise manner from pore to storage scale. The Finite-Difference-Method is implemented to numerically solve the models. Simulations are conducted for defined reference cases as well as over a broad range of geometric and process parameters. The reference cases are analyzed in detail to gain a better understanding of the transport processes. Furthermore, the results are analyzed with respect to two particular modeling aspects: equilibrium assumptions and rarefaction effects (e. g. slip effect). With respect to the application, the discharging performance is analyzed in terms of thermal power and a defined discharging degree. Both the adsorber and the adsorbent configurations are varied. In addition, the effect of the discharging conditions is evaluated. Finally, one exemplary charging process is examined. The detailed analysis of the reference cases reveals that the mass and heat transport and the adsorption processes are strongly coupled and can only be understood in their interaction. For onedimensional adsorber configurations, that is the mass and heat transport are in the same direction, the discharging process is generally limited by the heat transport. This leads to insufficient thermal power and unsuitable discharging durations of up to one year. In contrast, for two-dimensional adsorber configurations, that is the mass and heat transport are in perpendicular directions, the discharging process can be limited either by the mass or heat transport or by the adsorption. The limitation depends on the configuration of the adsorber and adsorbent. Moreover, the twodimensional adsorber configurations can provide sufficient thermal power. With respect to the modeling, it is found that the assumption of a uniform pressure distribution is applicable for one-dimensional adsorber configurations. In contrast, for two-dimensional configurations, no equilibrium assumptions can be applied in general. However, for powder adsorbent it is always valid to assume local adsorption equilibrium. Regarding the rarefaction effects in twodimensional adsorber configurations with honeycombs and granules, the slip effect is relevant for small channel and particle diameters (d = 1 mm). For adsorbers with powder adsorbent, the reduction of the effective heat conductivity due to the rarefaction effect becomes relevant. With respect to the application, the variation of the adsorber configuration shows that the volumetric thermal power generally decreases with increasing adsorber length. Furthermore, the power decreases with increasing width between the parallel heat exchanger plates in the adsorber. Regarding the adsorbent configuration in two-dimensional adsorber configurations, it is found that the volumetric thermal power can be optimized by variation of the channel or particle diameter. Interestingly, the optima for peak and mean power do not coincide. In addition, the discharging degree is found to strongly depend on the discharging conditions in terms of discharging temperature and volume flow of the heat transfer fluid extracting the heat from the adsorber. In general, the discharging degree decreases with increasing discharging temperature. Similarly, the discharging degree decreases with increasing volume flow of the heat transfer fluid. Finally, the analysis of an exemplary charging process revealed that the pressure in the adsorber can increase significantly (> 50%) due to the desorption.
  • Thumbnail Image
    ItemOpen Access
    Extension of a VCI program for the calculation of rovibrational intensities
    (2023) Tschöpe, Martin; Rauhut, Guntram (apl. Prof. Dr.)
    Die Identifizierung von Molekülen im interstellaren Medium, in zirkumstellaren Scheiben und in den Atmosphären kalter Exoplaneten ist eine große Herausforderung in der Astrophysik und basiert hauptsächlich auf hochgenauen Rotations- und Rotationsschwingungs-Referenzspektren. Eine Möglichkeit, diese Referenzspektren zu bestimmen, sind ab initio-Berechnungen, da sie eine effiziente Simulation eines breiten Bereichs von Bedingungen (einschließlich extrem niedriger Drücke und Temperaturen) ermöglichen. In dieser Arbeit wurde eine neue und besonders effiziente Implementierung der Rotationsschwingungskonfigurationswechselwirkungstheorie für die Berechnung von Infrarot-Rotationschwingungsspektren entwickelt, um die Berechnung dieser Referenzspektren zu ermöglichen. Der Ansatz basiert auf Normalkoordinaten und einer Mehrmodenentwicklung der mehrdimensionalen Potential- und Dipolmomentflächen sowie Schwingungs-Selbst-konsistentes-Feld-Verfahren und Schwingungskonfigurationswechselwirkungstheorie. Dabei wird ein direktes Produkt zwischen Schwingungsbasisfunktionen und Rotationsbasisfunktionen verwendet. So kann im Gegensatz zu der zuvor eingeführten Rotationskonfigurationswechselwirkungstheorie die Wechselwirkung zwischen Rotations- und Vibrationsbanden berücksichtigt werden. Dies geschieht mit hoher Genauigkeit, indem die Terme höherer Ordnung des inversen effektiven Trägheitsmomenttensors μ für den Rotationsterm und die Coriolis-Kopplung im Watson Hamiltonian berücksichtigt werden. Darüber hinaus werden eine neue Rotationsbasis namens Molekülspezifische Rotationsbasis (MSRB) und eine neue Art der Zuweisung von Rotationsschwingungsquantenzahlen eingeführt. Das Konvergenzverhalten verschiedener Entwicklungen für die Rotationsschwingungskonfigurationswechselwirkungstheorie (RVCI) zeigte sehr individuelle Effekte für die fünf untersuchten Parameter. Wenn die maximale Gesamtdrehimpulsquantenzahl Jmax oder die Größe der Schwingungsbasis nicht ausreichend konvergiert, treten besonders große Artefakte auf. Es werden effiziente Methoden zur Erkennung und Vermeidung dieser Probleme vorgestellt. Auch die Größe des Schwingungsbasissatzes ist ein entscheidender Parameter für die Konvergenz des Spektrums. Der beste Indikator für die Konvergenz bezüglich dieses Parameters und für die Stärke der Kopplung ist der spektrale Abstand zwischen den Schwingungsbanden. Für die beiden quasi-entarteten Schwingungsmoden von H2 CS ist die Coriolis-Kopplung nullter Ordnung sehr entscheidend, während die Terme erster Ordnung nur geringe Änderungen verursachen. Im Vergleich zu den Coriolis-Kopplungstermen erfordern die Rotationsterme eine um eine Ordnung höhere μ-Tensorentwicklung für die gleiche Genauigkeit. Die erste Ordnung führt für ganze Progressionen zu Energieverschiebungen von höchstens 5 cm-1 . Die durch die Terme der zweiten Ordnung hervorgerufenen Änderungen sind um mehr als eine Größenordnung geringer. Da das Fehlen von Kopplungstermen höherer Ordnung keine Artefakte im Spektrum verursacht, ist eine unzureichende Konvergenz in den resultierenden Spektren sehr schwierig zu erkennen. Die Berechnungen für die erste Veröffentlichung in dieser Dissertation beruhten auf einer Reihe von Näherungen, die im weiteren Verlauf dieser Arbeit entfernt werden konnten. Die meisten dieser Näherungen hatten kaum Auswirkungen auf die Spektren von Ketenimin, da sie bis 2900 cm-1 nur zu geringfügigen Änderungen des Spektrums führten. Oberhalb dieser Grenze zeigen jedoch die ν1 -Bande und die Kopplung zwischen ν8 + ν12 und ν11 , dass sich die Qualität der Quantenzahlzuordnung und die Konsistenz der Intensitäten in den letzten drei Jahren deutlich verbessert haben. Die neuen Berechnungen zeigen auch eine interessante turnaround Progression in diesem Bereich. Die Studie zur Linienverbreiterung unter Verwendung von Propynal als Anwendungsmolekül bestätigte die Annahme, dass für Moleküle mit 6 - 10 Atomen keine Notwendigkeit besteht, beyond Voigt-Profile zu verwenden, wie sie für kleine Moleküle (N2 , H2 O, CH4, NH3 , etc.) benutzt werden. Der Grund dafür ist, dass die höhere Masse und der größere Trägheitstensor zu einer hohen Schwingungszustandsdichte führen, wodurch die genaue Form des Verbreiterungsprofil weniger relevant wird. Am Ende dieser Arbeit werden verschiedene Laufzeitoptimierungen analysiert. Die Parallelisierung zeigt eine nahezu perfekte Skalierung in der Anzahl der CPU-Kerne für die Vorberechnungen der Schwingungsintegrale und für die Intensitätsberechnung. Darüber hinaus sparen die Vorberechnungen der Schwingungsintegrale etwa einen Faktor von 8 an Gesamtrechenzeit ein. Die Kontraktion der MSRB-Koeffizienten mit den RVCI-Koeffizienten führt zu einer Gesamtrechenzeitreduktion von 50% für H2CS und 97% für Ketenimin. Die derzeitige Implementierung der RVCI-Theorie in MOLPRO ist in der Lage, Infrarot- und Raman-Spektren für bis zu 10 Atome, von T = 0 K bis zu Raumtemperatur und über einen weiten Spektralbereich zu berechnen. Die Kombination all dieser Eigenschaften erfordert jedoch große Rechenressourcen. Im Ausblick wird daher eine Liste von Optimierungen zur Steigerung der Recheneffizienz vorgestellt. Darüber hinaus wird eine Reihe von möglichen zusätzlichen Funktionalitäten und Methoden zur Erhöhung der Robustheit des Programms aufgelistet.
  • Thumbnail Image
    ItemOpen Access
    Novel X-ray lenses for direct and coherent imaging
    (2019) Sanli, Umut Tunca; Schütz, Gisela (Prof. Dr.)
  • Thumbnail Image
    ItemOpen Access
    Chirality effects in thermotropic and lyotropic nematic liquid crystals under confined geometries
    (2019) Dietrich, Clarissa; Giesselmann, Frank (Prof. Dr.)
    Chirality is a phenomenon in nature that appears across all disciplines of natural science, from biology to mathematics. The spontaneous formation of chiral structures in a system of achiral components is known as spontaneous mirror symmetry breaking and is by itself of fundamental interest leading also towards the question of the origin of homochirality in nature in general. In this work, we show that by means of the topology imposed by the confining geometry and by interfacial boundary conditions - in combination with the physical properties of a liquid crystal - spontaneous mirror symmetry broken structures can be obtained. They are analyzed, inter alia, with respect to the types of geometrical confinements used, e.g. how the confinement amplifies, induces, and influences the detection of chirality effects in order to facilitate the measurement of tiny amounts of chiral additives qualitatively and quantitatively.
  • Thumbnail Image
    ItemOpen Access
    Micellar lyotropic gels : the interplay between gel network and liquid-crystalline order
    (2021) Dieterich, Sonja; Gießelmann, Frank (Prof. Dr.)
    Surfactant based lyotropic liquid-crystalline (LLC) gels in the sense that genuine micellar LLC phases are immobilized by an interpenetrating gel network were practically unknown until 2016. This “blind spot” in the landscape of anisotropic gels has now been filled to a certain extent by the results of this dissertation. Following the rational design strategy to gel surfactant based LLC phases with the help of low molecular mass gelators (LMWGs), not only lamellar and hexagonal LLC gels, but also the very first example of micellar nematic gels were obtained. Furthermore, this work has led to first important insights into how the self assembly of the gel is directed and how the gel network and the LLC phase mutually influence each other in terms of structure and morphology
  • Thumbnail Image
    ItemOpen Access
    Modeling and simulation of electronic excitation in oxygen-helium discharges and plasma-assisted combustion
    (2018) Kuntner, Nikolaj; Riedel, Uwe (Prof. Dr. rer. nat.)
    The present work concerns the generation of electronically excited oxidizers in non-thermal discharges in the context of plasma-assisted hydrogen and methane combustion at atmospheric pressures. These conditions are of practical relevance for the combustion technology. However, as the conversion of electrical power into particular, chosen chemical degrees of freedom is facilitated by low molecular interaction, the atmospheric parameter range is often neglected in the literature. This work provides the design and validation of accurate and efficient computational models for several experiments in this parameter range.
  • Thumbnail Image
    ItemOpen Access
    Wetting, de-icing and anti-icing behavior of microstructured and plasma-coated polyurethane films
    (2019) Grimmer, Philipp E. S.; Hirth, Thomas (Prof. Dr. rer. nat.)
    Ice build-up on surfaces, for example on wings of airplanes or on rotor blades of wind turbines, impairs the functionality of transportation vehicles or technical systems and reduces their safety. Therefore, functional anti-ice surfaces are being researched and developed, which shall enable an easy removal or reduce the amount of ice on the surfaces at risk. The starting hypothesis for this work is that superhydrophobic polyurethane (PU) films with microstructure base diameters of 35 µm or more reduce the wetting by water, show a low ice adhesion for easy removal of ice and reduce or delay icing. Superhydrophobic PU films for passive anti- and de-icing were created by hot embossing and plasma enhanced chemical vapor deposition (PECVD). The hot embossing process as well as the plasma coating and etching processes were analyzed for the dependence of the surface characteristics on different process parameters. The functionalized PU films were characterized for their surface topography, surface chemistry, stability against erosion, wettability, ice adhesion and icing behavior. For comparison, the ice adhesion and icing behavior were examined on relevant technical materials (aluminum, titanium, copper, glass, epoxy resin of carbon fiber reinforced polymer and other fluoropolymers) and on some commercial anti-ice coatings. The PU films were chemically analyzed by IR spectroscopy. As the first process step for functionalization, microstructures of cylindrical, elliptical or linear shape were imprinted in PU films by a hot embossing technique with different ns-pulsed laser-drilled stamps and characterized by several microscopy methods. The microstructures had heights of 15 µm to 140 µm, diameters or widths of 35 µm to 300 µm and distances (pitch values) of 50 µm to 500 µm. The embossing process was analyzed and optimized in terms of the process parameters temperature, pressure, time, PU film release temperature and reproducibility of the microstructures. In a second functionalization step (PECVD) the microstructured surfaces were coated with thin, hydrophobic plasma polymers using different fluorocarbon precursors (CHF3, C3F6 and C4F8) or hexamethyldisiloxane (HMDSO). Different process parameters for plasma coating and etching (Ar or O2 plasmas) were used in order to create various nanoscale roughness values. Electron spectroscopy for chemical analysis (ESCA), spectroscopic ellipsometry and atomic force microscopy (AFM) were used for analysis of the chemical composition, the thickness and the nanoroughness of the plasma polymers. The functionalizations, especially the plasma coatings, were completely worn off by a UV/water weathering test (1000 h, X1a CAM 180 Test, SAE J-2527), but showed sufficient stability against sand erosion (DIN 52348), in a long-term outdoor test for 13.5 months and against fivefold repeated pull-off of ice. The silicone-like plasma coatings were more stable than the fluorocarbon plasma coatings. The wetting behavior of water was determined by static, advancing and receding contact angle measurements. Static contact angle measurements with diiodomethane (DIM) were made for determination of the surface free energies of the relevant surfaces. Advancing contact angles of over 150° and very low contact angle hysteresis values below 10° were reached on some of the cylindrically and elliptically structured PU samples with microstructure base diameters in the range of 35 µm to 50 µm. The measured water advancing contact angles did not reach the theoretical values of the Cassie-Baxter state. Starting from a mixed wetting state near Cassie-Baxter in case of the superhydrophobic PU surfaces, they approached the Wenzel state with an increasing pitch/diameter (P/d) factor. Fluorescence laser scanning microscopy images were taken of some microstructured, uncoated or plasma coated samples during the wetting by a water drop containing a fluorescent dye. These images show the Wenzel state or a mixed wetting state by visualization of the interface between the water droplet and the surface. A new icing test chamber and a test setup were developed for characterization of the ice adhesion and the icing behavior. The tensile ice adhesion was measured at -20 °C by pull-off of ice cylinders (highly purified water, (<0.056 µS/cm, diameter of 4 mm, similar to the diameter of large raindrops) and compared to the theoretical values and the wetting behavior. The technical material surfaces measured for comparison showed a high ice adhesion, which led to cohesive fractures especially on the metal surfaces, whereas some of the commercial anti-ice coatings showed lower ice adhesion values. The flat, plasma coated PU surfaces showed adhesive fractures with a reduced ice adhesion compared to the technical material surfaces and uncoated PU and revealed a good correlation of the ice adhesion with the wetting behavior of water (work of adhesion). On the other hand, the microstructured PU surfaces showed a greatly increased ice adhesion in comparison to the flat PU and technical material surfaces which was enhanced even further by the plasma coatings and did not correlate with the wetting behavior. The reason for this is the wetting transition from the Cassie-Baxter to the Wenzel state during the cooling or freezing process, leading to an increased ice-surface contact area and mechanical interlocking of the ice with the micro- and nanostructures. The freezing of water drops was examined in thermodynamic equilibrium (static experiment) and under quasi-steady conditions (dynamic experiment). In the static experiment, 15 µl water drops (corresponding to medium to large raindrops) at room temperature were dispensed onto a cold surface at a constant temperature of -20 °C. The freezing delay times, the crystallization times and the total freezing times were measured and compared to calculated expected values. On the flat samples, the freezing delay times could be extended by the plasma treatments. On the microstructured samples, the freezing (nucleation) could sometimes be delayed even further, but not always reproducible because of an unstable Cassie-Baxter state. In the dynamic experiment, 25 µl water drops (corresponding to large raindrops) were cooled down in quasi-steady conditions with the surface and the surrounding atmosphere by a constant, low cooling rate of 1 K/min while the water drop temperature was measured by an IR camera for determination of the surface-specific nucleation temperature and crystallization time. A lower nucleation temperature could be measured on the flat, plasma coated PU surfaces compared to uncoated PU and the hydrophilic glass and metal surfaces. The superhydrophobic PU surfaces did not show a further reduction of the nucleation temperature because of an unstable Cassie-Baxter state. The resulting measured nucleation temperatures were compared to the expected values calculated with an enhanced nucleation theory including a quasi-liquid interfacial layer of the ice nucleus and a Poisson process. Overall, it is shown that hot embossing and PECVD are useful processes for creating superhydrophobic PU surfaces with regard to a roll-to-roll process. The flat, plasma coated PU films show a reduced ice adhesion and lowered nucleation temperature compared to the relevant technical material surfaces. The microstructured, plasma coated PU films are far more water repellent than the flat, plasma coated PU surfaces or the other technical materials. However, the microstructures with base diameters of 35 µm or more and the nanoroughness of the plasma coatings cannot stabilize the Cassie-Baxter state of a freezing water drop enough for a low ice adhesion or a significant decrease of the nucleation temperature. These superhydrophobic PU films are therefore not more icephobic than the flat, plasma coated PU films. In the outlook, the reduction of the geometrical parameters of the microstructures (diameter D, distance P) and nanostructures (curvature radius R) of the surface functionalizations for lower ice adhesion values and nucleation temperatures is proposed.