Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
4 results
Search Results
Item Open Access Precision 3D‐printed cell scaffolds mimicking native tissue composition and mechanics(2020) Erben, Amelie; Hörning, Marcel; Hartmann, Bastian; Becke, Tanja; Eisler, Stephan A.; Southan, Alexander; Cranz, Séverine; Hayden, Oliver; Kneidinger, Nikolaus; Königshoff, Melanie; Lindner, Michael; Tovar, Günter E. M.; Burgstaller, Gerald; Clausen‐Schaumann, Hauke; Sudhop, Stefanie; Heymann, MichaelCellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell‐ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell‐ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two‐photon stereolithography is adopted to print up to mm‐sized high‐precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein‐based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two‐pass printing or post‐print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7‐300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D‐lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single‐cell and tissue dynamics in response to defined mechanical and bio‐molecular cues and is ultimately scalable to full organs.Item Open Access Golgi screen identifies the RhoGEF Solo as a novel regulator of RhoB and endocytic transport(2023) Lungu, Cristiana; Meyer, Florian; Hörning, Marcel; Steudle, Jasmin; Braun, Anja; Noll, Bettina; Benz, David; Fränkle, Felix; Schmid, Simone; Eisler, Stephan A.; Olayioye, Monilola A.The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase‐activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy‐based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP‐RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.Item Open Access Optimization of mechanosensitive cross-talk between matrix stiffness and protein density : independent matrix properties regulate spreading dynamics of myocytes(2022) Brock, Judith; Erhardt, Julia; Eisler, Stephan A.; Hörning, MarcelCells actively sense differences in topology, matrix elasticity and protein composition of the extracellular microenvironment and adapt their function and morphology. In this study, we focus on the cross-talk between matrix stiffness and protein coating density that regulates morphology and proliferation dynamics of single myocytes. For this, C2C12 myocytes were monitored on L-DOPA functionalized hydrogels of 22 different elasticity and fibronectin density compositions. Static images were recorded and statistically analyzed to determine morphological differences and to identify the optimized extracellular matrix (ECM). Using that information, selected ECMs were used to study the dynamics before and after cell proliferation by statistical comparison of distinct cell states. We observed a fibronectin-density-independent increase of the projected cell area until 12 kPa. Additionally, changes in fibronectin density led to an area that was optimum at about 2.6 μg/cm2, which was confirmed by independent F-actin analysis, revealing a maximum actin-filament-to-cell-area ratio of 7.5%. Proliferation evaluation showed an opposite correlation between cell spreading duration and speed to matrix elasticity and protein density, which did not affect cell-cycle duration. In summary, we identified an optimized ECM composition and found that independent matrix properties regulate distinct cell characteristics.Item Open Access Protein kinase D promotes activity‐dependent AMPA receptor endocytosis in hippocampal neurons(2021) Oueslati Morales, Carlos O.; Ignácz, Attila; Bencsik, Norbert; Sziber, Zsofia; Rátkai, Anikó Erika; Lieb, Wolfgang S.; Eisler, Stephan A.; Szűcs, Attila; Schlett, Katalin; Hausser, Angelikaα‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity‐induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1‐containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.