Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
2 results
Search Results
Item Open Access In situ electrochemical investigations of inherently chiral 2,2′‐biindole architectures with oligothiophene terminals(2021) Malacrida, Claudia; Scapinello, Luca; Cirilli, Roberto; Grecchi, Sara; Penoni, Andrea; Benincori, Tiziana; Ludwigs, SabineThe synthesis and characterization of three new inherently chiral N,N′‐dipropyl‐3,3′‐diheteroaryl‐2,2′‐biindole monomers, nicknamed Ind2T4, Ind2T6 and Ind2Ph2T4, which differ in the number of thiophenes as terminals, are reported. In addition to a full monomer characterization, stable electroactive oligomeric films were obtained by electro‐oxidation upon cycling to potentials which activate the thiophene terminals. Cyclic voltammetry, UV‐Vis‐NIR spectroelectrochemistry and in situ conductance measurements show that oligomeric films of Ind2T6 present the best stability and electrochromic switching performance. Enantioselective tests with a chiral ferrocene amine clearly show the potential as chiral selectors for analytical and sensing purposes.Item Open Access Electro-active metaobjective from metalenses-on-demand(2022) Karst, Julian; Lee, Yohan; Floess, Moritz; Ubl, Monika; Ludwigs, Sabine; Hentschel, Mario; Giessen, HaraldSwitchable metasurfaces can actively control the functionality of integrated metadevices with high efficiency and on ultra-small length scales. Such metadevices include active lenses, dynamic diffractive optical elements, or switchable holograms. Especially, for applications in emerging technologies such as AR (augmented reality) and VR (virtual reality) devices, sophisticated metaoptics with unique functionalities are crucially important. In particular, metaoptics which can be switched electrically on or off will allow to change the routing, focusing, or functionality in general of miniaturized optical components on demand. Here, we demonstrate metalenses-on-demand made from metallic polymer plasmonic nanoantennas which are electrically switchable at CMOS (complementary metal-oxide-semiconductor) compatible voltages of ±1 V. The nanoantennas exhibit plasmonic resonances which can be reversibly switched ON and OFF via the applied voltage, utilizing the optical metal-to-insulator transition of the metallic polymer. Ultimately, we realize an electro-active non-volatile multi-functional metaobjective composed of two metalenses, whose unique optical states can be set on demand. Overall, our work opens up the possibility for a new level of electro-optical elements for ultra-compact photonic integration.