Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-10987
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorPraditia, Timothy-
dc.contributor.authorWalser, Thilo-
dc.contributor.authorOladyshkin, Sergey-
dc.contributor.authorNowak, Wolfgang-
dc.date.accessioned2020-09-01T13:39:30Z-
dc.date.available2020-09-01T13:39:30Z-
dc.date.issued2020de
dc.identifier.issn1996-1073-
dc.identifier.other1728850274-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-110040de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11004-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10987-
dc.description.abstractThermochemical Energy Storage (TCES), specifically the calcium oxide (CaO)/calcium hydroxide (Ca(OH)2) system is a promising energy storage technology with relatively high energy density and low cost. However, the existing models available to predict the system's internal states are computationally expensive. An accurate and real-time capable model is therefore still required to improve its operational control. In this work, we implement a Physics-Informed Neural Network (PINN) to predict the dynamics of the TCES internal state. Our proposed framework addresses three physical aspects to build the PINN: (1) we choose a Nonlinear Autoregressive Network with Exogeneous Inputs (NARX) with deeper recurrence to address the nonlinear latency; (2) we train the network in closed-loop to capture the long-term dynamics; and (3) we incorporate physical regularisation during its training, calculated based on discretized mole and energy balance equations. To train the network, we perform numerical simulations on an ensemble of system parameters to obtain synthetic data. Even though the suggested approach provides results with the error of 3.96 x 10^(-4) which is in the same range as the result without physical regularisation, it is superior compared to conventional Artificial Neural Network (ANN) strategies because it ensures physical plausibility of the predictions, even in a highly dynamic and nonlinear problem. Consequently, the suggested PINN can be further developed for more complicated analysis of the TCES system.en
dc.language.isoende
dc.relation.uridoi:10.3390/en13153873de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc600de
dc.subject.ddc624de
dc.titleImproving thermochemical energy storage dynamics forecast with physics-inspired neural network architectureen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.publikation.seiten26de
ubs.publikation.sourceEnergies 13 (2020), No. 3873de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
energies-13-03873.pdf1,87 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.