Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12030
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorBárdossy, András-
dc.contributor.authorKilsby, Chris-
dc.contributor.authorBirkinshaw, Stephen-
dc.contributor.authorWang, Ning-
dc.contributor.authorAnwar, Faizan-
dc.date.accessioned2022-03-16T13:30:21Z-
dc.date.available2022-03-16T13:30:21Z-
dc.date.issued2022de
dc.identifier.issn2624-9375-
dc.identifier.other1800258089-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-120471de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12047-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12030-
dc.description.abstractRainfall-runoff modeling is highly uncertain for a number of different reasons. Hydrological processes are quite complex, and their simplifications in the models lead to inaccuracies. Model parameters themselves are uncertain-physical parameters because of their observations and conceptual parameters due to their limited identifiability. Furthermore, the main model input-precipitation is uncertain due to the limited number of available observations and the high spatio-temporal variability. The quantification of model output uncertainty is essential for their use. Most approaches used for the quantification of uncertainty in rainfall-runoff modeling assign the uncertainty to the model parameters. In this contribution, the role of precipitation uncertainty is investigated. Instead of a standard sensitivity analysis of the model output with respect to the input variations, it is investigated to what extent realistic precipitation fields could improve model performance. Realistic precipitation fields are defined as gridded realizations of precipitation which reproduce the observed values at the observation locations, with values which reproduce the distribution of the observed values and with spatial variability the same as the spatial variability of the observations. The above conditions apply to each observation time step. Through an inverse modeling approach based on Random Mixing precipitation fields fulfilling the above conditions and reproducing the discharge output better than using traditional interpolated observations can be obtained. These realizations show how much rainfall runoff models may profit from better precipitation input and how much remains for the parameter and model concept uncertainty. The methodology is applied using two hydrological models with a contrasting basis, SHETRAN and HBV, for three different mesoscale sub-catchments of the Neckar basin in Germany. Results show that up to 50% of the model error can be attributed to precipitation uncertainty. Further, inverting precipitation using hydrological models can improve model performance even in neighboring catchments which are not considered explicitly.en
dc.language.isoende
dc.relation.uridoi:10.3389/frwa.2022.836554de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc550de
dc.titleIs precipitation responsible for the most hydrological model uncertainty?en
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceFrontiers in water 4 (2022), article 836554de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Is precipitation responsible for the most hydrological uncertainty, Bardossy et al. 2022, Paper.pdf7,78 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.