Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-15014
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHolicki, Tobias-
dc.contributor.authorScherer, Carsten W.-
dc.date.accessioned2024-10-10T11:28:31Z-
dc.date.available2024-10-10T11:28:31Z-
dc.date.issued2021de
dc.identifier.issn1099-1239-
dc.identifier.issn1049-8923-
dc.identifier.other1905372299-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-150333de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15033-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15014-
dc.description.abstractThe dual iteration was introduced in a conference paper in 1997 by Iwasaki as an iterative and heuristic procedure for the challenging and non‐convex design of static output‐feedback controllers. We recall in detail its essential ingredients and go beyond the work of Iwasaki by demonstrating that the framework of linear fractional representations allows for a seamless extension of the dual iteration to output‐feedback designs of practical relevance, such as the design of robust or robust gain‐scheduled controllers. In the paper of Iwasaki, the dual iteration is solely based on, and motivated by algebraic manipulations resulting from the elimination lemma. We provide a novel control theoretic interpretation of the individual steps, which paves the way for further generalizations of the powerful scheme to situations where the elimination lemma is not applicable. As an illustration, we extend the dual iteration to a design of static output‐feedback controllers with multiple objectives. We demonstrate the approach with numerous numerical examples inspired from the literature.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.language.isoende
dc.relation.uridoi:10.1002/rnc.5547de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.titleRevisiting and generalizing the dual iteration for static and robust output‐feedback synthesisen
dc.typearticlede
dc.date.updated2023-11-14T03:39:18Z-
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Mathematische Methoden in den Ingenieurwissenschaften, Numerik und geometrische Modellierungde
ubs.publikation.seiten5427-5459de
ubs.publikation.sourceInternational journal of robust and nonlinear control 31 (2021), S. 5427-5459de
ubs.publikation.typZeitschriftenartikelde
Appears in Collections:08 Fakultät Mathematik und Physik

Files in This Item:
File Description SizeFormat 
RNC_RNC5547.pdf1,5 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons